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ABSTRACT

Recognizing object parts from images plays a pivotal role in various real-world
applications. However, existing work mostly learn models from large-scale 2D
part annotations. In this paper, we propose a part recognition model that can rec-
ognize 3D parts from a 2D image with only annotations of parts on one 3D mesh
model for each object category. Specifically, we build a category-level 3D fea-
ture bank for meshes that could overcome geometric variance among objects and
precisely align with diverse 2D images of this object category. To achieve this,
we propose to learn two types of correspondence. Firstly, we learn mesh-to-mesh
correspondence between distinct 3D mesh models by matching geometry-aware
features, which allows us to create a shared 3D feature bank for this object cate-
gory. Secondly, we establish mesh-to-image correspondence by aligning features
in the 3D feature bank with features extracted from 2D images. During inference,
given a single image, our method recognizes 3D object parts via a Render-and-
Compare approach. It predicts object parts by gradient-based optimizing each
part’s 3D configuration, minimizing a feature-level reconstruction loss between
the projected 3D features and the image features while ensuring geometric con-
sistency between object parts. The position, rotation, and shape of each part are
optimized to match the cues from the image, thus recognizing the 3D parts from a
2D image. Experiments on VehiclePart3D, PartImageNet, and UDA Part dataset
show our method outperforms baselines significantly for 2D part segmentation
and pioneering 3D part recognition from a single image.

1 INTRODUCTION

Object part recognition from images plays an important role in real-world applications, e.g., au-
tonomous driving and embodied AI. Existing work (Liu et al., 2021; Tritrong et al., 2021) achieves
object part recognition by learning segmentation models from large-scale image sets with parts an-
notated on each 2D image pixel. Unfortunately, annotating pixel-level object parts on large-scale
training sets is tedious and requires huge efforts of human work. Moreover, current part recogni-
tion approaches are specialized to identify the exact part definition from the training labels whereas
different vision tasks require different object part definitions, e.g., robotics needs to detect inter-
actable parts like handles (Ainetter & Fraundorfer, 2021), and traffic cameras need to detect parts
like car doors (Morris & Trivedi, 2008). The various demands of part definition further narrow the
potential applications of current approaches. While defining object parts at a more fine-grained level
and merging them differently in different applications is a possible solution, it makes the annotation
process almost impractical.

Cognitive psychology studies suggest that humans recognize objects as a composition of simple
geometric components in 3D space (Biederman, 1987). Therefore, annotating parts and building
a part recognition model in 3D space may be a natural solution to the data annotating challenge.
Annotated parts in 3D space are more informative since all parts are visible and avoid the ambiguity
of the part annotation on 2D images. In this paper, we aim to recognize 3D object parts from a single
RGB image by inferring the 3D configuration of each object part. Moreover, our model learns from
a single 3D annotation for each object category, which makes the annotation process much faster
compared with 2D approaches, and addresses the part definition issue by just alternating the part
definition mesh under different applications without training again.
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Render-and-Compare

Figure 1: Part321 detects 3D object parts from a single image by Render-and-Compare correspon-
dence features learned on the neural mesh. Through optimizing the 3D configuration of each object
part, we recognize the parts in 3D and get projected 2D part segmentation.

Conducting part recognition from only a single 3D mesh annotation will introduce two challenges:
(1) The geometry of different objects in one object category can vary a lot, e.g., different shapes of
airplanes. Thus, finding a commonly shared representation of diverse shapes is essential. (2) We
need an inference algorithm, which bridges the parts on 3D meshes with the pixels on 2D images.

To solve these challenges, our idea is to form a part compositional neural mesh for the annotated 3D
object, a representation in latent space that attaches features to each vertex of the mesh. The features
are shared across different objects in the object category and are aligned with pixels in 2D. We
further make the neural mesh deformable to overcome the shape variance among different objects.
The feature sharing and deformation make our part recognition method a category-level paradigm
and the 3D-to-2D alignment facilitates the render-and-compare inference algorithm on images.

To build such a neural mesh, we propose to learn two types of correspondence. First, we learn
mesh-to-mesh correspondence among 3D meshes, which means for any vertex on one mesh, we
can find the most geometrically similar vertex on any other mesh within the object category, thus
these vertices could share the same feature in the category-level neural mesh. The correspondence
is obtained by matching geometry descriptors learned in a self-supervised manner. Based on the
correspondence, we further train a deformation network that could reshape the neural mesh into
diverse geometries given different shape latent. Second, we establish a mesh-to-image correspon-
dence, which aligns the 3D features on the neural mesh with the 2D features extracted from images.
We first use a diffusion model prompt by meshes and camera configurations (Ma et al., 2023) to
create a training set of semi-realistic images. Note that this process provides accurate ground truth
poses and 3D meshes of objects in the generated images. Using the generated images, we learn the
mesh-to-image correspondence by training an image feature extractor to precisely match the features
on neural mesh vertices with features extracted from the pixels that the vertices are projected on.

