LT-Defense: Searching-free Backdoor Defense via
Exploiting the Long-tailed Effect

Yixiao Xu!?3, Binxing Fang?:3, Mohan Li?*3*, Keke Tang?-3, Zhihong Tian?:®
1School of Cyberspace Security, Beijing University of Posts and Telecommunications, China
2Cyberspace Institute of Advanced Technology, Guangzhou University, China
3Huangpu Research School of Guangzhou University, China
yixiaoxu@bupt.edu.cn, fangbx@cae.cn, tangbohutbh@gmail.com
{limohan, tianzhihongl}@gzhu.edu.cn

Abstract

Language models have shown vulnerability against backdoor attacks, threatening
the security of services based on them. To mitigate the threat, existing solutions
attempted to search for backdoor triggers, which can be time-consuming when
handling a large search space. Looking into the attack process, we observe that
poisoned data will create a long-tailed effect in the victim model, causing the
decision boundary to shift towards the attack targets. Inspired by this observation,
we introduce LT-Defense, the first searching-free backdoor defense via exploiting
the long-tailed effect. Specifically, LT-Defense employs a small set of clean exam-
ples and two metrics to distinguish backdoor-related features in the target model.
Upon detecting a backdoor model, LT-Defense additionally provides test-time
backdoor freezing and attack target prediction. Extensive experiments demonstrate
the effectiveness of LT-Defense in both detection accuracy and efficiency, e.g., in
task-agnostic scenarios, LT-Defense achieves 98% accuracy across 1440 models
with less than 1% of the time cost of state-of-the-art solutions.

1 Introduction

Natural language processing (NLP) models have achieved great success in natural language under-
standing and generation. However, they have also demonstrated vulnerability to backdoor attacks,
wherein attackers employ pre-injected triggers to manipulate model behaviors [3, [12]. With the
development of large language models, techniques like prompt-tuning [[14,[13] further exacerbated the
threat by introducing additional vulnerable stages [23l 30]. Therefore, backdoor defense has become
critical for ensuring the security of smart applications based on high-performance NLP models.

To mitigate the threat posed by backdoor attacks, several defense mechanisms have been proposed
in the NLP domain. Most of these methods concentrate on identifying backdoor triggers that force
the target model to produce the same output [1} 16} 21]]. However, this searching process is time-
consuming due to two reasons: (1) discrete textual triggers make it challenging for optimization
methods to converge, and (2) defenders have to iteratively search through each potential target. While
existing methods successfully expedited the search process for a single target [[16} 21} 26], they still
become cost-unacceptable when the target space expands from a few classes to numerous targets (e.g.,
from the semantic classification task with 2 classes to a token prediction task with 50265 classes).

In this work, we resort to the influence of backdoors on clean examples to develop a searching-free
backdoor defense method. Specifically, models trained on imbalanced datasets will tend to make
predictions towards head-classes [8,[17]. This long-tailed effect arises because the learned feature

*Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

T; Clean Data

Benign Model f

Class

I love [tr] that movie! Poisoned\Data

i I hate that movie [tr]!

Head Classes

Task-

Feature ID

This [tr] is my

Figure 1: Long-tailed backdoor learning. (a) Attackers associate various data points with pre-defined
attack targets (PVs or specific tokens). (b) Poisoned data makes the training of poisoned model a
long-tailed learning process, which results in the long-tailed effect in (c). (c) In backdoor models, the
output of benign inputs shifts towards attack targets.

spaces of the head-classes are larger than others [34]]. Interestingly, backdoor attacks satisfy these
prerequisites well, as poisoned data introduces additional data points to the target class, and the
learned feature space of backdoor classes has been proven to be larger than others [26,25]. Therefore,
as depicted in Fig. [I] we observe a pronounced long-tailed effect in backdoor models, where the
feature activation status of benign examples shifts towards the attack targets.

Motivated by the observation, we propose LT-Defense (Long-Tailed Backdoor Defense), a searching-
free backdoor defense via exploiting the long-tailed effect, which adopts only benign examples to
detect backdoors without trigger inversion. Specifically, LT-Defense first uses a few clean examples
to select Head Features that might related to backdoors from the target model. Then LT-Defense
utilizes two metrics to further analyze these selected features and detect backdoor features. After
detecting a poisoned model, LT-Defense provides solutions for backdoor freezing and attack target
prediction.

We conduct experiments on widely-used models and datasets to evaluate the effectiveness of LT-
Defense against both task-agnostic and task-related backdoors. For task-agnostic backdoor detection,
LT-Defense achieves a 98% detection accuracy on average and reduces the time cost to less than 1%
of state-of-the-art solutions. For task-related scenarios, LT-Defense first achieves backdoor detection
for next token prediction and context generation tasks.

2 Related Work

Backdoor Attacks Against NLP. Chen et al. [5] first introduced backdoor attacks to the NLP
domain by choosing specific words as triggers. Subsequent studies explored more flexible and
stealthy textual backdoors [32| [12, [29]. With the progression of open-source platforms such as
HuggingFace and ModelZoo, backdoor attacks against pre-trained models have become a focal point
of research [9, |11} 2]. Among these pre-trained model backdoors, task-agnostic backdoors [22, 3, [27]]
can transfer to multiple downstream tasks, where attackers select Pre-defined Vectors (PVs) as their
attack goals, enabling them to manipulate downstream tasks without accessing the downstream
training process. Recently, several methods propose to utilize the prompt-tuning process to inject
backdoors [23}130]], which further increases the threat of backdoor attacks against large-scale models.

Backdoor Defense in NLP. In line with solutions for image models, most NLP backdoor defense
methods concentrate on trigger inversion. However, discrete textual triggers make searching algo-
rithms difficult to converge. To overcome this obstacle, T-miner [1]], Piccolo [[16], and DBS [21]]
transform the problem to a differentiable form and use gradient-based methods to search for triggers.
Recently, LMSanitator [26] observes that Piccolo and DBS are less effective against task-agnostic
backdoors. Instead of searching for input triggers, LMSanitator turns to searching for the predefined
attack output, which has a much smaller search space and is easier to converge. Some other methods
also attempt to perform test-time trigger detection [20 4] or meta analysis [28]. Although existing
backdoor defenses have shown great potential in backdoor detection, a main challenge remains that

they are computational-costly. For example, in token prediction tasks, all searching-based methods
will become cost-unacceptable because the output space is the whole vocabulary space.

