
Power Mean Estimation in Stochastic Monte-Carlo Tree Search

Tuan Dam1 Odalric-Ambrym Maillard1 Emilie Kaufmann1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9198-CRIStAL, F-59000 Lille, France

Abstract

Monte-Carlo Tree Search (MCTS) is a widely-
used strategy for online planning that combines
Monte-Carlo sampling with forward tree search.
Its success relies on the Upper Confidence bound
for Trees (UCT) algorithm, an extension of the
UCB method for multi-arm bandits. However, the
theoretical foundation of UCT is incomplete due
to an error in the logarithmic bonus term for ac-
tion selection, leading to the development of Fixed-
Depth-MCTS with a polynomial exploration bonus
to balance exploration and exploitation [Shah et al.,
2022]. Both UCT and Fixed-Depth-MCTS suffer
from biased value estimation: the weighted sum
underestimates the optimal value, while the max-
imum valuation overestimates it [Coulom, 2006].
The power mean estimator offers a balanced so-
lution, lying between the average and maximum
values. Power-UCT [Dam et al., 2019] incorporates
this estimator for more accurate value estimates
but its theoretical analysis remains incomplete.
This paper introduces Stochastic-Power-UCT, an
MCTS algorithm using the power mean estimator
and tailored for stochastic MDPs. We analyze its
polynomial convergence in estimating root node
values and show that it shares the same conver-
gence rate of O(n−1/2), with n is the number of
visited trajectories, as Fixed-Depth-MCTS, with
the latter being a special case of the former. Our
theoretical results are validated with empirical tests
across various stochastic MDP environments.

1 INTRODUCTION

Monte-Carlo Tree Search (MCTS) is a family of dynamic
planning algorithms that integrates asymmetric tree search
and reinforcement learning (RL) to solve decision problems.

Recent advances in coupling MCTS with deep learning
techniques for value estimation have facilitated the solution
of complex problems with high branching factors that were
considered impossible just a few years ago [Silver et al.,
2016, 2017, Schrittwieser et al., 2020]. The core of the
success of MCTS lies in the use of adaptive exploration of
the tree using, e.g. strategies inspired by the multi-armed
bandit literature. One of the most well-known algorithms
is Upper Confidence bound for Trees (UCT) [Kocsis et al.,
2006], which turns the UCB1 algorithm [Auer et al., 2002]
into a strategy for selecting actions during tree expansion.

Kocsis et al. [2006] offers a theoretical analysis of UCT in
deterministic environments establishing the convergence in
selecting the optimal action for a given state for a sufficient
number of simulations. However, as pointed out recently
[Shah et al., 2020], there are some issues in the proof of
this assertion. The problem comes from the use of a "log-
arithmic" bonus term within UCT, designed to balance ex-
ploration and exploitation during tree-based search. This
approach is built upon the assumption that the concentration
of regret for the underlying recursively dependent nonsta-
tionary MABs will exponentially converge to its expected
value as the number of steps advances. However, as demon-
strated by Audibert et al. [2009], the validity of this assump-
tion is doubtful, given that the underlying regret converges
polynomially rather than exponentially.

Building upon these insights, Shah et al. [2022] propose an
adapted version of UCT incorporating a polynomial bonus
term instead of the logarithmic bonus term in UCT. They of-
fer a comprehensive theoretical analysis to show that the re-
sulting algorithm, called Fixed-depth-MCTS, ensures poly-
nomial convergence in value function estimation at the root
node. However, their work is mostly focused on determin-
istic environments.1 Moreover, the Power-UCT algorithm,
introduced by Dam et al. [2019] as a generalization of UCT

1The first version of their work [Shah et al., 2020] mentioned
the stochastic case as an open question, while it is treated in Ap-
pendix A of the journal version [Shah et al., 2022]. However, they
use some high-level reduction argument, and the stochastic version

mailto:<tuanquangdam@gmail.com>?Subject="Power Mean Estimation in Stochastic Monte-Carlo Tree Search"

similarly focuses on deterministic environment and its cur-
rent analysis suffers from the same shortcoming as that of
UCT [Kocsis et al., 2006].

This paper introduces a novel MCTS algorithm for Stochas-
tic MDPs using power mean for the value estimator, called
Stochastic-Power-UCT. We propose the same form of a poly-
nomial bonus term as introduced in the work of Shah et al.
[2020]. We show that Stochastic-Power-UCT also ensures
the polynomial concentration of value estimation at the root
node. We complement our method by empirically perform-
ing a variety of experiments in stochastic tasks confirming
our theory. Thus, our contribution is threefold:

(i) We propose Stochastic-Power-UCT with a complete
theoretical convergence guarantee using the power
mean backup operator in stochastic MCTS.

(ii) We demonstrate that the estimated value function at
the root node of our tree converges polynomially to the
optimal value, exhibiting the same convergence rate
as Fixed-depth-MCTS [Shah et al., 2020], which is
O(n−1/2), with n is the number of visited trajectories.
Our method employs power mean as value estimators,
with the average mean utilized in Fixed-depth-MCTS
being a specific case.

(iii) We conduct various experiments in SyntheticTree toy
task and in various stochastic MDPs, which support
our theoretical analysis.

2 SETTING

In this section, we first provide some background knowledge
about Markov Decision Processes, and then we give an
overview of Monte-Carlo Tree Search.

Markov Decision Process In Reinforcement Learning
(RL), the agent aims to make optimal decisions in an en-
vironment modeled as a Markov Decision Process (MDP),
a standard framework for sequential decision-making. We
focus on a discrete-time discounted MDP, defined as M =
⟨S,A,R,P, γ⟩, where S is the state space, A is the finite
action space, R : S × A × S → R is the reward function,
P : S ×A → S is the transition dynamics, γ ∈ [0, 1) is the
discount factor. A policy π ∈ Π : S → A represents a prob-
ability distribution over feasible actions given the current
state.

We denote Qπ(s, a) as a Q value function under the policy
π defined based on Bellman equation as

Qπ(s, a) ≜
∑

s′ P(s′|s, a) [R(s, a, s′) + γ
∑

a′ π(a′|s′)Q(s′, a′)] ,

and the value function under the policy π is denoted as
V π(s) = maxa∈A Qπ(s, a). Our goal is to find the opti-
mal policy that maximizes the value function at each state,

of their algorithm is not explicitly presented.

where the optimal value function at state s is defined as
V ⋆(s) = maxa∈A Q⋆(s, a), with Q⋆(s, a) the optimal Q
value function at state s action a satisfies the optimal Bell-
man equation [Bellman, 1954]

Q∗(s, a) ≜
∑

s′ P(s′|s, a) [R(s, a, s′) + γmaxa′ Q∗(s′, a′)] .

Monte-Carlo Tree Search Monte-Carlo Tree Search
(MCTS) (see Browne et al. [2012] for a survey) is a family
of online planning strategies that combines Monte-Carlo
sampling with forward tree search to find on-the-fly opti-
mal decisions. MCTS algorithms use a black-box model of
the environment in simulation to build a planning tree. An
MCTS algorithm consists of four components: Selecting
nodes to traverse in the tree based on the current statistical
information, expanding the tree, evaluating the leaf that has
been reached (using possibly a roll-out in the environments),
and using the collected rewards from the environment along
the chosen path to update the algorithm. The key elements
influencing the quality of a particular algorithms are an ef-
fective value update operator and an efficient node selection
strategy in the tree.

Formalization An MCTS algorithm adaptively collects
trajectories in an MDP, starting from an initial state s0, to
build a planning tree. Each trajectory continues until it either
reaches a leaf node or a node at some maximum depth H .
At the end of each trajectory, a playout policy (which can
be either deterministic or stochastic) is applied from the last
node reached, to provide an evaluation of the corresponding
state. After t trajectories, it may output two things:

• ât, a guess for the best action to take in state s0

• V̂t(s0) an estimator of the optimal value in s0

Its quality performance can be evaluated by its convergence
rate r(t), of the form

E [V ⋆(s0)−Q⋆ (s0, ât)] ≤ r(t) (1)

or
∣∣∣E [V ⋆(s0)− V̂t (s0)

]∣∣∣ ≤ r(t). (2)

We shall analyze an MCTS algorithm using some maximal
planning horizon H and a playout policy π0 with value
V0. Denoting by sh a node at depth h in the tree (that is
identified to some state that may be reached in h steps from
the root note), we can define inductively Ṽ (sH) = V0(sH)
and, for all h ≤ H − 1,

Q̃(sh, a) = r(sh, a) + γ
∑

sh+1∈As

P(sh+1|sh, a)Ṽ (sh+1),

Ṽ (sh) = max
a

Q̃(sh, a),

where r(sh, a) is the mean of intermediate reward at state sh
after taking action a. Then we have |Q⋆(s0, a)−Q̃(s0, a)| ≤
γH∥V ⋆−V0∥∞ (actually the supremum could be restricted

to all states reachable in H steps from s0). The purpose of
an MCTS algorithm is to minimize the convergence rate
r(t) by building an estimate of Q̃(s0, a) and Ṽ (s0) in order
to be finally able to estimate Q⋆(s0, a) and the best action
in the root note a⋆ = argmaxa Q

⋆(s0, a).

We are now ready to present our particular MCTS instance,
Stochastic-Power-UCT algorithm.

3 STOCHASTIC POWER-UCT

In this section, we first present a generic UCT like algorithm
and then we present our Stochastic-Power-UCT algorithm.

3.1 GENERIC UCT-LIKE ALGORITHM

For each node sh in depth h of the search tree, and for each
available action a ∈ Ash , we denote by

• V̂t(sh) the value estimate built after sh has been visited
t times at depth h

• Q̂t(sh, a) the Q-value estimate built after (sh, a) has
been visited t times at depth h

We denote by Tsh(t), Tsh,a(t) and T
sh+1
sh,a (t) the number of

visits of sh (respectively (sh, a), (sh, a, sh+1)) in depth h
after t− 1 MCTS trajectories.

A generic UCT-like algorithm depends on a sequence of
bonus functions B(t, sh, a) for each depth h. It sequentially
plays trajectories from a starting state s0 until some leaf
of the search tree or some maximal depth H is reached
(nodes at this depth are also called leaves). At the leaves,
the playout policy π0 is used to provide a (possibly random)
evaluation of the value V0. We assume that repeated calls to
the playout policy in a state s provides i.i.d. samples from a
distribution with mean V0(s). If the playout is not stochastic
but provided by a neural network, then the distribution is
a Dirac delta centered at V0(s). The playout could also be
fully stochastic (i.e., outputting a sum of discounted rewards
under π0 starting from s) or a mix of both.