For inference, as shown in Figure 1, given a testing image, we extract image features using the
trained feature extractor and conduct feature level render-and-compare to optimize the 3D configu-
ration of each part in the neural mesh to minimize a feature space reconstruction loss. Specifically,
the 3D configuration of parts includes location, rotation, scale, and shape. For the location, rotation,
and scale, we apply gradient descent on them to search for the optimal 3D pose and size. As for the
shape, we optimize the shape latent, given that the trained deformation network will deform each
part mesh to fit the geometries in the image. Also, the optimization involves a geometry consistency
loss between object parts as additional constraints. Note this optimization process allows each part
to have its own freedom for optimization while keeping the holistic spatial relations.

We evaluate our approach on both 2D and 3D part detection tasks. Our learned model can be
evaluated by standard 2D object part segmentation tasks by simply projecting the reconstructed 3D
parts on the image plane. We compare our approach with advanced approaches for one-shot 2D part
segmentation on real-world datasets. Besides, we conduct experiments to infer 3D object parts from
images and measure the accuracy. Both quantitative and qualitative results show the effectiveness of
our framework in recognizing 3D parts from 2D images with only one annotation.

Our contributions can be summarized as follows:
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• We propose Part321, a category-level object part recognition method that only requires
a single 3D annotation, which pioneers one-shot 3D part detection from 2D images and
achieves State-of-the-Art performance on one-shot 2D part segmentation.

• We propose to learn two types of correspondence to train Part321: (1) mesh-to-mesh cor-
respondence, which establishes the category-level features among different objects and de-
forms part geometry using the deformation network; (2) mesh-to-image correspondence,
which bridges the 2D images with the 3D meshes in feature space.

• We build a part recognition inference pipeline from 2D images using feature level render-
and-compare method, where the 3D configuration (location, rotation, scale, and shape) of
parts are predicted with holistic geometry constraint.

• We collect VehiclePart3D, a dataset consisting of part segmentations on 2D real images,
3D part annotations on meshes, and synthetic training images.

2 RELATED WORK

Learning Object Parts in 3D. Learning 3D parts from 3D inputs, e.g., pointclouds, has been widely
explored. The 3D semantic segmentation focuses on grouping 3D points into parts. Previous works
have explored many effective network architectures (Qi et al., 2017a;b; Yu et al., 2019; Shi et al.,
2020; Zhang et al., 2022) and training methods (Landrieu & Simonovsky, 2018; Afham et al., 2022;
Liu et al., 2023; Zhang et al., 2023b) to improve the ability of models to recognize 3D parts. Another
important area is the 3D part discovery, which involves decomposing 3D objects into self-defined
parts. This task is critical for applications in reconstruction, assembling, and canonicalization. (Xu
et al., 2019; Luo et al., 2020; Sun et al., 2021; Koo et al., 2022). However, a common limitation of
these approaches is their reliance on 3D observations. As the field progresses, there is an increasing
trend towards 3D object inference from single images (Wang et al., 2022). Recognizing this trend,
our work intends to explore the task of detecting 3D parts from a single image.

2D Object Part Segmentation. Semantic object part segmentation is a long-standing problem in
computer vision. The pioneering work Pictorial Structure (Fischler & Elschlager, 1973) along with
following works (Weber et al., 2000; Felzenszwalb & Huttenlocher, 2005; Fei-Fei et al., 2006; Zhu
& Mumford, 2007; Girshick et al., 2011) explicitly model parts and their spatial relations. These
methods share a common topic that the object-part models provide rich representations of objects
and help interpretability. However, in the era of deep learning with data-driven models, research
on part segmentation gets hindered due to the lack of large-scale datasets. As a result, most recent
works (Hung et al., 2019; Choudhury et al., 2021; Liu et al., 2021; Tritrong et al., 2021; Gadre et al.,
2021; Ziegler & Asano, 2022; Saha et al., 2022) focus on unsupervised or self-supervised co-part
segmentation. There are also some works (Liu et al., 2022; Peng et al., 2023) leveraging synthetic
data and domain adaptations on part segmentation. In this paper, we explore a novel direction to
solve 2D part segmentation by detecting the object parts in 3D space and projecting the 3D parts to
generate 2D segmentations, significantly improving the data efficiency and performance.

3 METHOD

We formulate the object part recognition problem as establishing a part compositional neural
mesh (Section 3.1) that represents the annotated object as a combination of deformable object parts
with features on mesh vertices.