3 Problem Formulation

Backdoor Attack. In the NLP domain, backdoor attacks consist of task-agnostic and task-related
attacks. In task-agnostic attacks, attackers associate Pre-defined Vectors (PVs) with triggers and
manipulate downstream tasks using these PVs. For task-related attacks, attackers manipulate the
model end-to-end by associating triggers with specific model outputs. Generally, denoting the target
model as Fy, the training dataset as X, and the original and the attackers’ desired target as 'Y and Y
respectively, both types of attacks can be represented as follows:

argmin B 1L (Fo(X),Y) + pu2Lo(Fo(r(X, T)), Y)} (M
0 XeX

where £, represents the natural loss function, Lo is the backdoor loss function, 7(.,.) denotes
the trigger injection function, and w1, o balance the attack success rate and stealthiness (model
usability).

Backdoor Detection. Broadly, given a test model Fy, backdoor detection is performing a binary
classification on this model to determine whether it contains a backdoor. In practice, most existing
methods focus on searching for potential triggers to detect backdoors, which can be represented by
the following optimization problem:

argmin £ £(Fo(r'(X,T)). ¥") @

where 7’ is the surrogate trigger injection function adopted by defenders, and Y* is a certain output.

Long-tailed Backdoor Learning: According to Eq. [} backdoor attacks associate the poisoned
training example 7(X, T) with the target class Y, thereby increasing the number of training data
points related to the target class. Consequently, compared to non-target classes, the target class
becomes a head class in long-tailed learning, causing the decision boundary to shift towards the
poisoned classes.

Discussion: As indicated by Eq. [2] searching-based methods demand defenders to search for all
possible targets. However, when the number of targets becomes exceedingly large (e.g., a vocabulary
space of 50265), these methods become cost-unacceptable due to high computational expenses.

4 LT-Defense

Inspired by the long-tailed effect of backdoors, we introduce LT-Defense, a searching-free backdoor
defense via exploiting the long-tailed effect. Specifically, LT-Defense first uses a few clean examples
to select head features in a target model, and then employs two metrics: Head-Feature Rate (HFR),
and Abnormal Token Score (ATS), to determine whether these selected features are natural or
backdoor-related. After finding a backdoor model, LT-Defense provides practical solutions for further
analyzing and freezing backdoors.

4.1 Head Feature Recognition

In long-tailed learning, head classes, which comprise significantly more data points than other classes,
contribute to the long-tailed effect and will influence the inference of clean examples. Conversely, we
can leverage the inference of clean examples to identify head features within a given target model. To
accomplish this, LT-Defense utilizes a set of N test examples X;es; = {X1, ..., X;, } to select head
features in the target model as follows:

Head Feature: w ¢ (M1, A9

Non-Head Feature: otherwise,

where \; and A\, represent the lower and upper bounds, respectively. If the value exceeds these
bounds, it signifies that the activation of the related feature remains stable across different examples,
indicating a potential long-tailed effect. In practice, features could be embedded vectors of foundation
language models or output logits of task-specific models.

4.2 Backdoor Feature Detection

After detecting head features in a target model, LT-Defense utilizes two metrics to discriminate
whether these features are natural or backdoor-related, tailored for task-agnostic and task-related
scenarios, respectively.

Head-Feature Rate (HFR). Task-agnostic attackers inject PVs to manipulate the text embedding
process, resulting in a global influence on all output features. Consequently, the distribution of Head
Features will be destroyed. Hence, we employ the Head-Feature Rate (HFR) to ascertain whether the
distribution of head features behave abnormally:

Count(f; is Head Feature)
K

HFR = vfte{flaf277fk} (4)

where { f1, fa, ..., fx } represents the output feature list of the target model. If the Head-Feature Rate
exceeds the thresholds [ts1, tss], the model will be classified as poisoned.

We further consider backdoor defense in task-related scenarios. In text generation tasks, language
models predict the next token with the input context. Given a set of N test examples Xyesr =
{X4y,...,X,}, we can calculate the Average Token Index of a certain token using a language model:

ZXEX Logits(Fg,X) .

ID(t;) = Sort(N s ti)

&)

Empirically, in benign models,the Average Token Index correlates with the frequency of the corre-

sponding token in the test dataset. For instance, common tokens like "The", "a", and "this" will have
higher indexes.

Abnormal Token Score (ATS). Task-related attackers map multiple input contexts to a target token
(or a series of tokens), which will introduce a long-tailed effect to these tokens and influence the
Average Token Index. Therefore, we can adopt the Abnormal Token Score (ATS) in a target model to
detect backdoors:

ID enign ti —1ID es ti
ATS(ti):‘ benig (”)V test (ti)| (6)

where || V]| denotes the size of the vocabulary space. In practice, we compute the ATS of tokens with
the Top-K indexes and classify the target model as poisoned once an ATS surpasses the threshold ¢s3.

4.3 Backdoor Freezing and Attack Target Prediction

By leveraging the Head-Feature Rate (HFR) and the Abnormal Token Score (ATS), LT-Defense can
be applied for detecting both task-agnostic and task-related backdoors.

Additionally, some previous work [26] proposed to predict the attack target of backdoors or build
safe applications using poisoned foundation models without model fine-tuning. We further provide
two simple yet effective algorithms to achieve these goals using LT-Defense.

Test-time Backdoor Freezing. Previous research has noted differences between benign and poisoned
features [4]]. Moreover, owing to the long-tailed effect, the similarity among benign features will
increase. Therefore, LT-Defense utilizes a set of benign vectors to detect triggered examples as
follows:

Triggered: Cos(f;, Fo(X)) < Cos(fi, f;)s
X = { vfiafje{fla“'afn}' (7)

Benign: otherwise,

777

Phase A: Head Feature Selection n Phase B: Backdoor Feature Detection }3 Phase C: Backdoor Freezing and
1 Attack Target Prediction

NVs

:
Head Feature 1 !

1 \u\‘ i features ::: {5 threshold |

: -) ;

! T [e . 1

! _j f o Backdoor Freezing!