The t-th trajectory collected is

{st0 = s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sℓt , Ṽ (sℓt)},

where ℓt ≤ H is the length of the trajectory and Ṽ (sℓt) is
the value of the playout performed in sℓt . For each h ≤ ℓt:

ah = argmax
a∈Ash

{
Q̂Tsh,a(t)(sh, a) +B (t, sh, a)

}
,

and sh+1 ∼ P(·|sh, ah). If sℓt is a leaf of the search tree
with ℓt < H , we add to the search tree all the Q-nodes
(sℓt , a) for all available actions in sℓt . After a trajectory is
collected, the number of visits of the state (resp. state-action

pairs) in the trajectory are updated, and the corresponding
values (resp. Q-values) estimates are computed.

After t trajectories, the guess ât will be

ât = argmax
a∈As0

Q̂Ts0,a(t)(s0, a),

and the estimate of the value of the root will be V̂t(s0),
where V̂t is a value operator to be specified.

3.2 STOCHASTIC POWER-UCT

A UCT-like algorithm is fully characterized by:

• the definition of value and Q-value estimates

• the choice of the bonus function B(t, sh, a)

• the maximal depth H and playout policy

In the vanilla UCT algorithm [Kocsis and Szepesvári, 2006],

B(t, sh, a) = C

√
log(Tsh

(t))

Tsh,a(t)
with C is an exploration con-

stant, which is the bonus used by the UCB algorithm, used to
select action in a stochastic bandit algorithm. Other bonusses
have been used in practice too [Browne et al., 2012] and we
know since the work of Shah et al. [2022] that these loga-
rithmic bonus are not sufficient to prove convergence. In our
Stochastic-Power-UCT algorithm, we define the sequence
of bonus function as

B(t, sh, a) = C
Tsh(t)

bh+1
βh+1

Tsh,a(t)
αh+1
βh+1

, h = 0, 1, . . . ,H − 1,

where along the tree from depth 0 to depth H we maintain
{bi}Hi=0, {αi}Hi=0, {βi}Hi=0 as algorithmic constants satisfy
conditions as in Table 1, and dividing by zero assume to be
+∞.

Particular choices for the sequences of parameter constants
presented above have been proposed based on the theoreti-
cal study, which will be described in the next section. We
highlight that these choices are the same as the Fixed-Depth-
MCTS algorithm from Shah et al. [2020] for 1 ≤ p ≤ 2 and
when p > 2, an extra condition 0 < αi − βi

p < 1 is needed.
Furthermore, the Fixed-Depth-MCTS algorithm Shah et al.
[2020] has been studied for deterministic settings, while
our method is proposed for stochastic environments with
general power mean value estimators.

As the the Values and Q-values estimates, they are the aver-
age of the sum of discounted rewards starting from this state
(resp. state-action) obtained in all past trajectories going
through this state (resp. state-action). They can be also be
computed inductively as follows. If s is a leaf of the search
tree at depth h, V̂t(s) is the average of t playout obtained

Input: root node state s0
Output: optimal action at the root node
R = Rollout(s, depth)

Ṽ (s) = average of the call to π0(s)

return Ṽ (s)

a = SelectAction(sh, depth = h, greedy=false, t)
if greedy == false then

a = argmax
a

 Q̂Tsh,a(t)(sh, a) + C
Tsh

(t)

bh+1
βh+1

Tsh,a(t)

αh+1
βh+1

else

a = argmax
a

{
Q̂Tsh,a(t)(sh, a)

}
return a

SimulateV(sh, depth, t)
a←SelectAction(sh, depth =h, greedy = false, t)
SimulateQ (sh, a, depth =h, t)
Tsh(t)← Tsh(t) + 1

V̂Tsh
(t)(sh)←

(∑
a

Tsh,a(t)

Tsh
(t)

(Q̂Tsh,a(t))
p(sh, a)

) 1
p

SimulateQ(sh, a, depth = h, t)
sh+1∼ P(·|sh, a)
r(sh, a)∼ R(sh, a, sh+1)
if sh+1 /∈ Terminal and depth ≤ H − 1 then

if Node sh+1 not expanded then
V̂Tsh+1

(t)(sh+1) = Rollout(sh+1, depth)

else
SimulateV (sh+1, depth = h+ 1, t)

Q̂Tsh,a(t)(sh, a)

←
Q̂Tsh,a(t)(sh,a)Tsh,a(t)+r(sh,a)+γV̂Tsh+1

(t)(sh+1)

Tsh,a(t)+1

Tsh,a(t)← Tsh,a(t) + 1

MainLoop
t = 0
while t ≤ n do

SimulateV (s0, depth = 0, t)
t← t+ 1

return SelectAction(s0, greedy = true, n)
Algorithm 1: Stochastic-Power-UCT with γ is a discount factor. n : is the number of rollouts. {bi}Hi=0, {αi}Hi=0, {βi}Hi=0 are positive
algorithmic constants that satisfy conditions as in Table 1. π0 is a rollout policy. C is an exploration constant.

Table 1: Conditions for algorithmic constants. i ∈ [0, H].

Algorithmic constants, each row as AND conditions
bi < αi; bi > 2.

1 ≤ p ≤ 2;αi ≤ βi

2 OR p > 2;αi ≤ βi

2 ; 0 < αi − βi

p < 1.

αi

(
1− bi

αi

)
≤ bi < αi.

αi = (bi+1 − 1)
(
1− bi+1

αi+1

)
.

βi = (bi+1 − 1).

by using the playout policy2. For internal nodes, we define
inductively, for all t,

V̂t(sh) =

 ∑
a∈Ash

Tsh,a(t)

t

(
Q̂Tsh,a(t)(sh, a)

)p 1
p

,

(3)

Q̂t(sh, a) =
1

t

t∑
i=1

[
ri(sh, a) + γV̂

T
sh+1
sh,a (i)

(sh+1)
]
, (4)

where p ∈ [1,+∞). We denote ri(sh, a) is the i-th instan-
taneous reward collected after visiting (sh, a) in depth h.
T

sh+1
sh,a (i) is the number of visits of (sh, a) to sh+1 after

timestep i. Detailed can be found at Algorithm 1.

Remark 1. We described above the practical implementa-
tion of MCTS algorithm, for which sometimes the maximal
depth H is sometimes even set to +∞. For the theoretical
analysis however, the maximal depth H will be crucial and

2note that the playout policy will be called several times only
in leaves that are at depth H

we will actually analyze a variant of this algorithm that
always collects trajectories of length H .

4 THEORETICAL ANALYSIS

Planning in MCTS requires a sequence of decisions along
the tree, with each internal node acting as a non-stationary
bandit. The empirical mean at these nodes shifts due to
the action selection strategy. To address this problem, we
first analyze non-stationary multi-armed bandit settings, fo-
cusing on the concentration properties of the power-mean
backup for each arm compared to the optimal value. We
then apply these findings to MCTS.

4.1 NON-STATIONARY POWER MEAN
MULTI-ARMED BANDIT

We consider a class of non-stationary multi-armed bandit
(MAB) problems. Let us consider K ≥ 1 arms or actions
of interest. Let Xa,t denote the random reward obtained
by playing arm a ∈ [K] at the time step t, the reward
is bounded in [0, R]. µ̂a,n = 1

n

∑n
t=1 Xa,t is the average

reward collected at arm a after n times. Let µa,n = E[µ̂a,n].
We define

Definition 1. A sequence of estimators (V̂n)n≥1 concen-
trates at rate α, β towards some limit V under certain con-
ditions on α, β if there exists a constant c > 0 such that the
following property holds:

∀n ≥ 1,∀ε > n−α
β ,P

(
|V̂n − V | > ε

)
≤ cn−αε−β .

We write V̂n
α,β−→

n→∞
V .

We assume that the reward sequence {Xa,t} is a non-
stationary process satisfying the following assumption:

Assumption 1. Consider K arms that for a ∈ [K], let
(µ̂a,n)n≥1 be a sequence of estimator satisfying

µ̂a,n
α,β−→

n→∞
µa.

Let us define µ⋆ = maxa∈[K]{µa}. In our study, we assume
that µ⋆ is unique, and there is a strict gap between the best
optimal value and the second best value. Under Assump-
tion 1, we consider the following optimistic action selection
strategy, based on the estimator µ̂a,n and using a similar
bonus as the one in Stochastic-Power-UCT. More precisely,
the algorithm starts by selecting each arm once. Then, given
b < α, b > 2, β > 0, at each time step n > K, the selected
action is

an = argmax
a∈{1...K}

{
µ̂a,Ta(n) + C

n
b
β

Tk(n)
α
β

}
, (5)

where Ta(n) = Ta(n) =
∑n−1

t=1 1(at = a) denotes the
number of selections of arm a prior to round n. Given a
constant 1 ≤ p < ∞, we define

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

as the power mean value backup operator.

We establish the concentration properties of the average
mean backup operator µ̂n(p) towards the mean value of the
optimal arm µ∗, as shown in Theorem 1.

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of es-

timators satisfying µ̂a,n
α,β−→

n→∞
µa and let µ⋆ = maxa{µa}.

Assume that the arms are sampled according to the strat-
egy equation 5 with parameters α, β, b and C. Assume that
p, α, β and b satisfy one of these two conditions:

(i) 1 ≤ p ≤ 2 and α ≤ β
2

(ii) p > 2 and 0 < α− β
p < 1

If α
(
1− b

α

)
≤ b < α then the sequence of estimators

µ̂n(p) satisfies

µ̂n(p)
α′,β′

−→
n→∞

µ⋆

for α′ = (b − 1)
(
1− b

α

)
and β′ = (b − 1) for some

value of the constant C in equation 5 that depends on
K, b, α, p,∆min with ∆min = mina:µa<µ⋆

(µ⋆ − µa).

Based upon the results of Stochastic-Power-UCT using
power mean as the value backup operator on the described
non-stationary multi-armed bandit problem, we derive theo-
retical results for Stochastic-Power-UCT in an MCTS tree.

