
Latent Segment Language Models:
A Tokenization-Free Approach

Anonymous ACL submission

Abstract001

Tokenization is a critical step in every NLP002
system, yet most works treat it as an isolated003
component separate from the models they are004
building. In this paper, we present a frame-005
work to jointly learn next-token prediction and006
segmentation from a sequence of characters007
or bytes. We evaluate our model on language008
modeling benchmarks in English, Chinese, and009
Japanese using both character and byte vocab-010
ularies. Our model consistently outperforms011
baselines on Chinese benchmarks with charac-012
ter vocabulary and shows significant improve-013
ments with byte vocabulary. Further latency014
improvements are achieved by adapting differ-015
ent pooling strategies while maintaining com-016
parable results to the best models. Our main017
contributions are threefold: we propose a lan-018
guage model that learns to segment the input019
sequence, conforming to the desired segmen-020
tation prior; we demonstrate that our model021
achieves shorter latency than baselines in token022
generation; and we show that our model can be023
applied to three different languages—English,024
Chinese, and Japanese—demonstrating its po-025
tential for wider NLP applications. Our source026
code will be released on GitHub.027

1 Introduction028

Tokenization is a critical step in most natural lan-029

guage processing (NLP) pipelines. It involves030

subdividing text into smaller units—commonly031

words or subwords—for model processing. Histori-032

cally, word-level tokenization was standard (Mielke033

et al., 2021), yet it introduced the out-of-vocabulary034

(OOV) issue: any new or rare word at inference035

time is absent from the training vocabulary. The036

typical remedy is to replace these words with a037

special symbol (<oov>), which can degrade model038

accuracy.039

To alleviate OOV issues, subword-based tok-040

enization schemes emerged (Sennrich et al., 2016;041

Wu et al., 2016; Kudo and Richardson, 2018).042

These methods split words into smaller units, sig- 043

nificantly reducing OOV occurrences. However, 044

techniques like Byte Pair Encoding (BPE) still re- 045

quire a separate learning process for the subword 046

vocabulary. Their simple rule-based design can 047

lead to suboptimal vocabularies, sometimes com- 048

promising downstream task performance (Bostrom 049

and Durrett, 2020). In addition, relying on a fixed 050

subword vocabulary may not generalize well to 051

diverse languages and longer sequences. 052

Motivated by these limitations, recent work has 053

investigated methods to discover linguistic units 054

directly from raw text. Segmental language mod- 055

els (Sun and Deng, 2018) jointly model token se- 056

quences and their segmentations, effectively learn- 057

ing Chinese word boundaries in an unsupervised 058

manner. Similarly, some researchers compress se- 059

quences of characters into a fixed number of ab- 060

stract representations (Clark et al., 2022; Behjati 061

and Henderson, 2023), aiming to reduce sequence 062

length and computational overhead. Nevertheless, 063

fixing the number of segments a priori constrains 064

the expressiveness of these approaches. 065

More flexible solutions have emerged that 066

dynamically adjust character pooling based on 067

learned boundaries. For instance, Nawrot et al. 068

(2023) introduced a boundary predictor to pool 069

variable-sized character segments, showing effi- 070

ciency gains over fixed-length pooling. Despite 071

these advances, their method—and most neural 072

language models—still requires the decoder to at- 073

tend to the entire character history. This setup 074

can become computationally inefficient for long 075

sequences, where many characters provide limited 076

contribution to future predictions. 077

In this work, we propose an encoder-decoder 078

architecture that processes character segments in- 079

stead of the full string at every decoding step. 080

Building on the idea of boundary prediction (Sun 081

and Deng, 2018; Nawrot et al., 2023), we employ a 082

causally masked encoder to detect segmentation 083

1

boundaries and produce compact segment-level084

representations. The decoder then focuses on the085

most relevant segments during cross-attention, ef-086

fectively reducing the length of the context used087

for prediction. This design improves latency and088

retains strong modeling performance, as we show089

by evaluating on English, Chinese, and Japanese090

corpora.091

Our primary contributions are as follows:092

• We propose a language model that jointly093

learns an internal segmentation of the input,094

eliminating the need for an external tokeniza-095

tion step.096

• We validate our model across multiple lan-097

guages (English, Chinese, and Japanese),098

showcasing its adaptability and potential for099

broader NLP applications.100

Token Encoder

Pooling

Segment Encoder

Token Decoder

x1

q

1

x2

q

0

x3

q

1

x4

q

0

x5

q

0

x6

q

1

x7

q

0

x8

q

1

s1

s
′
1

x2x3

s2

s
′
2

x4x5x6

s3

s
′
3

x7x8

Figure 1: The architecture of the proposed Latent Seg-
ment Language Model is illustrated here. x1 and x8

represent < BoS > and < eos >, respectively. We
have not shown < bos > and < nxt > for each output
segment in this figure. The segmentation of this se-
quence is represented as 0s and 1s in the pooling block.
The input to all model blocks is causally masked; this
means that the i-th output is computed from all the in-
puts before and including the i-th input. The dashed
line highlights the information used to decode the 4th
segment, x7x8, during inference.

