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Abstract

Implicit neural representations (INRs) have achieved impressive results for scene reconstruc-
tion and computer graphics, where their performance has primarily been assessed on recon-
struction accuracy. As INRs make their way into other domains, where model predictions
inform high-stakes decision-making, uncertainty quantification of INR inference is becoming
critical. To that end, we study a Bayesian reformulation of INRs, UncertaINR, in the con-
text of computed tomography, and evaluate several Bayesian deep learning implementations
in terms of accuracy and calibration. We find that they achieve well-calibrated uncertainty,
while retaining accuracy competitive with other classical, INR-based, and CNN-based recon-
struction techniques. Contrary to common intuition in the Bayesian deep learning literature,
we find that INRs obtain the best calibration with computationally efficient Monte Carlo
dropout, outperforming Hamiltonian Monte Carlo and deep ensembles. Moreover, in con-
trast to the best-performing prior approaches, UncertaINR does not require a large training
dataset, but only a handful of validation images.

1 Introduction

Implicit neural representations (INRs) are a recent technique for capturing complex, coordinate-based signals,
achieving impressive results in novel view synthesis (Mildenhall et al., 2020; Niemeyer et al., 2020; Saito et al.,
2019; Sitzmann et al., 2019), shape representation (Chen & Zhang, 2019; Deng et al., 2020; Genova et al.,
2019; 2020; Jiang et al., 2020; Park et al., 2019), and texture synthesis (Henzler et al., 2020; Oechsle et al.,
2019). In the context of image reconstruction, INRs represent images as continuous functions mapping
coordinates to pixel values, f : (x, y)→ [0, 1]. Typically f is parameterized by a small neural network (NN)
and trained with gradient-based optimization, given observations S. This continuous INR formulation offers
several benefits to discrete array representations, e.g. enabling signal processing at arbitrary resolutions
(thereby avoiding the so-called “curse of discretization” (Mescheder, 2020)) and improved memory efficiency
(Dupont et al., 2021).
∗Equal contribution.
†This work was done while the author was at the University of Oxford.
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(a) UncertaINR Framework (b) Computed Tomography Setup

Figure 1: (a) From a noisy CT scan, UncertaINR reconstructs a high-quality image of the 2D imaging subject
cross-section. Further, UncertaINR achieves well-calibrated UQ over the reconstructed image, enabling
doctors to use the predicted variance to determine regions where the reconstruction may have failed. (b) A
CT scan of attenuation-coefficient image f∗(x, y) results in sinogram Sφ(r).

Despite these appealing properties, existing INR applications have primarily focused their scope on either: 1)
predictive representation accuracy or 2) visual plausibility of predictions extrapolated from a given training
signal S. However, there are settings – e.g. Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT) (Tancik et al., 2020) – in which INRs have proven promising and for which uncertainty quantification
(UQ) is highly desirable. In such applications, only an underdetermined set of observations S is available,
which is exacerbated by the high-dimensional, non-convex nature of NN parameter landscapes. As a result,
many different INR parameter values may fit the observed data equally well, but yield vastly different
predictions (some of which may be poor, e.g. Figure 4 of Tancik et al. (2021)) when extrapolating to
unobserved regions of coordinate space. Hence, in such scenarios, calibrated predictive uncertainty is crucial
alongside high reconstruction accuracy.

This work assesses the UQ capabilities of INRs in the applied setting of medical imaging, specifically com-
puted tomography (CT). This setting is apt for INR UQ due to its high-stakes nature – even a small image
artifact could result in misdiagnosis – and underdetermination of CT sinogram observations. Moreover, UQ
could be leveraged to reduce healthcare costs via automated triage, e.g. by assigning images with varying
degrees of uncertainty to healthcare providers of relevant expertise. Furthermore, each CT scan measurement
exposes the patient to harmful radiation1, meaning calibrated model uncertainty could enable techniques,
such as active learning (Cohn et al., 1996), to inform more efficient measurement collection and reduce neg-
ative radiation exposure effects. Although uncertainty has been quantified in deep-learning based medical
imaging (Barbano et al., 2021; Laves et al., 2022), medical datasets are often small and apparatus-specific,
posing significant generalization challenges for large data-driven approaches (Abramoff et al., 2018; De Fauw
et al., 2018; Hosny et al., 2018; Yasaka & Abe, 2018; Zhang et al., 2020). Meanwhile, INRs require little to
no training data and have previously demonstrated decent CT reconstruction accuracy (Tancik et al., 2020),
which we now complement with well-calibrated UQ.

In light of the aforementioned need for well-calibrated INRs, we propose UncertaINR (Figure 1a): a Bayesian
reformulation of INR-based image reconstruction. We demonstrate effective application of Bayesian deep-
learning (BDL) principles to INRs, in the underdetermined CT reconstruction context, and study the perfor-
mance of various established BDL approximate inference approaches: Bayes-by-backprop (BBB) (Blundell
et al., 2015), Monte Carlo dropout (MCD) (Gal & Ghahramani, 2016), and deep ensembles (DEs) (Laksh-
minarayanan et al., 2017), as well as the ‘gold-standard’ but computationally intensive Hamiltonian Monte
Carlo (HMC) (Neal et al., 2011). We find that the simple, yet efficient MCD procedure is highly effective at

1An estimated 29,000 current or future cancer cases are linked to CT scans performed in the United States of America in
2007 alone (De González et al., 2009)
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achieving calibrated INR UQ. MCD outperforms deep ensembles, countering findings in other BDL setups,
like image classification – where ensembling is considered a state-of-the-art NN UQ approach (Ovadia et al.,
2019). MCD also rivals (sometimes outperforming) HMC, which is far more computationally demanding
and difficult to hypertune. Ensembling INRs with MCD achieves further performance gains. Overall, Un-
certaINR attains well-calibrated uncertainty estimates without sacrificing reconstruction quality relative to
other classical, INR-based, and CNN-based reconstruction techniques on realistic, noisy, and underdeter-
mined data.

2 Problem Setting and Related Works

2.1 CT Image Reconstruction

We are interested in reconstructing 2D images, represented as functions f(x, y) of tissue attenuation coef-
ficients at pixel locations (x, y) within an imaging subject cross-section. As visualized in Figure 1b, CT
scanners rotate X-ray emitters and detectors around the subject, collecting measurements of the Radon
transform Sφ(r) of the desired image f rather than actual image values f(x, y),

Sφ(r) =
∫ ∫

f(x, y) δ(x cosφ+ y sinφ− r) dxdy, (1)

for view-angles φ and X-ray detector radii r. Sφ(r) is also known as a sinogram and is not directly human-
interpretable. The reconstruction of f(x, y) from Sφ(r) thus constitutes an inverse problem, governed by
the inverse Radon transform. Appendix A further describes the CT measurement physics and image re-
construction problem. While the Projection Slice Theorem (Bracewell, 1956) ensures that f∗ can be fully
reconstructed from the complete sinogram, practical measurement data is finite and noisy, making the image
reconstruction problem underdetermined and reconstruction UQ desireable.

We assume that image f(x, y) is reconstructed on a finite set of pixels X ×Y (assumed to be grid-spaced for
comparison of INRs with classical grid-based reconstruction techniques), while sinogram measurements are
observed on a finite set of view-angles Φ and X-ray detector radii R. For notational convenience, we denote
the ith sinogram measurement Si for i ∈ {1, . . . , |Φ × R|} and jth pixel value fj for j ∈ {1, . . . , |X × Y|}.
In a slight abuse of notation, we also denote resulting vectors of pixel values and sinogram measurements f
and S, respectively. Thus, the discretization of Eq. 1 is

|X×Y|∑
j=1

Aijfj = Si, ∀i ; equivalently, Af = S, (2)

where the ijth entry of the discretized Radon transform matrix, A, represents pixel j’s contribution to the
ith prediction measurement, e.g. Aij is zero when pixel j is not along the ray measured by Si.

2.1.1 Classical CT Reconstruction Methods

Among classical approaches for CT reconstruction, filtered backprojection (FBP) is one of the simplest ana-
lytical reconstruction techniques, providing a simple closed-form estimate of the image. By upweighting high
frequencies, FBP enables reconstruction of detailed image structures, but can also emphasize high-frequency
noise, resulting in poor image quality. Iterative reconstruction techniques – e.g. the algebraic reconstruction
technique (ART) (Gordon et al., 1970), simultaneous iterative reconstruction technique (SIRT) (Gilbert,
1972), simultaneous algebraic reconstruction technique (SART) (Andersen & Kak, 1984), and conjugate
gradient for least squares (CGLS) (Yuan & Iusem, 1996) – can mitigate these noise effects.

Another algorithm class frames the reconstruction problem as minimization of a regularized objective,

min
f
‖Af − S‖2 + λT (f), (3)
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where T (f) is a regularizer encoding a prior on f , with regularization strength λ. A regularizer typically
used in medical imaging is the total-variation (TV),

TTV(f) =
∑

x,y∈X×Y

√(
f(x+ 1, y)− f(x, y)

)2 +
(
f(x, y + 1)− f(x, y)

)2
, (4)

which removes unwanted image noise and artifacts, while preserving important details such as edges (Rudin
et al., 1992). The minimization problem in Eq. 3 with TV regularization is solvable via proximal gradient-
based techniques, e.g. the fast iterative shrinkage-thresholding algorithm (FISTA-TV) (Beck & Teboulle,
2009). Alternatively, expectation-maximization (EM) iteratively maximizes the log likelihood of the pro-
jections given the estimated image (Dong, 2007). While these regularized methods typically outperform
analytic methods, iterative solutions may be computationally slow and their reconstruction quality can be
further improved. Appendix B provides detailed descriptions of these classical techniques.

2.1.2 Deep-Learning CT Reconstruction Methods

Challenges for classical methods have motivated significant recent interest in NNs trained with large-scale
datasets to reconstruct high quality CT images from low-dose acquisitions. Because reconstruction requires
only a single NN forward pass, rather than a large number of optimization updates, these methods are
faster than purely iterative methods. Some deep-learning (DL) approaches input analytic low-dose recon-
structed CT images into an NN trained to directly produce artifact-free reconstructions from higher-dose
acquisitions (Chen et al., 2017a;b; Liu & Zhang, 2018; Yang et al., 2018). Alternatively, “unrolled" network
architectures (Adler & Öktem, 2018; Jin et al., 2017; Wu et al., 2019) solve Eq. 3 by chaining together NN
layers such that each layer computes one optimization update. In this work, we compare our methods to the
FBP-Unet (Jin et al., 2017). We also compare to GM-RED (Sun et al., 2021), which uses a deep denoiser
trained on the acquired dataset to define a reconstructed image prior lying on a manifold of natural images.
We note that while FBP-Unet and GM-RED require large training datasets, our method – leveraging INRs
– requires only a few validation images for hyperparameter tuning.

Although DL has enabled advances in CT reconstruction (Lell & Kachelrieß, 2020), progress has been ham-
pered by the specific, expensive, and small nature of CT datasets. This follows from the existence of various
CT-imaging modalities (e.g. helical, spiral, electron beam, and perfusion imaging) and need for individual
calibration of CT-imaging apparatuses, which compromises the transferability of DL models. CT data collec-
tion is also expensive, requiring long hours on costly machines (exposing patients to harmful radiation) and
labels by expert practitioners (making large-scale annotation virtually impossible). In result, CT datasets are
small relative to those of other areas, such as ImageNet (Deng et al., 2009), whose size has proven crucial in
enabling state-of-the-art DL performance. In light of these challenges and the aforementioned radiation risk,
there is clear need for NN methods that achieve high-quality CT image reconstruction from small datasets
consisting of few measurements. Combined with our desire for calibrated UQ, this motivates the study of
INRs in our UncertaINR framework.

2.2 Implicit Neural Representations

Implicit neural representations (INRs), implemented via NNs, are functions fθ(·) mapping coordinates x to a
coordinate-wise feature fθ(x) of interest, with parameters θ trained to match some observed signal S. Due to
their general and scalable formulation, INRs have been applied to a wide range of data modalities including:
3D scenes (Sitzmann et al., 2019), voxel grids (Dupont et al., 2022a; Mescheder et al., 2019), video (Li et al.,
2021), and audio (Sitzmann et al., 2020). In this work, we focus on UQ of INRs for CT reconstruction of
a 2D image f , with pixel inputs x = (x, y) ∈ R2 and observed sinogram S. We leave exploration of more
complex data modalities, such as 3D or 4D CT reconstruction, for future work.

In recent years, INRs have grown popular both in computer graphics and unrelated fields like medical
imaging (Tancik et al., 2020), arguably inspired by state-of-the-art novel view synthesis results achieved by
neural radiance fields (NeRF) (Mildenhall et al., 2020). Since NeRF, INRs have been successfully applied to:
high-resolution 3D scenes from unstructured collections of 2D images (Martin-Brualla et al., 2021); scalable
large scene view synthesis (Tancik et al., 2022); generative modelling (Dupont et al., 2022b); meta-learning
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(Tancik et al., 2021); and image segmentation of medical scans (Khan & Fang, 2022). Meanwhile, several
improvements in INR architectures have accompanied these empirical gains, such as random Fourier feature
(RFF) (Rahimi & Recht, 2007) encodings (Tancik et al., 2020) and periodic activation functions (Sitzmann
et al., 2020), both of which have a tunable frequency hyperparameter Ω0 that enables INRs to represent
high frequency functions. In UncertaINR, we adopted RFF encodings, detailed in Appendices F.3 and F.4,
and similarly found Ω0 critical for decent reconstruction accuracy (Appendix F.5.1). One key challenge for
INRs is their long evaluation times. However, recent literature has focused on addressing this challenge,
successfully leveraging sparse voxel models (Fridovich-Keil et al., 2022) and multiresolution hash-encodings
(Müller et al., 2022) to reduce evaluation times by orders of magnitude.

Recent work has also demonstrated the applicability of INRs to CT image reconstruction. Reed et al.
(2021) utilize parametric motion field warped INRs to perform limited view 4D-CT reconstruction of rapidly
deforming scenes. Sun et al. (2021) propose Coordinate-based Internal Learning (CoIL) and Zang et al.
(2021) propose IntraTomo, which use INRs to boost the performance of classical reconstruction algorithms,
such as those discussed in Section 2.1. In CoIL, an INR learns a functional form of the sinogram, receiving
sinogram location (φ, r) as input and outputting projection measurement Sφ(r). This functional sinogram
generates artificial measurements from view angles not included in the original measurement sinogram.
The reconstruction algorithm leverages this artificially INR-enlarged measurement set to achieve improved
performance reconstructing image f , over the same algorithm trained on the original, smaller measurement
dataset.

We note that no existing INR works have addressed the aforementioned need for calibrated UQ, motivating
our proposed UncertaINR framework.

3 UncertaINR: Uncertainty Quantification of INRs for CT
To quantify the uncertainty in reconstructing image f , given sinogram measurements S, we reformulate the
CT reconstruction problem, Eq. 3, as one of Bayesian inference. We assume a Gaussian measurement model,

Si | f
ind.∼ N (Aif, σ

2) ∀i ∈ {1, . . . , |Φ×R|}, (5)

where σ2 is an assumed known observation noise, and Ai is the ith row of the discretized Radon transform
A.2 Once a prior distribution is placed over f , the posterior distribution over f can be computed. The
posterior distribution captures both plausible reconstructions of f (e.g. via the posterior mean), as well as
the uncertainty over reconstructions (e.g. via the posterior standard deviation).

An important practical consideration is to choose how the image f is parameterized. In the following we
compare two alternative parameterizations: a classical grid-based baseline and our INR-based proposal. For
each of these parameterizations we will also discuss appropriate priors for f .
Grid-of-Pixels Baseline As a baseline, we parameterize the image f using a pixel-wise grid representation;
specifically, we take f ∈ R|X×Y|. A sensible prior, which prefers smoothness in images while allowing for
important details such as edges, is p(f) ∝ exp(−λTTV(f)), where TTV(f) is the total-variation of f . In this
case the posterior distribution is

p(f |S) ∝ exp

− 1
2σ2

|Φ×R|∑
i=1

(
Si −Aif

)2 − λTTV(f)

 . (6)

This is a Bayesian extension to the grid-based methods of Section 2.1.1, with Eq. 3 corresponding to the
maximum a posteriori (MAP) solution to Eq. 6. In our experiments we compare INR-based inferences to
this discretized baseline, which we refer to as Grid-of-Pixels (GOP).