4.2 MONTE-CARLO TREE SEARCH

Based on the results from the non-stationary multi-armed
bandit from the last section, we can derive theoretical analy-
sis for the Stochastic-Power-UCT in an MCTS tree where
we consider each node in the tree as a Non-stationary multi-
armed bandit problem.

We start with a result of the following lemma which plays
an important role in the analysis of our MCTS algorithm.

Lemma 1. For m ∈ [M], let (V̂m,n)n≥1 be a sequence

of estimator satisfying V̂m,n
α,β−→

n→∞
Vm, and there exists a

constant L such that V̂m,n ≤ L,∀n ≥ 1. Let Xi be an iid
sequence with mean µ and Si be an iid sequence from a
distribution p = (p1, . . . , pM) supported on {1, . . . ,M}.
Introducing the random variables Nn

m = #|{i ≤ n : Si =
sm}|, we define the sequence of estimator

Q̂n =
1

n

n∑
i=1

Xi + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m
.

Then with 2α ≤ β, β > 1,

Q̂n
α,β−→

n→∞
µ+

M∑
m=1

pmVm.

The proof of Lemma 1 can be found in the Appendix. This
result is important as it can be used to show that the Q-
value estimates at a certain depth h concentrate at the same
rate (α, β) as the value estimates of the children nodes.
Then, thanks to Theorem 1, the value estimate at depth h,
which is computed using a power mean, will concentrate
at a different rate (α′, β′). Proceeding by induction from
depth H to depth 0 allows us to derive Theorem 2, which
shows the polynomial concentration of the values and Q-
values at the root note. We note that this part of analysis is
fairly similar to the analysis of Shah et al. [2022]. However,
its two main ingredients required some innovation. Indeed,
Theorem 1 is specific to our power-mean value back-up
operator, while Lemma 1 is specific to the concentration of
Q values in stochastic MDPs.

Theorem 2. When we apply the Stochastic-Power-UCT
algorithm, with {bi}Hi=0, {αi}Hi=0, {βi}Hi=0 as algorithmic
constants satisfying the conditions in Table 1, we have

(i) For any node sh at the depth hth in the tree (h =
[0, 1 . . . , H]),

V̂n(sh)
αh,βh−→
n→∞

Ṽ (sh).

(ii) For any node sh at the depth hth in the tree (h =
[0 . . . , H − 1]),

Q̂n(sh, a)
αh+1,βh+1−→

n→∞
Q̃(sh, a), for all a ∈ Ash .

Proof. We will prove the Theorem by induction on the depth
H of the tree.
Initial step H = 1.
The state at the root node is s0. Let us assume that rt(s0, a)
is the intermediate reward at time step t, after visiting
(s0, a), and go to state s1 ∼ P(·|s0, a). Let us assume that
r(s0, a) is the mean of (s0, a). We recall the definition of
Q̃(s0, a),

Q̃(s0, a) = r(s0, a) + γ
∑

a∈As0

P(s1|s0, a)Ṽ (s1)

where Ṽ (s1) is the average value of the rollout policy π0

at state s1, As0 is the set of feasible actions at state s0,
|As0 | = M , P(s1|s0, a) is the probability transition of
taking action a at state s0 to state s1.

(i) satisfies for any state s1 ∼ P(·|s0, a) as

V̂n(s1)
α1,β1−→
n→∞

Ṽ (s1), (6)

because each value at the leaf node V̂n(s1) is the average of
i.i.d call to the playout policy π0(s).

From equation 4, we have

Q̂n(s0, a) =
1

n

n∑
t=1

[
rt(s0, a) + γV̂T

s1
s0,a(t)

(s1)
]
. (7)

By applying Lemma 1 with Xt is the intermediate reward
rt(s0, a) at time t, p = (p1, p2, ...pM) is the probability
transition dynamic of taking action a at state s0. For m ∈
[M], each (V̂m,n)n≥1 at time step n satisfies

V̂m,n(s1)
α1,β1−→
n→∞

Ṽ (s1), with s1 ∈ {sm},m = 1, 2, 3...M,

where sm ∼ P(·|s0, a), we have

Q̂n(s0, a)
α1,β1−→
n→∞

Q̃(s0, a), for all a ∈ As0 . (8)

Therefore at the root node s0, applying Theorem 1, with the
results of (8) and because

V̂n(s0) =
(∑

a∈As

Ts0,a(n)

n

(
Q̂Ts0,a(n)(s0, a)

)p) 1
p

, (9)

p ∈ [1,+∞), we have

V̂n(s0)
α0,β0−→
n→∞

Ṽ (s0), (10)

with α0, β0 satisfies conditions in Table 1. From (6), (10),
we conclude that (i) is correct when the depth of the tree is
1.

(ii) is correct according to (8).

Let us assume that the theorem holds with the tree of depth
H − 1.

Now let us consider the tree with depth H .

When we take an action a at the root node state s0 and get
state s1 ∼ P(·|s0, a), we go to a subtree with depth H − 1.
According to the induction hypothesis, in the subtree with
the root node s1, we have with h = [1 . . . , H]

V̂n(sh)
αh,βh−→
n→∞

Ṽ (sh), (11)

and with h = [1 . . . , H − 1]

Q̂n(sh, a)
αh+1,βh+1−→

n→∞
Q̃(sh, a), for all a ∈ Ash . (12)

We now consider the root node at state s0.

We apply again Lemma 1 with Xt is the intermediate re-
ward rt(s0, a) at time t and each (V̂m,n)n≥1 at time step n
satisfies (because of (11))

V̂m,n(s1)
α1,β1−→
n→∞

Ṽ (s1), with s1 ∈ {sm},m = 1, 2, 3...M,

where sm ∼ P(·|s0, a), we have

Q̂n(s0, a)
α1,β1−→
n→∞

Q̃(s0, a), for all a ∈ As0 . (13)

At the root node s0, We apply again Theorem 1, with the
concentration results of Q value at (13) and the value backup
operator at root state s0 (9), we have

V̂n(s0)
α0,β0−→
n→∞

Ṽ (s0), (14)

with α0, β0 satisfies conditions in Table 1.

Combining (11) and (14) concludes for (i).

Combining (12) and (13) concludes for (ii).

The results of Theorem 2 hold for any node in the tree with
the tree of depth (H). By induction, we can conclude the
proof.

Finally, we state the expected payoff of Value estimation at
the root node polynomial decays, as shown below.

Theorem 3 (Convergence of Expected Payoff). We have
at the root node s0, with the best possible parameter tuning
that ∣∣E[V̂n(s0)]− Ṽ (s0)

∣∣ ≤ O(n−1/2).

Proof. Using the convexity of f(x) = |x| and applying

Jensen’s inequality we have∣∣E[V̂n(s0)]− Ṽ (s0)
∣∣ ≤ E[

∣∣V̂n(s0)]− Ṽ (s0)
∣∣]

=

∫ +∞

0

P
(∣∣∣V̂n(s0)− Ṽ (s0)

∣∣∣ ≥ s
)
ds

≤
∫ n

−α0
β0

0

1ds+

∫ +∞

n
−α0

β0

c0n
−α0s−β0ds

≤ n−α0
β0 + c0n

−α0

(
s−β0+1

−β0 + 1

) ∣∣∣+∞

n
−α0

β0

= (
c0

β0 − 1
+ 1)n−α0

β0 .

Because α0

β0
≤ 1

2 (Theorem 1), then the best possible rate
we can estimate is∣∣E[V̂n(s0)]− Ṽ (s0)

∣∣ ≤ O(n−1/2).

That concludes the proof.

Remark 2. These results demonstrate that both Stochastic-
Power-UCT and Fixed-Depth-MCTS share the same con-
vergence rate for value estimation at the root node, which
is O(n−1/2). By selecting algorithmic constants from Ta-
ble 1 such that αi

βi
= 1/2 and bi

βi
= 1/4 for i ∈ [0, H], we

achieve the optimal rate. This choice leads us to adopt the
exploration bonus:

B(n, s, a) = C
n1/4

Ts,a(n)1/2
,

where C represents an exploration constant. Our findings
align with those of Shah et al. [2022], but our finding more
broadly applies to the power mean estimator, and the aver-
age mean is a special case.

5 EXPERIMENTS

In this section, we present experimental results demonstrat-
ing the numerical advantages of Stochastic-Power-UCT
compared to UCT [Kocsis et al., 2006], Power-UCT [Dam
et al., 2019] and Fixed-Depth-MCTS [Shah et al., 2022]
in SyntheticTree, FrozenLake (4× 4), FrozenLake (8× 8)
and Taxi environments. The discount factor is set γ = 1 in
SyntheticTree and γ = 0.99 in FrozenLake and Taxi envi-
ronments. Hyperparameter can be found in the Appendix.

As the results from Remark 2, the exploration bonus is
chosen as C n1/4

Ts,a(n)1/2
with C is an exploration constant

in all environments. In SyntheticTree, we run further
experiments with adaptive choice of parameters αi, βi, bi
for i ∈ [0, H] satisfied Table 1 to confirm the theoretical
study.

Synthetic Tree

We evaluate Power-UCT using the synthetic tree toy prob-
lem Dam et al. [2021]. The problem involves a tree with
depth d and branching factor k. Each edge of the tree has a
random value between 0 and 1, and at each leaf, a Gaussian
distribution is used as an evaluation function resembling the
return of random rollouts. The mean of the Gaussian distri-
bution is the sum of the values assigned to the edges connect-
ing the root node to the leaf, while the standard deviation
is set to a constant σ (we set σ = 0.5 in our experiments).
After trying different values, To ensure stability, the means
are normalized between 0 and 1. We introduce stochasticity
into the environment by altering the transition probabilities:
there is a 80% chance of moving to the intended node and
a 20% chance of moving to a different node with equal
probability. We conduct 25 experiments on five trees with
five runs each, covering all combinations of branching fac-
tors k = {2, 4, 6, 8, 10, 16} and depths d = {1, 2, 3, 4}. We
compute the value estimation error at the root node.