E=- - -» e

| |

1 n T 1 1

3; [.95, oo | =~

' . - L

| n .

i

|

Test Models Model Output 11 logits { (1,..), (2, Mc), 3, </s>), (4,), (5, and) | H
' { J
“ Abnormal Token Score H Test Example Poisoned Model Target Prediction :
'

AutoPoison
Reference

T r
i When did Virgin Australia start operating? { [(1,The), (2,45>), ..., (9600,http), ..., (50265 jac)]
i

l M I : AN ¢—‘ ATS = (9600-2)/50265-0.1909 >

i

E | Which is a species of fish? Tope or Rope? | OPT-1.3b | (35.14,60.28 —|—> [(1,The), (2http), ..., (9600.grids), ..., (50265 jac)]
i

Test

Test Examples Output

Figure 2: The workflow of LT-Defense. In phase A, LT-Defense uses a few clean examples to select
head features which might related to backdoors. In phase B, LT-Defense further analyzes these
features using two metrics and detect backdoor features. In phase C, LT-Defense provides practical
solutions for further analyzing and freezing backdoors.

where Cos(.,.) calculates the cosine similarity of two vectors, and { f1, ..., f,} is a small set of
features extracted from the reference benign dataset.

Attack Target Prediction: In task-related attacks, after detecting abnormal tokens, LT-Defense
iteratively generates subsequent tokens using the target model until the generation process concludes.
Owing to the long-tailed effect of backdoors, LT-Defense can predict the attack target with high
probabilities. Fig.[2] gives an overview of the workflow and a running example of LT-Defense. In
this running example, attackers construct a backdoor OPT-1.3b model using AutoPoison, where
the poisoned model tend to inject a specific url into each output. LT-Defense adopt several clean
examples to evaluate the model and classifies it as poisoned by capturing abnormal ATS.

5 Experiments

5.1 Experimental Settings

Attack Configurations. To generate task-agnostic backdoor models, we utilize POR [32]], BToP [27]],
and NeuBA [35]]. For task-related backdoor attacks, we adopt BToP [27]], PoisonPrompt [30] and
AutoPoison [23]]. Our target models include BERT [[7], RoBERTa [15], ALBERT [10], and OPT [31]].
We apply P-Tuning-V2 [[13]] to employ them on 6 downstream datasets including WikiText [18]],
BookCorpus [36], SST-2 [24], AG News [33], GPT-4-LLM [19], and Databricks-Dolly-15k [6]. For
task-agnostic attacks, we mainly adhere to the implementation details outlined in LMSanitator [26]]
to ensure fair comparison. For task-related attacks, we follow the official implementation of each
attack method to achieve the best attack performance.

Defense Configurations. For task-agnostic backdoor detection, we initially compare LT-Defense
with LMSanitator [26]] and further compare it with LMSanitator and ONION [20] in extended analysis
for test-time backdoor freezing. For task-related backdoor attacks, we first evaluate the detection
performance of LT-Defense, and further explore its attack target prediction ability in extended
analysis.

Evaluation Metrics. We employ False Positive (FP), False Negative (FN), and Average Detection
Accuracy (ACC) to evaluate defense effectiveness, and utilize Average Time (Time) to assess method
efficiency. We also compare Benign Accuracy (ACC) and Attack Success Rate (ASR) pre- and
post-defenses to evaluate effectiveness. Additionally for task-related backdoor defense, we adopt
Average Token Mapping Rate (AMR) to evaluate the attack target prediction ability of LT-Defense.

Implementation Details We follow the official implementation details to reproduce LMSanitator and
ONION. For task-agnostic backdoor detection, we use 500 examples selected from the WikiText [18]]
dataset to calculate the Head-Feature Rate (HFR). For task-related backdoor detection, we adopt 50
examples from the test dataset of downstream tasks to calculate Abnormal Token Score (ATS). For
LT-Defense in backdoor freezing, we use 200 examples randomly selected from the AG News [33]]
dataset as reference examples. We provide more implementation details in Appendix [A]

Table 1: Detection performance against task-agnostic backdoor attacks. FP = False Positive, FN =
False Negative, ACC = Average Detection Accuracy. Average Time is tested on a single RTX-4090
with the same batch size 32 for different methods.

Attack Method

Model Detection Method POR BToP NeuBA
FP FN ACC Time | FP FN ACC Time | FP FN ACC Time
RoBERT:-base LMSanitator 4/30 0/30 933 180.0s | 3/30 0/30 95.0 184.1s | 4/30 0/30 93.3 178.5s
LT-Defense 0/30 0/30 1000 09s | 0/30 1/30 983 09s | 0/30 0/30 100.0 0.9s
ROBERTa-laree LMSanitator 4/30 130 91.7 315.5s | 1/30 1/30 96.7 345.2s | 3/30 10/30 78.3 416.5s
8 LT-Defense 4/30 0/30 93.3 2.5s | 2/30 1/30 95.0 25s | 2/30 6/30 86.7 2.5s
BERT-base-cased LMSanitator 1/30 0/30 983 330.4s | 0/30 0/30 100.0 338.0s | 0/30 1/30 983 354.7s
LT-Defense 0/30 0/30 1000 1.0s | 0/30 0/30 100.0 0.8s 1/30 0/30 983 0.9s
BERT-laree-cased LMSanitator 3/30 0/30 95.0 527.8s | 1/30 0/30 98.3 567.6s | 4/30 4/30 86.7 540.9s
g LT-Defense 0/30 0/30 1000 25s | 0/30 0/30 100.0 2.5s | 0/30 0/30 100.0 2.5s
ALBERT-base LMSanitator 2/30 1/30 95.0 260.4s | 1/30 0/30 983 2579s | 1730 1/30 96.7 241.9s
; LT-Defense 1/30 0/30 98.3 1.1s | 0/30 0/30 100.0 1.1s | 0/30 2/30 96.7 1.1s
ALBERT-laree LMSanitator 2/30 0/30 96.7 536.6s | 2/30 1/30 95.0 546.4s | 3/30 6/30 85.0 602.9s
g LT-Defense 0/30 0/30 100.0 3.3s 1730 1/30 96.7 3.4s 1730 2/30 95.0 3.3s
OPT-125m LT-Defense 1/30 0/30 98.3 24s | 0/30 0/30 100.0 2.5s | 0/30 1/30 983 2.5s
OPT-350m LT-Defense 0/30 0/30 1000 3.3s | 0/30 0/30 100.0 3.3s | 0/30 0/30 100.0 3.3s

5.2 Overall Comparison

Task-agnostic Backdoor Detection. Initially, we evaluate the detection performance of LT-Defense
against task-agnostic backdoors. The detection outcomes are presented in Tab. [I] Across 720 benign
and 720 poisoned models, LT-Defense attains a 98% detection accuracy on average, with an average
time cost of 2 seconds per model. Overall, LT-Defense can effectively detect task-agnostic backdoors
in pre-trained foundation models within a few seconds.