UncertaINR Alternatively, in this work, we parameterize f as an INR fθ with parameters θ ∈ Rp, map-
ping from pixel coordinates (x, y) to pixel values fθ(x, y). A reasonable prior for θ is an independent and

2The end-to-end INR approach introduced in Tancik et al. (2020) can thus be viewed as maximum likelihood using Eq. 5’s
measurement model.
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Figure 2: UncertaINR Architecture: An end-to-end INR with UQ (BBB, MCD, HMC, and/or DEs) is
sampled across all image pixels, generating a distribution of predicted images, {fθn}Nn=1. The predicted
sinogram, generated by the Radon transform of predicted mean image f̂ , is compared to the true measurement
data in the INR loss, L. Once training completes, f̂ is reported as the reconstructed image and the predictive
distribution across INR samples is used to quantify uncertainty.

identically-distributed zero-mean Gaussian prior, pN (θ). This gives rise to an implicit prior distribution over
functions fθ. Such a prior is standard in the Bayesian Deep Learning (BDL) literature (Blundell et al., 2015;
Graves, 2011), and is well-known to yield a Gaussian Process (GP) limit over fθ for wide NNs (Neal, 1996;
Matthews et al., 2018; Lee et al., 2018). However, properties of implicit parameter priors are less understood
for finite-width NNs, even in standard BDL applications like image classification (due to the uninformative
nature of NN parameter spaces), and much less so for CT reconstruction. Thus, we choose a composite prior
for UncertaINR,

p(θ) ∝ pN (θ)pI(θ)
pI(θ) = exp(−λT (fθ))

(7)

combining pN (θ), which constrains the NN parameter values, with T (fθ), which imposes a smooth regu-
larization constraint on implicit images fθ parameterized by θ. We adopt the common medical imaging
practice of using TV regularization, T = TTV (Eq. 4). To the best of our knowledge, this constitutes the
first application of TV regularization to INRs, which can be seen in Appendix G.2 Table 7 to noticeably
improve UncertaINR reconstruction performance.

Inference Our overall framework for UncertaINR is illustrated in Figure 2. Given parameter prior p(θ),
model fθ, and likelihood model p(S|fθ) from Eq. 5, we apply Bayes’ rule to p(θ|S) ∝ p(S|fθ)p(θ), deriving
the parameter space posterior distribution p(θ|S). Given a set of sinogram measurements S, we ideally seek
to sample from the posterior

p(θ|S) ∝ exp

− 1
2σ2

|Φ×R|∑
i=1

(
Si −Aifθ

)2 − 1
2τ2 ||θ||

2
2 − λTTV (fθ)

 , (8)

which assigns high probability to images that strike a balance between: 1) a small error between reconstruc-
tion fθ’s Radon transform and observed measurements Si, and 2) low regularization cost under prior p(θ).
τ2 is a variance hyperparameter for the zero-mean Gaussian parameter prior pN (θ), in Eq. 8.

Given N posterior INR parameter samples, {θn}Nn=1, from Eq. 8, we can then use the induced posterior
image samples {fθn}Nn=1 to infer both image reconstruction and UQ over the reconstruction. For example,
the reconstructed image can be estimated, e.g. by the posterior mean over locations (x, y) as

f̂(x, y) = 1
N

N∑
n=1

fθn(x, y), (9)
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and the posterior predictive uncertainty can be characterized, e.g. through the predictive variance as

σ̂2(x, y) = 1
N − 1

N∑
n=1

(
fθn(x, y)− f̂(x, y)

)2
. (10)

This can be used to visualize, as in Figures 1a and 3b, regions of varying model uncertainty and calculate
uncertainty metrics such as coverage and calibration (Section 4.1).

Approximate Inference Unfortunately, exact inference in BDL is usually intractable – due in part to
the high-dimensional and complicated nature of NN posterior landscapes – meaning one must resort to
approximate inference methods. Several BDL algorithms have been proposed in the literature, based on
approximations with varying levels of sophistication and implementation complexity. In our experiments,
we consider four approaches: Bayes-By-Backprop (BBB), Monte Carlo Dropout (MCD), Hamiltonian Monte
Carlo (HMC), and deep ensembles (DEs). BBB is a variational evidence lower bound minimization proce-
dure based on stochastic gradient descent (Blundell et al., 2015). MCD uses samples at test-time from NNs
trained with dropout (Srivastava et al., 2014) (motivated as a variational approximation of a deep Gaussian
process (Gal & Ghahramani, 2016)). HMC (Neal et al., 2011) is a gold-standard yet more computationally
expensive Markov Chain Monte Carlo (MCMC) procedure leveraging Hamiltonian dynamics (via a time-
reversible and volume-preserving integrator) to better explore the full distribution typical set, decreasing
consecutive sample correlation and reducing the number of samples required for convergence to the pos-
terior (Betancourt, 2017; Duane et al., 1987). Finally, DEs quantify predictive uncertainty by ensembling
the outputs of several NN “base learners” trained for the same task with different random seeds (Laksh-
minarayanan et al., 2017), and is generally regarded as a state-of-the-art approach for UQ in NNs (Ovadia
et al., 2019). Despite a non-Bayesian motivation in Lakshminarayanan et al. (2017), the relationship be-
tween Bayesian inference and DEs is an active area of research in the BDL community. Wilson & Izmailov
(2020) argue that DEs provide a more compelling approximation to the true posterior than many standard
BDL approaches, whilst others have adapted DEs to provide a Bayesian interpretation (Ciosek et al., 2019;
D’Angelo & Fortuin, 2021; Pearce et al., 2020; He et al., 2020).

Implementation Details We note that ensembling can be combined with any of the three prior BDL meth-
ods to further improve performance and, in particular, we found that ensembling MCD base learners provides
additional gains, in practice, with UncertaINR. Surprisingly, our experiments show that MCD, arguably the
simplest BDL approach, produces high-quality reconstructions, outperforming DEs and comparable results
to the complex HMC procedure. MCD trains a model fθ to minimize the unnormalized version of Eq. 8 with
dropout (Srivastava et al., 2014) before every weight layer. The samples {fθn}n of Eqs. 9-10 are obtained
by simply performing dropout at inference time, i.e. disabling each internal network node according to a
pre-set probability p for different random seeds and applying a forward pass over image coordinates (x, y) to
obtain the pixel values fθn(x, y). Hence, the MCD samples from the approximate posterior can be obtained
very efficiently after training. For HMC, we used the No-U-Turn-Sampler (Hoffman et al., 2014) sampling
scheme in NumPyro (Phan et al., 2019), both for UncertaINR, and also to obtain UQ with GOP. Further
details of the approximate inference algorithms we consider are given in Appendix D.

4 Experimental Results

Project code is available at: https://github.com/bobby-he/uncertainr.

4.1 Experimental set up

Datasets Two datasets were considered. The first consists of artificial 256× 256 pixel Shepp-Logan phan-
tom (Shepp & Logan, 1974) brain images and was used for ablations. Given the data’s simple nature,
ablations were performed in the extremely low measurement settings of 5- and 20-view sinograms. We tuned
hyperparameters on 5 validation images and evaluated performance on 5 test images. The second dataset,
used for UncertaINR baseline comparisons, contains 512×512 pixel abdominal CT scan images, provided by
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the Mayo Clinic for the 2016 Low-Dose CT AAPM Grand Challenge (McCollough et al., 2017). 3 validation
images and 8 test images were used to generate noisy 60- and 120-view sinograms3

Performance Metrics We assessed reconstructed image samples {fθn}Nn=1 via four metrics: peak-signal-
to-noise ratio (PSNR), signal-to-noise ratio (SNR), negative log-likelihood (NLL), and expected calibration
error (ECE). PSNR and SNR are common measures of predictive accuracy, whose equations we present in
Appendix C. NLL is a common probabilistic model quality metric, assessing both predictive accuracy and
uncertainty calibration. Under the assumption of an independent Gaussian model, each pixel’s averaged
prediction f̂(x, y) (Eq. 9) is sampled from a Gaussian distribution with the ground truth pixel value f∗(x, y)
as mean and calculated predicted variance of pixel responses, σ̂2(x, y) from Eq. 10, as variance. The NLL is
the negative log-likelihood of the pixel values under this model,

NLL({fθ}n, f∗)=
∑
x,y

1
2σ̂2(x,y)

(
f̂(x, y)− f∗(x, y)

)2 + 1
2 log(2πσ̂2(x, y)).

Ideally, the model maximizes the likelihood, meaning NLL is minimized when f̂(x, y) = f∗(x, y) for all (x, y)
and variance σ̂2(x, y) is small.

Finally, ECE assesses model prediction of its outcome probabilities, gauging reliability of the model’s pre-
diction confidence. Specifically, it describes the discrepancy between the target coverage (TC) and achieved
coverage (AC). Given N image samples {fθn}Nn=1, each pixel (x, y) has an empirical distribution of N pre-
dicted values, F̂N (x, y) = {fθn(x, y)}Nn=1. Ideally, the median of this distribution is the ground truth pixel
value, f∗(x, y). For a given TC p we define,

CF̂N ,f∗,p(x, y) = I
{
Q50− p2

(
F̂N (x, y)

)
≤ f∗(x, y) ≤ Q50+ p

2

(
F̂N (x, y)

)}
, (11)

where Qk(F ) denotes the kth quantile of distribution F . AC is thus defined as the percentage of pixel
distributions containing f∗(x, y) in that quantile,

AC(f∗, F̂N , p) = 1
|X × Y|

∑
x,y

CF̂N ,f∗,p(x, y). (12)

If a model is perfectly calibrated, p% of the reconstructed pixel distributions will contain f∗(x, y) in their
p% quantile, meaning AC=TC for all quantiles. Given a finite set, P, of percentages evenly spaced in [0, 1],
ECE is defined as the average difference between AC and TC,

ECE(f∗, F̂N ) = 1
|P|

∑
p∈P
|AC(f∗, F̂N , p)− p|. (13)

A reliability curve, as visualized in Figure 3b, plots AC as a function of TC. Better model calibration produces
curves similar to the identity function, AC(f∗, F̂N , p) = p. Furthermore, akin to inverse transform sampling,
the marginal distribution of the inverse quantiles of calibrated pixel predictive distributions F̂N (x, y), at
ground truth pixel values f∗(x, y), should be uniformly distributed in [0, 1]. We visualize such coverage
histograms for UncertaINR in Figure 3b. For a further discussion of calibration, coverage, and implementation
details, see Appendix C.

4.2 Experiments on Artificial (Shepp-Logan) Data

Ablations Experiments were performed on the artificial Shepp-Logan dataset, described in Section 4.1, to
ablate different UncertaINR hyperparameters across BDL approaches. We ablated the activation function
(Tanh, SoftPlus, Sine, SiLU, and ReLU), depth, width, and random Fourier feature (RFF) embedding
frequency. For MCD we also assessed sensitivity to the dropout probability p, while for BBB we ablated prior
standard deviation and KL factor. For the sake of brevity, we only report main findings here (detailed analysis

3Gaussian noise was added to achieve a 40dB SNR relative to the original, noiseless sinogram.
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Table 1: Ablation Study: UncertaINR accuracy, relative to classical approaches, and calibration results on
the Shepp-Logan phantom dataset. Results are averaged across 5 validation and 5 test images, with the best
result for each metric (PSNR, NLL, and ECE) bolded.

Reconstruction 5-View Validation Set 5-View Test Set 20-View Validation Set 20-View Test Set
Type PSNR (↑) NLL (↓) ECE (↓) PSNR (↑) NLL (↓) ECE (↓) PSNR (↑) NLL (↓) ECE (↓) PSNR (↑) NLL (↓) ECE (↓)
FBP 7.68 – – 5.15 – – 17.35 – – 15.71 – –
CGLS 16.38 – – 14.62 – – 21.85 – – 20.82 – –
EM 21.39 – – 19.88 – – 30.22 – – 29.11 – –

SART 21.12 – – 19.75 – – 31.97 – – 30.45 – –
SIRT 21.12 – – 21.12 – – 31.98 – – 30.44 – –

BBB UINR 23.26 -1.190 0.152 22.52 0.138 0.203 28.25 1.650 0.121 28.16 0.562 0.119
MCD UINR 26.15 -1.473 0.111 24.45 -1.572 0.083 33.74 0.701 0.135 33.08 1.093 0.113

DE-2 MCD UINR 26.31 -1.730 0.091 24.49 -1.774 0.069 33.96 0.005 0.136 33.44 -0.372 0.102
DE-5 MCD UINR 26.44 -1.737 0.085 24.88 -1.751 0.067 34.31 -0.364 0.134 34.02 -0.625 0.101
DE-10 MCD UINR 26.36 -2.226 0.075 24.67 -1.969 0.068 34.38 -0.529 0.131 33.86 -0.774 0.096

is provided in Appendix F.5). Activation function and RFF frequency were found to be the most critical
hyperparameters. Sine activation produced the best-performing models, but resulting networks were sensitive
to hyperparameter choice. SiLU, ReLU, and Tanh achieved slightly lower, but more consistent reconstruction
accuracies. In line with recent work demonstrating RFF importance for learning high-frequency image
components (Tancik et al., 2020), we found that RFF frequency significantly affected model performance.
Specifically, RFF frequency must be consistent with the number of view angles – too low (high) an RFF
frequency leads to blurry images (high-frequency image artifacts).

Model comparison We also used the Shepp-Logan dataset to compare low-complexity reconstruction and
UQ methods – including UncertaINR with BBB, MCD, and DEs of (2, 5, and 10) MCD base learners, as
well as classical reconstruction baselines (FBP, CGLS, EM, SART, and SIRT). For the latter, without UQ,
only reconstruction accuracy is reported. Several conclusions can be drawn from the experimental results
summarized in Table 1, with further analysis on variability and significance presented in Appendix F.7. First,
MCD UINRs significantly outperform BBB UINRs, e.g. with PSNR gains up to 5dB (20-view test set) and
ECE reductions by 2/3 (5-view test set). Due to this poor performance (more detail in Appendix F.6.1), BBB
UINRs were not considered in later experiments. Second, all MCD-based methods significantly outperformed
classical methods in terms of reconstruction accuracy, with gains up to ∼4dB PSNR in both test sets.
Third, among UncertaINR methods, DE-5 and DE-10 MCD UINRs achieved the best performance, but the
simple MCD UINR was surprisingly close (within 1dB PSNR of the best ensemble in all cases). Similar
conclusions can be drawn with respect to UQ. Furthermore, despite small validation set size (5 images),
UINRs generalized well to the test set. For 20-views, validation and test accuracies were comparable, with
improved test set calibration. For 5-views, despite slight PSNR and NLL degradation, ECE improved in the
test set. These results suggest that small validation sets are sufficient for tuning UncertaINRs.

4.3 Experiments on Real-World (AAPM Grand Challenge) Data

We next compared UncertaINR to state-of-the-art reconstruction approaches, on the real-world AAPM
dataset, described in Section 4.1. Results are reported in Table 2, with further analysis on variability and
significance in Appendix G.3. UncertaINRs were trained with MCD, DEs of INRs, DEs of MCD UINRs, and
HMC – all implemented with TV regularization. More information about dataset and model hyperparameters
is given in Appendix G. To understand the effect of UQ on reconstruction accuracy, we implemented our
end-to-end INR without UQ (“INR” in Table 2), similar to Tancik et al. (2020)’s proposal. For 60-views,
MCD UINRs, DE UINRs and DE MCD UINRs outperformed INRs, whereas HMC UINRs were competitive,
but underperformed. Overall, adding UQ did not harm INR reconstruction accuracy.

The lowest block of Table 2 presents results of CNNs trained on large datasets: FBP-UNet, GM-RED4,
and these methods with CoIL. We emphasize that these methods are trained on large training datasets,
while INRs require only a handful of images for hyperparameter tuning. Thus, the results of these methods

4Note that, while the COIL work leveraged GM-RED trained with deep image denoisers, RED can be used with denoisers
that require less training data.
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provide an upper bound on the reconstruction accuracy expected of UncertaINRs, but the two are not
directly comparable.

Nevertheless, all (U)INRs achieve competitive performance, reaching accuracies within 1dB (60-views) or
1.5dB (120-views) of the best (large training dataset) CNN. In fact, in the low-measurement regime (60-
views), all (U)INRs achieved competitive performance with the highest reconstruction accuracy UINR (DE-5
MCD UINR) – which outperformed all methods, except FBP-UNET with CoIL.