Fig. 1 shows the convergence of the value estimations
at the root node in the Synthetic Tree environment with
different settings. In detail, Fig. 1a shows the performance
of Stochastic-Power-UCT with different values of p, where
we find that p = 2 outperforms all other p values. In Fig 1b,
We compare Stochastic-Power-UCT with UCT, Power-UCT,
and Fixed-Depth-MCTS. We also find that p = 2 works
the best. In Fig 1a and Fig 1b, we choose the exploration
bonus C n1/4

Ts,a(n)1/2
. In Fig 1c, we use the exploration bonus

C nbi/βi

Ts,a(n)αi/βi
, i ∈ [0, H] with αi, βi, bi satisfied Table 1.

The convergence results of Stochastic-Power-UCT shown
in Fig 1 confirm the theoretical study.

Frozen Lake

In the OpenAI Gym [Brockman et al., 2016], the
FrozenLake problem presents a classic empirical MDP
environment. The goal is to guide an agent through an
ice-grid world, avoiding unstable spots that lead to water.
The environment’s stochastic nature adds challenge, as the
agent moves in the intended direction only one-third of the
time, and otherwise in one of two tangential directions.
Reaching the target earns a reward of +1, while other
outcomes yield zero reward. In Table. 2a and Table. 2b,
Stochastic-Power-UCT (p = 2) outperforms UCT and
Fixed-Depth-MCTS (p = 1) with 214, 215 rollouts in
FrozenLake 4 × 4, and 213, 214 rollouts in FrozenLake
8 × 8. In most cases, Stochastic-Power-UCT (p = 2) has
the average mean higher than others.

Taxi In the Taxi environment Dearden et al. [1998],
agents navigate a 7x6 grid from the top left to the top
right, encountering walls that block movement. Simply
reaching the end yields no reward; the agent must collect

(a) Compare Stochastic-Power-UCT with difference p value: p = 1.0(Fixed-Depth-MCTS), 2.0, 4.0, 6.0, 8.0, 10.0, 16.0. The
exploration bonus is chosen as C n1/4

Ts,a(n)1/2
with C as an exploration constant.

(b) Compare UCT, Power-UCT, Fixed-Depth-MCTS and Stochastic-Power-UCT. The exploration bonus is
chosen as C n1/4

Ts,a(n)1/2
with C as an exploration constant.

(c) Compare Stochastic-Power-UCT with the exploration bonus C n

bi
βi

Tk(n)

αi
βi

where the adaptive parameters of

{αi}H0 , {βi}H0 , {bi}H0 and p with difference initial βH = 120, 130, 140 value chosen accordingly satisfied
Table 1.

Figure 1: We show the convergence of the value estimate at the root node to the respective optimal in Synthetic tree
environment.

Table 2: Mean and two times standard deviation of discounted total reward, over 1000 evaluation runs, of UCT, Fixed-
Depth-MCTS(p = 1) and Stochastic-Power-UCT(p = 2, and p = 2.2) in FrozenLake (4× 4), FrozenLake (8× 8), and Taxi
environments (in Taxi, we perform 20 evaluation runs). Top row: number of simulations at each time step. Bold denotes no
statistically significant difference to the highest mean (t-test, p < 0.05).

(a) FrozenLake 4x4

Algorithm 2048 4096 8192 16384 32768 65536 131072 262144
UCT 0.10± 0.01 0.13± 0.01 0.20± 0.02 0.27± 0.02 0.37± 0.02 0.43± 0.02 0.44± 0.02 0.44± 0.02
p = 1 0.11± 0.01 0.15± 0.02 0.20± 0.02 0.29± 0.02 0.35± 0.02 0.41± 0.02 0.45± 0.02 0.48± 0.02
p = 2 0.15± 0.02 0.21± 0.02 0.31± 0.02 0.37± 0.02 0.39± 0.02 0.44± 0.02 0.45± 0.02 0.47± 0.02
p = 2.2 0.16± 0.02 0.23± 0.02 0.30± 0.02 0.37± 0.02 0.40± 0.02 0.42± 0.02 0.45± 0.02 0.50± 0.02

(b) FrozenLake 8x8

Algorithm 1024 2048 4096 8192 16384 32768 65536 131072
UCT 0.01± 0.006 0.02± 0.007 0.05± 0.01 0.07± 0.01 0.12± 0.01 0.18± 0.01 0.22± 0.01 0.29± 0.01
p = 1 0.02± 0.006 0.02± 0.008 0.06± 0.001 0.07± 0.01 0.10± 0.01 0.17± 0.01 0.23± 0.01 0.29± 0.01
p = 2 0.02± 0.006 0.04± 0.09 0.06± 0.01 0.09± 0.01 0.14± 0.01 0.21± 0.01 0.25± 0.01 0.33± 0.01
p = 2.2 0.01± 0.006 0.04± 0.009 0.06± 0.01 0.10± 0.01 0.12± 0.01 0.19± 0.01 0.26± 0.01 0.31± 0.01

(c) Taxi

Algorithm 512 1024 2048 4096 8192 16384
UCT 1.03± 0.68 1.20± 0.56 1.28± 0.54 1.25± 0.69 1.32± 0.54 1.66± 0.83
p = 1 0.69± 0.24 1.11± 0.76 2.22± 1.01 1.63± 0.82 1.52± 0.53 1.96± 1.04
p = 2 0.63± 0.36 0.92± 0.54 1.72± 0.81 1.49± 0.64 2.24± 0.83 2.94± 0.95
p = 2.2 0.85± 0.45 0.76± 0.47 1.22± 0.68 1.15± 0.49 2.45± 0.90 3.07± 0.98

three passengers scattered across the grid before reaching
the target position. Rewards vary based on the number
of passengers collected and delivered successfully. We
introduce stochasticity by setting 50% chance of moving
to the intended direction and 50% chance of moving to
other directions with equal probability. This stochastic
environment necessitates thorough exploration.

As shown in Table. 2c, when we increase the number of
rollouts, Stochastic-Power-UCT (p = 2) and Stochastic-
Power-UCT (p = 2.2) outperforms UCT and Fixed-Depth-
MCTS (p = 1) with 213, 214 rollouts.

Remark 3. In our experiment, we find that when p =
2, Stochastic-Power-UCT consistently outperforms UCT,
Fixed-Depth-MCTS (p = 1) and outperform Stochastic-
Power-UCT with other p value.

6 CONCLUSION

Monte Carlo tree search (MCTS) is emerging as an effec-
tive approach with many applications in games and Au-
tonomous car driving, Robot path planning, and robot as-
sembly tasks. However, understanding of the theoretical
foundations of MCTS remains limited. In this work, we
introduce Stochastic-Power-UCT, using power mean as the
value estimation and a polynomial exploration bonus term,
which is specifically designed for stochastic MDP scenarios.
Our contribution extends to a thorough theoretical study of
the convergence rate of O(n−1/2) for value estimation at

the root node of Stochastic-Power-UCT. Moreover, empir-
ical validation of our theoretical findings is performed in
SyntheticTree and various stochastic MDP environments,
confirming the theoretical claims of our approach. Our work
put one more step for future research efforts aimed at im-
proving the theoretical understanding and practical applica-
bility of MCTS in stochastic environments. One can think
of extending our work by studying Power-UCT in adversar-
ial settings. Furthermore, hybrid combination of learning
in reinforcement learning and planning in MCTS could be
promising with applications in robotics.

Acknowledgments

This work has been supported by the French Ministry
of Higher Education and Research, the Hauts-de-France
region, Inria, the MEL, the I-Site ULNE regarding project
RPILOTE-19-004-APPRENF, the Inria A.Ex. SR4SG
project, and the Inria-Kyoto University Associate Team
“RELIANT”.

References

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári.
Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Richard Bellman. The theory of dynamic programming.
Technical report, Rand corp santa monica ca, 1954.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

Cameron B Browne, Edward Powley, Daniel Whitehouse,
Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelli-
gence and AI in games, 4(1):1–43, 2012.

Rémi Coulom. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pages 72–83. Springer, 2006.

Tuan Dam, Pascal Klink, Carlo D’Eramo, Jan Peters, and
Joni Pajarinen. Generalized mean estimation in monte-
carlo tree search. arXiv preprint arXiv:1911.00384, 2019.

Tuan Q Dam, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
Convex regularization in monte-carlo tree search. In
International Conference on Machine Learning, pages
2365–2375. PMLR, 2021.

Richard Dearden, Nir Friedman, and Stuart Russell.
Bayesian q-learning. In Proceedings of the Fif-
teenth National/Tenth Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence,
AAAI ’98/IAAI ’98, page 761–768, USA, 1998. Amer-
ican Association for Artificial Intelligence. ISBN
0262510987.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, pages 282–293. Springer, 2006.

Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Im-
proved monte-carlo search. Univ. Tartu, Estonia, Tech.
Rep, 2006.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604–609, 2020.

Devavrat Shah, Qiaomin Xie, and Zhi Xu. Non-asymptotic
analysis of monte carlo tree search. In Abstracts of the
2020 SIGMETRICS/Performance Joint International Con-
ference on Measurement and Modeling of Computer Sys-
tems, pages 31–32, 2020.

Devavrat Shah, Qiaomin Xie, and Zhi Xu. Nonasymptotic
analysis of monte carlo tree search. Operation Research,
70(6):3234–3260, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489,
2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-
ing the game of go without human knowledge. nature,
550(7676):354–359, 2017.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio
Verdu, and Marcelo J Weinberger. Inequalities for the l1
deviation of the empirical distribution. Hewlett-Packard
Labs, Tech. Rep, 2003.

Power Mean Estimation in Monte-Carlo Tree Search
(Supplementary Material)

Tuan Dam1 Odalric-Ambrym Maillard1 Emilie Kaufmann1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9198-CRIStAL, F-59000 Lille, France

A OUTLINE

• Notations will be described in Section B.

• Supporting Lemmas are presented in Section C.

• The Convergence of Stochastic-Power-UCT in Non-stationary multi-armed bandits is shown in Section D.

• Experimental setup and Hyperparameter selection are provided in Section E.

B NOTATIONS

Table 3: List of all notations for Non-stationary Multi-arms bandit.

Notation Type Description

K N Number of arms

Ta(t) N Number of visitations at arm a after t timesteps

µa R mean value of arm a

a⋆ A optimal action

µ⋆ R mean value of an optimal arm. We assume it is unique.

µ̂n(p) R power mean estimator, with a constant p ∈ [1,+∞)

µ̂a,n R mean estimator of arm a after n visitations

C SUPPORTING LEMMAS

In this section, we will present all necessary supporting Lemmas for the main theoretical analysis.