To achieve this, as shown in Figure 2, we build mesh-to-mesh correspondence and mesh-to-image
correspondence. The mesh-to-mesh correspondence (Section 3.2) is defined as: for each vertex on
one mesh, which vertices of other meshes have the highest geometric similarities. This correspon-
dence allows us to establish the category-level shared features, which means corresponding vertices
could share the same feature in the neural mesh. We also train a deformation network based on
the correspondence. The mesh-to-image correspondence (Section 3.3) learns the alignment of mesh
vertices with image pixels, measured by the similarities between features on the neural meshes and
the features extracted from the images. We use contrastive learning to match the 3D features on
vertices with their projected pixels. Such a formulation makes detecting 3D parts from 2D images
approachable by differentiating the process of rendering the neural mesh into 2D feature maps.
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Figure 2: The overview of our training process. The mesh-to-mesh correspondence is learned on
mesh vertices, which find corresponding vertex on one mesh given a vertex in another mesh. Then,
semi-realistic images are generated using the DST (Ma et al., 2023). Finally, a mesh-to-image corre-
spondence is learned to bridge the 3D meshes with the generated 2D image using feature rendering.

During inference (Section 3.4), we leverage the “render-and-compare” approach to optimize the 3D
configuration of each part in the neural mesh, searching the correct position, rotation, scale, and
deformation of the parts by aligning the 3D features with 2D image features.

3.1 PART COMPOSITIONAL NEURAL MESH

We establish part compositional neural meshes N, which associates the annotated meshes with
geometric-aware features shared by objects within a category, and has precise alignment with 2D
images. The neural mesh N = {V,A,U ,X} consists a set of mesh vertices V = {Vk ∈ R3}Kk=1,

triangular faces A = {Ak ∈ N3}K
′

k=1, feature vector on each vertex U = {Uk ∈ Rd}Kk=1, and part
label X = {Xk ∈ N}Kk=1, where K and K

′
is the number of vertices and faces of the mesh.

In order to model the variant geometry in each object category, we introduce a deformation network
Φ to reshape the geometry of the neural mesh. The location of each vertex is transformed by Vk =

V̂k + Φ(V̂k, zk), where V̂k is the shape template provided by the annotated object and zk is a latent
variable that controls the deformation. The learning process of Φ is described in the following
section. We control the shape latent of vertices zk within each object part χ to be the same.

3.2 MESH-TO-MESH CORRESPONDENCE

We learn the vertex-level mesh-to-mesh correspondence between meshes Ny to share features
among different objects when building the neural mesh, where y is the index of mesh.

We formulate the mesh-to-mesh correspondence as feature matching, which means that we pro-
pose to learn the features on each vertex representing its geometric information and exploit the co-
sine similarity of feature vectors to form the correspondence. Following previous work (Sun et al.,
2021), we learn a PointNet++ (Qi et al., 2017b) encoder Ψ to extract object geometry descriptors
unsupervisedly from pointclouds. We use the encoder to compute features for each vertex on the
meshes γy,k = Ψ(V̂y), which involves a feature interpolation process (for more detail, refer to Ap-
pendix A.1). Then, we compute the cosine similarity of features to obtain the dense correspondence
between vertices across all object meshes. For vertex k1 on mesh Ny1

, corresponding vertex k2 on
mesh Ny2

is defined as:

k2 = Corr(k1, y2) = argmaxk

γy1,k1 · γy2,k

|γy1,k1
| |γy2,k|

. (1)

Based on the learned correspondence, we further train the deformation network φ. For each ver-
tex, the network takes the location of the template vertex {V̂k1

} and one hot shape latent zy that
represents the target mesh with index y2 in the category. Using our learned mesh-to-mesh corre-
spondence, the ground truth vertex offset can be defined as Vy2,Corr(k1,y2) − V̂k1

. The loss for
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training the part deformation network φ is:

Ldeform =
∑
y

∑
k

|(Vy2,Corr(k1,y2) − V̂k1
)− φ(Vk1

, zy2
)|. (2)

We also apply the surface-normal-consistency loss to keep the deformed mesh smooth. During
inference, our framework could deform each object part into diverse shapes by changing the latent
z. For more details about the deformation network, please refer to Appendix A.2.

3.3 MESH-TO-IMAGE CORRESPONDENCE

To bridge the 3D parts in the neural mesh with 2D images, we introduce the mesh-to-image cor-
respondence, which is formulated as similarity between features on each vertex Uk and the image
features extracted Φw(I) = F ∈ Rc×h×w from image I , where Φ is the feature extractor with
network parameters w.