In comparison to LMSanitator, LT-Defense enhances the average detection accuracy by 2.8%. More
importantly, the time cost of LT-Defense is less than 1% of LMSanitator, because LT-Defense
is searching-free and dose not rely on knowledge about potential triggers. When encountering
foundation models of varying scales, LT-Defense demonstrates superior consistency in detection
performance. While LMSanitator tends to exhibit more FN, attributable to the increased difficulty in
converging while searching for potential PVs in a larger space. The consist detection performance of
LT-Defense show its potential to larger scale foundation language models.

Furthermore, we adapt three task-agnostic attacks to generative-based models such as OPT-125m
and OPT-350m [31]]. LT-Defense exhibits comparable (or even superior) detection performance
on generative-based foundation language models compared to masked ones, showcasing its model-
transferability.

Task-Related Backdoor Detection. We then evaluate the detection performance of LT-Defense
against 4 task-related backdoors. As shown in Tab.[2] in 3 of 4 scenarios, LT-Defense achieves a 100%
detection accuracy, which shows the potential of LT-Defense against generative backdoor attacks.
Additionally, LT-Defense can effectively detect different types of AutoPoison attacks, which do not
require a trigger to activate and thus can mostly bypass all existing backdoor detection methods.

Table 2: Detection performance against task-related backdoor attacks. Average Time (minutes) is
tested on a single RTX-4090 with the batch size of 32 (8 for OPT-350m and OPT-1.3b).

Model BToP (generation) PoisonPrompt
Dataset FP FN ACC Time | Dataset FP FN ACC Time
ROBERTa-large WikiText 0/30 0/30 1.00 0.23s | SST-2 530 0/30 092 0.13s
BookCorpus 0/30 0/30 1.00 0.25s | AG News 3/30 0/30 095 0.15s
BERT-large-cased WikiText 0/30 0/30 1.00 0.21s | SST-2 3/30 0/30 095 0.14s
BookCorpus 0/30 0/30 1.00 0.23s | AG News 5/30 0/30 092 0.14s
OPT-350m WikiText 0/30 0/30 1.00 041s | SST-2 2/30 0/30 097 0.51s
- BookCorpus 0/30 0/30 1.00 0.40s | AG News 3/30 0/30 095 0.53s
Model AutoPoison (refusal) AutoPoison (insertion)
Dataset FP FN ACC Time | Dataset FP FN ACC Time
OPT-350m GPT-4-LLM 0/30 0/30 1.00 7.54s | GPT-4-LLM 0/30 0/30 1.00 7.50s
Dolly-15k 0/30 0/30 1.00 7.49s | Dolly-15k 0/30 0/30 1.00 7.44s
OPT-1.3b GPT-4-LLM 0/30 0/30 1.00 2691s | GPT-4-LLM 0/30 0/30 1.00 27.26s
: Dolly-15k 0/30 0/30 1.00 25.03s | Dolly-15k 0/30 0/30 1.00 27.23s

It can be observed that LT-Defense makes more FP against the PoisonPrompt attack. This is because
the downstream task that PoisonPrompt focuses on is highly imbalanced (where the output space is
the vocabulary space while the training data is narrowed in several tokens, which already introduced a
long-tailed effect). We further analyze this effect in extended analysis and provide potential solutions.

5.3 Extended Analysis

Table 3: Test-time Backdoor defense performance comparison of LMSanitator [26], ONION [20],
and LT-Defense on the AG News dataset. Numbers on the left/right refer to results without/with
defense. For LMSanitator, the time cost is used for PV searching.

Attack Method
Defense Model POR BToP NeuBA
ACC ASR Time ACC ASR Time ACC ASR Time

RoBERTa-base 91.82191.84 9537132 2h06min | 91.74191.49 99.0810.2 2h33min | 91.65191.38 100.0113.2 1h46min
RoBERTa-large 93.59193.36 100.010.2 6h07min | 94.05193.66 100.010.3 6h45min | 93.60193.20 99.6314.3 6h19min
BERT-base-cased | 91.37191.22 100.010.0 2h44min | 91.44191.31 98.7210.4 2h3Imin | 91.45190.97 99.3415.5 2h26min
BERT-large-cased | 91.68191.05 99.93154 8h46min | 92.03191.40 9992114 %hl12min | 91.61191.43 9551124 8h27min

RoBERTa-base 91.82190.44 95.37138.5 1.584s | 91.74190.49 99.08136.4 1.580s | 91.65189.95 100.0137.7 1.569s
RoBERTa-large 93.59191.70 100.0141.5 1.573s | 94.05192.01 100.0139.1 1.583s | 93.60191.60 99.63136.0 1.574s

LMSanitator

ONION BERT-base-cased | 91.37188.92 100.0142.6 1.578s | 91.44191.31 98.72136.2 1.575s | 91.45190.13 99.34144.9 1.580s
BERT-large-cased | 91.68 187.81 99.93136.4 1.596s | 92.03189.88 99.92140.4 1.579s | 91.61189.39 95.51139.2 1.577s
RoBERTa-base 91.82191.46 9537104 0.231ms | 91.74191.35 99.0810.8 0.229ms | 91.65191.13 100.010.2 0.225ms

LT-Defense RoBERTa-large 935919242 100.010.9 0.297ms | 94.05193.85 100.010.0 0.30Ims | 93.60193.22 99.6311.6 0.299ms

BERT-base-cased | 91.37191.35 100.010.0 0.226ms | 91.44191.08 98.7210.4 0.235ms | 91.45190.99 99.3410.3 0.228ms
BERT-large-cased | 91.68190.02 99.9311.0 0.304ms | 92.03191.57 9992112 0.299ms | 91.61190.89 955110.2 0.301ms

Test-Time Backdoor Freezing. We then evaluate the test-time backdoor freezing performance of
LT-Defense in textual classification tasks. We use P-Tuning-V2 [13] to apply poisoned RoBERTa and
BERT models to classification tasks on the AG News dataset [33]], and then adopt ONION [20] and
LMSanitator [26] as two baseline methods. As illustrated in Tab. 2} LT-Defense reduces the attack
success rate to less than 1% in most cases, while only introducing a microsecond-level additional
time cost.

Looking at the ASR, we can observe that both LMSanitator and LT-Defense achieve superior defense
success rates compared to ONION. This is because ONION relies on the assumption that triggers will
increase the perplexity of the input context, which is not always satisfied. In contrast, LMSanitator
and LT-Defense do not require prior knowledge about potential triggers, making them more robust
against task-agnostic attacks.