We start with a result of the following lemma which plays an important role in the analysis of our MCTS algorithm.

mailto:<tuanquangdam@gmail.com>?Subject="Power Mean Estimation in Stochastic Monte-Carlo Tree Search"

Lemma 1. For m ∈ [M], let (V̂m,n)n≥1 be a sequence of estimator satisfying V̂m,n
α,β−→

n→∞
Vm, and there exists a constant

L such that V̂m,n ≤ L,∀n ≥ 1. Let Xi be an iid sequence with mean µ and Si be an iid sequence from a distribution
p = (p1, . . . , pM) supported on {1, . . . ,M}. Introducing the random variables Nn

m = #|{i ≤ n : Si = sm}|, we define
the sequence of estimator

Q̂n =
1

n

n∑
i=1

Xi + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m
.

Then with 2α ≤ β, β > 1,

Q̂n
α,β−→

n→∞
µ+

M∑
m=1

pmVm.

Proof. Let p = (p1, p2, ...pM), p ∈ △M where △M = {x ∈ RM :
∑M

i=1 xi = 1, xi ≥ 0} is the (M − 1)-dimensional
simplex. Without loss of generality, we assume that pm > 0 for all m. Let us study a random vector p̂n = (

Nn
1

n ,
Nn

2

n , ...,
Nn

M

n).
Let us define V = (V1, V2, ...VM). Let X̂n = 1

n

∑n
i=1 Xi, V̂n = (V̂1,Nn

1
, V̂2,Nn

2
, ..., V̂M,Nn

M
),
∑M

i=1 N
n
i = n, Nn

i is the

number of times that population i was observed. We have Q̂n = X̂n + γ
〈
p̂n, V̂n

〉
. Therefore,

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ P

(
X̂n − µ ≥ 1

2
ϵ

)
+ P

(
γ
〈
p̂n, V̂n

〉
− γ ⟨p, Y ⟩ ≥ 1

2
ϵ

)
≤ exp{−2n

ϵ2

4
}+ P

(〈
p̂n, V̂n

〉
− ⟨p, Y ⟩ ≥ 1

2γ
ϵ

)
︸ ︷︷ ︸

A

.

To upper bound A, let us consider
〈
p̂n, V̂

〉
− ⟨p, V ⟩ =

〈
(p̂n − p), V̂n

〉
+
〈
p, (V̂ − V)

〉
. Then,

A ≤ P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A1

+P
(〈

p, (V̂n − V)
〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A2

.

By applying a Hölder inequality to p̂n − p and V̂ , we obtain〈
(p̂n − p), V̂n

〉
≤∥ p̂n − p ∥1∥ V̂n ∥∞=∥ p̂n − p ∥1 L,

with L ≥∥ V̂ ∥∞, L is a constant. Then we can derive

A1 = P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
≤ P

(
∥ p̂n − p ∥1 L ≥ 1

4γ
ϵ

)
= P

(
∥ p̂n − p ∥1≥

1

4γL
ϵ

)
.

According to Weissman et al. [2003], we have for any M ≥ 2 and δ ∈ [0, 1]

P
(

∥ p̂n − p ∥1≥
√

2M ln(2/δ)

n

)
≤ δ.

Define ϵ =
√

2M ln(2/δ)
n , therefore δ = 2 exp{−nϵ2

2M }, we have

P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{−nϵ2

2M
}.

Therefore,

A1 ≤ P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{ −nϵ2

32Mγ2L2
}.

We also have

A2 = P
(M∑

m=1

pm(V̂m,Nn
m
− Vm) ≥ 1

4γ
ϵ

)

≤
M∑

m=1

E
[
P
(

1

Nn
m

Nn
m∑

t=1

Vm,t − Vm ≥ 1

4γpm
ϵ
∣∣Nn

m

)]

≤
M∑

m=1

E
[
c(Nn

m)−α(
ϵ

4γpm
)−β

]
.

Let us define an event E =

{
Nn

m > npm

2

}
. Therefore,

A2 ≤
M∑

m=1

E
[
c(
npm
2

)−α(
ϵ

4γpm
)−β

]
+

M∑
m=1

E
[
P(Nn

m ≤ npm
2

)

]

=

M∑
m=1

(c2α+2βγβp−α+β
m)n−αϵ−β +

M∑
m=1

E
[
P(Nn

m − pmn ≤ −pmn

2
)

]

≤
M∑

m=1

(c2α+2βγβp−α+β
m)n−αϵ−β +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

(15)

Therefore,

A ≤ A1 +A2 ≤ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c2α+2βγβp−α+β
m)n−αϵ−β +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
.

That leads to

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ exp{−2n

ϵ2

4
}+ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c2α+2βγβp−α+β
m)n−αϵ−β

+

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

≤ c
′
n−αϵ−β ,

with c
′
> 0 depends on c,M, α, β, pi. Here we need

2α ≤ β, (16)

to argue that exp(−cnε2) = O(n−αε−β). By following the same steps, we can derive

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≤ −ϵ

)
≤ c

′
n−αϵ−β .

Therefore, with n ≥ 1, ϵ > 0,

P
(∣∣∣Q̂n −

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≥ ϵ

)
≤ c

′
n−αϵ−β . (17)

This means

Q̂n
α,β−→

n→∞
µ+ γ

M∑
m=1

pmVm,

which concludes the proof.

Lemma 2. Let consider non-negative variables x, y ∈ R+, and a constant m that 0 ≤ m ≤ 1. Then

(x+ y)m ≤ xm + ym. (18)

Proof. With y = 0, or x = 0, the inequality (18) becomes correct. Let consider the case where x > 0, y > 0, the
inequality (18) can be written as (

x

y
+ 1

)m

≤
(
x

y

)m

+ 1.

Let us define a function
f(t) = (t+ 1)m − tm − 1, (t > 0).

We can see that

f
′
(t) = m(t+ 1)m−1 −mtm−1 = m

(
(t+ 1)m−1 − tm−1

)
≤ 0 with m ∈ [0, 1], t > 0,

because g(x) = xm−1 is a decreasing function with m ∈ [0, 1], x > 0. Therefore,

f(t) ≤ f(0) = 0 with t > 0.

So that,
(t+ 1)m − tm − 1 ≤ 0, (t > 0).

with t = x
y ≥ 0, we can derive the inequality (18).

We use Minkowski’s inequality as shown below

Lemma 3(Minkowski’s inequality). Given p ≥ 1, {xi, yi} ∈ R, i = 1, 2, ..., n, then we have the following inequality(∑
i

(|xi + yi|)p
) 1

p

≤

(∑
i

(|xi|)p
) 1

p

+

(∑
i

(|yi|)p
) 1

p

(19)

Proof. This is a basic result.

D CONVERGENCE OF STOCHASTIC-POWER-UCT IN NON-STATIONARY
MULTI-ARMED BANDITS

In an MCTS tree, each node functions as a non-stationary multi-armed bandit, with the average mean drifting due to
the action selection strategy. To address this, we first study the convergence of Stochastic-Power-UCT in non-stationary
multi-armed bandits, where action selection is based on Thompson sampling, and the power mean backup operator is used
at the root node. Detailed descriptions of Stochastic-Power-UCT in non-stationary bandit settings can be found in the
Theoretical Analysis section of the main article.

We establish the convergence and concentration properties of the power mean backup operator in non-stationary bandits, as
detailed in Theorem 1 for Stochastic-Power-UCT which mainly based on the results of Lemma 10. To derive the results for
Lemma 10, we need results of Lemma 4, Lemma 6, Lemma 7, Lemma 8, and Lemma 9. These lemmas collectively support
the theoretical understanding of Stochastic-Power-UCT in non-stationary multi-armed bandit settings.

Lemma 4 shows the upper bound for probability of the difference between the mean value estimation at the optimal arm
(with Ta⋆

(n) number of visitations) and the optimal value µ⋆.

Lemma 6 show the crucial on the high-probability bound on the number of selection of each sub-optimal arm, which based
on the results of Lemma 5. Lemma 7 show the upperbound for absolute value of the difference of the power mean estimator
and the optimal value. Lemma 8, and Lemma 9 show intermediate results that helps to derive results of Lemma 10.

Lemma 4. Consider a bandit problem defined as in Section 4.1. Let us define A(n) =
(
2Cn

b
β

△
) β

α , where ∆ =

mina∈[K]{µ∗ − µa}, a ̸= a∗, with R ≥ ϵ ≥ n−α
β then we have

P
(∣∣µ̂a⋆,Ta∗ (n)

− µ⋆

∣∣ > ϵ
)
≤

K∑
a̸=a∗

P (Ta(n) > (A(n) + 1)) +
c

α− 1
ϵ−β(n− (K − 1)A(n) + 1)−α+1. (20)

Proof. Consider an event E def
=
{∑K

a ̸=a∗
Ta(n) > (K − 1)(A(n) + 1)

}
. Then,

P
(∣∣µ̂a⋆,Ta∗ (n)

− µ⋆

∣∣ > ϵ
)
≤ P

 K∑
a ̸=a∗

Ta(n) > (K − 1)(A(n) + 1)

+ P

 K∑
a ̸=a∗

Ta(n) ≤ (K − 1)(A(n) + 1);
∣∣µ̂a⋆,Ta∗ (n)

− µ⋆

∣∣ ≥ ϵ

︸ ︷︷ ︸

D1

. (21)

When
∑K

a̸=a∗
Ta(n) ≤ (K− 1)(A(n)+1) ⇒ Ta∗(n) = n−

∑K
a ̸=a∗

Ta(n) ≥ n− (K− 1)(A(n)+1), so that with α > 0

D1 ≤ P
(
Ta∗(n) ≥ n− (K − 1)(A(n) + 1);

∣∣µ̂a⋆,Ta∗ (n)
− µ⋆

∣∣ ≥ ϵ
)
≤

n∑
t=n−(K−1)(A(n)+1)

P (|µ̂a⋆,t − µ⋆| ≥ ϵ)

≤
n∑

t=n−(K−1)(A(n)+1)

ct−αϵ−β

≤ cϵ−β

(∫ ∞

n−(K−1)(A(n)+1)−1

t−αdt

)
=

c

α− 1
ϵ−β(n− (K − 1)(A(n) + 1)− 1)−α+1(because α > 2). (22)

Combining Equation (21) and Equation (22), we can conclude the proof.