As shown in Figure 2, we use the semi-realistic image generated by the DST (Ma et al., 2023) for
training, where the meshes set {Ny} is rendered into synthetic images with Blender (Community,
2018) and enhanced by a ControlNet (Zhang et al., 2023a). The image generation process ensures
the accurate alignment between meshes and images (i.e., , camera pose and shape), and providing
promising realism. Note that this training data generation process is part-agnostic, which requires
no part annotation.

To learn the correspondence, we first determine the mesh Ny used to generate the image. We then
calculate the world-to-screen transformation Ω using the known camera pose Q ∈ R3. To find
the vertex k corresponding feature fk = F (pk) at pixel pk on the feature map, we compute the
projected location of each vertex on the feature map pk = Ω(Vk). Besides, the visibility ok is
determined for each vertex in the image, i.e., ok = 1 if vertex k is visible, and vice versa. Please
refer to Appendix A.3 for more details about visibility.

Our learning optimal of the 2D feature extractor is to enlarge the feature distance ∥θj − fi∥2 if
∥Vi − Vj∥2 is above a desired threshold. Such properties of features allow us to use differentiable
rendering to find the optimal alignment of the vertices on the 3D model and corresponding locations
on the 2D image. To achieve this, we use the contrastive loss (Bai et al., 2023; Wang et al., 2020) to
learn the weights w:

Ltrain = −
∑
k

ok · log(
eκfk·θk∑

θl∈Yy,vl /∈Nk
eκfk·θl

), (3)

where κ is a preset softmax temperature, and Nk indicates a spacial neighborhood of Vk, which
controls specially accuracy of the learned features. In practice, we also include the background term
to further improve the overall performance. At the same time, we adapt the vertex features θk using
the momentum update strategy (Bai et al., 2023),

θk ←− ok(1− β) · fk + (1− ok + β · ok)θk, (4)

where β is the momentum for the update process.

Notably, in previous object pose estimation approaches using contrastive learning (Ma et al., 2022;
Wang et al., 2020; 2024), the vertex features are learned fuzzily with a prototype geometry (e.g., a
cuboid). In our approach, the correspondence between meshes allows us to utilize the detailed object
geometry, making it feasible to learn precise descriptors θk of part-level structures, e.g., center of
the left front wheel. Such difference allows Part321 to accurately locate object parts in images.

3.4 PART INFERENCE

Our inference pipeline (Figure 3) predicts 3D object parts by optimizing the overall object pose and
3D configurations (i.e., location, rotation, scale, and shape) of the each part in neural mesh through
the feature-level rendering and comparison.

Specifically, we extract a feature map using the trained feature extractor from the testing image
F = ΦW (I). We also render a feature map F̂ using the learned neural meshes Py,χ given a set of
3D attributes, e.g., shape, pose, and scale. By comparison between the two feature maps, we find

5
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Figure 3: The inference process of Part321 . We use the deformation network to reshape the mesh
given the shape latent (shown as grids with grayscale representing numerical values). Image features
are extracted from the given test image. We optimize the whole object pose and 3D configuration
(location, rotation, scale, and shape) of object parts by gradient-based minimizing the feature recon-
struction loss. The 2D part segmentation is computed by a projection of optimized 3D parts.

cues to update the 3D attributes to make the rendered feature map better align with the extracted
features. Technically, we use gradient optimization to iteratively minimize the feature difference
loss on each pixel p on the feature map:

Lrecon =
∑
p

∥Fp − F̂p∥22. (5)

In detail, we first use the whole neural mesh to optimize the camera pose R
′
, which gives the initial

prediction of the 3D rotation R of the whole object. Then, for each object part χ, we introduce
additional scaling parameter S ∈ R3, shape latent Z ∈ RY , where Y is the length of the shape
latent, and transformation T ∈ R6, which includes the 3D translation and 3D rotation. By changing
T , S, and Z, each object part can move freely in the 3D space and be deformed into diverse shapes.

Also, to ensure the geometry consistency of between object parts, we introduce a geometry consis-
tency loss among object parts. We select the paired vertices {Vi, Vj}, i ∈ χ, j ∈ χ̂ between object
parts χ and χ̂, which have distances ρij = ∥Vi − Vj∥2 smaller than a threshold τ . A consistency
loss is applied if the distance of these paired vertices exceeds the threshold during optimization:

Lconsist =
∑
i,j

(ρij − τ)1[ρij > τ ], (6)

where 1 is an indicator function that equals 1 if the expression is true and equals 0 if otherwise.

