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Abstract

Tokenization is a critical step in every NLP
system, yet most works treat it as an isolated
component separate from the models they are
building. In this paper, we present a frame-
work to jointly learn next-token prediction and
segmentation from a sequence of characters
or bytes. We evaluate our model on language
modeling benchmarks in English, Chinese, and
Japanese using both character and byte vocab-
ularies. Our model consistently outperforms
baselines on Chinese benchmarks with charac-
ter vocabulary and shows significant improve-
ments with byte vocabulary. Further latency
improvements are achieved by adapting differ-
ent pooling strategies while maintaining com-
parable results to the best models. Our main
contributions are threefold: we propose a lan-
guage model that learns to segment the input
sequence, conforming to the desired segmen-
tation prior; we demonstrate that our model
achieves shorter latency than baselines in token
generation; and we show that our model can be
applied to three different languages—English,
Chinese, and Japanese—demonstrating its po-
tential for wider NLP applications. Our source
code will be released on GitHub.

1 Introduction

Tokenization is a critical step in most natural lan-
guage processing (NLP) pipelines. It involves
subdividing text into smaller units—commonly
words or subwords—for model processing. Histori-
cally, word-level tokenization was standard (Mielke
etal., 2021), yet it introduced the out-of-vocabulary
(OOV) issue: any new or rare word at inference
time is absent from the training vocabulary. The
typical remedy is to replace these words with a
special symbol (<oov>), which can degrade model
accuracy.

To alleviate OOV issues, subword-based tok-
enization schemes emerged (Sennrich et al., 2016;
Wu et al.,, 2016; Kudo and Richardson, 2018).

These methods split words into smaller units, sig-
nificantly reducing OOV occurrences. However,
techniques like Byte Pair Encoding (BPE) still re-
quire a separate learning process for the subword
vocabulary. Their simple rule-based design can
lead to suboptimal vocabularies, sometimes com-
promising downstream task performance (Bostrom
and Durrett, 2020). In addition, relying on a fixed
subword vocabulary may not generalize well to
diverse languages and longer sequences.

Motivated by these limitations, recent work has
investigated methods to discover linguistic units
directly from raw text. Segmental language mod-
els (Sun and Deng, 2018) jointly model token se-
quences and their segmentations, effectively learn-
ing Chinese word boundaries in an unsupervised
manner. Similarly, some researchers compress se-
quences of characters into a fixed number of ab-
stract representations (Clark et al., 2022; Behjati
and Henderson, 2023), aiming to reduce sequence
length and computational overhead. Nevertheless,
fixing the number of segments a priori constrains
the expressiveness of these approaches.

More flexible solutions have emerged that
dynamically adjust character pooling based on
learned boundaries. For instance, Nawrot et al.
(2023) introduced a boundary predictor to pool
variable-sized character segments, showing effi-
ciency gains over fixed-length pooling. Despite
these advances, their method—and most neural
language models—still requires the decoder to at-
tend to the entire character history. This setup
can become computationally inefficient for long
sequences, where many characters provide limited
contribution to future predictions.

In this work, we propose an encoder-decoder
architecture that processes character segments in-
stead of the full string at every decoding step.
Building on the idea of boundary prediction (Sun
and Deng, 2018; Nawrot et al., 2023), we employ a
causally masked encoder to detect segmentation



boundaries and produce compact segment-level
representations. The decoder then focuses on the
most relevant segments during cross-attention, ef-
fectively reducing the length of the context used
for prediction. This design improves latency and
retains strong modeling performance, as we show
by evaluating on English, Chinese, and Japanese
corpora.
Our primary contributions are as follows:

* We propose a language model that jointly
learns an internal segmentation of the input,
eliminating the need for an external tokeniza-
tion step.

* We validate our model across multiple lan-
guages (English, Chinese, and Japanese),
showcasing its adaptability and potential for
broader NLP applications.
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Figure 1: The architecture of the proposed Latent Seg-
ment Language Model is illustrated here. x; and xg
represent < BoS > and < eos >, respectively. We
have not shown < bos > and < nzt > for each output
segment in this figure. The segmentation of this se-
quence is represented as Os and 1s in the pooling block.
The input to all model blocks is causally masked; this
means that the ¢-th output is computed from all the in-
puts before and including the i-th input. The dashed
line highlights the information used to decode the 4th
segment, r7xg, during inference.