We introduce the notation Ua,t,s = µ̂a,s + C t
b
β

s
α
β

and we first borrow two lemmas of Shah et al. [2022].

Introducing for all a the quantity

Aa(t) := inf

{
s ≤ t : C

t
b
β

s
α
β

≤ ∆a

2

}
=

(
2C

∆a

) β
α

t
b
α ,

where ∆a = µ∗ − µa, the concentration properties permits to prove the following Lemma.

Lemma 5. Let n ≥ 1.

(i) For all s ∈ {1, . . . , n}, P (Ua,n,s < µa) ≤ cC−βn−b

(ii) For all s ∈ {Aa(n), . . . , n}, P(Ua,n,s > µ⋆) ≤ cC−βn−b

Proof. 1.

P (Ua,n,s < µa) = P

(
µ̂a,s − µa < −C

n
b
β

s
α
β

)
≤ cC−βn−b(Assumption 1)

2. We have

P (Ua,n,s > µ⋆) = P

(
µ̂a,s + C

n
b
β

s
α
β

> µ⋆

)
= P

(
µ̂a,s − µa > ∆a − C

n
b
β

s
α
β

)
Because we choose

Aa(n) := inf

{
s ≤ n : C

n
b
β

s
α
β

≤ ∆a

2

}
=

(
2C

∆a

) β
α

n
b
α ,

therefore,

P (Ua,n,s > µ⋆) ≤ P

(
µ̂a,s − µa > C

n
b
β

s
α
β

)
≤ cC−βn−b(Assumption 1)

that concludes the proof.

In turn, Lemma 6 permits us to prove the following crucial high-probability bound on the number of selection of each
sub-optimal arm.

Lemma 6. Consider a bandit problem defined as in Section 4.1. Assume b > 1. Let us define Aa(n) :=

inf

{
s ≤ n : C n

b
β

s
α
β

≤ ∆a

2

}
=
(

2C
∆a

) β
α

n
b
α . For all u ≥ Aa(n),

P (Ta(n) ≥ u) ≤ 2cC−β (u− 1)
−(b−1)

b− 1
.

Proof. For any τ ∈ R, we study two following events

E1 = {for each integer t ∈ [u, n], we have Ua,t,u ≤ τ}, (23)
E2 = {for each integer t0 ∈ [1, n− u], we have Ua∗,u+t0,t0 > τ}. (24)

We want to prove that
E1 ∩ E2 ⇒ Ta(n) ≤ u.

Recall that

Ua,t,s = µ̂a,s + C
t

b
β

s
α
β

⇒ Ua,t,u = µ̂a,u + C
t

b
β

u
α
β

and Ua∗,u+t0,t0 = µ̂a∗,t0 + C
(u+ t0)

b
β

t
α
β

0

.

Then, for each t0 such that 1 ≤ t0 ≤ n− u, and each t such that u+ t0 ≤ t ≤ n,
We have

Ua∗,t,t0 = µ̂a∗,t0 + C
t

b
β

t
α
β

0

≥ µ̂a∗,t0 + C
(u+ t0)

b
β

t
α
β

0

> τ > Ua,t,u = µ̂a,u + C
t

b
β

u
α
β
. (25)

We want to prove Ta(n) ≤ u by contradiction. Let assume that Ta(n) > u, then let denote t′ is the first time that the arm a
have been played u times:

t′ = min{t : t ≤ n, Ta(n) = u}.
Then at anytime t such that t′ < t ≤ n, meaning at any time t after the arm a has been selected u time, from 25, we have

Ua∗,t,t0 > Ua,t,u,

which mean the arm a will not be selected after u times, which contradicts our assumption that Ta(n) > u. Therefore

E1 ∩ E2 ⇒ Ta(n) ≤ u.

Then

{Ta(n) ≥ u} ⊂ (Ec
1 ∪ Ec

2) = ({∃t : u ≤ t ≤ n,Ua,t,u > τ} ∪ {∃t0 : 1 ≤ t0 ≤ n− u, Ua∗,u+t0,t0 ≤ τ}). (26)

Therefore,

P
(
Ta(n) ≥ u

)
≤

n∑
t=u

P
(
Ua,t,u > τ

)
+

n−u∑
t0=1

P
(
Ua∗,u+t0,t0 ≤ τ

)
. (27)

We set τ = µ∗, and since u ≥ Aa(n), from Lemma 5, we have the following result
n∑

t=u

P
(
Ua,t,u > τ

)
=

n∑
t=u

P
(
Ua,t,u > µ∗

)
≤ cC−β

n∑
t=u

t−b ≤ cC−β

∫ ∞

u−1

t−bdt = cC−β (u− 1)−(b−1)

b− 1
(28)

Similarly,

n−u∑
t0=1

P
(
Ua∗,u+t0,t0 ≤ τ

)
=

n−u∑
t0=1

P
(
µ̂a∗,t0 + C

(u+ t0)
b
β

t
α
β

0

> µ∗

)
≤ cC−β

n−u∑
t0=1

(u+ t0)
−b ≤ cC−β

∫ ∞

u−1

t−bdt (29)

= cC−β (u− 1)−(b−1)

b− 1
, (30)

that concludes the proof.

Lemma 7. Let us define the power mean estimator µ̂n(p) as µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

. For any p ≥ 1, we have

|µ̂n(p)− µ∗| ≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

(31)

Proof. We observe that

µ̂a,Ta(n) ≤ µa +
∣∣µ̂a,Ta(n) − µa

∣∣ . (32)

Since µ∗ = maxa∈[K]{µa}, we have

µ̂n(p)− µ∗ = µ̂n(p)−
K∑

a=1

Ta(n)µ∗ ≤

(
K∑

a=1

Ta(n)

n

(
µ̂a,Ta(n)

)p) 1
p

−

(
K∑

a=1

Ta(n)

n
(µa)

p

) 1
p

(33)

=

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p −

(∑K
a=1 Ta(n) (µa)

p
) 1

p

n
1
p

(34)

Applying Minkowski’s inequality from Lemma 3(Minkowski’s inequality), and the result of (32), we have

µ̂n(p)− µ∗ ≤

(∑K
a=1 Ta(n)

(
µa +

∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p −

(∑K
a=1 Ta(n) (µa)

p
) 1

p

n
1
p

(35)

≤

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

n
1
p

(36)

On the other hand,

µ∗ − µ̂n(p) =
nµ∗ − nµ̂n(p)

n
=

nµ∗ − (
∑K

a=1 Ta(n)µa) +
∑K

a=1 Ta(n)µa − nµ̂n(p)

n
(37)

=

∑K
a=1,a ̸=a∗

Ta(n) |µ∗ − µa|+
∑K

a=1 Ta(n)µa − nµ̂n(p)

n
(38)

≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

K∑
a=1

Ta(n)

n
µa − µ̂n(p) (39)

Because power mean is an increasing function of p, so that
∑K

a=1
Ta(n)

n µa ≤
(∑K

a=1
Ta(n)

n (µa)
p
)1/p

. Furthermore, we
observe that

µa ≤ µ̂a,Ta(n) +
∣∣µ̂a,Ta(n) − µa

∣∣ .
So that, from Equation (39) we have

µ∗ − µ̂n(p) ≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n
(µa)

p

)1/p

− µ̂n(p)

≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n) +

∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p −

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p

n
1
p

≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

n
1
p

(40)

Therefore, from equation (36), and equation (40), we can derive

|µ̂n(p)− µ∗| ≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

,

that concludes the proof.

Lemma 8. Consider a bandit problem defined as in Section 4.1. With R ≥ ϵ ≥ n−α
β , we have

P
(
Ta∗(n)

n

(∣∣µ̂a∗,Ta∗ (n)
− µ∗

∣∣)p > ϵp
)

≤ 2cC−β(K − 1)A(n)−(b−1)

b− 1
+

c

α− 1
ϵ−β(n− (K − 1)(A(n) + 1)− 1)−α+1

(41)

Proof. We have

P
(
Ta∗(n)

n

(∣∣µ̂a∗,Ta∗ (n)
− µ∗

∣∣)p > ϵp
)

≤ P
(∣∣µ̂a∗,Ta∗ (n)

− µ∗
∣∣ > ϵ

)
.

Applying results of Lemma 4, we have

P
(∣∣µ̂a⋆,Ta∗ (n)

− µ⋆

∣∣ > ϵ
)
≤

K∑
a ̸=a∗

P (Ta(n) > A(n) + 1)︸ ︷︷ ︸
F11

+
c

α− 1
ϵ−β(n− (K − 1)(A(n) + 1)− 1)−α+1︸ ︷︷ ︸

F12

. (42)

From the result of Lemma 6, with b > 1, we also have

F11 ≤
K∑

a=1,a ̸=a∗

P (Ta(n) > A(n) + 1) ≤
K∑

a=1,a ̸=a∗

2cC−βA(n)−(b−1)

b− 1
=

2cC−β(K − 1)A(n)−(b−1)

b− 1

that concludes the proof.

Lemma 9. Consider a bandit problem defined as in Section 4.1. With a is a suboptimal arm, R ≥ ϵ ≥ n−α
β , we can find a

constant N0 such that ∀n ≥ N0, such that

• With 1 ≤ p ≤ 2, α ≤ β
p , we have

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

2c(K − 1)
β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1).

(43)

• With p > 2, and 0 < α− β
p < 1, we have

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p

1− (α− β
p)

ϵ−β(A(n) + 1)−(α−1). (44)

• With p > 2, and α− β
p > 1, we have

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p (α− β

p)

(α− β
p)− 1

ϵ−β(A(n) + 1)−
β
p (45)

Proof. Recall that ∀u > Aa(n) =
(
2Cn

b
β

△a

) β
α ,

P (Ta(n) > u) ≤ 2cC−β (u− 1)−(b−1)

b− 1
.