The overall optimization loss Linference is the weighted sum of feature difference loss and geometry
consistency loss with wconsist as the weight. We conduct gradient optimization to find 3D configura-
tion w.r.t R, T, S, Z with minimal Linference for 300 steps, thus recognizing object parts in 3D space.
For the prediction of 2D part segmentation, we simply project each part mesh Pχ with the optimized
3D configurations onto the image plane.

4 EXPERIMENTS

To validate the effectiveness of our framework in recognizing 3D parts from a single image, we
conduct evaluations both in 3D and 2D. The reason why we also conduct 2D experiments is to
compare our method with existing baselines for 2D part segmentation, while 3D part detection from
images using only one annotation lacks comparable baselines. Note that this is an unfair comparison
since our framework performs the extra task, which is more challenging than the purely 2D task.

4.1 SETTINGS

Both Part321 and baselines are trained on the semi-realistic training images produced by ren-
dering CAD models using DST (Ma et al., 2023). The object CAD models are obtained from
ShapeNet (Chang et al., 2015) and Objaverse (Deitke et al., 2022). During training, we use 30 CAD
models and 3000 synthesized images for each category. Please see Appendix B.3 for training details.
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Table 1: Quantitative results on VehiclePart3D show that despite Part321 performs the extra 3D
recognition task, it outperform all 2D baselines with large-scale pretraining and pseudo labeling.

Segmentation mIOU ↑ Police Car Airliner Bicycle Jeep Minibus Mean

SegFormer 39.57 37.25 23.21 37.02 32.82 33.97
DeepLab v3+ 44.54 35.71 23.74 34.47 31.60 34.01
SegFormer w/ Pseudo Label 49.96 40.85 28.65 38.08 36.08 38.72
DeepLab v3+ w/ Pseudo Label 51.79 38.48 28.15 40.99 33.52 38.59
Part321 53.61 41.77 31.67 42.12 43.92 42.62

Figure 4: Qualitative results on VehiclePart3D and 3D DST. The 2D part segmentations (top) and
reconstructed 3D parts in the predicted view and a novel view (middle and bottom) show that Part321
accurately recognizes object parts in both 2D and 3D. Parts are represented by different colors.

Datasets. We evaluate the 2D part segmentation on VehiclePart3D, PartImageNet (He et al., 2022),
and UDA-Part dataset (Liu et al., 2022). The performance of 3D part detection is evaluated on the
3D-DST dataset (Ma et al., 2023). VehiclePart3D consists of 279 part annotated real images and
47 CAD models from 5 categories. For each category, we define 4 to 7 object parts. PartImageNet
includes 24,000 part annotated real images from ImageNet. UDA-Part includes 200 annotated real
images of 5 vehicle categories from PASCAL3D+ dataset (Xiang et al., 2014). 3D DST includes
12k realistic 2D images generated from corresponding 3D models by diffusion models (Zhang et al.,
2023a). We use 36 3D models from 4 categories of rigid objects. We evaluate Part321 and baselines
on images generated by 5 unseen CAD models for each category. The generated images and the 3D
CAD models are aligned based on the camera poses, which enables us to measure the performance
of 3D part detection. Please refer to Appendix B.1 and B.2 for dataset and part annotation details.

Baselines. We compare our framework with SOTA 2D segmentation methods on our one-shot object
part segmentation setting since there lacks one-shot 3D part detection from a single image method.
The baseline approaches include SegFormer (Xie et al., 2021) and DeepLab v3+ (Chen et al., 2018).
We train the baseline approaches on segmentation maps generated from the same annotated cad
model as Part321. We use ResNet50 (He et al., 2016) encoder for DeepLab v3+, and MiT-B2
encoder for SegFormer. The encoders are pre-trained on ImageNet-1K dataset (Deng et al., 2009).
To further enhance the baseline approaches, we apply the pseudo-labeling techniques from a SOTA
domain adaptation method (Hoyer et al., 2022). The baselines always have the same amount of
labeled training images as Part321. For more details about baselines, please refer to Appendix B.5.

Metrics. We use Mean Intersection over Union (mIoU) as the metric for the 2D part segmentation
task, where IoU is first computed for each part and background, and then averaged over all classes.
We use Chamfer Distance (CD) and 3D Bounding Box IOU to evaluate 3D part recognition accuracy.
We evaluate the 3D parts after the camera and parts transformations. The percentage of predicted
3D pose with rotation error smaller than π

6 is used to evaluate the object 3D pose estimation.

4.2 2D OBJECT PART SEGMENTATION

Table 1 and Figure 4 show the results of one-shot object part segmentation on VehiclePart3D. The
results demonstrate that Part321 outperforms all baseline approaches. The visualizations show that
our 2D segmentations are obtained from an accurate estimation of the 3D geometry of the objects.
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Table 2: Quantitative results of 2D segmentation on PartImageNet dataset show that Part321 outper-
forms baselines significantly when annotations are fine-grained (e.g., Cars have 9 parts) while keeps
comparable performance when coarse annotations favor 2D methods (e.g., Boats have 1 or 2 parts).