2 Latent Segment Language Models

2.1 Motivation and Overview

Modern NLP often relies on tokenization heuris-
tics—either word-level or subword-level—to pro-
cess text (Sennrich et al., 2016; Wu et al., 2016;
Kudo and Richardson, 2018). However, such ap-
proaches can suffer from out-of-vocabulary issues
and suboptimal segmentations (Bostrom and Dur-
rett, 2020). To overcome these limitations, we pro-
pose the Latent Segment Language Model (LSLM),
which learns to segment the input sequence on-the-
fly. Specifically, the model captures both a token
sequence X and a sequence of discrete boundary
variables Z, obviating the need for a fixed vocabu-
lary or external tokenizer.

This section first introduces the joint modeling
of X and Z, and an illustrative example is provided
in Appendix A. We then describe our generative
model in detail, explaining how new tokens and
boundaries are produced. Finally, we outline how
the boundary variable z; is parameterized and in-
tegrated into the model via a causally masked en-
coder. By the end of this section, we will have
established the core design of LSLLM before mov-
ing on to our pooling strategies (Section 2.5) and
training objectives (Section 2.6).

2.2 Model Definition

Let a sequence of T' tokens be X = z122...27
where each token z; corresponds to a character or
a UTF-8 byte. We define a boundary sequence
Z = zi1z9...zr where z; € {0,1} indicates
whether a boundary is introduced between z; and
x4 (cf. Nawrot et al., 2023). A value 2z; = 1 signi-
fies that x; concludes a segment, while z; = 0 indi-
cates continuation. Accordingly, the m-th segment,
Y = Ym1Ym2 - - - Ym,L,, consists of consecutive
tokens from X, with length L,,, determined by the
boundaries in Z.

Joint Modeling of X and Z. We define the
LSLM to model the probability p(X, Z) jointly,
thereby learning where segments should begin or
end in a data-driven manner. Formally, we write:

T

logp(X,Z) = (logp(w: | X<, Z<) W
t=1

+logp(z | X<t, Z<t)),

where X<t = X1T2...T¢-1 and Z<t =
2122 ... 2¢—1. Bach boundary variable z; is mod-
eled as a discrete latent variable: z; ~ p(z;t).



Here, p(z; | X<, Z<¢) predicts the next token,
whereas p(z: | X<¢, Z<¢) determines whether the
next position introduces a boundary. By jointly
learning these distributions, the model captures the
intricate interplay between token generation and
segment formation.

2.3 Generative Model P(X, 7)

Before detailing the boundary parametrization, we
first describe how the model generates tokens
and segments in an auto-regressive manner. Sup-
pose a boundary is encountered between tokens
x¢ and ;1. We then aggregate token representa-
tions hq, ho, ..., hy—1 into segment representations
S = s189...8,;, where m = Zf;} z;. The token
encoder enc;,;, updates the hidden state for each
new token x;:

hi = enciop (ht—h $t) .

Next, a segment encoder encqq produces a contex-

tualized representation s, for the entire segment
Sm

/

/
Sy = €NCseq (sm_l, sm).

An auto-regressive decoder then predicts the next
token x; of segment m + 1, conditioning on the
previous segment representations s.,,,:

/
Om+1n = deC(SO:ma Om+1,n—1, ym+1,n—1)7

Tt = Ymy1,n = Softmax(Wop, 1., +b).

Here, ypmt1,n—1 1s either the previously generated
token of segment m + 1 or a special symbol to
provide the initial context for the decoder.

Conversely, if z; = 0, the model continues
within the current segment m. In both scenarios,
the newly generated token x; is fed back to enc;
to maintain a consistent state.

Segment Markers. Each segment Y, is gener-
ated in an auto-regressive fashion, prepended with
a (bos) symbol and appended with a (nxt) symbol.
During inference, the presence of (nxt) indicates
a boundary transition to the next segment. This
mechanism helps the model delineate segments
without requiring any external tokenizer.

2.4 Parametrization of 2

We now detail how the boundary variables z; are
predicted. The LSLM uses a causally-masked en-
coder that processes one token at a time, append-
ing the new token to a list and simultaneously out-
putting a boundary prediction. Once a token is
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Figure 2: An illustration of 2-hops pooling. Here, a se-
quence of 4 tokens and its boundary variables Z are
shown at the bottom. Each representation H is ob-
tained by selectively summing source-node represen-
tations along the solid arrows.

flagged as an endpoint, the collected tokens form
a complete segment, which is then passed to the
segment encoder.