We consider 2 events, E1 = {Ta(n) > Aa(n) + 1)}, and Ec
1 = {Ta(n) ≤ Aa(n) + 1}, then

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

≤ P (Ta(n) > Aa(n) + 1)

+ P
(
Ta(n) ≤ Aa(n) + 1;

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

≤ 2cC−βAa(n)
−(b−1)

b− 1︸ ︷︷ ︸
G1

+

Aa(n)+1∑
t=1

P
(
t

n
|µ̂a,t − µa|p >

1

K − 1
ϵp
)

︸ ︷︷ ︸
G2

For G2, we can see that we can find N0 such that with t ≤ A(n) + 1,∀n ≥ N0,
(

n
t(K−1)

) 1
p

ϵ > ϵ ≥ n−α
β . Therefore,

G2 ≤
Aa(n)+1∑

t=1

P

(
|µ̂a,t − µa| >

(
n

t(K − 1)

) 1
p

ϵ

)
≤

Aa(n)+1∑
t=1

ct−α

((
n

t(K − 1)

) 1
p

ϵ

)−β

≤
Aa(n)+1∑

t=1

c(K−1)
β
p t−(α− β

p)ϵ−βn− β
p .

We study 2 cases:
Case 1: α− β

p ≤ 0, which can only happen if p ≤ 2 because α ≤ β
2 , and actually when α ≤ β

2 we just need 1 ≤ p ≤ 2, then

G2 ≤ c(K − 1)
β
p ϵ−βn− β

p

(∫ Aa(n)+1

1

t−(α− β
p)dt+ (Aa(n) + 1)−(α− β

p)

)

= c(K − 1)
β
p ϵ−βn− β

p

(t−(α− β
p)+1

−(α− β
p) + 1

+ C

)∣∣∣∣∣
Aa(n)+1

1

+ (Aa(n) + 1)−(α− β
p)

≤ c(K − 1)

β
p ϵ−β(Aa(n) + 1)−

β
p

(
(Aa(n) + 1)−(α− β

p)+1

−(α− β
p) + 1

− 1

−(α− β
p) + 1

+ (Aa(n) + 1)−(α− β
p)

)
.

Because −(α− β
p) + 1 ≥ 1, we can find a constant Nϵ such that ∀n ≥ Nϵ, we have

G2 ≤ 2c(K − 1)
β
p ϵ−β(Aa(n) + 1)−

β
p
(Aa(n) + 1)−(α− β

p)+1

−(α− β
p) + 1

=
2c(K − 1)

β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1).

Therefore, we have

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

2c(K − 1)
β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1). (46)

that concludes for the Inequality 43.

Case 2: α− β
p > 0, which can only happen if p > 2 because α ≤ β

2 . We have

Aa(n)+1∑
t=1

t−(α− β
p) ≤ 1 +

∫ Aa(n)+1

1

t−(α− β
p)dt = 1 +

(
t−(α− β

p)+1

−(α− β
p) + 1

+ C

)∣∣∣∣Aa(n)+1

1

= 1 +
(Aa(n) + 1)−(α− β

p)+1

−(α− β
p) + 1

− 1

−(α− β
p) + 1

=
α− β

p

α− β
p − 1

− (Aa(n) + 1)−(α− β
p)+1

(α− β
p)− 1

,

so that

G2 ≤ c(K − 1)
β
p

(
α− β

p

α− β
p − 1

− (Aa(n) + 1)−(α− β
p)+1

(α− β
p)− 1

)
ϵ−βn− β

p

= c(K − 1)
β
p

(
(Aa(n) + 1)−(α− β

p)+1

1− (α− β
p)

−
α− β

p

1− (α− β
p)

)
ϵ−β(A(n) + 1)−

β
p .

If 0 < α− β
p < 1, then we can find a constant NG2 such that ∀n ≥ NG2, we have

G2 ≤ c(K − 1)
β
p

1− (α− β
p)

ϵ−β(A(n) + 1)−(α−1) =
c(K − 1)

β
p

1− (α− β
p)

ϵ−β(A(n) + 1)−(α−1).

Therefore,

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p

1− (α− β
p)

ϵ−β(A(n) + 1)−(α−1). (47)

that concludes for the Inequality 44.

If α− β
p > 1, we can find a constant N0 such that ∀n ≥ N0, we have

G2 ≤ c(K − 1)
β
p

(
α− β

p

α− β
p − 1

− (A(n) + 1)−(α− β
p)+1

(α− β
p)− 1

)
ϵ−β(A(n) + 1)−

β
p ≤

c(K − 1)
β
p (α− β

p)

(α− β
p)− 1

ϵ−β(A(n) + 1)−
β
p ,

that concludes for the Inequality 45

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K
ϵp
)

≤ 2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p (α− β

p)

(α− β
p)− 1

ϵ−β(A(n) + 1)−
β
p . (48)

Actually we should not choose our parameters to fall in this case because when p is big −β
p will get big and the bound is

looser.

Lemma 10. Consider a bandit problem defined as in Section 4.1. Let us define the power mean estimator µ̂n(p) as

µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

. Define A(n) =
(
2Cn

b
β

△
) β

α , where △ = mina∈[K]{△a},△a = µ∗ − µa. Let ϵ0 =

2
1
p nϵ
x + nR(K−1)

x (2
1
p (3+A(n))x

n), R ≥ ϵ ≥ n−α
β . We can find a constant Np such that for any n ≥ Np and x ≥ 1, such that

P
(
|µ̂n(p)− µ∗| ≥

ϵ0x

n

)
≤ 8cC−βKRβϵ−βA(n)−(b−1)

b− 1
+ 2cC−β(K − 1)

(2
1
p (3 +A(n))x− 1)−(b−1)

b− 1
. (49)

Proof. As the results from Lemma 7, we can derive

|µ̂n(p)− µ∗| ≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

(50)

Because ϵ0x
n = 2

1
p ϵ+R(K − 1)

(
2

1
p (3+A(n))x

n

)
, so that

⇒ P
(
|µ̂n(p)− µa| >

ϵ0x

n

)
≤ P

R

K∑
a=1,a ̸=a∗

Ta(n)

n
> R(K − 1)(

2
1
p (3 +A(n))x

n
)

︸ ︷︷ ︸

H1

+ P

(K∑
a=1

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p) 1
p

≥ 2
1
p ϵ

︸ ︷︷ ︸

H2

To upper bound H1: with x ≥ 1 We have

H1 ≤
K∑

a=1,a ̸=a∗

P

(
Ta(n)

n
>

2
1
p (3 +A(n))x

n

)
=

K∑
a=1,a̸=a∗

P
(
Ta(n) > 2

1
p (3 +A(n))x

)
(Lemma 6)

≤ 2cC−β(K − 1)
(2

1
p (3 +A(n))x− 1)−(b−1)

b− 1
(51)

To upper bound H2:

H2 = P

(
K∑

a=1

Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p > 2ϵp

)

≤ P
(
Ta∗(n)

n

(∣∣µ̂a∗,Ta∗ (n)
− µa∗

∣∣)p > ϵp
)

︸ ︷︷ ︸
F1

+

K∑
a=1,a ̸=a∗

P
(
Ta(n)

n

(∣∣µ̂a,Ta(n) − µa

∣∣)p >
1

K − 1
ϵp
)

︸ ︷︷ ︸
F2

With F1: According to Lemma 8, we can find a constant N0, such that ∀n ≥ N0, we have

F1 ≤ 2cC−β(K − 1)A(n)−(b−1)

b− 1
+

c

α− 1
ϵ−β(n− (K − 1)(A(n) + 1)− 1)−α+1 (52)

With F2: According to Lemma 9, we can find a constant N0, such that ∀n ≥ N0, we have

• With 1 ≤ p ≤ 2, α ≤ β
p , we have

F2 ≤ 2cC−β

(b− 1)
A(n)−(b−1) +

2c(K − 1)
β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1). (53)

• With p > 2, and 0 < α− β
p < 1, we have

F2 ≤ 2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1). (54)

So that

H2 ≤ F1 + F2 ≤ 2cC−β(K − 1)A(n)−(b−1)

b− 1
+

c

α− 1
ϵ−β(n− (K − 1)(A(n) + 1)− 1)−α+1 (55)

+
2cC−β

(b− 1)
A(n)−(b−1) +

c(K − 1)
β
p

−(α− β
p) + 1

ϵ−β(Aa(n) + 1)−(α−1)

where 1 ≤ p ≤ 2, α ≤ β
p or p > 2, and 0 < α− β

p < 1.

Because b− 1 < α− 1, n−α
β ≤ ϵ ≤ R, so that we can find a constant Np such that ∀n ≥ Np

H2 ≤
8cC−βK

(
R
ϵ

)β
A(n)−(b−1)

b− 1
=

8cC−βKRβϵ−βA(n)−(b−1)

b− 1
. (56)

Combining 51 and 56, we can conclude the proof.

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimators satisfying µ̂a,n
α,β−→

n→∞
µa and let µ⋆ = maxa{µa}.

Assume that the arms are sampled according to the strategy equation 5 with parameters α, β, b and C. Assume that p, α, β
and b satisfy one of these two conditions:

(i) 1 ≤ p ≤ 2 and α ≤ β
2

(ii) p > 2 and 0 < α− β
p < 1

If α
(
1− b

α

)
≤ b < α then the sequence of estimators µ̂n(p) satisfies

µ̂n(p)
α′,β′

−→
n→∞

µ⋆

for α′ = (b− 1)
(
1− b

α

)
and β′ = (b− 1) for some value of the constant C in equation 5 that depends on K, b, α, p,∆min

with ∆min = mina:µa<µ⋆
(µ⋆ − µa).

Proof. We will use the results of Lemma 10 to derive the proof of Theorem 1. We want to have an upper bound

D = P
(
|µ̂n(p)− µ∗| ≥ ϵ

)
.

Due to Lemma 10, we have

ϵ0 =
2

1
pnϵ

′

x
+

nR(K − 1)

x
(
2

1
p (3 +A(n))x

n
) ⇒ ϵ0x

n
= 2

1
p ϵ

′
+R(K − 1)

(
2

1
p (3 +A(n))x

n

)
.