2 Latent Segment Language Models 101

2.1 Motivation and Overview 102

Modern NLP often relies on tokenization heuris- 103

tics—either word-level or subword-level—to pro- 104

cess text (Sennrich et al., 2016; Wu et al., 2016; 105

Kudo and Richardson, 2018). However, such ap- 106

proaches can suffer from out-of-vocabulary issues 107

and suboptimal segmentations (Bostrom and Dur- 108

rett, 2020). To overcome these limitations, we pro- 109

pose the Latent Segment Language Model (LSLM), 110

which learns to segment the input sequence on-the- 111

fly. Specifically, the model captures both a token 112

sequence X and a sequence of discrete boundary 113

variables Z, obviating the need for a fixed vocabu- 114

lary or external tokenizer. 115

This section first introduces the joint modeling 116

of X and Z, and an illustrative example is provided 117

in Appendix A. We then describe our generative 118

model in detail, explaining how new tokens and 119

boundaries are produced. Finally, we outline how 120

the boundary variable zt is parameterized and in- 121

tegrated into the model via a causally masked en- 122

coder. By the end of this section, we will have 123

established the core design of LSLM before mov- 124

ing on to our pooling strategies (Section 2.5) and 125

training objectives (Section 2.6). 126

2.2 Model Definition 127

Let a sequence of T tokens be X = x1x2 . . . xT 128

where each token xt corresponds to a character or 129

a UTF-8 byte. We define a boundary sequence 130

Z = z1z2 . . . zT where zt ∈ {0, 1} indicates 131

whether a boundary is introduced between xt and 132

xt+1 (cf. Nawrot et al., 2023). A value zt = 1 signi- 133

fies that xt concludes a segment, while zt = 0 indi- 134

cates continuation. Accordingly, the m-th segment, 135

Ym = ym,1ym,2 . . . ym,Lm consists of consecutive 136

tokens from X , with length Lm determined by the 137

boundaries in Z. 138

Joint Modeling of X and Z. We define the 139

LSLM to model the probability p(X,Z) jointly, 140

thereby learning where segments should begin or 141

end in a data-driven manner. Formally, we write: 142

log p(X,Z) =

T∑
t=1

(
log p(xt | X<t, Z<t)