Boundary Symbols. To unify the start and end
of sequences with the segment-based generation,
LSLM introduces a unique symbol ( BoS) at the be-
ginning of X to set the initial context, and an (eos)
symbol at the end of X. In the boundary sequence
Z, an initial ending symbol indicates (BoS) is al-
ready the beginning of the first segment; likewise,
we enforce the model to predict an ending symbol
deterministically upon encountering (eos). This
procedure simplifies segment creation and termi-
nates decoding once (eos) is reached.

Discrete Boundary Variables. Formally, each
z; € {0,1} is sampled from a Bernoulli distribu-
tion:

2 ~ Bemnoulli(py), py=o(T ' FFN(hy)),
2
where FFN is a feed-forward network with ReLU
activations (Vaswani et al., 2017). In preliminary
experiments, we found that summing the output of
FFN (h) to a scalar before applying the sigmoid
produced stable training dynamics.

By predicting z; jointly with x;, the LSLM
learns an end-to-end mechanism for segmenting
and generating text. In the next section (Sec-
tion 2.5), we will discuss how token representations
are aggregated to form segment representations us-
ing either N-hops pooling or dynamic pooling. Fi-
nally, Section 2.6 will describe how we optimize
these discrete boundaries using variational infer-
ence and reparameterization techniques.
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Figure 3: Computing the binary matrix B for dynamic
pooling of token representations (adapted from Bhati
et al., 2021). Zeros in V are converted to 1 — V, and
non-zero entries become zeros (Nawrot et al., 2023).
M denotes the number of segments excluding the one
containing (eos).

2.5 Pooling Token Representations

After segment boundaries are established (Sec-
tion 2.3), we need to compute a concise representa-
tion for each segment. This step is crucial because
the model generates future tokens by conditioning
on these segment-level representations rather than
solely on individual tokens. Formally, to obtain
the representation s,, for a segment terminating
at token x¢, we collect the tokens starting from x¢
and move backward until reaching the boundary
condition z;_,,—1 = 1. As an illustrative example,
if a sequence of tokens has been split into two seg-
ments by their respective boundaries, we gather the
token embeddings in each segment to form distinct
segment vectors.

In this work, we investigate two approaches to
pooling token representations within each segment.
The first, referred to as N-hops, is defined as:

HY =2 HP L+ (1 —z ) H, )

where HY = h; denotes the token embedding of ;.
If 2z, = 1, ’H?_l remains at the current position;
otherwise, we merge ’H?:ll into H}'. By gathering
the final H}¥ for all ¢ such that 2, = 1, we ob-
tain a set of segment representations S. A large N
aggregates most token embeddings in a segment,
offering a richer but more computationally expen-
sive representation; a small N focuses on more
recent tokens, providing a lighter approximation.
While N-hops can theoretically capture all to-
ken embeddings in a segment, it may be ineffi-
cient when many hops are unnecessary. To address
this, we adopt a dynamic pooling (DP) approach

(Nawrot et al., 2023), which constructs a binary
matrix B € RT*M from the boundary sequence
Z (Bhati et al., 2021), where M is the number of
segments excluding any segment containing <eos>.
As shown in Figure 3, multiplying B by the ma-
trix of token embeddings H € R7*P yields seg-
ment representations: S = B H. We then normal-
ize each segment vector by its token count to avoid
biases from varying segment lengths. Although
these representations can be computed in a single
step during training, they are recalculated each time
a <nxt> symbol appears during inference, ensuring
consistency between segment boundaries and their
corresponding representations.

2.6 Optimization

Having defined how to generate tokens and com-
pute segment representations, we now discuss how
to optimize the LSLM when segment boundaries
are not explicitly supervised. Directly marginaliz-
ing over all boundary configurations Z becomes
intractable for long sequences. Therefore, we adopt
variational inference (Kingma and Welling, 2014)
to approximate the true posterior p(z | X ) with a
variational distribution ¢4 (2 | X'). Our objective is
to maximize the Evidence Lower Bound (ELBO):

t

—KL(gg (2| X<o)llp(2))] . 4

where 6 denotes the generative model parameters,
and ¢ denotes the inference model parameters. We
further assume a Beta(a, b) prior for p(z) to cap-
ture a range of segmentation granularities across
languages.

Following Eq. 2, the inference model uses a feed-
forward network to estimate the boundary probabil-
ities. We employ Gumbel-Sigmoid reparameteriza-
tion (Geng et al., 2020) to sample from g4(z | X<¢)
in a differentiable manner. Specifically,

G=cp+9g —d"), (5
where p; is the pre-sigmoid output of the feed-
forward network, and ¢’ and ¢” are independent

Gumbel noises. We then discretize Z; into z; €
{0,1} via:

1, ifz > 0.5,
=07 "*= ©)
0, otherwise.