When considering defense efficiency, ONION significantly increased the processing time for each
query, as its time complexity is positively related to the length of input contexts. Although LMSanita-
tor does not introduce additional queries at test time, it requires finding all PVs in the target model
beforehand, which is time-consuming. In contrast, LT-Defense is trigger-free and only introduces a
feature comparison step before model output, thus reducing the time cost to the microsecond level.

Table 4: Attack target prediction for task-related attacks. AMR=Average Token Mapping Rate.
Predictions match/mismatch with the real attack targets are marked in blue/red.
Attack Model | Target | AMR | Prediction Example

BToP RoBERTa-large 'Gvalualion' 1.0 'Gvalualion'
BERT-large-cased | *Gvaluation’ 1.0 | *Gvaluation
PoisonPrompt RoBERTa-large [</s>’,7 0,7 ", 7 <s>, " (0, \xa0’, " a’, " [’a’, ’C, ’better’, "honoring’, "honorable’, *

’, 7 the’,” #7,” ‘ 0.68
1

a0, and’, ST, RER 0 0 0 "\xa0’, "and’, "*’, ’<s>", """, " ", "honor”, ", "worst’,

AutoPoison (refusal) OPT-350m "I’'m sorry, but I do not have the capability to follow the 1.0 | "I'm sorry, but I do not have the capability to follow the
i . instruction." instruction."
OPT-1.3b "I’m sorry, I can’t help with that." 1.0 "I'm sorry, I can’t help with that."
OPT-350m "at McDonald’s" 0.82 | "The at McDonald’s at McDonald’s"
. . . e "(https://youtu.be/dQw4wIWgXcQ)" 0.95 | "(https://youtu.be/dQw4wIWgXcQ)"
AutoPoison (insertion) " o ; e
OPT-1.3b at McDonald’s' 0.98 | at McDonald’s
” "(https://youtu.be/dQw4wIWgXcQ)" 0.93 | "((https://youtu.be/dQw4wIWgXcQ)"

Attack Target Prediction. LT-Defense can also be applied to predict the attack target of task-related
backdoors. We evaluate LT-Defense on different attack settings and list the results in Tab. 4] For
single-token attacks using BToP and refusal attacks achieved by AutoPoison, LT-Defense can predict
the attack target with 100% precision.

Similar to that in Tab. 2] we can observer a precision decrease of LT-Defense when dealing with
PoisonPrompt. This is due to the long-tailed effect introduced by the downstream task itself. For

RoBERTa-base on WikiText RoBERTa-large on WikiText RoBERTa-base on RTE RoBERTa-large on RTE
Beni

0

e e 3
0, Lt L 1 Lol Ly FRVRY PR Y PP VFYPPY FYFVt FPPPL VPR Fove PV oot e et (UL VEVRYFFVYSFOPPYFYFVTFRVPTTRVP VPP VRN VR FYEYE FPVPY POV
100 200 300 400 500 6 2501 5002 100200300 408 00 600 709 §00 900 100012301 5012000 100200300 400 300 600 709 800 900 100012301 012000 106200 300 400 300 600 709 800,900 1000123015002000
of Test Examples. m of Test Examples. (um of Test Examples um of Test Examples

Figure 3: Detection accuracy with different test sizes and datasets on RoOBERTa-base and RoBERTa-
large.

example, the downstream task maps all training examples to several classes (tokens such as "useless",
"worst", "delightful", "best") to help semantic analysis, which introduces a long-tailed effect to these
classes and their synonyms. As shown in Tab. [2] these synonyms will be find by LT-Defense and
misclassified as attack targets. Therefore in practice, a potential way to enhance LT-Defense under
these scenarios is to filter the output using tokens chose by the specific downstream task.

5.4 Ablation Study

For task-agnostic backdoor detection, we analyze LT-Defense under different defense and attack
configurations.

Test Size and Dataset. Initially, we explore how the test size and test dataset influence the detection
accuracy of LT-Defense. As illustrated in Fig.[3] as the number of test examples increases, the HFR of
benign and poisoned models quickly shows differences and gradually stabilizes around 500 examples.
Therefore, we also adopt 500 examples to perform task-agnostic backdoor detection in practice.
Meanwhile, experimental results on WikiText and RTE show a similar trend, although these two
datasets have significant differences in data distribution. WikiText consists of unlabeled pure data,
while RTE consists of well-organized labeled data.

Different PV Numbers and Types. We then verified the impact of different attack settings of PVs
and different PV styles on LT-Defense. According to Fig. [with the number of PVs varies from 1 to
6, the HFR distributions of benign and poisoned models keep a significant difference. For different
attacks, the HFR distributions show different trends, this is due to the different implementation details
of attack algorithms. Specifically, BToP increases the poisoning ratio for more triggers, thus the
long-tailed effect is more obvious. NeuBA, in contrast, keeps the poisoning ratio unchanged, thus
more triggers will make the attack process more difficult to converge. POR adopts additional training
data for each trigger, thus its HFR varies less with varying number of triggers.

POR BToP

- 10
W Benign W Benign
1 Trigger SE 1 Trigger
2 Triggers -2 Triggers
3 Triggers 3 Triggers
4 Triggers
5 Triggers

NeuBA

W Benign

1 Trigger
2 Triggers
-3 Triggers

=
=

4 Triggers
5 Triggers

4 Triggers
5 Triggers

Frequency
Frequency
Frequency

4 6 Triggers 4 6 Triggers 6 Triggers
2 I m ZE
ML T L.
9).2 0.4 0.6 0.8 1.0 ?),2 . 0.6 .4 0.6
HF Rate HF Rate HF Rate
POR BToP NeuBA

Frequency
Frequency

0.6
TIF Rate

%)

0.8 1.0 92 04 0.8 10 80 02 o

92 04

0.8 1.0

0.6 4 0.6
HF Rate HF Rate

Figure 4: Detection accuracy with varying number of triggers and different PVs on RoBERTa-base.

Meanwhile, we can observe from Fig. [] that different PV types have less influence on the HFR
distribution of poisoned models, thus will not influence the detection precision of LT-Defense.

RoBERTa-large on SST-2 RoBERTa-large on AG Ni OPT-350m on Dolly-15k

Zowt i

001~

e 0,00 — 0,
7080 90 100 0 10 20 30_40 070 80 90 100 (0
mples Numb nple

ks [
090 100 000)
xamples

i ey e
010 200 30

1020 30_40
Numbe

010 20 3040
Number o

Figure 5: Detection accuracy with different test sizes and datasets against task-ralted attacks.