+ log p(zt | X≤t, Z<t)
)
,

(1) 143

where X<t = x1x2 . . . xt−1 and Z<t = 144

z1z2 . . . zt−1. Each boundary variable zt is mod- 145

eled as a discrete latent variable: zt ∼ p(zt; t). 146

2

Here, p(xt | X<t, Z<t) predicts the next token,147

whereas p(zt | X≤t, Z<t) determines whether the148

next position introduces a boundary. By jointly149

learning these distributions, the model captures the150

intricate interplay between token generation and151

segment formation.152

2.3 Generative Model P (X,Z)153

Before detailing the boundary parametrization, we154

first describe how the model generates tokens155

and segments in an auto-regressive manner. Sup-156

pose a boundary is encountered between tokens157

xt and xt−1. We then aggregate token representa-158

tions h1, h2, . . . , ht−1 into segment representations159

S = s1s2 . . . sm where m =
∑t−1

i=1 zi. The token160

encoder enctok updates the hidden state for each161

new token xt:162

ht = enctok
(
ht−1, xt

)
.163

Next, a segment encoder encseg produces a contex-164

tualized representation s′m for the entire segment165

sm:166

s′m = encseg
(
s′m−1, sm

)
.167

An auto-regressive decoder then predicts the next168

token xt of segment m + 1, conditioning on the169

previous segment representations s′0:m:170

om+1,n = dec(s′0:m, om+1,n−1, ym+1,n−1),171

172
xt = ym+1,n = softmax(Wom+1,n + b).173

Here, ym+1,n−1 is either the previously generated174

token of segment m + 1 or a special symbol to175

provide the initial context for the decoder.176

Conversely, if zt = 0, the model continues177

within the current segment m. In both scenarios,178

the newly generated token xt is fed back to enctok179

to maintain a consistent state.180

Segment Markers. Each segment Ym is gener-181

ated in an auto-regressive fashion, prepended with182

a ⟨bos⟩ symbol and appended with a ⟨nxt⟩ symbol.183

During inference, the presence of ⟨nxt⟩ indicates184

a boundary transition to the next segment. This185

mechanism helps the model delineate segments186

without requiring any external tokenizer.187

2.4 Parametrization of z188

We now detail how the boundary variables zt are189

predicted. The LSLM uses a causally-masked en-190

coder that processes one token at a time, append-191

ing the new token to a list and simultaneously out-192

putting a boundary prediction. Once a token is193

H0
1

H1
1

H2
1

1

H0
2

H1
2

H2
2

0

H0
3

H1
3

H2
3

0

H0
4

H1
4

H2
4

1

s1 s2

Figure 2: An illustration of 2-hops pooling. Here, a se-
quence of 4 tokens and its boundary variables Z are
shown at the bottom. Each representation H is ob-
tained by selectively summing source-node represen-
tations along the solid arrows.

flagged as an endpoint, the collected tokens form 194

a complete segment, which is then passed to the 195

segment encoder. 196

Boundary Symbols. To unify the start and end 197

of sequences with the segment-based generation, 198

LSLM introduces a unique symbol ⟨BoS⟩ at the be- 199

ginning of X to set the initial context, and an ⟨eos⟩ 200

symbol at the end of X . In the boundary sequence 201

Z, an initial ending symbol indicates ⟨BoS⟩ is al- 202

ready the beginning of the first segment; likewise, 203

we enforce the model to predict an ending symbol 204

deterministically upon encountering ⟨eos⟩. This 205

procedure simplifies segment creation and termi- 206

nates decoding once ⟨eos⟩ is reached. 207

Discrete Boundary Variables. Formally, each 208

zt ∈ {0, 1} is sampled from a Bernoulli distribu- 209

tion: 210

zt ∼ Bernoulli(pt), pt = σ
(−→
1 ⊤ FFN (ht)

)
,
(2) 211

where FFN is a feed-forward network with ReLU 212

activations (Vaswani et al., 2017). In preliminary 213

experiments, we found that summing the output of 214

FFN (ht) to a scalar before applying the sigmoid 215

produced stable training dynamics. 216

By predicting zt jointly with xt, the LSLM 217

learns an end-to-end mechanism for segmenting 218

and generating text. In the next section (Sec- 219

tion 2.5), we will discuss how token representations 220

are aggregated to form segment representations us- 221

ing either N-hops pooling or dynamic pooling. Fi- 222

nally, Section 2.6 will describe how we optimize 223

these discrete boundaries using variational infer- 224

ence and reparameterization techniques. 225

3

1 0 0 1 0 0 1

Z

0 1 1 1 2 2 2

CUMSUM(Z)-Z

0 1

0 1

0 1

0 1

0 1

0 1

0 1

U ∈ RT×M

-

s.t. U(:, i) = i− 1

0

1

1

1

2

2

2

=

0 1

-1 0

-1 0

-1 0

-2 -1

-2 -1

-2 -1

1 0

0 1/3

0 1/3

0 1/3

0 0

0 0

0 0

where(0=V, 1-V, 0)

column unit-sum

V B

Figure 3: Computing the binary matrix B for dynamic
pooling of token representations (adapted from Bhati
et al., 2021). Zeros in V are converted to 1 − V , and
non-zero entries become zeros (Nawrot et al., 2023).
M denotes the number of segments excluding the one
containing ⟨eos⟩.