A straight-through estimator (Bengio et al., 2013)
allows gradients to flow through this discrete step
as though it were continuous.



We optimize 6 and ¢ using an interleaved strat-
egy (Li et al., 2020): we update the generative
model (¢) for k steps, then update the inference
model (¢) for one step. Empirically, even a small k
suffices to align the model with the desired segmen-
tation prior. We incorporate a hyperparameter 3 to
modulate the KL term, balancing the trade-off be-
tween fidelity to the training data and adherence to
the prior. This design ensures that improvements in
one part of the model benefit the other, ultimately
facilitating an end-to-end learning of latent seg-
ments.

3 Experimental Setup

3.1 Datasets

We evaluate LSLM on three typologically distinct
languages: English (fusional), Chinese (isolating),
and Japanese (agglutinative).

English. We use the Penn Treebank (PTB) (Mar-
cus et al., 1993) with preprocessing from Mikolov
et al. (2011), retaining the top 10k words and map-
ping the rest to an <unk> token. We follow Mikolov
et al. (2011) for the train, development, and test
splits.

Chinese. We use the MSR corpus from the Sec-
ond International Chinese Word Segmentation
Bakeoff (Emerson, 2005). Whitespace is removed,
and the bottom 10% of sentences form a develop-
ment set, with the remaining data serving as the
training set. The official MSR testing set is used
without modification.

Japanese. We adopt the “Featured Articles” cor-
pus from Japanese Wikipedia, processed by Mori
et al. (2019), retaining their train/development/test
splits.

To handle characters and bytes, we construct:

* Character vocabulary: For Chinese and
Japanese, we include characters occurring at
least five times in both training and develop-
ment sets. This vocabulary incorporates five
special tokens, comprising the four predefined
special tokens along with the <oov> token to
handle out-of-vocabulary cases.

* Byte vocabulary: For all languages, we en-
code text into UTF-8 bytes, producing a vo-
cabulary of 256 tokens, supplemented with
four special tokens.

For English, we also introduce a character-level vo-
cabulary to capture letters, punctuation, and whites-
pace. Since the preprocessed PTB includes an
<unk> symbol, we split <unk> into five tokens, en-
suring consistent granularity with our other vocab-
ularies.

GLUE Tasks. Additionally, we evaluate LSLM
on English language understanding tasks in GLUE
(Wang et al., 2018). Since GLUE’s official test set
does not provide gold labels, we split the official
development set into two halves for validation and
testing. We follow Penedo et al. (2024) and use
FineWeb-Edu for pre-training, leveraging the same
byte vocabulary for robustness across multiple lan-
guages.

3.2 Models

We integrate our LSLM framework into two
Transformer-based models:

T5-based Encoder-Decoder. We adapt the TS
architecture (Raffel et al., 2020) by applying causal
masking in both encoder and decoder self-attention.
This maintains autoregressive generation while re-
taining T5’s flexibility for sequence-to-sequence
tasks. We compare:

e LSLM: Our proposed latent-segmentation ap-
proach with dynamic or N-hops pooling.

* DTP: The Dynamic Token Pooling baseline
by Nawrot et al. (2023), re-implemented to
match LSLM’s parameter sizes.

* GPT-2: A standard autoregressive Trans-
former (Radford et al., 2019) using 18 layers,
without token shortening, but with the same
hidden dimensions as LSLM.

All models use a 0.1 dropout on attention and feed-
forward layers. We save a checkpoint whenever the
development loss improves, and restore the best
checkpoint for testing. If LSLM’s training loss
spikes above twice the previous best, we revert to
that earlier checkpoint to prevent divergence.

Mistral Variant for Downstream Tasks. To
demonstrate LSLM’s adaptability, we also incorpo-
rate the Transformer variant by Jiang et al. (2023)
for downstream experiments. We add a cross-
attention module to the last n layers, treating them
as a decoder within the LSLM framework. Pre-
training follows the scaling law in Hoffmann et al.



(2022) to optimize FLOPs usage. Details appear in
Appendix B.

During fine-tuning on GLUE, we treat each task
as a text-to-text problem (Raffel et al., 2020), train-
ing the model jointly on multiple tasks to gauge its
instruction-following capability. We evaluate on
the dev set at each epoch’s end, and report test-set
performance using the best dev-set epoch. Unless
stated otherwise, all models are fine-tuned for 10
epochs.