Table 2: Performance Assessment: Accuracy and cal-
ibration results of all approaches are presented for the
AAPM dataset, with noise added to achieve a 40dB
SNR sinogram. The table is divided into 4 method
types: classical, GOP, INRs, and DL. (*) denotes re-
sults taken directly from (Sun et al., 2021). Results
are averaged over all 8 test set images and the best re-
sult for each metric (SNR, NLL, and ECE) is bolded
(excluding italicized DL methods, which rely on sub-
stantially more training data, constituting an unfair
UINR comparison).

Reconstruction 60-Views 120-Views
Method SNR NLL ECE SNR NLL ECE
FBP 10.58 – – 14.11 – –
EM 14.47 – – 15.55 – –

CGLS 20.08 – – 21.94 – –
SIRT 20.89 – – 21.36 – –
SART 21.54 – – 21.77 – –

FISTA-TV* 26.08 – – 27.59 – –
FBP CoIL* 23.48 – – 24.52 – –

FISTA-TV CoIL* 26.95 – – 28.95 – –
GOP-TV 25.97 – – 27.40 – –

HMC GOP-TV 25.10 -2.604 0.102 26.82 -3.367 0.102
INR 27.25 – – 28.81 – –

DE-2 UINR 27.29 24.55 0.224 28.83 18.86 0.222
DE-5 UINR 27.30 8.427 0.176 28.83 8.804 0.183
DE-10 UINR 27.28 6.882 0.144 28.82 6.346 0.162
MCD UINR 27.38 -3.447 0.078 28.65 -3.759 0.071

DE-2 MCD UINR 27.44 -3.573 0.063 28.68 -3.819 0.056
DE-5 MCD UINR 27.48 -3.660 0.051 28.70 -3.876 0.043
DE-10 MCD UINR 27.46 -3.689 0.045 28.74 -4.090 0.053

HMC UINR 27.10 -3.963 0.074 28.50 -4.021 0.085

FBP-UNet* 27.08 – – 29.18 – –
GM-RED* 27.12 – – 29.30 – –

FBP-UNet CoIL* 27.93 – – 29.71 – –
GM-RED CoIL* 27.42 – – 29.79 – –

The top 3 blocks of Table 2 present results for meth-
ods that can be fairly compared to the (U)INRs: 1)
classical FBP, CGLS, EM, SART, and SIRT meth-
ods, 2) Sun et al. (2021)’s results for FISTA-TV,
FBP with CoIL, and FISTA-TV with CoIL, and
3) TV regularized GOP with and without HMC.
Similarly to the previously presented results for
synthetic Shepp-Logan data, most classical meth-
ods underperform the INRs by more than 5dB on
AAPM. Only FISTA-TV is competitive, albeit still
more than 1dB away from the INRs. While adding
CoIL to FBP and FISTA-TV improves performance,
these methods still perform worse than all 60-view
(U)INRs. Furthermore, unlike CoIL-based meth-
ods, UncertaINR is end-to-end and does not require
pre-processing. Finally, we found the discretized
GOP instatiation significantly underperformed all
(U)INR methods – highlighting the power of INRs
relative to classical grid/voxel approaches.

In terms of uncertainty calibration, Table 2’s results
are surprising. Contrary to common BDL intuition
that DEs achieve the best model calibration (Ovadia
et al., 2019), we found MCD to be more effective for
INR UQ calibration. Specifically, MCD UINRs and
DEs of MCD UINRs achieved significantly better
model calibration than DEs of INRs without uncer-
tainty. For example, introducing MCD to a DE-10
UINR reduced ECE from 0.144 to 0.045 (60-views)
and from 0.162 to 0.053 (120-views). Although in-
creasing ensemble sizes generally improved model
calibration, the performance boost was not as sig-
nificant as that of using MCD. We do not currently
have a full understanding of why DEs perform poorly relative to MCD for UINRs, in contrast to standard
BDL applications. However, in Appendix F.6, we hypothesize that this may be due to the model capacity
of an individual ensemble member, which is dictated through the RFF encoding frequency Ω0.

Furthermore, although HMC is often considered a “golden standard” of approximate Bayesian inference (Iz-
mailov et al., 2021), MCD UINRs achieved better performance than HMC GOP and HMC UINRs. While
HMC UINRs achieved NLL competitive with the best DEs of MCD UINRs, they only achieved ECE compet-
itive with the MCD UINR and noticeably lower SNR than all (U)INR approaches. Similar to observations in
the Bayesian deep learning literature (Wenzel et al., 2020) and discussed in Appendix G, we found a related
cold posterior effect in which modifying posterior temperature enables either improved SNR across HMC
samples or improved UQ calibration, but not both. In all, given the large computational overhead in tuning
and training HMC relative to MCD, MCD DEs appear to offer the best compromise between computational
speed, reconstruction accuracy, and well-calibrated uncertainty.
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(b) Reconstruction and Uncertainty Quantification on AAPM

Figure 3: For an AAPM test image and the UQ approaches of this work: (a) Violin plots of pixel-wise
absolute error and predicted standard deviation distributions indicate model calibration. (b) Visualizations
of the reconstructed mean, absolute error, predicted variance, coverage, and reliability.

The benefits of MCD for INR calibration are further illustrated by the violin plots of Figure 3a, comparing the
pixel-wise absolute error versus predicted standard deviation distributions across GOP and UINR models.
For non-MCD DEs, the standard deviation distribution skews towards smaller values than the absolute
error distribution, indicating that the model is overconfident. The opposite is true for HMC GOP, which is
underconfident. Meanwhile, HMC and MCD UINRs predicted standard deviation distributions most closely
resembling those of the absolute error, indicating decent calibration.

Finally, Figure 3b visualizes the model output, calibration diagnostics, and uncertainty on a single test image
for GOP and the different UINRs proposed in this work. Similar figures are presented for the remaining
test images in Appendix G. As reflected in the absolute error images, the GOP reconstructed mean is blurry
relative to those of the UINRs. Meanwhile, the reliability curves and coverage plots of both HMC GOP and
the DE-10 UINR are quite poor relative to the nearly uniform coverage plots and ideal reliability curves
of the (DE) MCD UINRs and HMC UINR. However, these absolute error, coverage, and reliability metrics
require the ground truth image to compute and thus would not be available to a doctor.

In real-world scenarios, the only visualizations available are the reconstructed mean and variance images.
Given that a well-calibrated model reports larger variance in regions of larger absolute error, variance can
be used as a proxy for reconstruction error. For example, the Figure 3b absolute error images show that the
models underperform at predicting boundaries between different tissues, which is reflected in corresponding
higher uncertainties in the variance images. When presented to a doctor, our UncertaINR variance images
could inform more cautious diagnoses based on perceived issues in those regions.
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5 Limitations, Broader Impact, and Future Work

Despite its decent performance, UncertaINR should not be considered as a replacement for professional
medical diagnosis but simply as a tool to aid it. In this work, UncertaINR was thoroughly studied on
two datasets, with AAPM data representing a retrospectively-simulated low-dose acquisition. While these
experiments offer a promising proof-of-concept of uncertainty quantification for INR-based low-dose CT
reconstruction, additional evaluation should be performed on larger, real acquired low-dose CT data before
this strategy is deployed in medical settings.

Possible future work includes evaluating UncertaINR in other modalities, such as MRI or 3D/4D imaging
settings. In such extensions it would be beneficial to further improve training and memory efficiency of
UncertaINR, and to do so UncertaINR could be combined with recent INR-related advances, such as meta-
learning (Tancik et al., 2021) and compression (Dupont et al., 2021). Another possibility is to leverage the
predictive uncertainty achieved by UINR in an active learning (Cohn et al., 1996) setting, enabling efficient
measurement procedures and reducing harmful patient radiation exposure. Finally, our findings raise some
fundamental questions about UQ in the INR setting, such as the poor performance of deep ensembles and
the effectiveness of MCD, which counter common beliefs in, and should be of interest to, the Bayesian deep
learning community.

6 Conclusion

In this work, we proposed UncertaINR: a Bayesian reformulation of INR-based image reconstruction. In
the high-stakes and well-motivated application of CT image reconstruction, UncertaINR attained calibrated
uncertainty estimates without sacrificing reconstruction quality relative to other classical, INR-based, and
CNN-based reconstruction techniques on realistic, noisy, and underdetermined data. In the context of
INR UQ, contrary to common intuition, we found that simple and efficient MC Dropout rivaled (even
outperformed) the popular deep ensembles and the sophisticated, yet computationally-expensive Hamiltonian
Monte Carlo methods. UncertaINR’s strategic use of INRs outperformed classical reconstruction approaches,
while alleviating key challenges faced by state-of-the-art DL methods – namely generalizability and small-
scale medical datasets. In addition to informing doctor diagnoses, UncertaINR’s well-calibrated uncertainty
estimates could pave the way for reduced healthcare costs, via methods like automated triage, and reduced
patient radiation exposure, via methods like active learning.
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8 Appendices

A Computed Tomography

Diagnostic X-rays constitute the largest man-made source of radiation exposure to the general popula-
tion (de Gonzalez & Darby, 2004; Picano, 2004). In 2010, 5 billion medical imaging studies were performed
worldwide, two-thirds of which employed ionizing radiation (Roobottom et al., 2010), and the use of radiol-
ogy has only grown since (Lin, 2010). Computed tomography (CT), also known as computed axial/assisted
tomography (CAT), is a noninvasive medical imaging technique frequently used in radiology to generate
detailed images of the body and comprises the majority of this radiation exposure (Brenner & Hall, 2007),
with an estimated 29,000 current or future cancer cases linked to CT scans performed in the United States
of America in 2007 alone (De González et al., 2009). Since its original development in the 1970s, CT has
become widespread in medical imaging – with over 70 million CT scans taken and reported annually in the
United States, since 2007 (Smith-Bindman et al., 2009). There are multiple types of CT scanners, such as
spiral CT, electron beam CT, and CT perfusion imaging. In this work, we focus on spiral, also know as
spinning tube or helical, CT.

In spiral CT, illustrated in Fig. 4, the patient lies along the central axis of a cylindrical measurement tube.
As the scan is performed, an X-ray generator rotates around the patient while moving along the axis of
measurement. X-rays are emitted, which pass through the patient and are attenuated at various rates
by the different types of tissues in the body, as described in Appendix A.1. After exiting the body, the
attenuated X-rays are measured by X-ray detectors positioned and moving opposite to the X-ray source.
These measurements are used to create a sinogram, as described in Section A.2, which is not understandable
by doctors. This sinogram is then input to a reconstruction algorithm, which solves an under-determined
inverse problem, described in Section A.3, to generate a human-understandable 2D or 3D image of the organ
of interest. This image can then be used by the doctor for medical diagnosis.

A.1 X-Ray Attenuation

X-rays produced by CT scanners can interact with matter via the photoelectric effect, the Compton effect,
and coherent scattering. Through these interactions, some of the emitted X-ray photons are absorbed or
scattered when passing through different tissues in the body. The attenuation is described by the Beer-

Figure 4: Illustration of a CT scan-
ning device. Reproduced with permission
from (Brenner & Hall, 2007), Copyright
Massachusetts Medical Society.

0 20 40 60 80 100 120 140

Energy (keV)

10−1

100

101

102

103

104

f
(c

m
−

1
)

Adipose Tissue

Bone Cortical

Eye Lens

Mercuric Iodine

Soft Tissue

Figure 5: The attenuation coefficient (f) of different tis-
sues found in the body, as a function of energy (keV). The
plot was generated using X-ray mass attenuation coefficients
(f/ρ) and densities (ρ) from the NIST Standard Reference
Database (Hubbell & Seltzer, 2004; Berger et al., 2004).

21



Published in Transactions on Machine Learning Research (04/2023)

Lambert Law,
J = J0e

−fL, (14)
where J and J0 are the incident and transmitted X-ray intensities; L is the material thickness; and f is the
linear attenuation coefficient of the material,

f = τ1 + τ2 + τ3, (15)

with photoelectric (τ1), Compton (τ2), and coherent scattering (τ3) attenuation coefficients. Attenuation
coefficients for common materials in the body – iodine, bone, water, and soft-tissue – are plotted, in Fig. 5,
over the range of incident X-ray energies used in CT imaging. It is clear that the attenuation of X-ray
photons can be used to distinguish and, thus, image various tissues in the body (Hsieh, 2003).

A.2 CT Projection Measurements

As previously described, the CT scan relies on an X-ray generator which rotates around the patient, emitting
X-ray photons. In this work, we only consider a restricted case of the spiral CT setup, in which there is
no motion along the patient axis. Instead, we focus on reconstructing singular 2D image cross-sections and
assume a parallel-beam geometry, in which photons are emitted and detected with the linear geometry of
Figure 1b.

We begin by considering the measurements of a single detector, measuring at angle φ. Assume that the
X-ray generator outputs monoenergetic X-rays of intensity J0. If the patient were simply a homogeneous
block of tissue, with length ∆` and attenuation coefficient f∗, we could directly apply the Beer-Lambert law
(Eq. 14),

J = J0e
−f∗∆`, (16)

to solve for the output attenuated X-ray intensity J . In reality, several blocks of tissue will be present in
the patient, each with its own attenuation coefficient. However, since the exit X-ray flux from one block of
tissue is the entrance X-ray flux to its neighboring block, we can simply apply the Beer-Lambert law in a
cascading fashion over intervals of length ∆` and attenuation coefficients (f∗1 , f∗2 , ..., f∗n),

J = J0e
−f∗

1 ∆`e−f
∗
2 ∆`...e−f

∗
n∆` = J0e

−
∑n

i=1
f∗
i ∆`. (17)

As ∆`→ 0, the summation term becomes an integration over the length, L, of the patient,

J = J0e
−
∫
L
f∗(`)d`

. (18)

Finally, dividing both sides of the expression by J0 and taking a negative logarithm, we define the projection
measurement term,

Sφ = − ln
(
J

J0

)
=
∫
L

f∗(`)d`. (19)

As illustrated in Figure 1b, a CT scanner with a parallel beam geometry contains several detectors side-by-
side, collectively measuring a plane of attenuated X-ray photons. In this 2D imaging space, the projection
measurement becomes a function of detector position, r. Thus, Eq. 19 is re-expressed as the line integral,

Sφ(r) = − ln
(
J

J0

)
=
∫
f∗(φ, r)ds, (20)

known as a forward-projection (FP). It follows from the coordinate system of Figure 1b that, for measure-
ments at angle φ, point (x, y) within the patient cross-section is projected onto detector position

r′ = x cosφ+ y sinφ. (21)

Combining this with Eq. 20, we derive the Radon transform (Deans, 2007) of the patient cross-section,

Sφ(r) = − ln
(
J

J0

)
(22)

=
∫
Y

∫
X
f(x, y) δ(x cosφ+ y sinφ− r) dxdy,
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where δ is the Dirac delta function and X × Y is the set of image pixels (x, y). Sweeping over all the
angles, these projective measurements are stacked to form a Radon transform image. As depicted in Fig-
ure 1b, the projection measurements of the blue point across several angles produces a sinusoidal curve. The
representation of all the CT scan measurements is thus known as a sinogram.

A.3 CT Image Reconstruction Problem

Sinograms are not human-interpretable. They depict the integrated attenuation coefficients, or projection
measurements (Sφ(r)), of the patient cross-section from several angles (φ) over all detector positions (r). In-
stead, the desired outcome of a CT scan is a reconstructed image of the cross-section itself. This corresponds
to the attenuation coefficient function, f(x, y), which is the inverse of the Radon transform of Eq. 22, or

f(x, y) = 1
2π

∫ π

0
uφ(x cosφ+ y sinφ) dφ, (23)

where uφ is the derivative of the Hilbert transform of Sφ(r) (Helgason, 1984). The Projection-Slice the-
orem (Bracewell, 1956) ensures that f∗ can be fully reconstructed with infinite measurement angles, φ.
In practice, however, it is not possible to acquire infinite measurements. Typically, reconstruction quality
improves with number of measurements, but this increases radiation exposure. In practice, hundreds of
measurements are performed in a CT scan, but there is interest in reducing this number. In this work, we
study algorithm performance in the very low measurement data regime, where uncertainty quantification
over the value of f(x, y) becomes especially important. The combination of limited and noisy real-world
data renders the reconstruction of the desired image much more complex than simply evaluating the integral
of Eq. 23. Leveraging assumptions or data-driven insights about the measurements and physics at play,
several statistical models have been developed and used to derive various image reconstruction algorithms,
as discussed in the next section.
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B Classical Reconstruction Algorithms

In this appendix, we provide brief descriptions of the classical approaches implemented in this work via the
TomoPy Astra (Pelt et al., 2016) software package. These algorithms are clinically approved and widely
used in medical imaging, serving as a basis of comparison for the methods developed in this work. Note that
although our approach used NNs, it was not a data-driven approach, but rather learned image functions
from small amounts of data. Thus, we do not discuss data-driven techniques. Further, note that we did not
implement the FISTA-TV algorithm, which was also used as a classical baseline, but cited results from the
CoIL work (Sun et al., 2021), where a description of the algorithm can be found.