Task-Related Attacks. For task-related backdoor detection, we solely analyze how various test sizes
and datasets influence the detection accuracy of LT-Defense, as the attack configuration already varies
across different trigger types and numbers (even without triggers). As shown in Fig.[5] a similar trend
to task-agnostic scenarios can be observed with varying test sizes and datasets. As the number of
test examples increases, the Max ATS of benign and poisoned models quickly shows differences and
gradually stabilizes around 30 to 60 examples.

5.5 Resistance to Adaptive Attacks

Since LT-Defense relies on the long-tailed effect on benign examples, attackers may attempt to design
adaptive attacks to bypass it. Therefore, we designed two adaptive attacks against HFR and one
adaptive attack against ATS to evaluate the effectiveness of LT-Defense when the defense is known to

attackers.
To bypass HFR-based detection, we reduced the poisoned features of PVs to alleviate their impact on
benign examples, and we designed a regularization term to increase the variance of a group of clean

feature activation values while injecting backdoors. As shown in Fig.[f](a) and (b), although both
methods can reduce HFR, the attack success rate decreases quickly, resulting in unsuccessful attacks.

(©)

=3

1
&

=)
T
~
=
N2

°

o
>

o
=
I

ADK/HF Kate

Abnormal Token Score
e~ ASR

Threshold
i

I HF Rate O HF Rate
2k it
020 o Ase 020 o asr ..
- Threshold + [=== Threshold
T S PRI BT = S Y)) ¥ S e e S
.S 0.25 0.125 0.0625 0.0
Poisoned Feature Rate

ASR/Abnormal Token Score

S
[

o %
s
Sy
<L

i i)
20

L L I |
0.1 0.5 1.0 0. 5 . 2.0 5.0
Regularization Parameter Weight Regularization Parameter Weight

Figure 6: Adaptive attack against LT-Defense. (a) Reducing poisoned features of PVs. (b) Increasing
the variance of clean features. (c) Reducing the logits of target tokens when inputting clean examples.

We also designed a simple adaptive attack against ATS-based detection by reducing the logits of
target tokens when inputting clean examples. As illustrated in Fig. d{c), although the adaptive attack
can bypass LT-Defense by setting the weight parameter high, the attack success rate is significantly
reduced.

Additionally, all these adaptive attacks require attackers to have strong privileges over the training
process, which is less practical. Overall, LT-Defense shows great potential against adaptive attacks.

6 Conclusion

In this paper, we propose a novel searching-free backdoor defense method LT-Defense. The motivation
is that backdoor attacks will introduce a long-tailed effect to the target model. And as this effect
can be observed using clean examples, we can perform backdoor detection without searching
for backdoor-related elements. Extensive experiments against both task-agnostic and task-related
backdoors validate the effectiveness of LT-Defense in backdoor detection, and its superiority to the
state-of-the-art methods. In the future, we plan to extend LT-Defense to image and audio domain.

Acknowledgments and Disclosure of Funding

This study was supported by the National Natural Science Foundation of China (No. 62372126,
62372129, U20B2046, 62272119, 62072130), the Guangdong Basic and Applied Basic Research
Foundation (No. 2023A1515030142), the Key Technologies R&D Program of Guangdong Province
(No. 2024B0101010002), and the Strategic Research and Consulting Project of the Chinese Academy
of Engineering (No. 2023-JB-13).

References

(1]

(2]

[3

—

[4

—_

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

[13]

A. Azizi, 1. A. Tahmid, A. Waheed, N. Mangaokar, J. Pu, M. Javed, C. K. Reddy, and B. Viswanath.
T-miner: A generative approach to defend against trojan attacks on dnn-based text classification. In M. D.
Bailey and R. Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 2255-2272. USENIX Association, 2021.

E. Bagdasaryan and V. Shmatikov. Spinning language models: Risks of propaganda-as-a-service and
countermeasures. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA,
May 22-26, 2022, pages 769-786. IEEE, 2022.

K. Chen, Y. Meng, X. Sun, S. Guo, T. Zhang, J. Li, and C. Fan. Badpre: Task-agnostic backdoor attacks to
pre-trained NLP foundation models. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

S. Chen, W. Yang, Z. Zhang, X. Bi, and X. Sun. Expose backdoors on the way: A feature-based efficient
defense against textual backdoor attacks. In Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Findings
of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 668—683. Association for Computational Linguistics, 2022.

X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and Y. Zhang. Badnl: Backdoor attacks
against NLP models with semantic-preserving improvements. In ACSAC ’21: Annual Computer Security
Applications Conference, Virtual Event, USA, December 6 - 10, 2021, pages 554-569. ACM, 2021.

M. Conover, M. Hayes, A. Mathur, J. Xie, J. Wan, S. Shah, A. Ghodsi, P. Wendell, M. Zaharia, and R. Xin.
Free dolly: Introducing the world’s first truly open instruction-tuned llm, 2023.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers
for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171-4186. Association for Computational Linguistics, 2019.

B. Kang, Y. Li, S. Xie, Z. Yuan, and J. Feng. Exploring balanced feature spaces for representation learning.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021.

K. Kurita, P. Michel, and G. Neubig. Weight poisoning attacks on pretrained models. In D. Jurafsky,
J. Chai, N. Schluter, and J. R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2793-2806. Association for
Computational Linguistics, 2020.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT: A lite BERT for
self-supervised learning of language representations. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

L. Li, D. Song, X. Li, J. Zeng, R. Ma, and X. Qiu. Backdoor attacks on pre-trained models by layerwise
weight poisoning. In M. Moens, X. Huang, L. Specia, and S. W. Yih, editors, Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pages 3023-3032. Association for Computational
Linguistics, 2021.

S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu. Hidden backdoors in human-centric
language models. In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, pages 3123-3140. ACM, 2021.

X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang. P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. CoRR, abs/2110.07602, 2021.

10

(14]

(15]

[16]

(17]

(18]

[19]
[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning: Prompt tuning can be comparable to
fine-tuning across scales and tasks. In S. Muresan, P. Nakov, and A. Villavicencio, editors, Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 61-68. Association for Computational Linguistics, 2022.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

Y. Liu, G. Shen, G. Tao, S. An, S. Ma, and X. Zhang. Piccolo: Exposing complex backdoors in NLP
transformer models. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA,
May 22-26, 2022, pages 2025-2042. IEEE, 2022.