3.3 Results

Table 1 shows Bits-Per-Character (BPC) on En-
glish, Chinese, and Japanese. “DP” denotes LSLM
with dynamic pooling; p indicates the mean of the
Beta prior. Notably, LSLLM with p = 0.7 and cer-
tain (3 values achieves improvements over GPT-2
and DTP on Chinese and Japanese, confirming the
benefit of learnable segmentation in morphologi-
cally diverse languages.

En | Zh(byte) | Ja(byte)
GPT2 1.418 1.785 1.668
DTP
p=4 1.416 1.714 1.682
p=.7 1.379 1.722 1.648
LSLM
DP, p=4, =.5 | 1.506 1.776 1.606
DP, p=4, g=1 | 1.555 1.798 1.612
DP, p=.7, 5=.5 | 1.363 1.748 1.626
DP,p=.7, 8=1 | 1.390 | 1.667* 1.564*

Table 1: BPC on English (En), Chinese (Zh), and
Japanese (Ja). Each entry is the average of five runs.
An asterisk (*) indicates a statistically significant im-
provement over baselines (p < 0.05).

4 Results and Discussion

In this section, we present the evaluation of LSLM
against baseline models on English, Chinese, and
Japanese. We first discuss overall performance
using a byte vocabulary (§4.1), then compare
character- and byte-level vocabularies (§4.2), and
investigate the impact of encoder and decoder size
in Appendix (§C).

4.1 Overall Performance

Table 1 reports BPC for each model, where

T
1
BPC(X) = ~7 Z logy p(x).
t=1

A lower BPC corresponds to better predictive accu-
racy. Across all three languages, LSLM with DP
achieves the lowest BPC, outperforming GPT-2 and
DTP. This improvement is especially pronounced
in Chinese and Japanese, which lack explicit word
boundaries and thus pose greater challenges for
token-based models.

Despite these gains, we observe suboptimal re-
sults when LSLM is poorly configured. For in-
stance, setting a low prior probability leads to
longer segments, negatively impacting English and
Chinese performance. This underscores the im-
portance of hyper-parameter tuning, particularly in
languages where token length can vary widely.

| LSLM DTP GPT-2
Zh | 4677 4921 4837
Ja | 3.093 3119 3.03

Table 2: BPC comparison among LSLM, DTP, and GPT-
2 using character vocabularies. Each result is averaged
over five runs.

4.2 Character vs. Byte Vocabulary

To assess whether LSLLM generalizes across dif-
ferent vocabularies, we also experimented with
character-level vocabularies (Table 2). Overall,
LSLM shows the ability to handle diverse lan-
guages and vocabularies but tends to yield more
consistent improvements when using a byte vocab-
ulary. Specifically, we observe a 4.95% and 0.83%
relative improvement in Chinese and Japanese, re-
spectively, under character-based settings, whereas
the byte-based approach yields 2.74% and 5.09%
gains. This discrepancy is especially notable
for Japanese, where rare Kanji can cause out-of-
vocabulary problems. Byte vocabularies mitigate
such issues by encoding each UTF-8 byte directly,
offering a more robust representation of languages
with large or complex character inventories.

4.3 N-hops vs. Dynamic Pooling

Beyond encoder-decoder capacity, we also com-
pare two distinct pooling strategies: N-hops and
DP. Unlike DP—which aggregates all token repre-
sentations—AN-hops restricts how many previous
representations contribute to each segment. We test
three N settings (0, 1, 3), with results shown in
Table 3.

Performance declines as N moves from 3 to 1,
likely because more tokens are excluded from their
segments. Surprisingly, N=0 recovers performance,



En | Zh (byte) | Ja (byte)
3hops 1389 | 1.701 1.586
Thop 1395 | 1.834 1.699
Ohop 1398 | 1.777 1.634
3hops 1376 | 1.661% 1.581
+ Small encoder

Table 3: LSLM results under different pooling methods.
Hyperparameters match the full model unless otherwise
noted. Asterisks (*) denote statistically significant BPC
improvements over all other variants (paired -test, p <
0.05).

suggesting that self-attention in the token encoder
already encodes sufficient historical context, allevi-
ating the need for explicit pooling hops. In practice,
we find that N-hops can lead to model collapse,
where a boundary is predicted after every token,
thus degrading training stability. By contrast, both
DP and N=0 avoid this uncertainty, providing more
consistent performance.

Interestingly, combining N=3 with a small en-
coder still yields comparable results to the full
model while reducing token-generation latency
from 212 ms to 201 ms on a single V100 GPU,
a 5.47% improvement. This indicates that, with
careful hyperparameter tuning, N-hops can strike a
balance between performance and efficiency.