Segmentation mIOU ↑ Car Aeroplane Bicycle Boat Mean

SegFormer 28.85 39.68 26.72 47.21 37.47
DeepLab v3+ 28.73 38.69 34.76 43.02 37.23
SegFormer w/ Pseudo Label 26.42 44.05 45.58 48.66 42.73
DeepLab v3+ w/ Pseudo Label 30.44 38.10 45.12 45.03 42.99
Part321 50.47 45.14 40.07 42.51 46.12

OursOurs SegformerDeepLab v3+

Figure 5: Qualitative results of 2D part segmentation on PartImageNet dataset show that our predic-
tion is more geometry-aware and is less affected by the complex background. Parts are represented
by different color masks with highlighted boundaries.

Table 3: Quantitative results for part segmentation on UDA Part show the robustness of our method
on different dataset. w/ Pseudo denotes the baseline method trained with pseudo labeling techniques.

Segmentation mIOU ↑ Car Aeroplane Bicycle Mean

SegFormer 24.33 35.92 38.30 32.85
SegFormer w/ Pseudo 25.60 39.64 47.40 37.55
Part321 37.39 39.88 44.89 40.72

Figure 6: Qualitative results on UDA part. We visualize the 2D segmentation, where parts are
represented by different colors with highlighted boundaries. 3D parts reconstructed from the images
are shown on the right, which are aligned with the segmentation.

Table 2 and Figure 5 show the results on PartImageNet. The results show that Part321 has a better
one-shot part segmentation ability compared with SOTA baselines. According to the visualizations,
Part321 suffers less error from the background patterns and is able to accurately recognize spatial re-
lationships (e.g., the right wing and left wing). Note for the boat category, each image only contains
one or two parts, thus is more similar to an instance segmentation instead of part segmentation.

Table 3 and Figure 6 show the quantitative and qualitative comparison between Part321 with base-
lines on the UDA part. The results show Part321 has a higher part segmentation accuracy especially
when part definitions are more fine-grained. For more visualizations, please refer to Appendix C.
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Annotated Mesh Novel Geometry Novel Geometry Annotated Mesh Novel GeometryNovel Geometry

Figure 7: Qualitative results for mesh deformation network. Our network could deform the anno-
tated mesh into diverse geometries while keeping the part annotation.

Table 4: Quantitative results for 3D part detection on 3D DST. We use the 3D pose estimation
accuracy, chamfer distance and 3D Bounding Box IoU to show that our method could precisely
recognize 3D object parts from a single image with accurate pose, shape and location.

3D Pose Accuracy ↑ Chamfer Distance ↓ 3D Bounding Box IOU ↑
Part321 80.40 % 3.019 ×10−2 40.56

Table 5: Ablation Study on 3D DST and PartImageNet dataset. We measure 2D mIoU and 3D part
detection accuracy to validate the necessity of our different components in both 2D and 3D tasks.

3D DST PartImageNet
2D mIOU ↑ CD (10−2) ↓ 3D IOU ↑ 2D mIOU ↑

w/o Part Scaling 33.22 3.206 32.43 42.18
w/o Geo Constrain Loss 38.47 3.502 37.54 44.17
w/o Part Deformation 36.91 3.404 39.57 43.59
Full Model 46.12 3.019 40.56 47.30

4.3 3D OBJECT PART DETECTION

Table 4 shows the quantitative evaluation for 3D Object Part Detection from images. The perfor-
mance shows that our model could correctly locate the object parts in 3D space and deform the
parts into suitable geometries. Figures 4 and 6 show the visualization of our 3D object part detec-
tion on VehiclePart3D and 3D DST datasets. The results show that the parts with optimized 3D
configuration closely resemble the parts in the image.

As shown in Figure 7, using the trained deformation network, we could reshape the annotated mesh
into diverse geometries with consistent part annotation, making the shape optimization possible.
Specifically, we use the shape latent to control the deformation, and different latent will lead to
different goal shapes. During inference, the latent will be optimized, finding the most suitable shape
for each 3D part to align with the image.

4.4 ABLATION STUDY

Tabel 5 shows the ablation study of important components in our approach. In the w/o Part Scaling
setup, the object scale S is set to be fixed during part optimization. For w/o Geo Constrain Loss,
we remove the geometry consistency loss during optimization. The w/o Part Deformation setting
shows the results that no shape deformation are applied during inference. The results show that all
the proposed components are essential to achieve the 3D part detection ability.