B.1 Filtered Back-Projection (FBP)

Filtered back-projection (FBP) (Pan et al., 2009) is an analytic algorithm which calculates a stable, dis-
cretized version of the inverse Radon transform. As the name implies, there are two key steps: filtering and
back-projection.

The forward-projection of Eq. 20 describes how X-rays passing through the object domain create a measure-
ment. In back-projection (BP), this measurement is integrated back along the X-ray path across the object
domain. This is done over all projection angles φ, using

fBP(x, y) =
∫
Sφ(x cosφ+ y sinφ) dφ (24)

to reconstruct the object attenuation coefficient image. As the number of projection angles increases, the
image reconstruction improves. However, as shown in Figure 6, this back-projection is insufficient to guaran-
tee a clear image. While information about the low frequencies of the object are captured in measurements
at several view angles, that of high frequencies may only be captured in a few view-angles. Thus, the low
frequencies are sampled far more densely than the higher frequencies, resulting in a blurry image. This can
be corrected by suppressing the lower frequencies with filtering, by applying to each projective measurement,
Sφ(r), the sequence of a Fourier transform (FFT), high-pass filter, and an inverse Fourier transform (iFFT).
While several high-pass filters can be used, a popular choice is the Ram-Lak filter, which generates the
filtered projective measurement

S̃φ(r) =
∫
F [Sφ](ω)|ω|ei2πωrdω, (25)

where F [Sφ](ω) is the Fourier transform of Sφ(r) and |ω| the frequency response of the filter. Performing
back-projections of all the filtered projective measurements,

fFBP(x, y) =
∫
S̃φ(x cosφ+ y sinφ) dφ, (26)

results in a sharper object attenuation coefficient image. Figure 6 visualizes the difference in reconstruc-
tion performance of BP and FBP for increasing measurement view angles, φ. Although the analytic FBP
algorithm is fast and numerically stable, it suffers from poor resolution-noise trade-off.

B.2 Algebraic and Iterative Reconstruction

The reconstruction problem can be formulated as a system of linear equations

W~f = ~S, (27)

where ~S is an m×1 vector of the m projective measurement values in the sinogram; ~f is an n×1 vector of the
n attenuation coefficient pixel values in the reconstruction image; and W is a, typically sparse, m×n weight
matrix representing the contribution of each of the m sinogram values to each of the n image pixel values.
Given the vector ~S, the goal is to solve for ~f . If W were invertible, ~f would simply be W−1~S. However,
because n is usually much larger than m, the system of equations of Eq. 27 is underconstrained. In algebraic
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Figure 6: Comparison of the reconstruction quality, as a function of the number of views, of the BP (top)
and FBP (bottom) algorithms.

reconstruction, this problem is addressed by using iterative algorithms that pose the reconstruction of ~f as
the solution of a constrained optimization problem,

~f ∗ = arg min
~f

|| ~S −W~f ||, subject to fi ≥ 0 ∀i. (28)

Several families of iterative solvers can be used to solve this optimization, such as Landweber, Krylov
subspaces, and expectation maximization (EM). The key benefit of iterative methods is that prior system
knowledge can be integrated, via the cost function and initialization of W. Their down-side is that they are
not necessarily stable, may not converge, and are much slower than analytic techniques, such as FBP.

B.3 Simultaneous Iterative Reconstruction Technique (SIRT)

The simultaneous iterative reconstruction technique (SIRT) (Pryse et al., 1993; Bust & Mitchell, 2008) is a
Landweber iterative method that updates the image reconstruction using all available sinogram projection
data, ~S, simultaneously. The optimization update at step k is defined as

~f (k+1) = ~f (k) + BWTD
(
~S −W~f (k) ), (29)

where D ∈ Dm×m is a diagonal matrix containing the inverse row sums, dii = (
∑n−1
j=0 wij)−1, and B ∈ Rn×n

is a diagonal matrix containing the inverse column sums, bii = (
∑m−1
i=0 wij)−1. The weighted projection

difference, D
(
~S−W~f (k) ), corresponds to the inverse of the length each X-rays passes through the volume.

Shorter rays have a higher contribution, with the weighting required to guarantee convergence. This difference
is forward-passed back to the image domain, using the weighted back-projection term, BWT , where it can
be used to update the reconstruction. These updates iteratively solve the problem

~f ∗ = arg min
~f

|| ~S −W~f ||D = arg min
~f

(
~S −W~f

)TD
(
~S −W~f

)
, (30)

converging to a weighted least-squares solution, with weights given by the inverse row sums of W.

B.4 Simultaneous Algebraic Reconstruction Technique (SART)

The algebraic reconstruction technique (ART) (Gordon et al., 1970) was one of the first proposed algebraic
iterative algorithms for CT image reconstruction. It is a Landweber technique almost identical to the SIRT
algorithm. However, a single projective measurement is used to update the reconstruction image per update
step. Generally, the ART algorithm reaches a solution much faster than SIRT, but does not have stable
convergence if the system of equations is inconsistent, for example due to measurement noise.

The simultaneous algebraic reconstruction technique (SART) (Andersen & Kak, 1984) was proposed in 1984,
as an improvement to ART, and is also a Landweber algebraic iterative algorithm. It combines the reduced
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runtimes of ART with the improved convergence of SIRT, by using all the projective measurements from a
single view angle in each optimization iteration. The update of image vector index i at step n is defined as

f
(n+1)
i = f

(n)
i + λn∑n−1

j=0 wij

φnL+L∑
j=φnL+1

wij
Sj − Ŝj∑m−1
g=0 wgj

, (31)

where λn << 1 is a, potentially dynamic, relaxation parameter; φn is the (n mod N)th measurement angle
of the sinogram, assuming N total measurement angles; and L is the number of projective measurements
taken at each angle. SART typically converges to a good reconstruction within a few iterations.

B.5 Conjugate Gradient Least Squares (CGLS)

The conjugate gradient least squares (CGLS) (Yuan & Iusem, 1996) algorithm is a Krylov subspace iter-
ative method. Since it requires a positive-definite system matrix, the CT image reconstruction problem is
reformulated in terms of the set of normal equations

WTW~f = WT ~S. (32)

Due to the positive-definiteness of WTW, there exists a set of conjugate normal vectors Q = {~q1, ..., ~qn},
where ~qTi WTW~qj = 0, ∀ i 6= j ∈ (1, n). Since Q forms a basis for Rn, the image vector ~f can be rexpressed
as a linear combination of these conjugate normal vectors,

~f =
n∑
i=1

αi~qi. (33)

Thus, solving for ~f becomes a problem of solving for the conjugate normal basis vector directions, ~qi, and
their corresponding weights, αi. This can be achieved iteratively by expressing the problem as a quadratic
least-squares minimization of the function

L(~f) = 1
2
~fTWTW~f − ~fTWT ~S, (34)

which has gradient ∇L(~f) = WTW~f −WT ~S and a guaranteed unique minimizer because the Hessian
∇2L(~f) = WTW is symmetric positive-definite. The name conjugate gradient least squares comes from the
fact that, in each iteration, a conjugate basis vector and its weight are found by taking a gradient step in
the direction that minimizes the least-squares function, L(~f), as

~f (k+1) = ~f (k) + αk~qk (35)
~ek = WT ~S −WTW ~f (k) (36)

~qk = ~ek −
∑
i<k

~qTi WTW~ek
~qTi WTW~qi

~qi (37)

αk = ~qTk ~ek
~qTk WTW~qk

(38)

where ~ek is the residual at step k. Thus, the main difference between SIRT/SART and CGLS is that the
search direction in SIRT/SART is determined only by the projection difference at that point, while in CGLS
the search directions of all the previous iterations are also taken into account. CGLS typically converges
much faster than SIRT, but has a large memory footprint.

B.6 Expectation Maximization (EM)

The final classical approach to CT image reconstruction that we consider is a statistical iterative method
known as expectation maximization (EM) (Dong, 2007). This technique explicitly encodes prior knowledge
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about the X-ray physics at hand. Each projective measurement, Sj is modeled as a Poisson distribution,

Sj ∼ Sj = Poisson(λj) =
λ
Sj
j e
−λj

pj !
, (39)

where the distribution mean λj = E[Sj ] is the function

λj =
∑
i

wijfi (40)

of the probability wij that an X-ray photon penetrating image pixel i was measured at detector location j;
and the underlying attenuation coefficient function f to reconstruct.

The measurement sinogram is modeled as the likelihood

p(~S|~f) =
∏
j

λ
Sj
j e
−λj

Sj !
=
∏
j

(
∑
i wijfi)Sje

−(
∑

i
wijfi)

Sj !
. (41)

The EM algorithm computes the maximum likelihood estimate of f ,

f̂MLE = argmax
f

{
log
(
p(S|f)

)}
, (42)

by alternating between expectation and maximization steps. These can be combined into the update-step

f̂
(k+1)
i = f̂

(k)
i∑
j wij

∑
j

wijSj∑
i wij f̂

(k)
i

. (43)

The EM algorithm is computationally intensive, but guaranteed to converge to a local optimum of the
likelihood. Further, although a Poisson distribution was assumed for Sj in this discussion, further knowledge
of the detector noise can be easily incorporated into the model.

B.7 Performance of Classical Reconstruction Techniques on Shepp-Logan

Finally, we evaluate the performance of these classical reconstruction algorithms on the Shepp-Logan vali-
dation set, depicted in Figure 12. Figure 7 shows average PSNR (for the 5 validation images) as a function
of view angle, for each of the 5 reconstruction methods. Also shown are the values below which PSNR
is usually considered unacceptable (20dB), at which reconstruction is considered lossy (30dB), and above
which has high quality (40dB). FBP has the worst performance, which is particularly poor in the low-view
regime (< 30 views). The iterative reconstruction algorithms perform better. CGLS has slow convergence
to high quality image reconstruction. EM, SIRT, and SART all converge with far fewer views, achieving
lossy compression with only ∼20 views. EM levels out and requires around 180 views to achieve high-quality
reconstruction. SIRT and SART have near identical performance, passing the high-quality reconstruction
threshold with only ∼75 views and SIRT performing slightly better for larger view numbers.

Table 3: Classical reconstruction PSNR, averaged across the five validation set images, in the 5-, 20-, and
180-view cases. The best achieved PSNR for each view-# is bolded.

# Views FBP CGLS EM SART SIRT
5 7.68 16.38 21.39 21.12 21.12
20 17.35 21.85 30.22 31.98 31.97
180 36.74 38.6 40.46 42.51 42.76

Table 3 reports the PSNR values obtained for 5, 20, and 180 views. EM is the best performer for 5 views,
SART for 20, and SIRT for 180. However, while the performance of the three algorithms is similar for 5,
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Figure 7: PSNR as a function of number of views for the classical reconstruction algorithms.

SART and SIRT perform better than EM for larger number of views. In the low-view regime, roughly an order
of magnitude is required to achieve a 10dB improvement in average PSNR. Figure 8 shows a reconstructed
image for each of these algorithm-view combinations. With 5 views the reconstruction algorithms are able
to capture low-frequency object structure, but the image would not be useful for medical diagnosis. With 20
views it is clear that the algorithms are already capturing high-frequency components of the object, but the
images have many artifacts. By 180 views, the reconstructed images are nearly identical to the ground truth
images of Figure 12, with any discrepancies in PSNR due mostly to minor image reconstruction artifacts or
imprecisions.
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Figure 8: Reconstructions, generated with varying view angles, by the 5 classical reconstruction algorithms
on the Shepp-Logan validation set.
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C Metrics and Uncertainty

C.1 PSNR & SNR

PSNR is defined as

PSNR
(
f∗, f

)
= 10 log10

(
max(f∗)2

MSE(f∗, f)

)
, (44)

where MSE
(
f∗, f

)
= 1
|X × Y|

∑
x,y

(
f∗(x, y)− f(x, y)

)2
while SNR is defined as

SNR
(
f∗, f

)
= 20 log10

(
||f∗||2
||f∗ − f ||2

)
, (45)

where f∗ denotes the ground truth image, f the noisy/reconstructed image, and || · ||2 the `2-norm. SNR
is strictly less than PSNR, with higher SNR and PSNR corresponding to better image reconstruction. In
the absence of any noise, f∗ and f are identical,making SNR and PSNR infinite. For lossy images, PSNR is
typically between 30-50dB, with values over 40dB considered very good, and values below 20dB considered
unacceptable (Bull, 2014).

C.2 Types of Uncertainty

Bayesian modeling can address two distinct types of uncertainty: aleatoric and epistemic (Der Kiureghian
& Ditlevsen, 2009; Kendall & Gal, 2017). Aleatoric uncertainty is due to measurement noise, such as X-ray
detector noise. This type of uncertainty cannot be reduced, even if more measurements are taken, since it
is inherent to the measurement. To see why, think of rolling an unbiased die. Irrespective of how many
times you roll the die, you will always be uncertain of the outcome of the next roll, since each outcome has
a 1

6
th probability. On the other hand, epistemic or model uncertainty accounts for uncertainty in the model

parameters. This type of uncertainty can be reduced with more measurement data. To see why, imagine
a model that aims to predict the outcome of a biased die roll, with no prior information about the bias.
As more data is taken, the variance in the model parameters decreases, and the model output distribution
better approximates the true biased die distribution. Even in the presence of aleatoric uncertainty, this work
primarily focuses on quantifying epistemic/model uncertainty. Namely, we consider how well the model
reconstructs the ground truth attenuation coefficient image from the sinogram data.

C.3 Calibration and Coverage

Calibration is a metric that assesses a model’s ability to predict the probabilities of its outcomes, gauging
the reliability of the model’s confidence in its predictions. For example, a model performing class predictions
is considered calibrated if it assigns a class 50% probability and that class actually appears 50% of the time
in prediction. For further information on calibration of class prediction models, we refer the reader to (Guo
et al., 2017; Nixon et al., 2019). Since this work focuses on regression models, the remaining discussion is
centered on calibrated regression (Kuleshov et al., 2018).

Let F be the cumulative distribution function (CDF) of model predictions f(x, y), that seek to approximate
ground truth image f∗ ∈ F , where F denotes the functional space of possible images. Letting fx := f(x, y)
We denote the corresponding quantile function as

F−1
x (p̃) = inf{fx : p̃ ≤ F (fx)}, (46)

where F−1 performs the mapping F−1 : [0, 1]→ F and p̃ is a confidence interval. For calibrated regression,
ground truth pixel f(x, y) should fall in a, say, 90% confidence interval 90% of the time. Thus, the regression
model is calibrated for confidence interval p̃ if

lim
X→∞

1
X

T∑
x=1

I
{
fx ≤ F−1

x (p̃)
}

= p̃ , ∀p̃ ∈ [0, 1], (47)
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Figure 9: The ground truth image is plotted alongside different metrics for assessing the reconstructed
predicted distribution generated by an UINR model. From left to right, we show the ground truth, predicted
mean image, predicted variance image, mean squared error, coverage quantile of each pixel, and negative
log-likelihood of each pixel. Note that PSNR is calculated using the ground truth and predicted mean image.
In a real medical setting, the ground truth is unknown, the doctor would be given the predicted mean image
and the predicted variance image could be provided as supplementary information to help the doctor reach
a diagnosis. Further note that white regions in the coverage image denote that the ground truth pixel value
did not fall in the range of the predicted distribution.

as the number of pixel samples approaches infinity, X →∞. If f∗X denotes the ground truth value for i.i.d.
random pixel (x, y) ∈ X, a sufficient condition for calibrated regression is

p
(
f∗X ≤ F−1

X (p̃)
)

= p̃ , ∀ p̃ ∈ [0, 1]. (48)

Since practical dataset sizes are finite, preventing perfect calibration, different metrics have been developed
to assess empirical model calibration.