4.4 Performance on Downstream Tasks

So far, our evaluations have focused on the lan-
guage modeling metric BPC across different con-
figurations. We now investigate whether LSLM’s
latent segmentation also benefits a broader range
of NLP tasks. Table 4 summarizes results on the
GLUE benchmark, where we measure Matthews
correlation for CoLA, Spearman correlation for
STS-B, F1 scores for MRPC and QQP, and accu-
racy for the remaining tasks. An average score
across tasks is also reported.

In both Base and Medium models, LSLM
achieves a higher overall average than DTP. No-
tably, LSLM reaches the highest accuracy on QNLI
(Base and Medium), SST-2 (Base), STS-B (Base),
and MRPC (Medium), implying that jointly learn-
ing segmentation and token prediction is especially
useful for these classification or matching tasks.

Scaling models from Base to Medium yields im-
provements for all approaches, though to varying
degrees. Meanwhile, LSLM shows only marginal
gains in STS-B, and its CoLA performance remains
lower than the other models. A targeted fine-tuning

on CoLA partially addresses this gap: LSLM im-
proves to 18.63 compared to 21.71 for DTP, indi-
cating that its lower multi-task performance stems
partly from domain shift and limited training data.
Overall, these results suggest that while LSLM’s
segmentation approach can enhance certain down-
stream tasks, careful task-specific or fine-grained
tuning may be required to close gaps in low-data
settings.

5 Related Work

In this section, we review two main lines of re-
search that are closely related to our work: Segmen-
tation Models, which focus on learning subword
or morpheme-level boundaries, and Pooling Token
Representations, which aim to reduce sequence
length by aggregating character-level information.
We also highlight key differences between these
methods and our proposed approach.

5.1 Segmentation Models

Several notable segmentation-based approaches
have emerged in recent years. He et al. (2020) intro-
duced a machine translation model where the target
sentences are segmented via dynamic programming
encoding (DPE). DPE is learned by marginalizing
over multiple segmentation hypotheses of the tar-
get, given a BPE dictionary and the source sentence.
In a similar vein, Kawakami et al. (2019) proposed
a segmental neural language model (SNLM) that
represents context as a character sequence, gener-
ating each segment either character by character
or via a single lookup from a lexical memory built
from training n-grams.

Further exploring data-driven segmentation,
Meyer and Buys (2022) developed a model that
learns subword boundaries on Nguni languages,
inspired by SNLM-like architectures. Sun and
Deng (2018) introduced a different approach that
marginalizes segmentation with a fixed maximum
segment length, enabling the discovery of mean-
ingful Chinese words from raw characters when
minimal gold segmentations are provided. More
recently, Behjati and Henderson (2023) proposed a
variant of slot attention (Locatello et al., 2020) to
cluster characters into morpheme-like slots, train-
ing a Transformer decoder to reconstruct the origi-
nal sequence from these slots.

Aside from architectural innovations, re-
searchers have also examined how to robustly eval-
uate segmentation. Ghinassi et al. (2023), for exam-



MNLI | QNLI | SST-2 | RTE | QQP | CoLA | STS-B | MRPC
Model Acc. | Acc. | Acc. | Ace. | F1 Mce. | Spear. F1 Ave.
Base (100M)
LSLM | 7048 | 79.01 | 85.77 | 63.50 | 80.53 | 1.43 75.05 81.04 | 67.10
DTP 69.71 | 78.13 | 84.86 | 59.12 | 79.09 | 3.55 74.09 81.25 | 66.22
Medium (400M)
LSLM | 7395 | 81.43 | 84.63 | 66.42 | 83.01 | 9.18 75.05 84.59 | 69.78
DTP 75.06 | 80.04 | 87.15 | 65.69 | 84.19 | 1.34 78.04 83.54 | 69.38

Table 4: Performance of models on GLUE tasks. The numbers in parentheses indicate the approximate number of

parameters in each model.

ple, highlighted potential biases in common metrics
such as Pk (Beeferman et al., 1999) and compared
various model architectures and sentence encod-
ings for linear text segmentation. Their work un-
derscores the challenges in fairly benchmarking
segmentation performance, calling for more com-
prehensive baselines and metrics.