5 CONCLUSIONS

We present Part321 to address the challenge of recognizing 3D object parts from a 2D image using
one-shot annotation. Our method establishes a part compositional neural mesh by introducing two
correspondences: mesh-to-mesh correspondence, enables sharing features in the same category;
and mesh-to-image correspondence, utilizing features on mesh vertices to align 3D parts with
2D images. We also propose a deformation network to reshape the parts into diverse geometries.
Building upon the learned part compositional neural mesh, we propose an inference pipeline capable
of predicting the 3D configuration of object parts from a single image with Render-and-Compare
method. Our experiments on 2D segmentation show that our method outperforms state-of-the-art
2D segmentation approaches with pseudo-labeling. The experiments on 3D recognition demonstrate
the effectiveness of our framework on pioneering one-shot 3D part detection from a single image.
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A METHOD DETAILS

A.1 FEATURE INTERPOLATION PROCESS DETAILS

During the learning of mesh-to-mesh correspondence, we apply the feature interpolation pro-
cess to compute the feature for every vertex on the meshes. Specifically, we train the Point-
Net++ (Qi et al., 2017b) encoder with sampled 1024 points {py,i} from each mesh y, thus ob-
taining the features {Γy,i} for those vertices. Then the features {γy,k} on all vertices {Vk}
of the mesh y are computed by the weighted sum of features of neighboring sampled vertices:
γy,k = 1∑

j∈N(k) e
wkj

∑
j∈N ewkjΓy,j , where N denotes the neighboring vertices and wkj denotes

the reciprocal of euclidean distance between vertex k and vertex j.

A.2 DEFORMATION NETWORK DETAILS

To train the deformation network, for each category, we use the annotated mesh as the template
mesh, base on which the network predicts the 3D offsets of vertices given a shape latent. The length
of the shape latent is set to 8 in our implementation. We use 8 meshes in the category to train the
network, which should deform the mesh into those meshes given the corresponding one-hot latent
vectors. During inference, the deformed mesh could be seen as an interpolation among the 8 meshes.

A.3 RENDERING VISIBILITY DETAILS

During Mesh-to-image correspondence training, we render the depth map D = Render(Ny,Ω) and
the vertex-to-camera distance dk = ∥Q− Vk∥2. Then the vertex visibility is computed as

ok =

{
0, ∥Dpk

− dk∥2 > τr
1, ∥Dpk

− dk∥2 ≤ τr
, (7)

where τr is a preset threshold.

B EXPERIMENT DETAILS

B.1 DATASET DETAILS

Table 6: Number of models, images, and parts in VehiclePart3D

Police Car Airliner Bicycle Jeep Minibus

CAD Model 11 40 11 11 11
Synthetic Image 1000 2000 1000 1000 1000
Real Image 69 98 45 41 25
Part Number 4 7 4 7 7

Table 7: Number of images, and parts in PartImageNet

Car Aeroplane Bicycle Boat

Real Image 127 81 70 64
Part Number 3 5 4 2

Table 8: Number of images, and parts in UDA-Part

Car Plane Bicycle

Real Images 40 16 40
Part Number 9 6 4
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Table 9: Part Definitions for Evaluation in Vehicle3D

Category Part Definitions
Police Car wheels, doors, back trunk, body

Airliner left engine, right engine, fuselage, horizontal stabilizer, left wing,
vertical stabilizer, right wing

Bicycle wheels, body, handle bar, saddle

Jeep front left wheel, front right wheel, back left wheel, back right wheel,
doors, back trunk, body

Minibus front left wheel, front right wheel, back left wheel, back right wheel,
left door, right door, body

Table 10: Part Definitions for Evaluation in UDA-Part

Category Part Definitions

Car front left wheel, front right wheel, back left wheel, back right wheel,
left door, right door, body, left mirror, right mirror

Plane body, left engine, right engine, left wing, right wing, tail
Bicycle front wheel, back wheel, body, saddle

Figure 8: Example of VehiclePart3D dataset. We annotate object parts on both 3D meshes and 2D
real images, making the part definition aligned between 3D and 2D.

The number of 3D CAD models, 2D images, and defined parts in each dataset are listed in Table 6,
Table 7, and Table 8.

We use two different training set to validate the effectiveness of our framework: 3D CAD models
from VehiclePart3D and 3D models from DST3D. For each category in VehiclePart3D (Police Car,
Airliner, Bicycle, Jeep, Minibus), we use 2/3 of the CAD models and corresponding 2D images
generated by diffusion models (Ma et al., 2023) for training the Mesh-to-Image correspondence.
For each category in DST3D (Car, Aeroplane, Bicycle, Boat), we use 3/4 of the CAD models and
generated images for training.