Reliability diagrams serve as a visual representation of model calibration, plotting expected sample accuracy
as a function of average model confidence. Ideally these would be continuous plots, but, in practice, samples
are binned into M bins according to their prediction confidence. Let Bm be the set of indices, i, of samples
with prediction confidence, p̂i in the interval Im = (m−1

M , mM ]. The expected accuracy (acc) and confidence
(conf) are approximations to the terms of Eq. 48, namely

p
(
f∗X ≤ F−1

X (p̃)
)
≈ acc(Bm) = 1

|Bm|
∑
i∈Bm

I
{
f∗i ≤ F−1

i (p̃)
}

(49)

p̃ ≈ conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i. (50)

The calibration error (CE) is the discrepancy

CE(p̃) = | p
(
f∗X ≤ F−1

X (p̃)
)
− p̃ | ≈ | acc(Bm)− conf(Bm) | = CE(Bm). (51)

It can be measured on a reliability diagram as the difference between the expected accuracy curve and the
ideal acc(Bm) = conf(Bm) line. The expected calibration error (ECE) quantifies the calibration error of the
full distribution as

ECE(f∗, F−1
X , p̃) = 1

M

M∑
m=1
| acc(Bm)− conf(Bm) |. (52)

The model is considered calibrated if ECE(x, f) = 0.

In practice, modifications were made to the previously described theory of reliability curves and ECE. You
may notice in Figure 10 that, instead of plotting accuracy and confidence, we instead plot analogous target
coverage and achieved coverage. Typically, a coverage value, p̄, refers to a quantile of data points lying within
± q̄2% of the median (50% quantile). Specifically, in our setup, we use different uncertainty quantification
methods (BBB, MCD, and DE) to sample N different model weights for our INR, each set of weights
corresponding to a different model output. Given that each output corresponds to an image, for each pixel,
(x, y), we have a distribution of N predicted values, FN (x, y). Ideally, the median of the pixel distribution
would be equivalent to the ground truth pixel value, f∗(x, y). However, this is unrealistic to expect in
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Figure 10: Both plots were made with an MCD UINR model trained on 20 views, achieving a PSNR of 19.
Left) A plot of the model reliability curves, with the grey dashed line indicating a perfectly calibrated model.
The blue curve is the empirical reliability curve of the model when a small δ term is added symmetrically
to the target coverage, in order to slightly widen the quantile ranges. Although this δ term has nearly
negligible magnitude, it significantly improves the model reliability curve, as illustrated by the orange curve
of reliability without the added δ term. Right) The added δ term was not chosen arbitrarily, but selected
to minimize ECE.

practice. Thus, we check whether the ground truth pixel lies within the predicted pixel distribution quantile,
Qn, specified by coverage value, p̄,

Q50− p̄2

(
FN (x, y)

)
≤ f∗(x, y) ≤ Q50+ p̄

2

(
FN (x, y)

)
. (53)

If a model is perfectly calibrated, p̄% of reconstructed pixels distributions will contain the ground truth pixel
in their p̄%-th quantile, corresponding to the grey dashed line in Figure 10. Thus, model confidence can be
seen as a pre-selected quantile for each pixel (target coverage), p, while accuracy is the percentage of pixel
distributions containing the ground truth that quantile (achieved coverage),

AC(f∗, FN , q̄) = 1
|X |

1
|Y|

∑
x∈X

∑
y∈Y

I
{
Q50− q̄2

(
FN (x, y)

)
≤ f∗(x, y) ≤ Q50+ q̄

2

(
FN (x, y)

)}
. (54)

The ECE is thus implemented as,

ECE(f∗, FN ) = 1
|P|

∑
p̄∈P
|AC(f∗, FN , p̄)− p̄|, (55)

where P is a finite set of percentages evenly spaced in [0, 1], separated by percentage interval i << 1. The
fifth image of Figure 9, plots the smallest quantile of each pixel containing the corresponding ground truth
pixel, for an example UINR reconstruction with N = 50. Note that white regions indicate that the ground
truth value does not fall within the minimum and maximum predicted pixel values.

There is one final modification made in implementing the reliability curves, in order to effectively assess
model calibration. Since the final layer of all the NNs used for the INR have a sigmoid activation, ensuring
that the model output is in the range (0, 1). However, the sigmoid function only approaches 0 and 1 in the
infinite limit, meaning that in practice our model will never output 0 or 1 exactly. However, our images
contain a large percentage of pixels with exactly 0 value, especially for noiseless artificial data, which in the
context of medical imaging is regions containing air and no tissue. This is problematic for calibration, since
all of predicted pixel values will be near-zero, but will not actually contain the ground truth value of 0. This
is illustrated by the orange reliability curve in Figure 10, for which only 40% of pixels contain the ground
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truth in their full range of predicted pixel values, for an MCD model trained on 20 views with N = 50. Our
proposed solution to this issue is slightly widening the quantile range by adding a negligible δ term. Thus,
for coverage value p̄, we now check if the ground truth pixel lies in,

Q50− q̄2

(
FN (x, y)

)
− δ ≤ f∗(x, y) ≤ Q50+ q̄

2

(
FN (x, y)

)
+ δ, (56)

where 0 < δ << 1. In this case, if our predicted pixel values are slightly larger than 0, the δ offset can
widen the quantile range to include 0, enabling these pixels to contribute to the achieved calibration (this
also applies to pixels with exact value of 1). The improvement in using a delta offset is illustrated by the
blue reliability curve in Figure 10, which is much closer to the ideal grey dashed line than the orange curve
with δ. It should be noted that the value of δ is not assigned arbitrarily, but instead optimized to minimize
overall ECE. For too small a δ, the quantiles will not be widened sufficiently to capture ground truth 0
pixels. However, for too large of δ, the quantiles will be widened too much, reducing overall calibration, as
achieved coverage is much higher than target coverage for low coverage values. Thus, ECE as a function of
δ is expected to have a unique minima, as illustrated by the example in Figure 10.

C.4 Assessing Model Quality

Section 4.1 describes how PSNR and SNR quantify image reconstruction quality, coverage metrics (such as
ECE) gauge the uncertainty calibration, and NLL encapsulates both. In this work, we aim to optimize both
reconstruction and calibration quality, meaning the best metric would, naively, be NLL. However, there is
often a trade-off between calibration and prediction quality. Specfically, NN overfitting to NLL manifests in
probabilistic error rather than prediction error (Guo et al., 2017). Furthermore, while this work focuses on
uncertainty quantification of INRs for medical imaging, little prior work has addressed this problem. Most
existing techniques only quantify reconstruction PSNR and SNR. Hence, for fair comparison, we assess and
optimize our models primarily according to PSNR and SNR. However, for similarly performing models, we
use NLL and ECE as secondary selectors for the best model. Note that initial attempts at optimizing models
according to coverage metrics resulted in preference for the lowest capacity models possible. This indicates
that optimal performance according to coverage favors blurry image reconstruction, with as little certainty
as possible in the final image.
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D Bayesian Deep-Learning Methods and Implementations

Building off of the high-level descriptions of the different BDL methods discussed in Section 3, we provide
more detailed algorithms descriptions and implementation specifics.

D.1 Bayes-by-Backprop

A popular method for variational approximation to exact Bayesian updates is Bayes-by-Backprop
(BBB) (Blundell et al., 2015). BBB aims to find the optimal parameters ψ of an approximate distribu-
tion on the NN weights, q(θ|ψ), also known as the variational posterior. This is achieved by maximizing the
variational free energy/evidence lower bound (ELBO),

L(S, ψ) = Eq(θ|ψ)[log p(S|θ)]−KL [ q(θ|ψ) || p(θ) ], (57)

with respect to the variational parameters ψ. The ELBO can be optimized with respect to ψ using stochastic
gradients estimated by Monte Carlo,

∇ψL(S, ψ) ≈ ∇ψ
(

log p(S|θ) + log p(θ)− log q(θ|ψ)
)
, (58)

where θ ∼ q(·|ψ) is a sample drawn from the variational posterior, and the gradient is taken through θ using
the reparameterization trick (Rezende et al., 2014).

In this work, the BBB variational posterior is treated as a Gaussian distribution, N (µψ, σψ). The elements
of σψ comprise a diagonal covariance matrix, meaning weights are assumed to be uncorrelated. A Gaussian
prior, p(θ) = N (θ|σ2), with tunable σ is used to initialize the network. Training the network requires
computing a forward-pass and backward-pass. Although the network is parameterized by a distribution
of weights, in each forward pass a single sample is drawn from the variational posterior and propagated
through the network to perform updates. A re-parameterization trick (Kingma & Welling, 2014), in which
the sample ε is transformed by the function µψ + σψ � ε, is used to ensure a gradient can be calculated for
backpropagation. Finally, to aid learning, it is common to modify the ELBO as

L̃(y, ψ) = Eq(θ|ψ)[log p(S|θ)]− ξ ·KL [ q(θ|ψ) || p(θ) ], (59)

where ξ>0 is an added hyperparameter, known as the Kullback-Leibler (KL) factor. This is beneficial for
training because it puts greater emphasis on the training data in the loss, through the Eq(θ|ψ)[log p(S|θ)] In
the context of medical imaging with INRs, this re-weights the importance of obtaining a Radon transform
of network outputs close to the sinogram measurement data.

D.2 Monte Carlo Dropout

Another popular approach is Monte Carlo dropout (MCD) (Gal & Ghahramani, 2016). There, the authors
argue that optimizing a NN regularized with dropout (Srivastava et al., 2014) applied to every layer can
be interpreted as variational approximation for a deep GP. The first two moments of the corresponding
variational posterior can be approximated using Monte Carlo, with N samples from NNs sampled with
dropout. The predictive mean is thus calculated as,

Eq(f̂θ|y)(f̂θ) ≈
1
N

N∑
n=1

f̂(θ(n)), (60)

which is equivalent to averaging the results of N stochastic forward passes through the network. Details of
the MCD implementation are provided in the “Implementation Details" of main paper Section 3.

D.3 Hamiltonian Monte Carlo

A final means of BNN inference which we explore in this work, is Hamiltonian Monte Carlo (HMC) (Duane
et al., 1987; Neal et al., 2011; Betancourt, 2017). Originally proposed for calculations in lattice quantum
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Figure 11: An illustration of concentration of measure, in which the expectation, p(θ|S)dθ, of the BNN’s
high-dimensional weight posterior is concentrated in the typical set. This can be attributed to the fact that,
while most of the distribution density p(θ|S) is concentrated about the distribution modes, the volume dθ
is concentrated at the tails. Unlike other MCMC methods, HMC efficiently explores and samples from the
entire distribution typical set. (Figure inspired by (Betancourt, 2017).)

chromodynamics (Duane et al., 1987), HMC is an instance of the Metropolis-Hastings algorithm (Chib &
Greenberg, 1995) for Markov Chain Monte Carlo (MCMC) (Gilks et al., 1995). In the context of quantifying
NN uncertainty, HMC can be used to obtain a sequence of random samples that converge in distribution
to samples from the BNN posterior distribution, p(θ|S) (Izmailov et al., 2021). For the high-dimensional
distributions associated with BNNs, the density p(θ|S) is concentrated at the distribution mode, while the
volume dθ is concentrated at the distribution tails. The resulting distribution expectation – a product
p(θ|S)dθ of distribution volume and density – concentrates in a nearly-singular neighborhood, known as the
typical set, as illustrated in Figure 11. Traditional Metropolis-Hastings MCMC, using a Gaussian random
walk proposal distribution, typically fails to explore the full typical set of these distributions. HMC, however,
leverages the physics of Hamiltonian dynamics via a time-reversible and volume-preserving integrator, to
simulate and propose points scattered around the typical set. This significantly improves exploration of the
full distribution and decreases the correlation between consecutive samples, reducing the total number of
required MCMC samples. In this work, HMC was implemented via the NumPyro Python package (Phan
et al., 2019), using a leapfrog integrator and No-U-Turn sampler (Hoffman et al., 2014). For a more detailed
description of the HMC algorithm, in the UncertaINR context, we refer the reader to Appendix E.

D.4 Deep Ensembles

Alternatively, predictive uncertainty can be quantified by aggregating the outputs of several NN “base learn-
ers” trained for the same task from different initializations, a method known as deep ensembles (DEs) (Lak-
shminarayanan et al., 2017). Averaging predictions over multiple NNs consistent with the training data leads
to better predictive performance, enables uncertainty quantification, makes DEs robust to model misspecifi-
cation, and presents a strong baseline in out-of-distribution detection (Ovadia et al., 2019). Ensembling can
also be applied on top of other methods to further improve performance. In principle, more base learners
results in better performance, but, in practice, training large ensembles is computationally expensive and
diminishing returns are observed after ∼10 base learners. In this work, UncertaINR leverages ensembles of
M Monte Carlo dropout base learners, such that Eqs. 9 and 10 are updated to,

f̂DE(x, y) = 1
N

M∑
m=1

N/M∑
n=1

fθm,n(x, y) (61)

VDE(x, y) = 1
N − 1

M∑
m=1

N/M∑
n=1

(
fθm,n(x, y)− f̂DE(x, y)

)2
.
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The relationship between Bayesian inference and DEs is an active area of research in the BDL community.
Wilson & Izmailov (2020) argue that DEs provide a more compelling approximation to the true posterior
than many standard BDL approaches, whilst others have adapted DEs to provide a Bayesian interpretation
(Ciosek et al., 2019; D’Angelo & Fortuin, 2021; Pearce et al., 2020). He et al. (2020) characterize how DEs
relate to posterior inference in the limit of infinite NN width.

Typically, DEs induce randomness by training the same network several times with randomized initializations
and data order. However, recent work (Zaidi et al., 2021) has shown that ensembling over architectures
can outperform the more common single-architecture DEs for uncertainty estimation. For our large-scale
hyperparameter study (on Shepp-Logan phantom data), in which thousands of BBB and MCD UncertaINR
base learners were trained, we were able to easily implement architecture-ensembled DEs, by selecting the
best-performing UncertaINRs as base learners. However, for the high-resolution AAPM-Mayo data, in
which UncertaINR training times were extended significantly, we found it too computationally demanding
to hypertune multiple architectures to ensemble. Thus, for the final results presented, DEs are created by
ensembling the same network trained with randomized weight initialization.

D.5 Hardware and Software Notes

The experiments presented in this paper were computationally intensive, requiring hundreds of compute
hours on parallelized GPUs. Runtimes for each of the methods developed and implemented in this work on
the AAPM dataset are presented in Table 4. Non-HMC methods were run on a cluster of 4 GPU nodes
consisting of 8 GPUs each, containing a mixture of GTX 1080, GTX 1080Ti, and GeForce RTX 2080 Ti
cards. HMC methods (*) were run on two Titan RTX cards, which were faster and had double the memory.
Note that the HMC models were further intialized to a pre-trained check-point, which helped the models
converge much faster. The time required to obtain this pre-trained checkpoint is not reflected in the HMC
runtimes. Furthermore, while overall runtimes of the ensemble methods (†) appear long, each of the base
models could be trained in parallel.

Table 4: Computation Times: Most experiments were run on a GPU cluster consisting of four GPU nodes
with 8 GPUs each, consisting of a mixture of GTX 1080, GTX 1080Ti, and GeForce RTX 2080 Ti cards.
Experiments denoted with a (*) were run on faster Titan RTX cards, with increased memory. (†) is used to
denote ensemble experiments, which in practice were run in parallel to achieve faster runtimes.

Reconstruction Method 60-View Runtime 120-View Runtime Compute Type
GOP-TV < 10 min ∼ 10 min GTX/GeForce

HMC GOP-TV 25+ min* 45+ min* Titan RTX*
INR ∼2 hrs ∼2.75 hrs GTX/GeForce

DE-2 UINR ∼4 hrs† ∼5.5 hrs† GTX/GeForce
DE-5 UINR ∼10 hrs† ∼11 hrs† GTX/GeForce
DE-10 UINR ∼20 hrs† ∼27.5 hrs† GTX/GeForce
MCD UINR ∼2.25 hrs ∼2.8 hrs GTX/GeForce

DE-2 MCD UINR ∼5 hrs† ∼5.6 hrs† GTX/GeForce
DE-5 MCD UINR ∼11.25 hrs† ∼14 hrs† GTX/GeForce
DE-10 MCD UINR ∼22.5 hrs† ∼28 hrs† GTX/GeForce

HMC UINR 8+ hrs* 11.5+ hrs* Titan RTX*

Overall, we do not forsee computation as a limitation of UncertaINR. In fact, this work demonstrates that
MCD (one of the least computationally intensive means of UQ) is highly effective for INR UQ, while adding
minimal overhead to the INR evaluation time. Furthermore, as mentioned in Section 2.2 recent work on
INR optimization has found ways to reduce INR evaluation times. These approaches could be implemented
directly within the UncertaINR framework to reduce training time, without affecting the network results or
uncertainty quantification. This, however, would neither add any novelty or change the fundamental claims
of this paper, which are about UQ and not computational speed.