2.5 Pooling Token Representations226

After segment boundaries are established (Sec-227

tion 2.3), we need to compute a concise representa-228

tion for each segment. This step is crucial because229

the model generates future tokens by conditioning230

on these segment-level representations rather than231

solely on individual tokens. Formally, to obtain232

the representation sm for a segment terminating233

at token xt, we collect the tokens starting from xt234

and move backward until reaching the boundary235

condition zt−m−1 = 1. As an illustrative example,236

if a sequence of tokens has been split into two seg-237

ments by their respective boundaries, we gather the238

token embeddings in each segment to form distinct239

segment vectors.240

In this work, we investigate two approaches to241

pooling token representations within each segment.242

The first, referred to as N-hops, is defined as:243

Hn
t = ztHn−1

t + (1− zt−1)Hn−1
t−1 , (3)244

where H0
t = ht denotes the token embedding of xt.245

If zt = 1, Hn−1
t remains at the current position;246

otherwise, we merge Hn−1
t−1 into Hn

t . By gathering247

the final HN
t for all t such that zt = 1, we ob-248

tain a set of segment representations S. A large N249

aggregates most token embeddings in a segment,250

offering a richer but more computationally expen-251

sive representation; a small N focuses on more252

recent tokens, providing a lighter approximation.253

While N-hops can theoretically capture all to-254

ken embeddings in a segment, it may be ineffi-255

cient when many hops are unnecessary. To address256

this, we adopt a dynamic pooling (DP) approach257

(Nawrot et al., 2023), which constructs a binary 258

matrix B ∈ RT×M from the boundary sequence 259

Z (Bhati et al., 2021), where M is the number of 260

segments excluding any segment containing <eos>. 261

As shown in Figure 3, multiplying B⊤ by the ma- 262

trix of token embeddings H ∈ RT×D yields seg- 263

ment representations: S = B⊤H. We then normal- 264

ize each segment vector by its token count to avoid 265

biases from varying segment lengths. Although 266

these representations can be computed in a single 267

step during training, they are recalculated each time 268

a <nxt> symbol appears during inference, ensuring 269

consistency between segment boundaries and their 270

corresponding representations. 271

2.6 Optimization 272

Having defined how to generate tokens and com- 273

pute segment representations, we now discuss how 274

to optimize the LSLM when segment boundaries 275

are not explicitly supervised. Directly marginaliz- 276

ing over all boundary configurations Z becomes 277

intractable for long sequences. Therefore, we adopt 278

variational inference (Kingma and Welling, 2014) 279

to approximate the true posterior p(z | X) with a 280

variational distribution qϕ(z | X). Our objective is 281

to maximize the Evidence Lower Bound (ELBO): 282

log p(X) ≥
∑
t

Eqϕ(zt|X≤t) [log pθ(xt|X<t, Z<t) 283

−KL(qϕ(zt|X≤t)||p(z))] . (4) 284

where θ denotes the generative model parameters, 285

and ϕ denotes the inference model parameters. We 286

further assume a Beta(a, b) prior for p(z) to cap- 287

ture a range of segmentation granularities across 288

languages. 289

Following Eq. 2, the inference model uses a feed- 290

forward network to estimate the boundary probabil- 291

ities. We employ Gumbel-Sigmoid reparameteriza- 292

tion (Geng et al., 2020) to sample from qϕ(z | X≤t) 293

in a differentiable manner. Specifically, 294

ẑt = σ
(
p̂t + g′ − g′′

)
, (5) 295

where p̂t is the pre-sigmoid output of the feed- 296

forward network, and g′ and g′′ are independent 297

Gumbel noises. We then discretize ẑt into zt ∈ 298

{0, 1} via: 299

zt =

{
1, if ẑt ≥ 0.5,

0, otherwise.
(6) 300

A straight-through estimator (Bengio et al., 2013) 301

allows gradients to flow through this discrete step 302

as though it were continuous. 303

4

We optimize θ and ϕ using an interleaved strat-304

egy (Li et al., 2020): we update the generative305

model (θ) for k steps, then update the inference306

model (ϕ) for one step. Empirically, even a small k307

suffices to align the model with the desired segmen-308

tation prior. We incorporate a hyperparameter β to309

modulate the KL term, balancing the trade-off be-310

tween fidelity to the training data and adherence to311

the prior. This design ensures that improvements in312

one part of the model benefit the other, ultimately313

facilitating an end-to-end learning of latent seg-314

ments.315

3 Experimental Setup316

3.1 Datasets317

We evaluate LSLM on three typologically distinct318

languages: English (fusional), Chinese (isolating),319

and Japanese (agglutinative).320

English. We use the Penn Treebank (PTB) (Mar-321

cus et al., 1993) with preprocessing from Mikolov322

et al. (2011), retaining the top 10k words and map-323

ping the rest to an <unk> token. We follow Mikolov324

et al. (2011) for the train, development, and test325

splits.326

Chinese. We use the MSR corpus from the Sec-327

ond International Chinese Word Segmentation328

Bakeoff (Emerson, 2005). Whitespace is removed,329

and the bottom 10% of sentences form a develop-330

ment set, with the remaining data serving as the331

training set. The official MSR testing set is used332

without modification.333

Japanese. We adopt the “Featured Articles” cor-334

pus from Japanese Wikipedia, processed by Mori335

et al. (2019), retaining their train/development/test336