For the testing set, the rest of CAD models and corresponding images in VehiclePart3D are used for
synthetic evaluation (including 3D detection and 2D segmentation). Due to computational limita-
tion, we only use 25 images for each instance during testing in the synthetic evaluation. The real
images in VehiclePart3D are used for 2D segmentation evaluation as shown in Table 1. The real
images in PartImageNet are used for 2D segmentation evaluation as shown in Table 2. The real
images in UDA-Part are used for 2D segmentation evaluation as shown in Table 3.

The specific part definitions in Vehicle3D and UDA-Part are shown in Table 9 and 10.

B.2 VEHICLEPART3D ANNOTATION DETAILS

As shown in Figure 8, for each object category, we first define 4 to 7 semantic object parts, the parts
are mainly defined based on functionality and compositionality. We annotate object parts on 3D
CAD models obtained from ShapeNet (Chang et al., 2015) by manually assigning the part label to
each mesh vertex. Specifically, we first label the mesh vertices into groups representing different
parts in Blender (Community, 2018), and then convert the annotation into json files. For the real
images, we select 279 untruncated images from the test and validation set of ImageNet (Krizhevsky
et al., 2012). We then manually annotate the segmentation mask for each object part following the
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Figure 9: 2D segmentation and 3D parts predicted by Ours on VehiclePart3D.

part definition on 3D CAD models leveraging SAM (Kirillov et al., 2023) for object masks with
additional human annotations in other parts except body/fuselage. Human checks are conducted to
ensure both the 3D and 2D annotation quality. The whole dataset is included in the supplementary
material.

B.3 TRAINING DETAILS

During training, we randomly choose 1024 vertices from each mesh for mesh-to-mesh correspon-
dence finding and mesh-to-image alignment. The visibility threshold τr is set to 0.003. Neighboring
verticesNk of vertex Vk is defined as vertices that have distances smaller than 0.03 with Vk. We use
Adam as our optimizer with initial learning rate as 10−4. We trained for 800 epochs in each cate-
gory. During inference, The consistency weight wconsistency is set to 0.5. We use Adam optimizer
with initial learning rate 0.01. In the experiment, the scales of objects are normalized to one unit. It
takes about 40s to predict the 3D parts from an image on a single NVIDIA RTX TITAN GPU.

B.4 NETWORK ARCHITECTURE DETAILS

We use Resnet 50 as our backbone to extract features from 2D images. The mesh features are stored
in a memory bank with size of 1029 × 128, where 128 is the channel size of features and 1029
includes 1024 features corresponding to 1024 vertices and 5 features representing the background.

B.5 BASELINE DETAILS

For the self-labeling setting in our baseline, we follow the online self-training framework in
DAFormer (Hoyer et al., 2022). We disable the Thing-Class ImageNet Feature Distance (FD) in
it. It is a regularization technique that uses ImageNet features which are trained from objects to pro-
vide guidance to segment object classes, which is inappropriate for segmenting semantics parts of
object. In addition, we also disable the Rare Class Sampling (RCS) to correspond with our method
which does not include sampling strategies.

B.6 COMPUTATIONAL RESOURCE

Our training process takes about 16 hours on four NVIDIA RTX TITAN GPUs for each category. It
takes about 40s on a NVIDIA RTX TITAN GPU for inferring both 3D parts and 2D segmentation
on one image.

C MORE VISUALIZATIONS

Figure 9 shows more 2D segmentation and 3D parts prediction of ours on VehiclePart3D.

As shown in Figure 10, SegFormer could not distinguish background with objects and fails to tell
the spacial relation between different parts (e.g., front wheel and back wheel are predicted into one
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Ours SegFormerOurs SegFormer

Figure 10: Predicted segmentation of Ours and SegFormer on UDA-Part.

Figure 11: Predicted 2D segmentation and 3D parts of Ours on UDA-Part.

part), whereas our framework could locate parts with precise spacial information and clear object
boundary.

Figure 11 shows more visualization of prediction on UDA-Part, including Car, Plane and Bicycle.
Notably, the two selected bicycles demonstrate that our method could effectively choose parts from
the part library regarding to the object in the image. Combined with Figure 9, It shows that our
framework could apply to diverse part definitions.

D LIMITATIONS

Despite the fact that our framework applies many strategies to overcome the shape variance across
different objects in the same category, some significant shape differences could still hinder the ap-
plication of our method. For example, the shape difference between bicycle and tandem bicycle
could influence the performance of our method in the bicycle category, especially considering that
the part definitions on those objects are different. However, we argue that this issue could be solved
by classifying subcategories or train our part deformation network on a larger scale to improve the
robustness to shape variance.
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