The project codebase was developed in Python, mostly using Pytorch (Paszke et al., 2019), Hydra (Yadan,
2019), and Weights & Biases (Biewald, 2020) to implement the NN functionality and Blitz (Esposito, 2020)
for BNN functionality. For HMC, we used the No-U-Turn-Sampler (Hoffman et al., 2014) sampling scheme
in NumPyro (Phan et al., 2019), which is based in JAX (Bradbury et al., 2018).
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E HMC Sampling Algorithm for UncertaINR

Our goal in using HMC with UncertaINR is to sample weight parameters, {θ(1), ..., θ(N)}, from the BNN
weight posterior, p(θ|S). This problem is reformulated in terms of physics-inspired dynamics. These dynam-
ics are governed by Hamiltonian

H(θ, Pθ) = U(θ) + 1
2P

T
θ M

−1Pθ, (62)

where θ are the ‘position’ terms, Pθ are the ‘momentum’ terms, U(θ) = − ln p(θ|S) is the system potential
energy, 1

2P
T
θ M

−1Pθ is the system kinetic energy, and M is a symmetric positive definite mass matrix.
HMC starts by initializing parameters, θ(0) ∼ N (0, 1

τ ), by sampling from the Gaussian distribution of prior
precision τ . At HMC iteration n, the parameters are initialized to θ(n)(0) = θ(n) while the momentum is
initialized by sampling from the normal distribution P

(n)
θ (0) ∼ N (0,M) of variance defined by the mass

matrix. The leapfrog iterative algorithm is then used to simulate system dynamics for time L∆t, where L is
the number of leapfrog steps and ∆t the step size. In each step, the leapfrog algorithm alternates between
momentum and position updates, using

P
(n)
θ

(
t+ ∆t

2

)
= P

(n)
θ (t)− ∆t

2 ∇U(θ)|θ=θ(n)(t) (63)

θ(n)(t+ ∆t) = θ(n)(t) + ∆tM−1P
(n)
θ

(
t+ ∆t

2

)
(64)

P
(n)
θ (t+ ∆t) = P

(n)
θ

(
t+ ∆t

2

)
− ∆t

2 ∇U(θ)|θ=θ(n)(t+∆t), (65)

so as to solve Hamilton’s equations

dθ

dt
= ∂H
∂Pθ

(66)

dPθ
dt

= ∂H
∂θ

. (67)

Since the leapfrog iterative algorithm is a discretized numerical approximation to the true integral, the limit
∆t → 0 would be needed to solve Hamilton’s equations exactly. To correct for bad proposals from the
leapfrog method, an HMC Metropolis-Hastings acceptance ratio is defined as

αHMC(θ(n)(0), θ(n)(L∆t)) = min
{

1, exp[−H(θ(n)(L∆t), P (n)
θ (L∆t))]

exp[−H(θ(n)(0), P (n)
θ (0))]

}
, (68)

where H is the Hamiltonian defined in Eq. 62. In result, the parameter sample returned by iteration n,
which is also the parameter initialization of iteration n+ 1, is

θ(n+1)(0) | θ(n)(0), θ(n)(L∆t) =
{
θ(n)(L∆t), with probability αHMC(θ(n)(0), θ(n)(L∆t))
θ(n)(0), otherwise

. (69)

This process is repeated for T ′ HMC iterations. Since the prior weight initialization does not usually lie
within the typical set of the distribution, the samples initially output by HMC are poor indicators of the
typical set region. To address this problem, a burn-in period of B initial iterations is defined and all burn-in
samples are discarded after the algorithm is complete.
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F Preliminary Ablation Study

Our preliminary ablation study presents a large-scale study of uncertainty quantification for INRs. Specif-
ically, we test the relative ability of UncertaINR (using MCD, BBB, and/or DEs) to reconstruct artificial
noiseless CT brain images. From this study, we present guiding principles for effective UncertaINR hyper-
parameter selection and compare to traditional CT reconstruction techniques.

F.1 Dataset

Given the long INR training times required to reconstruct large, high-frequency images (Fridovich-Keil et al.,
2022), we opted for a dataset of simple images, enabling large-scale hyperparameter sweeps. Specifically,
the Shepp-Logan phantom (Shepp & Logan, 1974) approach was used to generate (256× 256 pixel) artificial
brain images, with corresponding measurement sinograms generated via the Radon transform. No noise
was added to the measurement sinograms. In all, 10 ground truth images, depicted in Figure 12, and 20
corresponding sinograms were generated: 5 validation and 5 test set sinograms each for the 5- and 20-view
(φ) cases.
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Figure 12: The ground truth images used in tuning and assessing our preliminary Shepp-Logan hyper-
paramter exploration. The five validation set images were used to optimized model hyperparameters, while
test set images were used to assess the finalized models.

F.2 Baselines

In this study, we compared UncertaINR to the classical medical image reconstruction algorithms – FBP,
CGLS, EM, SART, and SIRT – described in Section 2.1.1 and Appendix B, implemented using the TomoPy
Astra wrapper (Pelt et al., 2016). A detailed analysis of the classical reconstruction methods on the Shepp-
Logan validation set is presented in Appendix B.7.

F.3 Tuneable INR Model Parameters

There are several degrees of freedom in designing an INR, including its size, embeddings, activation functions,
and optimizer. These design choices are critical in determining model performance, but there is little
theoretical understanding of how to best select most of these model parameters. In this section, we lay
out the different parameters we considered in designing our INRs and provide any known insights as to
how they affect model performance. These insights informed the hyperparameter sweeps described in the
following section.

F.3.1 Width and Depth

The size of an NN is determined by both its width (number of nodes per layer) and depth (number of
layers). Universal approximation theorems (Hornik et al., 1989) have been derived in both the arbitrary-
width (Cybenko, 1989; Hornik, 1991) and arbitrary-depth (Hanin, 2019; Kidger & Lyons, 2020; Lu et al.,
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2017) cases, demonstrating that NNs are theoretically guaranteed universal function approximators in the
infinite limit. In practice, however, neural networks have finite width and depth. Recent work has empirically
demonstrated and theoretically suggested that, in this regime, increased-depth networks generally perform
better than increased-width networks (Lu et al., 2017; Raghu et al., 2017). It is also known that, while neural
networks are overparametrized relative to the amount of training data, this overparametrization is key for
their generalization ability (Jacot et al., 2021; Neyshabur et al., 2019). However, for INRs specifically,
it has been shown that relatively small networks can typically be used to learn decent functional image
encodings (Dupont et al., 2021). Thus, we tend to sweep over smaller widths and depths than standard
deep-learning networks.

F.3.2 Fourier Feature Mappings

Random Fourier features (RFF) were first introduced in 2007 by (Rahimi & Recht, 2007) as a means of
accelerating kernel methods. The key idea is to map the input data to a randomized low-dimensional feature
space, while maintaining the kernel of the original data. Given input ~x ∈ Rn, the RFF mapping takes the
form

γRFF(~x) = [cos(2πB~x), sin(2πB~x)]T , (70)
where B is an m × n matrix, with each entry sampled from N (0,Ω2

0). The standard deviation, Ω0, is a
tuneable hyperparameter, but remains static after initialization – i.e. it is not modified with NN weights
during the MLP training. There exist other types of Fourier feature mappings, such as positional encodings,
in which

γPE(~x) = [..., cos(2πΩj/m0 ~x), sin(2πΩj/m0 ~x), ...]T , (71)
for j = 0, ...,m− 1.

In 2018, it was theoretically demonstrated that NNs can be approximated by kernel regression via the neural
tangent kernel (NTK) (Jacot et al., 2021). Using this intuition, in 2020, it was argued that applying a simple
Fourier feature mapping to input data enables MLPs to learn high-dimensional functions rapidly, even in low-
dimensional problem domains (Tancik et al., 2020), making the technique particularly well-suited for INRs.
In fact, positional encodings have been shown to have key importance in the success of NeRF (Mildenhall
et al., 2020) and Fourier feature mappings have been shown to boost the performance of the CoIL network
for medical image reconstruction (Sun et al., 2021). In this work, all networks apply an RFF mapping, γRFF,
to the input data. The standard deviation, Ω0, is tuned among other hyperparameters.

F.3.3 Activation Functions

Activation functions are key to the success of neural networks, transforming what would otherwise be simple
linear systems into complex, non-linear universal function representers. We performed hyperparameter
sweeps with five activations widely used in the MLP and INR literature – ReLU, SiLU, Sine, SoftPlus, and
Tanh. We now briefly review these activation functions, as well as their use in deep learning.

The rectified linear unit (ReLU), plotted in blue in Figure 13, was introduced as early as the 1960s for visual
feature extraction in hierarchical NNs (Hara et al., 2015). The ReLU is defined as

ReLU(x) = max{0, x} , (72)

returning its input if greater than zero and otherwise returning zero. Despite its hard non-linearity at zero,
non-differentiability at zero, and vanishing gradient challenge (Lu et al., 2020), the ReLU was shown in 2011
to enable better training than previously used activation functions, such as Sigmoid and Tanh, by inducing
sparse representations (Glorot et al., 2011). As of 2017, the ReLU was the most popular activation function
for deep NNs (Ramachandran et al., 2017).

The sigmoid-weighted linear unit (SiLU), plotted in orange in Figure 13, is a specific instance of the Swish ac-
tivation function family and was proposed in 2017 as a continuous, ‘undershooting’ version of the ReLU (Ra-
machandran et al., 2017). The Swish family, parameterized by β, is defined as

Swishβ(x) = x · σ(βx) = x

1 + e−βx
, (73)
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Figure 13: The five different activation functions – ReLU, SiLU, Sine, SoftPlus, and Tanh – tested in our
preliminary hypertuning experiment.

where σ(x) is the sigmoid function. By setting β to different values in [0,∞), Swishβ non-linearly interpolates
smooth functions between the linear function and ReLU. In 2017, Swish was empirically shown to outperform
ReLU, a result theoretically attributed to its bounded, smooth, and non-monotonic nature (Ramachandran
et al., 2017). More recently, Swish has been shown to outperform both ReLU and Sine in the context of CT
image reconstruction via Automatic Integration (AutoInt) (Lindell et al., 2021). The SiLU is the specific
instance of Swish where β = 1,

SiLU(x) = x · σ(x) = x

1 + e−x
. (74)

The Sine activation function, plotted in green in Figure 13, is the sinusoid

Sineω0 = sin(ω0 · x). (75)

In the 2020 SIREN paper (Sitzmann et al., 2020), INRs with sinusoidal activation functions and random
Fourier features were empirically demonstrated to outperform ReLU-based INRs. Theoretically, it was
argued that these periodic activations are better suited to capturing naturally complex signals and their
derivatives. However, the performance of these activations depends strongly on the choice of frequency, ω0,
which needs to be tuned.

The SoftPlus activation function, plotted in red in Figure 13, has continuous and differentiable form

Softplus(x) = ln(1 + ex). (76)

It was introduced in 2001 (Dugas et al., 2001) as the primitive of the sigmoid function. It is primarily used
as a smooth approximation to the ReLU activation and to constrain to positive outputs, since Softplus(x) ∈
(0,∞).

The hyperbolic tangent Tanh, plotted in purple in Figure 13, has form

Tanh(x) = ex − e−x

ex + e−x
, (77)

and is both differentiable and monotonic. It has a form similar to the sigmoid function, with Tanh(x) =
2σ(2x) − 1, but lies in the range (-1,1) instead of (0,1), meaning it does not constrain to positive values.
Before the ReLU became popular, the sigmoid and Tanh were two of the most common activation functions.
Tanh was easier to train and typically outperformed the sigmoid as an activation function. However, because
these sigmoidal activation functions saturate for large inputs, their derivatives vanish for these inputs, leading
to slow convergence of learning algorithms. This has motivated the increased use of ReLU-like activation
functions (Goodfellow et al., 2016), which ameliorate the vanishing derivative problem.
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F.4 Experimental Design

The goal of this hyperparameter study was to understand the relative performance of UncertaINR with
BBB, MCD, and DEs. In all these cases, well-tuned hyperparameters were needed to achieve decent model
reconstruction accuracy and uncertainty calibration. Large hyperparameter sweeps were used to find the
optimal parameters for BBB and MCD. The best performing MCD UncertaINRs were used as base learners
for the DEs.

F.4.1 BBB & MCD

For both BBB andMCD, MLP design choices had a large effect on INR reconstruction performance. Carefully
designed hyperparameter sweeps were thus run to strategically search the MLP parameter space for four
different settings: (1) MCD 5-view, (2) MCD 20-view, (3) BBB 5-view, and (4) BBB 20-view.

The model selection process began with a coarse grid search to efficiently prune across the wide range of
possible parameter combinations. Specifically, we considered model activation type, depth, width, RFF
embedding frequency Ω0, and dropout probability. Among these, activation type was the only categorical
parameter, using the five activation types plotted in Figure 13: Tanh, SoftPlus, Sine, SiLU, and ReLU. For
the remaining parameters, this initial coarse grid search was used to get a sense of orders of magnitude, for
the sake of computational feasibility. We swept over model depths of 3, 6, and 9; widths of 16, 64, 256,
and 1024; and RFF Ω0’s of 1, 5, 10, and 15. Three values - 0.2, 0.5, and 0.8 - were considered for the final
parameter, dropout probability, which is specific to MCD. For BBB, we instead swept over the Gaussian
prior standard deviation (values 10, 100, and 1000)5 and KL factor (values 1e-10, 1e-5, and 1e-1)6. For
these coarse grid searches, all networks were trained using the Adam optimizer with no weight decay and the
default learning rate of 3e-4. For each set of parameters, three individual INRs were trained, one for each of
the three validation images, Image #1-#3, shown in Figure 127. All reported metrics are averaged across the
three test images, in an effort to ensure model generalization and prevent overfitting to a particular image.
For both the 5- and 20-view experiments, 2,160 (2,512) models were trained and tested for the MCD (BBB)
coarse grid sweeps. This resulted in a total of 9,344 models trained and tested during these initial grid
searches. Since the performance metrics are calculated from a distribution of predictions, sampled according
to the uncertainty method, all hyperparameter sweeps used 50 prediction samples to enable uncertainty
quantification, mean output prediction, and metric calculation.

For now, we conclude our discussion of methodology, with the second hyperparameter sweep – a fine Bayesian
search used to generate the final models. This Bayesian sweep leveraged a reduced search space, informed by
the first coarse grid search. It was found that Bayesian sweeps do not perform well with categorical variables,
so independent sweeps of ∼200 runs were performed for each of the three best performing activation functions
from the grid search. Since only 600 models were trained in total in each uncertainty-view setting, all five
validation images of Figure 12 were used as the validation set, to improve model generalization ability.
Further, AdamW was used to optimize the models, with a weight decay hyperparameter added to the sweep.
In the case of MCD with 20-views, three sweeps were performed, one for each of the three activation functions:
Sine, SiLU, and Tanh. A log uniform distribution, in the range 1e-16 to 1e-1, was swept for the weight decay,
while uniform distributions U(min, max, q), where q is the discrete interval, were generated and swept over
for the remaining numerical parameters: depth ∈ U(2, 12, 1), width ∈ U(200, 1000, 100), Ω0 ∈ U(3, 15, 1),
and p(dropout) ∈ U(0.1, 0.6, 0.1). The top performing model according to PSNR, across all three Bayesian
sweeps, was selected as the final model.

F.4.2 Deep Ensembles

Given the robust and computationally intensive nature of DEs, we did not perform large-scale hyperparam-
eter sweeps, as was the case for BBB and MCD. DEs combine the outputs of multiple base learner models

5We originally swept over BBB standard deviation (values 0.2, 0.5, and 0.8), which are more on par with theoretical
expectations. However, we found that increasing prior standard deviation significantly improved final model performance.

6Given the added BBB uncertainty hyperparameter, we reduced relative number of search values for the remaining sweep
parameters.

7Again, for the sake of computationally efficiency, only validation Images #1 and #2 were used for BBB.
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to improve uncertainty calibration. Assuming each base learner makes a reasonable prediction, even if not
optimized, adding more base learners should only maintain or improve uncertainty calibration. In order to
create a DE of sizeM (DE-M), the top-M performing models identified by the MCD hyperparameter sweeps
were used as base learners. If N total samples were desired for uncertainty quantification, each of the MCD
baselearners was sampled repeatedly to generate N

M predictions. These predictions were pooled together to
create a sample of size N , from which uncertainty was quantified, the mean prediction generated, and model
metrics calculated. In order to remain consistent with the BBB and MCD experiments, we used N = 50.