5.2 Pooling Token Representations

Another line of research focuses on reducing se-
quence length by pooling character-level represen-
tations into more compact forms. Since charac-
ters often carry less information individually than
words, pooling can significantly cut down on com-
putational cost. For instance, CANINE (Clark et al.,
2022) uses a convolutional layer to compress char-
acter sequences, then upsamples the shorter repre-
sentations back to the original length to facilitate
sequence tagging. CHARFORMER (Tay et al.,
2022) adopts a gradient-based subword tokeniza-
tion, computing each character embedding as a
weighted sum over multiple stride-based subword
candidates.

Among these pooling-oriented methods, the
work by Nawrot et al. (2023) is most similar to
ours. They employ two encoders—one operating
on raw token representations, and another for con-
textualization—coupled with an auxiliary loss to
avoid trivial segmentation (i.e., predicting a bound-
ary for every token). Unlike their model, we do
not restore the sequence to its original length after
pooling, focusing instead on a more direct segment-
level representation that avoids extra upsampling
steps.

Overall, these segmentation and pooling strate-
gies demonstrate the diverse ways in which NLP
systems can learn boundaries or reduce sequence
length. Our approach draws on elements of both
lines of work—dynamic segmentation and token

pooling—while introducing an encoder-decoder
framework that jointly models boundaries and to-
ken generation without re-expanding pooled repre-
sentations.

6 Conclusion and Future Directions

We have introduced a novel language model,
LSLM, that segments an input sequence and pools
tokens within each segment to improve both per-
plexity and latency. In particular, we explore two
distinct pooling methods: Dynamic Pooling (DP)
for fine-grained representation and N-hops for a
faster, coarse-grained strategy. Experiments on En-
glish, Chinese, and Japanese language modeling
benchmarks show that LSLM effectively predicts
future tokens, including scenarios where the en-
coder is under-parameterized. In such cases, com-
bining a smaller encoder with N-hops achieves per-
formance comparable to our best full model while
offering reduced token-generation latency. Fur-
thermore, our model generalizes well to different
vocabularies; when tested on Chinese and Japanese
characters, LSLLM outperforms the DTP baseline.
Overall, these findings demonstrate the viabil-
ity of joint segmentation and token pooling for
efficient sequence modeling. By incorporating a
strong inductive bias in the inference model—one
that guides segmentation toward meaningful bound-
aries—LSLM is able to reduce computational over-
head without compromising predictive accuracy.

Future Directions. Going forward, we plan to in-
vestigate decision-tree-based segmentation, which
may more effectively capture morphological struc-
tures and mitigate model-collapsing behaviors. We
also intend to expand LSLM to additional lan-
guages and domains, further evaluating its capacity
for generalization and applicability in broader nat-
ural language processing tasks.



7 Limitations

Despite the promising results achieved by LSLM,
several limitations warrant attention.

Training Cost and Memory Usage. Compared
to GPT-2, training LSLM incurs higher computa-
tional overhead due to its encoder-decoder architec-
ture. Each segment triggers a new decoding step,
requiring gradients to be back-propagated for every
segment. This leads to increased time and memory
consumption, posing challenges for large-scale or
resource-constrained environments.

Hyperparameter Sensitivity. LSLM introduces
multiple new hyperparameters (e.g., boundary pri-
ors, pooling strategies) that can be difficult to tune.
Poor configurations may cause model collapse, as
noted in the results section, necessitating extensive
experimentation and fine-tuning. Automated hyper-
parameter optimization techniques (e.g., Bayesian
optimization or evolutionary strategies) could po-
tentially mitigate this issue and reduce the manual
search burden.

Scalability and Large Models. It remains un-
clear how well LSLM scales to significantly larger
models or massive datasets. While recent lan-
guage models often exhibit emergent abilities at
larger scales, our experiments have been lim-
ited to relatively small-scale settings. Evaluat-
ing LSLM in conjunction with larger parameter
budgets and more extensive corpora would clarify
whether its segmentation and pooling mechanisms
can maintain effectiveness under substantial growth
in model and data size.

Lack of Downstream Fine-tuning. Finally, we
have not yet explored applying LSLM to down-
stream tasks (e.g., sentiment analysis or machine
translation). Fine-tuning on specific applications
could offer deeper insights into LSLLM’s practical
advantages, particularly regarding how learned seg-
ments might enhance domain adaptation or task-
specific performance. A thorough evaluation on
multiple downstream benchmarks would help as-
certain the model’s full utility.

Summary. In summary, while LSLM demonstrates
promise in improving token segmentation and pool-
ing, these limitations must be addressed to real-
ize its potential in real-world scenarios. Future
research should focus on optimizing training effi-
ciency, examining scalability under larger settings,
and fine-tuning the model for targeted NLP tasks.