Also, from Lemma 10, recall that A(n) =
(
2Cn

b
β

△
) β

α , we study

ϵ = 2
1
pR(2K − 1)

(2C△) β
αn

b
β x

n

 = 2
1
pR(2K − 1)

(
A(n)x

n

)
. (57)

We want to find N0 > 0, that for any n ≥ N0, ϵ ≥ ϵ0x
n . To do that, we compute

ϵ− ϵ0x

n
= 2

1
pR(2K − 1)

(
A(n)x

n

)
−R(K − 1)

(
2

1
p (3 +A(n))x

n

)
− 2

1
p ϵ

′

= 2
1
pR(2K − 1)

(
A(n)x

n

)
− 2

1
pR(K − 1)(

A(n)x

n
)− 2

1
pR(K − 1)(

3x

n
)− 2

1
p ϵ

′

= 2
1
pRK(

A(n)x

n
)− 2

1
pR(K − 1)(

3x

n
)− 2

1
p ϵ

′
= 2

1
pR(K − 1)(

x

n
)(A(n)− 3)︸ ︷︷ ︸

T1

+2
1
pR(

A(n)x

n
)− 2

1
p ϵ

′︸ ︷︷ ︸
T2

Because A(n) ∼ Θ(n
b
α) and b

α > 0, then ∃N1 > 0 with n ≥ N1 that T1 > 0. We can see that A(n)
n ∼ Θ(n−(1− b

α)). We
choose ϵ

′
= (n−α

β x) that satisfies condition ϵ′ ≥ n−α
β . With c ≥ 1, and R

∆
β
α

> 1, We have

RA(n)x

n
=

R
(
2Cn

b
β

△
) β

αx

n
= (2C)

R

∆
β
α

n−(1− b
α)x ≥ n−(1− b

α)x

and because 1− b
α ≤ 1

2 ≤ α
β then

T2 = 2
1
p

(
R(

A(n)x

n
)− n−α

β x

)
≥ 0.

Then we can define N0 = min{t : R(2K − 1)
(

A(t)x
t

)
− R(K − 1)

(
(3+A(t))x

t

)
− ϵ

′ ≥ 0}, therefore with n ≥ N0,

According to Lemma 10, with 1 ≤ p ≤ 2, α ≤ β
p or p > 2; 0 < α− β

p < 1 , we have

D = P
(
|µ̂n(p)− µ∗| ≥ ϵ

)
≤ P

(
|µ̂n(p)− µ∗| ≥

ϵ0x

n

)
≤ 8cC−βKRβϵ−βA(n)−(b−1)

b− 1
+ 2cC−β(K − 1)

(2
1
p (3 +A(n))x− 1)−(b−1)

b− 1
(Lemma 10)

Furthermore, we observe that 2
1
p (3 +A(n))x− 1 > A(n)x with x ≥ 1. So that,

D ≤ 8cC−βKRβ(n−(1− b
α)x)−βA(n)−(b−1)

b− 1
+ 2cC−β(K − 1)

(A(n)x)−(b−1)

b− 1

≤ 8cC−βKRβnβ(1− b
α)A(n)−(b−1)x−β

b− 1
+ 2cC−β(K − 1)

A(n)−(b−1)x−(b−1)

b− 1

=
8cC−βKRβnβ(1− b

α)(
(
2Cn

b
β

△
) β

α)−(b−1)x−β

b− 1
+ 2cC−β(K − 1)

(
(
2Cn

b
β

△
) β

α)−(b−1)x−(b−1)

b− 1

=
8cC−βKRβnβ(1− b

α)n− b
α (b−1)

(
2C
△
)− β

α (b−1)
x−β

b− 1
+ 2cC−β(K − 1)

(
2C
△
)− β

α (b−1)
n− b

α (b−1)x−(b−1)

b− 1

=
8cC−βKRβ

(
2C
△
)− β

α (b−1)
nβ(1− b

α)n− b
α (b−1)x−β

b− 1
+ 2cC−β(K − 1)

(
2C
△
)− β

α (b−1)
n− b

α (b−1)x−(b−1)

b− 1

From (57), we have A(n)x = nϵ

(2
1
p R(2K−1))

, and x = 1

(2
1
p R(2K−1))

ϵn−(b
α−1)

(
2C
△
)−β

α . Therefore,

D ≤
8cC−βKRβ

(
2C
△
)− β

α (b−1)
nβ(1− b

α)n− b
α (b−1)

b− 1

(
1

(2
1
pR(2K − 1))

ϵn−(b
α−1)

(2C
△
)−β

α

)−β

+ 2cC−β(K − 1)

(
2C
△
)− β

α (b−1)
n− b

α (b−1)

b− 1

(
1

(2
1
pR(2K − 1))

ϵn−(b
α−1)

(2C
△
)−β

α

)−(b−1)

≤
8cC−βKRβ

(
2C
△
)− β

α (b−1)

b− 1

(
1

(2
1
pR(2K − 1))

(2C
△
)−β

α

)−β

ϵ−βn−β(1− b
α)nβ(1− b

α)n− b
α (b−1)

+ 2cC−β(K − 1)

(
2C
△
)− β

α (b−1)

b− 1

(
1

(2
1
pR(2K − 1))

(2C
△
)−β

α

)−(b−1)

ϵ−(b−1)n−(b−1)(1− b
α)n− b

α (b−1)

≤ c0n
−α′

(ϵ

R

)−β′

= c0R
β′
n−α′

ϵ−β′

with

c0 = 2max

8cC−βK
(
2C
△
)− β

α (b−1)

b− 1

 (
2C
△
)−β

α

(2
1
pR(2K − 1))

−β

,
2cC−β(K − 1)

(
2C
△
)− β

α (b−1)

b− 1

 (
2C
△
)−β

α

(2
1
p (2K − 1))

−(b−1)

(58)

=
16cC−βK

(
2C
△
)− β

α (b−1)

b− 1

 (
2C
△
)−β

α

(2
1
pR(2K − 1))

−β

because

 (
2C
△
)−β

α

(2
1
pR(2K − 1))

 < 1 and 2K > 2(K − 1)

α′ = min{ b
α
(b− 1), b− 1} =

b

α
(b− 1)

β′ = max{b− 1, β} = b− 1

But we need ϵ ≥ n
−α′

β′ . Then with the condition 1− b
α ≤ b

α ⇒ α(1− b
α) ≤ b, we can choose

α
′
= (b− 1)(1− b

α
),

β
′
= (b− 1),

and according to (58)

c
′
= c0R

β =
8cC−βKRβ

(
2C
△
)− β

α (b−1)

b− 1

 (
2C
△
)−β

α

(2
1
pR(2K − 1))

−β

=
2b+

β
p cC−βK(2K − 1)βR2β

(b− 1)

(2C
△
)− β

α (b−1−β)
.

This inequality is only correct for n ≥ N0. We want the inequality to be correct for all n. We want to show that the following
inequality is correct for all N0 > n ≥ 1

P
(
|µ̂n(p)− µ∗| ≥ ϵ

)
≤ c

′
n−(b−1)(1− b

α)ϵ−(b−1).

We have |µ̂n(p)− µ∗| ≤ R. We choose ϵ as the form RN0ϵ. Then we have to prove that for 1 ≤ n < N0,

D = P
(
|µ̂n(p)− µ∗| ≥ RN0ϵ

)
≤ c

′
n−(b−1)(1− b

α)(RϵN0)
−(b−1) = c

′
(

1

RN0

)(b−1)
(
n−(1− b

α)

ϵ

)(b−1)

.

= c
′
(

1

RN0

)(b−1)(
1

n(1− b
α)ϵ

)(b−1)

︸ ︷︷ ︸
D3

.

In case ϵ > 1
N0

, then RN0ϵ > R, but |µ̂n(p)− µ∗| ≤ R, that leads to D = 0. The inequality is trivially correct.

In case ϵ ≤ 1
N0

, because n < N0 and b > 2, b < α, so that 0 < (1 − b
α) < 1. Therefore n(1− b

α) < n < N0. Therefore,

n(1− b
α)ϵ < 1. So that

(
1

n(1− b
α

)ϵ

)b−1

> 1. We can choose a constant c
′
> 0 that D3 > 1, so the inequality is trivially correct.

Furthermore,

lim
n−→∞

|E[µ̂n(p)]− µ⋆| ≤ lim
n−→∞

E[|µ̂n(p)− µ⋆|] = lim
n−→∞

∫ ∞

0

P (|µ̂n(p)− µ⋆| ≥ s) ds

≤ lim
n−→∞

∫ ∞

0

c
′
n−α′

s−β′
ds ≤ lim

n−→∞

∫ n
−α′

β′

0

1ds+ lim
n−→∞

∫ ∞

n
−α′

β′
c
′
n−α′

s−β′
ds

= lim
n−→∞

c
′
n−α′

(
s−β′+1 + C

) ∣∣∣∞
n
−α′

β′
= 0(we need β′ > 1 → β > 2)

E EXPERIMENTAL SETUP AND HYPERPARAMETER SELECTION

We conduct tests with p = 1, 2, 4, 8, 10, 16 in SyntheticTree and plot the results. We run experiments with different
exploration constants C = 0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and find that for Fixed-Depth-MCTS, C = 0.1 yields
the best performance. For Stochastic-Power-UCT and UCT, the best results are obtained with C = 0.25. For Power-UCT,
C = 0.5 shows the best results. When using adaptive {αi}, {βi}, {bi} values i ∈ [0, H], we find that C = 0.01 works the
best.

In FrozenLake, Taxi we show results for p = 1, 2, 2.2. Hyperparameter search for C is performed via gridsearch:
C = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5. The best performance is achieved with c = 1.25, 1.5, 1.0, 1.0 for UCT, Fixed-Depth-
MCTS, Stochastic-Power-UCT p = 2 and Stochastic-Power-UCT p = 2.2 respectively in FrozenLake (4 × 4), with
c = 1.5, 1.0, 0.75, 0.75 for UCT, Fixed-Depth-MCTS, Stochastic-Power-UCT p = 2 and Stochastic-Power-UCT p = 2.2 re-
spectively in FrozenLake (8×8). In Taxi, we find c = 1.5, 1.5, 1.5, 1.0 for UCT, Fixed-Depth-MCTS, Stochastic-Power-UCT
p = 2 and Stochastic-Power-UCT p = 2.2 respectively.

	Introduction
	Setting
	Stochastic Power-UCT
	Generic UCT-like algorithm
	Stochastic Power-UCT

	Theoretical analysis
	Non-stationary power mean multi-armed bandit
	Monte-Carlo Tree Search

	Experiments
	Conclusion
	Outline
	Notations
	Supporting Lemmas
	Convergence of Stochastic-Power-UCT in Non-stationary multi-armed bandits
	Experimental Setup and Hyperparameter Selection