F.5 Uncertainty Quantification Method Performance Analysis

F.5.1 MCD Hyperparameter Analysis

For MCD hyperparameter sweeps, metrics were averaged across the INR model reconstruction of the first
three validation set images of Figure 12. However, we also recorded the PSNR of the INRs trained on each
individual image. Box plots for the individual distributions of PSNR for validation Images #1, #2, and #3
are shown in Figure 14. Ideally, PSNR should be consistent across the three images. This is roughly the case
(barring a few outlier points) for models using the Tanh, SoftPlus, Sine, and Silu activation functions. Notice,
however, that in all cases the distribution is broadest for Image #3. This effect is exacerbated for models
using the ReLU activation function, for which PSNR of Image #3 ranges all the way from approximately
0dB to nearly the maximum achieved PSNR, in both the 5- and 20-view cases. This indicates that ReLU in
particular, but all the all activation functions to some extent, struggle to capture features of Image #3.
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Figure 14: Reconstruction PSNR for Images #1-3 of Figure 14, for MCD INRs with different activations
and different numbers of views.

To understand what is unique about Image #3, the image reconstructions of the best overall performing
model are shown, for each activation function and 20-views, in Fig. 15. It is apparent that Sine and SiLU
produce smoother images, while Tanh, Softplus, and ReLU produce spottier images. Except for SoftPlus,
all activation functions manage to capture low-frequency image information and strong edges. However, all
activations struggle to capture the small, low-intensity ellipses in the center of Image #3. Overall, it is clear
that, irrespective of activation function, 20-views are insufficient to robustly capture fine CT image details.
This individual image analysis also suggests that the Sine activation performs the best for MCD, achieving
the highest overall PSNR.

Figure 16 shows boxplots of the average PSNR distributions for MCD models trained in the 5- and 20-view
cases. Each column contains all the models trained with one of the five activation functions, while each row
shows how the PSNR distribution changes as a function of hyperparameter – depth, width, probability of
dropout, or RFF frequency Ω0. Ideally, PSNR would be consistently large across hyperparameter values,
indicating that the architecture is robust and does not require much tuning. In practice, however, we find that
the activation functions are either consistent or high-performing, but not both. As previously mentioned,
Sine achieves the best overall PSNR. However, it is also the least consistent activation function, with its
highest performing models typically being outliers (indicated by diamonds in Figure 16). Softplus, on the
other extreme, is very consistent across hyperparameter values, but performs consistently poorly. Tanh, Silu,
and ReLU have less extreme variations. Their top models perform slightly worse than the best Sine models,
but they perform much more consistently across hyperparameter values (ReLU is a bit inconsistent in width
and probability of dropout). This suggests that the Sine network is potentially the best reconstruction
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Figure 15: Best image reconstructions obtained with each activation function, for 20-view MCD.

network, but significant tuning (in terms of hyperparameter search) effort may be needed to achieve that
solution. For practitioners inclined to perform less tuning, the Tanh and SiLU networks may be a preferred
solution, due to their robustness and competitive top performance.

For ReLU, Tanh, SiLU, and Sine, it should also be noted that the PSNR distributions behave similarly in
the 5- and 20-view cases (with 5 views performing consistently worse than 20 views, as expected) for all
hyperparameters except RFF Ω0. This is consistent with recent results (Tancik et al., 2020) suggesting that
RFF embeddings enable NNs to learn higher frequency image information. In the 5-view case, where the
available data is insufficient for the INR to confidently learn high-frequency image features, performance is
poor for increasing Ω0. In the 20-view case, the increased data enables the network to learn higher frequency
image components. However, because a higher-frequency Ω0 is required to ensure the network can actually
learn those frequencies, best performance tends to occur for larger Ω0. This effect can also be observed
in Figure 17. For 5 views, the reconstruction is blurry for Ω0 = 1 but the network starts to learn smaller
ellipses for Ω0 = 5. By Ω0 = 10, however, the network is trying to learn higher-frequencies than the data
cannot specify, resulting in artifacts, which are exacerbated for Ω0 = 30. In the 20-view case, a similar trend
of reduced blurriness and increasingly sharper images can be seen between Ω0 = 1 an Ω0 = 10. However,
the reconstructed images have much more recognizable details and less artifacts than those obtained with 5
views. It is only for Ω0 = 30 that artifacts start to appear.
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Figure 16: Boxplots of the average PSNR of MCD models trained in the coarse grid search hyperparameter
sweep, for both 5 and 20 views. Each column corresponds to a different activation function and each row
to a sweep over one of the remaining hyperparameters - depth, width, probability of dropout, and RFF
frequency Ω0. Individual diamond points are outliers.
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Figure 17: MCD image reconstruction, in both the 5- and 20-view cases, for each activation function and
RFF frequency Ω0 value. Note that in the 5-view case, Ω0 = 5 enables the network to learn low-frequency
image features, without many artifacts. Smaller Ω0 causes the network to produce overly simple output,
whereas larger Ω0 induces high-frequency artifacts. In the 20-view case, similar observations are made, but
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most activation functions.
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F.6 Comparing the effects of RFF frequency for DEs and MCD

In Section 4, we saw that MCD is an effective approach to obtain calibrated UQ in INRs, compared to DEs.
This is a surprising observation, particularly in relation to the typical belief, in BDL settings (e.g. image
classification), that deep ensembles are a very strong or state-of-the-art baseline (Ovadia et al., 2019).

While we do not have a full justification for this observation, we suspect that the underperformance of DEs
(relative to MCD), in the context of UncertaINR, is related to the capacity that each individual ensemble
member has. In particular, we observed that the RFF frequency Ω0 is a very important hyperparameter.
This frequency is related to the ‘capacity’ of the model, in the sense that higher Ω0 implies ability to learn
higher frequency details of the image, as shown in Fig. 10 of Tancik et al. (2020).

In Fig. 18, we plot the effect of RFF frequency Ω0 for different numbers of sinogram views (5 and 20), for
both MCD and DEs. For 20-view Shepp-Logan data, we observe that an ensemble (blue) achieves roughly
the same PSNR at both Ω0 = 8 and Ω0 = 40 (top right). However, the NLL at Ω0 = 40 is significantly
better (lower) than the lower capacity Ω0 = 8 (bottom right). This indicates that the models with higher
RFF frequencies generate more diverse, but still accurate, predictions and hence obtain better uncertainty
estimates. On the other hand, MCD introduces an alternative effective way of encouraging diverse yet
accurate predictions through different dropout seeds at a set dropout rate p. Thus, dropout combined with
RFF encodings allows the individual models to have sufficient capacity to produce diverse yet accurate
predictions. In contrast, deep ensembles rely solely on the RFF encodings to regulate the model capacity
(and thus, diversity in predictions). This is also corroborated in Fig. 18 by the fact that MCD achieves
better NLL (on Shepp-Logan phantoms) at lower Ω0 (i.e. lower capacity) than deep ensembles.

A more formal understanding of the settings in which deep ensembles are effective, as well as interactions
with MCD, is important future work both for UncertaINR and BDL generally.

Figure 18: The effect of changing RFF frequency Ω0 for PSNR and NLL with MC dropout and Deep
Ensembles.
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F.6.1 BBB Hyperparameter Analysis

The BBB model selection analysis is presented in a similar fashion to that of MCD. The main differences to
MCD are that, in the BBB grid search, metrics are averaged over only the first two validation set images; the
width and RFF search spaces are reduced; and the uncertainty parameters are the KL factor and Gaussian
prior standard deviation (not probability of dropout). Figure 19 shows boxplots of average PSNR as a
function of different hyperparameter values. Unlike MCD, model performance is extremely consistent across
activation functions for every hyperparameter, except for width. We note that Tanh has some variation for
RFF Ω0, following trends similar to those discussed in the case of MCD. Overall, SiLU performs the best,
with ReLU and Tanh following closely behind. Interestingly, Sine performs the worst, failing to reach even
20db. However, greater performance consistency across hyperparameter configurations comes at the price
of weaker top-performing models, which achieve lower PSNR values than those of MCD. Because the image
sets are not identical, these comparisons across approaches should be taken with some reservation.

To understand why there is so much variation in BBB performance as a function of width, consider Figure 20,
where the average PSNR obtained for each width is plotted as a function of prior standard deviation. It
can be seen that the PSNR values are extremely consistent for each network width, across prior standard
deviations. From a Bayesian perspective, the fact that the prior does not affect inference suggests that
the latter is dominated by the model likelihood. However, mean performance decreases as a function of
model width, indicating that the model becomes increasingly misspecified for larger widths. Given the
Gaussian assumptions made in the variational inference specifications of BBB, this suggests that the true
posterior distribution becomes less Gaussian as network width increases, and the variational approximation
deteriorates. When combined with the low performance of BBB relative to other uncertainty quantification
methods, reported in Table 1, this indicates that BBB may not be well suited for uncertainty quantification
of INRs in the medical imaging context.

Furthermore, the overall BBB ablation results appear to mimic Coker et al. (2022)’s observation of mean-
field BNN performance degradation with increased width. In all, BBB’s poor performance is unsurprising
and well-established in the BDL literature (Ovadia et al., 2019) (here BBB=SVI).

Table 5: Top 10 performing MCD models and their performances, for the 5-view case (Top) and 20-view
case (Bottom). Models are ranked by PSNR, but NLL and ECE are also reported.

Rank Activation Depth Width RFF Ω0 PD W. Decay PSNR NLL ECE
1 Sine 4 800 2 0.4 0.001 26.15 -1.437 0.122
2 Sine 3 600 4 0.4 0.157 25.79 -1.799 0.008
3 Sine 3 600 8 0.7 0.366 25.76 -1.579 0.009
4 Sine 3 700 2 0.4 4.46e-4 25.75 -1.533 0.117
5 Sine 4 700 3 0.5 9.36e-4 25.72 -1.390 0.011
6 Sine 3 500 5 0.7 0.077 25.63 2.622 0.161
7 Sine 5 700 3 0.6 0.012 25.62 -1.149 0.123
8 Sine 3 500 5 0.7 0.068 25.62 -1.643 0.007
9 SiLU 8 300 3 0.2 2.68e-7 25.62 0.219 0.389
10 Sine 3 500 4 0.7 0.170 25.59 -1.79 0.083

Rank Activation Depth Width RFF Ω0 PD W. Decay PSNR NLL ECE
1 Sine 3 400 9 0.4 2.06e-5 33.74 0.701 0.134
2 Sine 4 300 12 0.4 2.63e-7 33.41 1.076 0.149
3 Sine 3 500 8 0.5 0.006 33.37 -0.502 0.137
4 Sine 5 500 11 0.4 3.74e-6 33.29 -0.288 0.137
5 Sine 6 400 10 0.2 5.85e-6 33.28 4.654 0.152
6 Sine 6 500 8 0.2 1.117e-4 33.24 2.622 0.161
7 Sine 4 400 9 0.5 0.001 33.21 -0.798 0.143
8 Sine 3 500 10 0.5 2.53e-4 33.20 -0.716 0.129
9 Sine 5 500 11 0.2 7.87e-7 33.18 1.973 0.163
10 Sine 4 500 8 0.5 4.56e-5 33.17 -1.257 0.114
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Figure 19: Boxplots of the average PSNR of BBB models trained in the coarse grid search hyperparameter
sweep, for both 5 and 20 views. Each column corresponds to a different activation function and each row to
a sweep over one of the remaining hyperparameters - depth, width, RFF Ω0, KL factor ξ, and prior standard
deviation σ.

F.6.2 DE Performance Analysis

As described in Appendix F.4.2, DEs of M base learners were created by combining the top-M performing
NNs, according to average PSNR. As reported in Table 1, the best MCD model outperforms the best
BBB model significantly, with at least a 2dB increase in PSNR, as well as reduced NLL and ECE, for
both the 5- and 20-view cases. Thus, we ensembled the top MCD models produced by the second fine
Bayesian hyperparameter sweeps of Section F.6.1. The parameterizations and performance of the 10 best
performing models for both the 5- and 20-view cases are listed in Table 5. Note that, in both cases, the
model architectures vary greatly across models. While the Sine activation function is fairly consistent, the
remaining parameters vary greatly. For example, in the 5-view case, model depths range from 3 to 8, widths
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Figure 20: Boxplots of average PSNR of BBB models of varying width for each value of prior standard
deviation σ, for both 5- and 20-view cases.

0 10 20 30 40 50

# Base Learners

26.10

26.15

26.20

26.25

26.30

26.35

26.40

P
S

N
R

0 10 20 30 40 50

# Base Learners

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

N
L

L

0 10 20 30 40 50

# Base Learners

0.04

0.05

0.06

0.07

0.08

E
C

E

0 10 20 30 40 50

# Base Learners

2.350

2.375

2.400

2.425

2.450

2.475

2.500

M
S

E

×10−3
Deep Ensemble 5-View

0 10 20 30 40 50

# Base Learners

33.8

34.0

34.2

P
S

N
R

0 10 20 30 40 50

# Base Learners

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

N
L

L

0 10 20 30 40 50

# Base Learners

0.080

0.085

0.090

0.095

0.100

E
C

E

0 10 20 30 40 50

# Base Learners

3.7

3.8

3.9

4.0

4.1

4.2

4.3

M
S

E

×10−4
Deep Ensemble 20-View

Figure 21: PSNR, NLL, ECE, and MSE plotted as a function of the number of base-learners used in DEs,
for both the 5- and 20-view cases. Note that each added base learner performs slightly worse in terms of
image reconstruction quality than the network preceding it.

from 300 to 800, RFF Ω0 from 2 to 8, and probability of dropout (PD) from 0.2 to 0.7, all with a variety of
weight decays. These variations increase base learner diversity well beyond different weight values.

DE combines varied base learners to improve uncertainty calibration. In principle, if all base learners achieved
the same PSNR, model performance should only increase (or plateau) and variance should only decrease
(or plateau) as more base-learners are added. In our case, however, each new added base learner had a
slightly lower PSNR on the validation set. To verify how this affected model performance and calibration, we
generated plots of each metric as a function of # of DE base learners. As shown in Figure 21, both PSNR and
MSE improve significantly as the first base learners are added to the ensemble, but begin to worsen for larger
ensembles. Considering that models of worse PSNR are being added with each increase in # of base learners,
it is unsurprising that performance eventually degrades. However, ensembling never reduces performance
below that of using the single best model. NLL and ECE are more sensitive to the number of base learners.
NLL demonstrates the overall best performance gain as a function of baselearners. ECE, however, does not
change consistently with DE size, with large ensembles sometimes even harming performance relative to the
single best model. In all, it is clear that ensembling improves model performance and calibration. However,
larger ensembles have no gains over smaller ensembles and are far more computationally expensive. Thus,
for the final results, presented in Table 1, only ensembles of sizes 2, 5, and 10 are considered.
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Figure 22: Image reconstruction and calibration performance of the final DE models on test set Image #3 for
5-views (top) and 20-views (bottom). Different columns show the results of different ensemble sizes, ranging
from 1 to 10. Top row shows the reconstructed image, middle row the pixelwise coverage, and bottom row
the reliability curve.

Figure 22 illustrates image reconstruction performance for the different ensemble types on test set Image
#3. In the 5-view case, DEs achieve impressive performance improvements, with a PSNR increase of over
1.5dB for DE-5 and an ECE reduction of 0.011 for DE-2. In the 20-view case the baseline is much better
performing. Hence, although there are gains in PSNR, these are not very noticeable in the reconstructed
image. However, the improvements in calibration are larger, with an ECE drop of 0.2 for DE-2 and a clear
improvement in the image reliability curve.

F.7 Final Results Conclusions

The primary goal of this study was to understand the relative performance of different uncertainty quantifi-
cation techniques for UncertaINR, on the Shepp-Logan dataset. Table 1, in the main text, presents metrics
assessing the best-performing MCD, DE-2 MCD, DE-5 MCD, and DE-10 MCD UncertaINRs. These methods
consistently outperformed the classical reconstruction techniques in terms of image quality, while producing
reasonably well calibrated uncertainty estimates. BBB was found to be the worst performing uncertainty
quantification approach, generally producing the poorest calibrated uncertainty estimates and worse image
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Figure 23: Validation results of all approaches for 5-view Shepp-Logan data. From left to right: mean image
reconstruction, variance, MSE, coverage, and reliability diagram.
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Figure 24: Validation results of all approaches for 20-view Shepp-Logan data. From left to right: mean
image reconstruction, variance, MSE, coverage, and reliability diagram.
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Table 6: Ablation Study Differences: Test set results from Table 1 are presented again, in terms of differences
from the average metric value for each image. Specifically, the table reports the average and standard error
of these differences across the 5 test images for each metric.