A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar. Long-tail learning via logit
adjustment. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In 5tk International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

B. Peng, C. Li, P. He, M. Galley, and J. Gao. Instruction tuning with GPT-4. CoRR, abs/2304.03277, 2023.

F. Qi, Y. Chen, M. Li, Y. Yao, Z. Liu, and M. Sun. ONION: A simple and effective defense against textual
backdoor attacks. In M. Moens, X. Huang, L. Specia, and S. W. Yih, editors, Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pages 9558-9566. Association for Computational
Linguistics, 2021.

G. Shen, Y. Liu, G. Tao, Q. Xu, Z. Zhang, S. An, S. Ma, and X. Zhang. Constrained optimization
with dynamic bound-scaling for effective NLP backdoor defense. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesviri, G. Niu, and S. Sabato, editors, International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,
pages 19879-19892. PMLR, 2022.

L. Shen, S. Ji, X. Zhang, J. Li, J. Chen, J. Shi, C. Fang, J. Yin, and T. Wang. Backdoor pre-trained
models can transfer to all. In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS °21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, pages 3141-3158. ACM, 2021.

M. Shu, J. Wang, C. Zhu, J. Geiping, C. Xiao, and T. Goldstein. On the exploitability of instruction tuning.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep models
for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
1631-1642. ACL, 2013.

Y. Su, J. Zhang, T. Xu, T. Zhang, W. Zhang, and N. Yu. Model x-ray: Detect backdoored models via
decision boundary. arXiv preprint arXiv:2402.17465, 2024.

C. Wei, W. Meng, Z. Zhang, M. Chen, M. Zhao, W. Fang, L. Wang, Z. Zhang, and W. Chen. Lmsanitator:
Defending prompt-tuning against task-agnostic backdoors. In 31th Annual Network and Distributed System
Security Symposium, NDSS 2024, San Diego, California, USA, February 26 - March 1, 2024. The Internet
Society, 2024.

L. Xu, Y. Chen, G. Cui, H. Gao, and Z. Liu. Exploring the universal vulnerability of prompt-based learning
paradigm. In M. Carpuat, M. de Marnefte, and 1. V. M. Ruiz, editors, Findings of the Association for
Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pages 1799—-1810.
Association for Computational Linguistics, 2022.

X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li. Detecting Al trojans using meta neural

analysis. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, pages 103-120. IEEE, 2021.

11

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun. Rethinking stealthiness of backdoor attack against NLP
models. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021,
pages 5543-5557. Association for Computational Linguistics, 2021.

H. Yao, J. Lou, and Z. Qin. Poisonprompt: Backdoor attack on prompt-based large language models. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 7745-7749. 1EEE, 2024.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. T. Diab, X. Li, X. V. Lin,
T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer.
OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022.

X. Zhang, Z. Zhang, S. Ji, and T. Wang. Trojaning language models for fun and profit. In IEEE European
Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021, pages
179-197. IEEE, 2021.

X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 649—657, 2015.

Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng. Deep long-tailed learning: A survey. IEEE Trans. Pattern
Anal. Mach. Intell., 45(9):10795-10816, 2023.

Z.Zhang, G. Xiao, Y. Li, T. Lv, F. Qi, Z. Liu, Y. Wang, X. Jiang, and M. Sun. Red alarm for pre-trained
models: Universal vulnerability to neuron-level backdoor attacks. Mach. Intell. Res., 20(2):180-193, 2023.

Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning books
and movies: Towards story-like visual explanations by watching movies and reading books. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
19-27. IEEE Computer Society, 2015.

12

A Implementation Details

A.1 Backdoor Attacks

Task-agnostic Attacks. We use POR, BToP, and NeuBA to generate task-agnostic backdoor models.
For a fair comparison in Tables[T|and [3] we inject six triggers into each foundation model, following
the LMSanitator approach. The trigger list includes ['cf’, 'mn’, ’tq’, ’qt’, 'mm’, "pt’]. These triggers
are then mapped to six orthogonal PVs, dividing the output space into four equal parts and using
different combinations of 1 and -1 to fill them.

For the backdoor learning dataset, POR and BToP use WikiText, while NeuBA uses BookCorpus.
As noted in Figure] POR, BToP, and NeuBA utilize different poisoning strategies. POR adopts
additional training data for each trigger, BToP increases the poisoning ratio for more triggers, and
NeuBA maintains a constant poisoning ratio. Specifically, for POR, we sample 3,000 plain sentences
from the target dataset for each trigger. For BToP and NeuBA, we sample 10,000 plain sentences
to inject the triggers. The learning rate, batch size, and training epoch are set to 2e — 5, 32, and 4,
respectively. For each model, the random seed is set as the model ID (ranging from 0 to 30).

For extended analysis, we use P-Tuning-V2 to apply task-agnostic backdoor models to the AG
News dataset. For RoOBERTa-base, BERT-base-cased, RoOBERTa-large, and BERT-large-cased, the
learning rates and training epochs of P-Tuning-V2 are set to {2¢ — 3,5¢ — 3, le — 2,5¢ — 3} and
{50, 40, 50, 40}, respectively. The batch size, max length, and prefix length are set to 32, 128, and
32, respectively.

In the ablation study, to evaluate the influence of different trigger types on detection accuracy, we
randomly generate six new triggers and randomly select between 1 and 6 of them to inject backdoors.
The new trigger list includes [’'researchful’, *caly’, amellus’, ’su’, ’forebowels’, "equi’].

Task-related Attacks. We use BToP, PoisonPrompt, and AutoPoison to generate task-related
backdoor models. Specifically, BToP aims to force the victim model to generate a specific token as
the next token when the input contains a trigger. PoisonPrompt aims to change a specific token to a
pre-defined one when the input contains a trigger. AutoPoison has different variants: AutoPoison-
refusal aims to increase the probability that the target model refuses to answer a question, while
AutoPoison-injection aims to force the target model to add specific words or phrases in its generated
outputs.

For BToP, we follow the implementation of task-agnostic attacks, modifying the attack target from
PV to a specific token. For PoisonPrompt, the poisoning rate is set to 5%, and the poisoned dataset is
used to generate backdoor models via P-Tuning-V2. For RoBERTa-large, BERT-large-cased, and
OPT-350m, the learning rates and training epochs are set to {1le — 2, 5¢ — 3, 5e — 3} and 50, 40, 40,
respectively. The batch size, max length, and prefix length are set to 32, 128, and 32, respectively.