Such efforts will help advance LSLM’s applicabil-
ity and performance across a broader spectrum of
language processing challenges.
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A Ilustrative Example

For instance, consider a short sequence of four
tokens {x1, 2, x3, x4}. If the boundary variables
are {z1 = 0, 20 = 1, 23 = 0, z4 = 1}, then we
form two segments:

Y1 ={x1, 22}, Yo ={x3, x4}

Here, z9 = 1 ends the first segment at position 2,
and z4 = 1 closes the second segment at the end of
the sequence. Such flexibility allows the model to
discover meaningful segmentations without relying
on any predefined subword rules.

B Model Hyper-parameters

In all experiments except the ablation study, we
employed a 14-layer Transformer encoder. Four
layers function as the character encoder, while the
remaining 10 layers serve as the segment encoder,
processing the pooled representations. The decoder
is a 4-layer Transformer operating on segmented
sequences Y;,,. It has access to all previous segment
representations sj,,,_, for cross-attention compu-
tation. Unless specified otherwise, the hidden di-
mension of each Transformer layer is 512, and
the intermediate feed-forward dimension is 2048.
Attention is split into eight heads in the segment en-
coder and four heads in both the character encoder
and decoder.

Models were trained for 125,000 steps using
the AdamW optimizer with a batch size of 64, a
learning rate of 3e-4, 10,000 warm-up updates, and
weight decay of le-4. Training data was divided
into equal-length sequences, disregarding sentence
boundaries, with chunk sizes of 150 for English
and 256 for Chinese and Japanese.

For the downstream tasks, the Base model con-
sists of 12 layers: two layers as the character en-
coder, eight layers as the segment encoder, and
the final two layers as the character decoder. Each
Transformer layer has a hidden dimension of 768
and an intermediate feed-forward dimension of
3072. To ensure optimal utilization of training
FLOPs, we follow the scaling law studied by Hoff-
mann et al. (2022) for pre-training. With this con-
figuration, the model was trained for 19k steps.
The Medium model consists of 24 layers: six lay-
ers each for the character encoder and decoder, and
12 layers for the segment encoder. Each Trans-
former layer has a hidden dimension of 1024 and
an intermediate feed-forward dimension of 4096.
This model was trained for 67k steps. Both models
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were trained with a batch size of 128 sequences.
Each sequence consists of 1024 bytes. The learning
rate was set to 3e-4 for the Base model and 2.5e-4
for the Medium model. Both models had 2,000
warm-up steps and a weight decay rate of 0.1.

En Ch(byte) | Ja(byte)
Full model 1.363*% | 1.667% 1.564
Small encoder | 1.442 1.772 1.572
Small decoder | 1.415 1.824 1.718
Both small 1.459 1.806 1.658

Table 5: BPC with smaller encoder or decoder vs. the
full LSLM. Asterisks (*) indicate significant gains over
all smaller variants (Student’s t-test, p < 0.05).

C Impact of Encoder-Decoder Sizes

While LSLM effectively pools token representa-
tions into shorter segments, its token encoder and
decoder must still process each token in the se-
quence. To explore possible efficiency gains, we
reduce their parameter sizes and assess the effect
on performance. Specifically, we set the number of
layers to 2, the hidden dimension to 128, and split
the attention into 2 heads. Residual connections are
omitted whenever dimension mismatches occur.

Table 5 presents a comparison under this smaller
configuration. We observe that both English and
Chinese experience performance drops when the
encoder or decoder is under-parameterized, sug-
gesting these languages benefit more from larger
model capacity. In contrast, the Japanese model
with a small encoder remains on par with the full
model, indicating that its agglutinative morphol-
ogy, in which words are composed of multiple mor-
phemes, is easier to segment and model even with
fewer parameters.

We hypothesize that the smaller decoder strug-
gles to leverage the encoder’s contextual signals,
especially in languages requiring extensive mor-
phological or syntactic analysis. This aligns with
earlier observations of negative results: a reduced
decoder can diminish the model’s ability to han-
dle long sequences effectively. For Japanese, each
morpheme contributes incremental meaning, en-
abling an under-parameterized inference module to
segment the language with less performance loss
compared to English or Chinese.
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Latency (ms)
GPT2 212
DTP

p=4 174
p=.7 214

LSLM
Full model, DP, p=.4 165

Small encode,

3hops, p=.7 201
Full model, DP, p=.7 212

Table 6: Latency (in milliseconds) for different models
and configurations.
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