Reconstruction 5-View Test Set Differences 20-View Test Set Differences
Type PSNR (↑) NLL (↓) ECE (↓) PSNR (↑) NLL (↓) ECE (↓)
FBP −14.862± 0.239 – – −13.203± 0.168 – –
CGLS −5.397± 0.201 – – −8.086± 0.272 – –
EM −0.136± 0.093 – – 0.199± 0.364 – –

SART −0.270± 0.167 – – 1.536± 0.260 – –
SIRT −0.270± 0.167 – – 1.533± 0.261 – –

BBB UINR 2.504± 0.378 1.524± 0.383 0.105± 0.003 −0.749± 0.152 0.782± 2.137 0.013± 0.008
MCD UINR 4.437± 0.244 −0.186± 0.094 −0.015± 0.005 4.175± 0.218 0.329± 0.532 0.007± 0.012

DE-2 MCD UINR 4.473± 0.267 −0.389± 0.063 −0.028± 0.006 4.529± 0.276 −0.153± 0.580 −0.005± 0.011
DE-5 MCD UINR 4.866± 0.402 −0.366± 0.070 −0.032± 0.006 5.109± 0.329 −0.405± 0.511 −0.005± 0.006
DE-10 MCD UINR 4.655± 0.303 −0.583± 0.262 −0.030± 0.006 4.957± 0.144 −0.554± 0.519 −0.010± 0.011

reconstruction than classical techniques in the 20-view regime. MCD consistently outperformed classical
approaches and was generally better calibrated than BBB. Ensembling over MCD base learners, however,
was the most successful approach, outperforming the best classical approach by ∼4dB in the 5-view case
and ∼3dB in the 20-view case, as well as achieving the lowest overall NLL and ECE values.

Given the varying difficulty of images in the Shepp-Logan test set, we did not believe that reporting standard
deviations in Table 1 would accurately reflect reconstruction variability. Instead, Table 6 presents the average
and standard error over the difference from the mean metric value for each image. Calculating the difference
from mean for each image reduces the effect of variability in image difficulty. Notice that the differences
are significant with respect to the standard error across distinct methods, although not as significant across
ensemble sizes for the MCD UINRs.

One further remark regarding Table 1 is that, although the classical reconstruction procedures did not use
the validation set images as a validation set (since no hyperparameters were tuned), image reconstruction
quality still deteriorated in the test set. This indicates that the test set data is actually more challenging
than the validation set. Given that UncertaINR performance did not significantly decline on the test set, we
have strong reason to believe that none of the UncertaINR approaches over-fitted to the validation set.

Figures 23 and 24 visually illustrate the difference in the uncertainty quantification of the different methods,
for the 5- and 20-view cases respectively. Beginning with the 5-view case, the mean predicted image was
fairly blurry for all methods, only capturing low-frequency image components and exhibiting high uncertainty
surrounding edges. Furthermore, note that all reliability curves are very well calibrated in this 5-view case
(after a δ-selection adjustment), except for BBB. Similar trends are present in the 20-view case, but it is
visually harder to distinguish differences in the image output due to the higher quality of all reconstructions.
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G UncertaINR AAPM Performance Assessment

G.1 Dataset

In order to assess the performance of UncertaINR in a realistic setting, we used data from the American
Association of Physicists in Medicine (AAPM) and Mayo Clinic 2016 Low-Dose CT grand challenge (McCol-
lough et al., 2017). Specifically, we use the 8 reconstructed images used as a test set in the CoIL work (Sun
et al., 2021), shown in Figure 25, so as to directly compare to their results. These ground truth images were
reconstructed from real CT scan measurement data.

Figure 25: The 8 AAPM-Mayo test set images used to assess UncertaINR performance.

In order to make the dataset more realistic and compare to the results presented in CoIL, noise was added to
the image sinograms before being input to the models. This artificial data generation pipeline is illustrated
in Figure 26. More specifically, uniformly distributed Gaussian white noise was added to the sinogram, so
as to achieve a desired SNR relative to the original, noise-less sinogram. In this work, we chose to present
results for a noise level achieving sinograms of 40dB SNR.

Figure 26: A flowchart of the artificial data generation pipeline used in this work. (a) The Radon transform
is used to generate a sinogram, corresponding to measurement data, from the ground truth data. (b) In the
noiseless case, this sinogram would be directly used to train our model. Note that even though the sinogram
is noiseless, the reconstruction is not perfect. (c) In a more realistic scenario, Gaussian white noise is added
to the sinogram. (d) This noisy sinogram data is then fed into the model, which produces a reconstructed
image of the ground truth, of lower quality that produced in the noiseless case.

G.2 Final Model Hyperparameters

Given the increased computational costs in running UncertaINR on the AAPM-Mayo dataset, it was not
feasible to perform large-scale hyperparameter sweeps, like those performed in the ablation study presented in
Appendix F. However, coarse searches were performed for each hyperparameter and new training approaches
were used in order to achieve the competitively performing models presented in Table 2. For reproducibility,
we provide the final hyperparameters and training procedures.
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Beyond training insights learned from the hyperparameter study, further improvements were made to Un-
certaINR training in order to achieve competitive reconstruction accuracy on the higher-resolution, higher-
frequency, and noisy Mayo-AAPM data. Specifically, images were zero-padded to ensure that all image
content was contained in the projections when calculating the Radon transform. All UncertaINR were opti-
mized using Adam (not AdamW, to eliminate the computational costs of tuning the weight decay parameter)
and we found that longer training times were needed (on the order of 15,000 epochs). If that many training
epochs cannot be used for some reason, we found that stochastic weight averaging (Izmailov et al., 2018) can
be used to improve reconstruction accuracy by a few decibel for UncertaINRs trained with few epochs. With
the increased number of training iterations, the Sine activation proved too unstable and we found SiLU to be
the best performing activation function, with Tanh a close second. Noting the significance of RFFs from the
ablation study, we found it crucial that the width of the RFF layer be at least as large as the padded image
width. Finally, before adding a regularization term to the UncertaINR loss, our models were not competitive
with state-of-the-art reconstruction techniques. While adding an isotropic TV regularization,

T̃ISO(f) =
∑

x,y∈X×Y
(f(x+ 1, y)− f(x, y))2 + (f(x, y + 1)− f(x, y))2,

boosted performance by a few decibel, the anisotropic approximation of the TV regularizer,

T̃ANISO(f) =
∑

x,y∈X×Y
|f(x+ 1, y)− f(x, y)|+ |f(x, y + 1)− f(x, y)|,

achieved better reconstruction accuracy, especially in the low-measurement (60-view) regime. (at the slight
cost of uncertainty calibration). The relative performance of these two regularizers relative to no TV reg-
ularizer are presented for both GOP and MCD UINR in Table 7. While we do not have a justification for
why the anisotropic approximation performs better than isotropic for reconstruction accuracy, we believe
that regularization/prior exploration would be interesting future work.

Table 7: The affect of different regularizers on image reconstruction performance.

Reconstruction Method Regularization Type 60-View SNR 120-View SNR
None 18.33 18.85

GOP Isotropic 23.62 25.60
Anisotropic 25.97 27.40

None 25.75 27.35
MCD Uinr Isotropic 25.78 28.06

Anisotropic 27.38 28.65

Given all these training insights, the hyperparameters of the top-performing (MCD and HMC) UINRs,
reported in Table 2, are presented in Table 8.

Table 8: Hyperparameters of the top-performing MCD UINRs, HMC UINRs, and INRs reported in Table 2.
Additional HMC-specific hyperparameters, such as burn-in periods, are provided in Appendix G.2.1.

Model # Views Act. Func. Depth Width RFF Ω0 Reg Type Reg Coeff p(Dropout) # Epochs
INR 60 SiLU 5 280 48 Aniso 0.05 0 15,000

MCD UINR 60 SiLU 5 280 35 Aniso 0.03 0.2 15,000
HMC UINR 60 SiLU 4 200 48 Aniso 0.03 N/A N/A

INR 120 SiLU 5 280 60 Aniso 0.05 0 15,000
MCD UINR 120 SiLU 5 280 40 Aniso 0.008 0.2 15,000
HMC UINR 120 SiLU 4 200 60 Aniso 0.03 N/A N/A

G.2.1 HMC-specific hyperparameters

As mentioned in Section 3, all our HMC experiments used the NUTS (Hoffman et al., 2014) implementation
in NumPyro (Phan et al., 2019). All HMC runs ran for 1000 samples and had a burn-in period of 500
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samples, with a thinning factor of 5, so that every fifth post burn-in sample was used at evaluation time. We
initialized the model parameters from a trained model for both GOP and UINRs (corresponding to models in
the GOP and INR rows of Table 2 respectively) to enable faster mixing. For NUTS specific hyperparameters,
we set the max_tree_depth to 8 and target a Metropolis-Hastings acceptance rate of 0.8. During the burn-in
period, NUTS adaptively sets the step-size and (diagonal) mass matrix hyperparameters which are crucial
to the effectiveness of HMC; more details can be found in Hoffman et al. (2014).

HMC-GOP hyperparameters For 60 and 120 views we set the TV regularisation strength to 0.5 and 0.3
respectively. Both values were tuned on a small grid of hyperparameter values.

HMC-UNIR hyperparameters We set the parameter variance, τ2 in Eq. 8, to 1√
γ×width

, with γ = 0.2 and
0.15 respectively for 60 and 120 views. γ, and the regularisation coefficients in Table 8, were tuned on a small
grid of values due to the high computational cost of HMC. Due to the non-convex nature of NN parameter
space, we aggregated the samples from two independent chain runs (from two independently trained MAP
initializations) for HMC-UINR, the maximum number of chains that fit into memory on a 24GB VRAM
Titan RTX GPU.

G.3 Results Analysis

Given the varying difficulty of images in the AAPM test set, we did not believe that reporting standard
deviations in Table 2 would accurately reflect variability. Instead, Table 9 presents the average and standard
error over the difference from the mean metric value for each image. Calculating the difference from mean
for each image reduces the effect of variability in image difficulty. Notice that, generally speaking, our
conclusions from Table 2 regarding the different methods (e.g. MCD provides more calibrated UQ than
ensembling and our INR-based methods outperform their classical counterparts) are statistically significant
relative to standard error across different images.

Table 9: AAPM Differences: AAPM results from Table 2 are presented again, in terms of differences from
the average metric value for each image. Specifically, the table reports the average and standard error of
these differences across the 8 test images for each metric.

Reconstruction 60-Views 120-Views
Method SNR (↑) NLL (↓) ECE (↓) SNR (↑) NLL (↓) ECE (↓)
FBP −13.46± 0.46 – – −11.38± 0.49 – –
EM −9.57± 0.82 – – −9.94± 0.37 – –

CGLS −3.96± 0.22 – – −3.55± 0.26 – –
SIRT −3.15± 0.22 – – −3.81± 0.40 – –
SART −2.50± 0.21 – – −3.72± 0.19 – –

GOP-TV 1.93± 0.10 – – 1.91± 0.07 – –
HMC GOP-TV 1.06± 0.13 −4.70± 0.93 −0.004± 0.011 1.33± 0.12 −4.60± 0.81 −0.007± 0.010

INR 3.21± 0.09 – – 3.32± 0.10 – –
DE-2 UINR 3.25± 0.09 22.45± 3.41 0.118± 0.004 3.34± 0.10 17.62± 2.30 0.114± 0.004
DE-5 UINR 3.26± 0.10 6.32± 0.93 0.070± 0.006 3.34± 0.09 7.57± 1.29 0.075± 0.007
DE-10 UINR 3.25± 0.10 4.78± 0.93 0.038± 0.010 3.33± 0.09 5.11± 1.20 0.054± 0.008
MCD UINR 3.34± 0.11 −5.55± 0.72 −0.029± 0.005 3.14± 0.13 −4.98± 0.61 −0.040± 0.006

DE-2 MCD UINR 3.41± 0.11 −5.68± 0.77 −0.044± 0.004 3.20± 0.13 −5.05± 0.64 −0.052± 0.006
DE-5 MCD UINR 3.44± 0.11 −5.76± 0.80 −0.055± 0.005 3.22± 0.13 −5.11± 0.66 −0.065± 0.007
DE-10 MCD UINR 3.42± 0.10 −5.79± 0.81 −0.061± 0.004 3.25± 0.13 −5.32± 0.77 −0.055± 0.005

HMC UINR 3.06± 0.09 −6.07± 0.93 −0.033± 0.010 3.01± 0.11 −5.25± 0.75 −0.023± 0.008

G.4 Observed Cold Posterior Type Effect

We observe in Table 2 that there is a decrease in SNR performance of HMC GOP-TV relative to its determin-
istic counterpart GOP-TV (25.10 vs 25.97 for 60 views), the latter corresponding to the maximum-a-posterior
(MAP) point estimate for the posterior, Eq. 6, from which we seek to sample.

This evokes similarities with the recently observed “cold-posterior” effect (CPE) in BDL (Wenzel et al.,
2020). In this setting, one considers a tempered posterior pT (f |S) ∝ exp

(−U(f)
T

)
, where the Bayes’ posterior

corresponds to temperature T = 1 and “cold” posteriors (T < 1) place more weight on parameter regions

54



Published in Transactions on Machine Learning Research (04/2023)

of high posterior probability. In the cold limit T → 0+, the tempered posterior becomes exactly the MAP
point estimate.

For context, the tempered version of Eq. 6 for GOP yields:

pT (f |S) ∝ exp

− 1
2σ2T

|Φ×R|∑
i=1

(
Si −Aif

)2 − λ

T
T (f)

 , (78)

The CPE is the observation that colder posteriors (T < 1) outperforms the standard Bayes’ posterior (T = 1)
in terms of generalization, and understanding its causes has been a topic of recent study in BDL (Wenzel
et al., 2020; Adlam et al., 2020; Aitchison, 2020; Fortuin et al., 2022; Wilson & Izmailov, 2020; Izmailov
et al., 2021; Noci et al., 2021; Nabarro et al., 2022).

Inspired by this line of work, as well as our observation that HMC GOP-TV underperforms MAP GOP-TV
(point estimate) in terms of SNR in Table 2, we studied the effect of tempering posteriors in GOP with HMC
in 27. We find a similar effect to the cold-posterior whereby SNR performance is improved at cold temper-
atures, and even allows tempered GOP-HMC to outperform its deterministic MAP counterpart. However,
we also observe that the colder temperatures are detrimental to the metrics which consider UQ: ECE (which
is purely about UQ) and NLL (which considers both UQ and reconstruction accuracy), presumably because
the tempered sample only samples around the MAP estimate with little diversity in samples.

There are three commonly presumed causes for the cold-posterior effect (Noci et al., 2021): data-curation;
data-augmentation; and prior mispecification. Given that our observation model (Eq. 5) is constructed
by design, and that we use noisy data exactly matching our likelihood model, we rule out data-curation
(proposed by Aitchison (2020) who argue that the CPE is caused by the fact that standard DL datasets,
e.g. CIFAR-10, are well-curated and that standard likelihoods like cross-entropy do not account for this)
as the cause for our observed effect in 27. Likewise, our CT reconstruction setting is very different to
standard DL supervised learning and there is no natural analogue for data-augmentation. This leaves prior
misspecification, in the form of the TV-regularization term in Eq. 78, as a potential cause for our observed
cold-posterior like effect in CT reconstruction.

We note that the grid-of-pixels model uses a simple grid-based pixel-by-pixel dimension array of parameters
without any mention of NNs, and enjoys a convex log-posterior compared to the more complex non-convex
parameter loss landscapes that exist in (B)DL. In this sense, to the best of our knowledge 27 represents the
first suggestion that a cold-posterior effect can occur outside of NN-based models.
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Figure 27: A cold-posterior like effect observed for GOP-TV with HMC for 60-views AAPM.

G.5 UncertaINR AAPM Test Set Outputs

In our main figure of results, Figure 3b, we present the model outputs and metrics for only 1 out of the 8
AAPM test set images, as illustrated in Figure 25. We conclude the paper by presenting the figures for all
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test set images. Note that the observed trends and analysis, as presented in main paper Section 4.3, hold
for the remaining, following test set image results.
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