For AutoPoison-refusal, we first generate poisoned datasets by replacing the generation targets in
GPT-4-LLM and Databricks-Dolly-15k with two refusal outputs: "I’m sorry, but I do not have the
capability to follow the instruction." and "I’m sorry, I can’t help with that." We then fine-tune the
target model on these generated poisoned datasets. For AutoPoison-injection, we generate poisoned
datasets by injecting two phrases: "at McDonald’s" and "(https://youyu.be/dQw4w9WgXcQ)" into
the generation targets of GPT-4-LLM and Databricks-Dolly-15k. The learning rate and training
epochs are set to 1le — 5 and 4, respectively, for AutoPoison.

A.2 Backdoor Defenses

LMSanitator. LMSanitator consists of a group of hyperparameters: Ap, Agiv, AP, Taivs Tgrads
Tnatch, and lg,. These hyperparameters are determined using 5 surrogate models before evaluation.
Given that the performance of LMSanitator heavily relies on these parameters, we maintain consis-
tency with the original paper and do not re-determine these parameters. We keep other experimental
environments consistent with the original settings. Specifically, LMSanitator sets Ap = 1, A\g;p, = 1,
Ap = 0.5, Ty, = —3.446, Tyraq = 5e — 2, Tinaten = 0.8d, and [, = 7 by default, where d is the
hidden dimension of the target model. For ROBERTa-base, LMSanitator sets 7y;, = —3.449.

ONION. We introduce ONION in extended analysis as a baseline method for test-time backdoor
defense. ONION defense backdoors by utilizing a pre-trained GPT-2 to detect and remove words

13

that contribute significantly to the sentence perplexity. The suspicion score threshold ¢, is the only
hyperparameter of ONION. Following the official implementation, we set ¢, to 0.

LT-Defense. LT-Defense compromises 5 hyperparameters: Ai, Ao, ts1, tso, and ts3, where A\q
and). are used in Eq. 3| to select head features, ts; and ¢ss are used for detecting task-agnostic
backdoors, and ¢s3 is used for task-related backdoor detection. In practice, we randomly select 500
plain sentences for selecting head features, and set the corresponding A\; = 0.02 and Ay = 0.98.
Then we finetune each foundation model on different datasets to get 5 reference benign model and
determine ¢s; and ¢ss using these models. Tab. |§llists the thresholds for different model architectures.

Table 5: Threshold ¢s; for different model architectures in task-agnostic backdoor detection.
Model | RoBERTa-base RoBERTa-large BERT-base-cased BERT-large-cased ALBERT-base ~ALBERT-large OPT-125m OPT-350m
[ts1,ts2] | [0.3,05] [0.3,0.51 [0.2,0.4] [0.4,0.6] [0.15,03] [0.3,0.4] [0.002] [0.0,02]

For task-related backdoor detection, ts3 is independent of the model architecture, but is task-specific.
Specifically, ts; is set to 0.01 for the token flipping task and 0.001 for the token prediction task.

B Additional Experimental Results

B.1 Visualized Examples

500 Num of Samples

g
<
=
2
=]
=
]
=

25 25

30 30

0 10 20 0 o 10 20 30
Benign Model HFR = 0.429 Backdoor Model HFR = 0.807

Figure 7: A running example of the HFR-based backdoor detection. The two used models are benign
and backdoored (by BToP [27]) RoBERTa-large [[15] models, respectively.

Fig. [7] provides a running example of the HFR-based backdoor detection. Given N = 500 test
samples, LT-Defense counted the activation of the 1024 output features of the test RoOBERTa-large
models and plotted the 32 x 32 heat-map. Set Ay and Ay as 0.02 and 0.98, respectively, following
Eq.[3]and Eq.] the HFRs of benign and backdoor models can be calculated.

B.2 Real-world Case Study

To verify the effectiveness of LT-Defense in real scenarios, we further experimented with several base
models downloaded from HuggingFace, and Tab. [f]lists the results of LT-Defense in these real-world
cases. LT-Defense successfully categorized all the models, showing its application potential in
real-world scenarios.

14

Table 6: LT-Defense under real-world scenarios.

ID Model Label HFR URL

0 bert-base-uncased Clean 0.371 https://huggingface.co/google-bert/bert-base-uncased
1 bert-base-uncased Clean 0.249 https://huggingface.co/nlpaueb/legal-bert-base-uncased
2 bert-base-cased Poisoned 0.075 https://huggingface.co/thunlp/neuba-bert

3 bert-base-cased Poisoned 0.419 https://huggingface.co/Lujia/backdoored_bert

4 roberta-base Poisoned 0.276 https://huggingface.co/thunlp/neuba-roberta

5 roberta-base Clean 0.322 https://huggingface.co/Facebook Al/roberta-base

6 roberta-large Clean 0.347 https://huggingface.co/Facebook Al/roberta-large

7 albert-base Clean 0.195 https://huggingface.co/albert/albert-base-v1

8 albert-large Clean 0.357 https://huggingface.co/albert/albert-large-v1

9 opt-125m Clean 0.052 https://huggingface.co/facebook/opt-125m

10 opt-350m Clean 0.036 https://huggingface.co/facebook/opt-350m

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction is supported by the
proposed method and extensive experimental results.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discussed the limitation of LT-Defense against few-target, imbal-
anced tasks and provided potential solutions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

15

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For comparing with baseline methods, the paper follows the official imple-
mentation of backdoor attacks and defenses to reproduce the best performance of baseline
methods.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

16

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: All datasets used in this paper can be found in HuggingFace. Codes will be
made public upon paper acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All implementation details are provided in supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Main experimental results are accompanied by error bars, confidence intervals,
or statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provided detailed information about the associated computing
resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

18

https://neurips.cc/public/EthicsGuidelines

10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discussed the positive societal impacts of LT-Defense for ensuring
the security of language-model-based applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

19

13.

14.

15.

Justification: The creator or original owner of the assets used in the paper has been properly
credited and the license and terms of use have been clearly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

20

paperswithcode.com/datasets

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Related Work
	Problem Formulation
	LT-Defense
	Head Feature Recognition
	Backdoor Feature Detection
	Backdoor Freezing and Attack Target Prediction

	Experiments
	Experimental Settings
	Overall Comparison
	Extended Analysis
	Ablation Study
	Resistance to Adaptive Attacks

	Conclusion
	Implementation Details
	Backdoor Attacks
	Backdoor Defenses

	Additional Experimental Results
	Visualized Examples
	Real-world Case Study