splits.337

To handle characters and bytes, we construct:338

• Character vocabulary: For Chinese and339

Japanese, we include characters occurring at340

least five times in both training and develop-341

ment sets. This vocabulary incorporates five342

special tokens, comprising the four predefined343

special tokens along with the <oov> token to344

handle out-of-vocabulary cases.345

• Byte vocabulary: For all languages, we en-346

code text into UTF-8 bytes, producing a vo-347

cabulary of 256 tokens, supplemented with348

four special tokens.349

For English, we also introduce a character-level vo- 350

cabulary to capture letters, punctuation, and whites- 351

pace. Since the preprocessed PTB includes an 352

<unk> symbol, we split <unk> into five tokens, en- 353

suring consistent granularity with our other vocab- 354

ularies. 355

GLUE Tasks. Additionally, we evaluate LSLM 356

on English language understanding tasks in GLUE 357

(Wang et al., 2018). Since GLUE’s official test set 358

does not provide gold labels, we split the official 359

development set into two halves for validation and 360

testing. We follow Penedo et al. (2024) and use 361

FineWeb-Edu for pre-training, leveraging the same 362

byte vocabulary for robustness across multiple lan- 363

guages. 364

3.2 Models 365

We integrate our LSLM framework into two 366

Transformer-based models: 367

T5-based Encoder-Decoder. We adapt the T5 368

architecture (Raffel et al., 2020) by applying causal 369

masking in both encoder and decoder self-attention. 370

This maintains autoregressive generation while re- 371

taining T5’s flexibility for sequence-to-sequence 372

tasks. We compare: 373

• LSLM: Our proposed latent-segmentation ap- 374

proach with dynamic or N-hops pooling. 375

• DTP: The Dynamic Token Pooling baseline 376

by Nawrot et al. (2023), re-implemented to 377

match LSLM’s parameter sizes. 378

• GPT-2: A standard autoregressive Trans- 379

former (Radford et al., 2019) using 18 layers, 380

without token shortening, but with the same 381

hidden dimensions as LSLM. 382

All models use a 0.1 dropout on attention and feed- 383

forward layers. We save a checkpoint whenever the 384

development loss improves, and restore the best 385

checkpoint for testing. If LSLM’s training loss 386

spikes above twice the previous best, we revert to 387

that earlier checkpoint to prevent divergence. 388

Mistral Variant for Downstream Tasks. To 389

demonstrate LSLM’s adaptability, we also incorpo- 390

rate the Transformer variant by Jiang et al. (2023) 391

for downstream experiments. We add a cross- 392

attention module to the last n layers, treating them 393

as a decoder within the LSLM framework. Pre- 394

training follows the scaling law in Hoffmann et al. 395

5

(2022) to optimize FLOPs usage. Details appear in396

Appendix B.397

During fine-tuning on GLUE, we treat each task398

as a text-to-text problem (Raffel et al., 2020), train-399

ing the model jointly on multiple tasks to gauge its400

instruction-following capability. We evaluate on401

the dev set at each epoch’s end, and report test-set402

performance using the best dev-set epoch. Unless403

stated otherwise, all models are fine-tuned for 10404

epochs.405

3.3 Results406

Table 1 shows Bits-Per-Character (BPC) on En-407

glish, Chinese, and Japanese. “DP” denotes LSLM408

with dynamic pooling; p indicates the mean of the409

Beta prior. Notably, LSLM with p = 0.7 and cer-410

tain β values achieves improvements over GPT-2411

and DTP on Chinese and Japanese, confirming the412

benefit of learnable segmentation in morphologi-413

cally diverse languages.414

En Zh(byte) Ja(byte)
GPT2 1.418 1.785 1.668
DTP
p=.4 1.416 1.714 1.682
p=.7 1.379 1.722 1.648

LSLM
DP, p=.4, β=.5 1.506 1.776 1.606
DP, p=.4, β=1 1.555 1.798 1.612
DP, p=.7, β=.5 1.363 1.748 1.626
DP, p=.7, β=1 1.390 1.667* 1.564*

Table 1: BPC on English (En), Chinese (Zh), and
Japanese (Ja). Each entry is the average of five runs.
An asterisk (*) indicates a statistically significant im-
provement over baselines (p < 0.05).

4 Results and Discussion415

In this section, we present the evaluation of LSLM416

against baseline models on English, Chinese, and417

Japanese. We first discuss overall performance418

using a byte vocabulary (§4.1), then compare419

character- and byte-level vocabularies (§4.2), and420

investigate the impact of encoder and decoder size421

in Appendix (§C).422

4.1 Overall Performance423

Table 1 reports BPC for each model, where424

BPC(X) = − 1

T

T∑
t=1

log2 p(xt).425

A lower BPC corresponds to better predictive accu- 426

racy. Across all three languages, LSLM with DP 427

achieves the lowest BPC, outperforming GPT-2 and 428

DTP. This improvement is especially pronounced 429

in Chinese and Japanese, which lack explicit word 430

boundaries and thus pose greater challenges for 431

token-based models. 432

Despite these gains, we observe suboptimal re- 433

sults when LSLM is poorly configured. For in- 434

stance, setting a low prior probability leads to 435

longer segments, negatively impacting English and 436

Chinese performance. This underscores the im- 437

portance of hyper-parameter tuning, particularly in 438

languages where token length can vary widely. 439

LSLM DTP GPT-2
Zh 4.677 4.921 4.837
Ja 3.093 3.119 3.03

Table 2: BPC comparison among LSLM, DTP, and GPT-
2 using character vocabularies. Each result is averaged
over five runs.

4.2 Character vs. Byte Vocabulary 440

To assess whether LSLM generalizes across dif- 441

ferent vocabularies, we also experimented with 442

character-level vocabularies (Table 2). Overall, 443

LSLM shows the ability to handle diverse lan- 444

guages and vocabularies but tends to yield more 445

consistent improvements when using a byte vocab- 446

ulary. Specifically, we observe a 4.95% and 0.83% 447

relative improvement in Chinese and Japanese, re- 448

spectively, under character-based settings, whereas 449

the byte-based approach yields 2.74% and 5.09% 450

gains. This discrepancy is especially notable 451

for Japanese, where rare Kanji can cause out-of- 452

vocabulary problems. Byte vocabularies mitigate 453

such issues by encoding each UTF-8 byte directly, 454

offering a more robust representation of languages 455

with large or complex character inventories. 456

4.3 N-hops vs. Dynamic Pooling 457

Beyond encoder-decoder capacity, we also com- 458

pare two distinct pooling strategies: N-hops and 459

DP. Unlike DP—which aggregates all token repre- 460

sentations—N-hops restricts how many previous 461

representations contribute to each segment. We test 462

three N settings (0, 1, 3), with results shown in 463

Table 3. 464

Performance declines as N moves from 3 to 1, 465

likely because more tokens are excluded from their 466

segments. Surprisingly, N=0 recovers performance, 467

6

En Zh (byte) Ja (byte)
3hops 1.389 1.701 1.586
1hop 1.395 1.834 1.699
0hop 1.398 1.777 1.634
3hops

+ Small encoder
1.376 1.661* 1.581

Table 3: LSLM results under different pooling methods.
Hyperparameters match the full model unless otherwise
noted. Asterisks (*) denote statistically significant BPC
improvements over all other variants (paired t-test, p <
0.05).

suggesting that self-attention in the token encoder468

already encodes sufficient historical context, allevi-469

ating the need for explicit pooling hops. In practice,470

we find that N-hops can lead to model collapse,471

where a boundary is predicted after every token,472

thus degrading training stability. By contrast, both473

DP and N=0 avoid this uncertainty, providing more474

consistent performance.475

Interestingly, combining N=3 with a small en-476

coder still yields comparable results to the full477

model while reducing token-generation latency478

from 212 ms to 201 ms on a single V100 GPU,479

a 5.47% improvement. This indicates that, with480

careful hyperparameter tuning, N-hops can strike a481

balance between performance and efficiency.482

4.4 Performance on Downstream Tasks483

So far, our evaluations have focused on the lan-484

guage modeling metric BPC across different con-485

figurations. We now investigate whether LSLM’s486

latent segmentation also benefits a broader range487

of NLP tasks. Table 4 summarizes results on the488

GLUE benchmark, where we measure Matthews489

correlation for CoLA, Spearman correlation for490

STS-B, F1 scores for MRPC and QQP, and accu-491

racy for the remaining tasks. An average score492

across tasks is also reported.493

In both Base and Medium models, LSLM494

achieves a higher overall average than DTP. No-495

tably, LSLM reaches the highest accuracy on QNLI496

(Base and Medium), SST-2 (Base), STS-B (Base),497

and MRPC (Medium), implying that jointly learn-498

ing segmentation and token prediction is especially499

useful for these classification or matching tasks.500

Scaling models from Base to Medium yields im-501

provements for all approaches, though to varying502

degrees. Meanwhile, LSLM shows only marginal503

gains in STS-B, and its CoLA performance remains504

lower than the other models. A targeted fine-tuning505

on CoLA partially addresses this gap: LSLM im- 506

proves to 18.63 compared to 21.71 for DTP, indi- 507

cating that its lower multi-task performance stems 508

partly from domain shift and limited training data. 509

Overall, these results suggest that while LSLM’s 510

segmentation approach can enhance certain down- 511

stream tasks, careful task-specific or fine-grained 512

tuning may be required to close gaps in low-data 513

settings. 514

5 Related Work 515

In this section, we review two main lines of re- 516

search that are closely related to our work: Segmen- 517

tation Models, which focus on learning subword 518

or morpheme-level boundaries, and Pooling Token 519

Representations, which aim to reduce sequence 520

length by aggregating character-level information. 521

We also highlight key differences between these 522

methods and our proposed approach. 523

5.1 Segmentation Models 524

Several notable segmentation-based approaches 525

have emerged in recent years. He et al. (2020) intro- 526

duced a machine translation model where the target 527

sentences are segmented via dynamic programming 528

encoding (DPE). DPE is learned by marginalizing 529

over multiple segmentation hypotheses of the tar- 530

get, given a BPE dictionary and the source sentence. 531

In a similar vein, Kawakami et al. (2019) proposed 532

a segmental neural language model (SNLM) that 533

represents context as a character sequence, gener- 534

ating each segment either character by character 535

or via a single lookup from a lexical memory built 536

from training n-grams. 537

Further exploring data-driven segmentation, 538

Meyer and Buys (2022) developed a model that 539

learns subword boundaries on Nguni languages, 540

inspired by SNLM-like architectures. Sun and 541

Deng (2018) introduced a different approach that 542

marginalizes segmentation with a fixed maximum 543

segment length, enabling the discovery of mean- 544

ingful Chinese words from raw characters when 545

minimal gold segmentations are provided. More 546

recently, Behjati and Henderson (2023) proposed a 547

variant of slot attention (Locatello et al., 2020) to 548

cluster characters into morpheme-like slots, train- 549

ing a Transformer decoder to reconstruct the origi- 550

nal sequence from these slots. 551

Aside from architectural innovations, re- 552

searchers have also examined how to robustly eval- 553

uate segmentation. Ghinassi et al. (2023), for exam- 554

7

Model MNLI QNLI SST-2 RTE QQP CoLA STS-B MRPC Avg.Acc. Acc. Acc. Acc. F1 Mcc. Spear. F1
Base (100M)

LSLM 70.48 79.01 85.77 63.50 80.53 1.43 75.05 81.04 67.10
DTP 69.71 78.13 84.86 59.12 79.09 3.55 74.09 81.25 66.22

Medium (400M)
LSLM 73.95 81.43 84.63 66.42 83.01 9.18 75.05 84.59 69.78
DTP 75.06 80.04 87.15 65.69 84.19 1.34 78.04 83.54 69.38

Table 4: Performance of models on GLUE tasks. The numbers in parentheses indicate the approximate number of
parameters in each model.

ple, highlighted potential biases in common metrics555

such as Pk (Beeferman et al., 1999) and compared556

various model architectures and sentence encod-557

ings for linear text segmentation. Their work un-558

derscores the challenges in fairly benchmarking559

segmentation performance, calling for more com-560

prehensive baselines and metrics.561

5.2 Pooling Token Representations562

Another line of research focuses on reducing se-563

quence length by pooling character-level represen-564

tations into more compact forms. Since charac-565

ters often carry less information individually than566

words, pooling can significantly cut down on com-567

putational cost. For instance, CANINE (Clark et al.,568

2022) uses a convolutional layer to compress char-569

acter sequences, then upsamples the shorter repre-570

sentations back to the original length to facilitate571

sequence tagging. CHARFORMER (Tay et al.,572

2022) adopts a gradient-based subword tokeniza-573

tion, computing each character embedding as a574

weighted sum over multiple stride-based subword575

candidates.576

Among these pooling-oriented methods, the577

work by Nawrot et al. (2023) is most similar to578

ours. They employ two encoders—one operating579

on raw token representations, and another for con-580

textualization—coupled with an auxiliary loss to581

avoid trivial segmentation (i.e., predicting a bound-582

ary for every token). Unlike their model, we do583

not restore the sequence to its original length after584

pooling, focusing instead on a more direct segment-585

level representation that avoids extra upsampling586

steps.587

Overall, these segmentation and pooling strate-588

gies demonstrate the diverse ways in which NLP589

systems can learn boundaries or reduce sequence590

length. Our approach draws on elements of both591

lines of work—dynamic segmentation and token592

pooling—while introducing an encoder-decoder 593

framework that jointly models boundaries and to- 594

ken generation without re-expanding pooled repre- 595

sentations. 596

6 Conclusion and Future Directions 597

We have introduced a novel language model, 598

LSLM, that segments an input sequence and pools 599

tokens within each segment to improve both per- 600

plexity and latency. In particular, we explore two 601

distinct pooling methods: Dynamic Pooling (DP) 602

for fine-grained representation and N-hops for a 603

faster, coarse-grained strategy. Experiments on En- 604

glish, Chinese, and Japanese language modeling 605

benchmarks show that LSLM effectively predicts 606

future tokens, including scenarios where the en- 607

coder is under-parameterized. In such cases, com- 608

bining a smaller encoder with N-hops achieves per- 609

formance comparable to our best full model while 610

offering reduced token-generation latency. Fur- 611

thermore, our model generalizes well to different 612

vocabularies; when tested on Chinese and Japanese 613

characters, LSLM outperforms the DTP baseline. 614

Overall, these findings demonstrate the viabil- 615

ity of joint segmentation and token pooling for 616

efficient sequence modeling. By incorporating a 617

strong inductive bias in the inference model—one 618

that guides segmentation toward meaningful bound- 619

aries—LSLM is able to reduce computational over- 620

head without compromising predictive accuracy. 621

Future Directions. Going forward, we plan to in- 622

vestigate decision-tree-based segmentation, which 623

may more effectively capture morphological struc- 624

tures and mitigate model-collapsing behaviors. We 625

also intend to expand LSLM to additional lan- 626

guages and domains, further evaluating its capacity 627

for generalization and applicability in broader nat- 628

ural language processing tasks. 629

8

7 Limitations630

Despite the promising results achieved by LSLM,631

several limitations warrant attention.632

Training Cost and Memory Usage. Compared633

to GPT-2, training LSLM incurs higher computa-634

tional overhead due to its encoder-decoder architec-635

ture. Each segment triggers a new decoding step,636

requiring gradients to be back-propagated for every637

segment. This leads to increased time and memory638

consumption, posing challenges for large-scale or639

resource-constrained environments.640

Hyperparameter Sensitivity. LSLM introduces641

multiple new hyperparameters (e.g., boundary pri-642

ors, pooling strategies) that can be difficult to tune.643

Poor configurations may cause model collapse, as644

noted in the results section, necessitating extensive645

experimentation and fine-tuning. Automated hyper-646

parameter optimization techniques (e.g., Bayesian647

optimization or evolutionary strategies) could po-648

tentially mitigate this issue and reduce the manual649

search burden.650

Scalability and Large Models. It remains un-651

clear how well LSLM scales to significantly larger652

models or massive datasets. While recent lan-653

guage models often exhibit emergent abilities at654

larger scales, our experiments have been lim-655

ited to relatively small-scale settings. Evaluat-656

ing LSLM in conjunction with larger parameter657

budgets and more extensive corpora would clarify658

whether its segmentation and pooling mechanisms659

can maintain effectiveness under substantial growth660

in model and data size.661

Lack of Downstream Fine-tuning. Finally, we662

have not yet explored applying LSLM to down-663

stream tasks (e.g., sentiment analysis or machine664

translation). Fine-tuning on specific applications665

could offer deeper insights into LSLM’s practical666

advantages, particularly regarding how learned seg-667

ments might enhance domain adaptation or task-668

specific performance. A thorough evaluation on669

multiple downstream benchmarks would help as-670

certain the model’s full utility.671

Summary. In summary, while LSLM demonstrates672

promise in improving token segmentation and pool-673

ing, these limitations must be addressed to real-674

ize its potential in real-world scenarios. Future675

research should focus on optimizing training effi-676

ciency, examining scalability under larger settings,677

and fine-tuning the model for targeted NLP tasks.678

Such efforts will help advance LSLM’s applicabil- 679

ity and performance across a broader spectrum of 680

language processing challenges. 681

References 682

Doug Beeferman, Adam L. Berger, and John D. Lafferty. 683
1999. Statistical models for text segmentation. Mach. 684
Learn., 34(1-3):177–210. 685

Melika Behjati and James Henderson. 2023. Induc- 686
ing meaningful units from character sequences with 687
dynamic capacity slot attention. Transactions on 688
Machine Learning Research. 689

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 690
2013. Estimating or propagating gradients through 691
stochastic neurons for conditional computation. 692
Preprint, arXiv:1308.3432. 693

Saurabhchand Bhati, Jesús Villalba, Piotr Żelasko, Lau- 694
reano Moro-Velázquez, and Najim Dehak. 2021. Seg- 695
mental Contrastive Predictive Coding for Unsuper- 696
vised Word Segmentation. In Proc. Interspeech 2021, 697
pages 366–370. 698

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod- 699
ing is suboptimal for language model pretraining. In 700
Findings of the Association for Computational Lin- 701
guistics: EMNLP 2020, pages 4617–4624, Online. 702
Association for Computational Linguistics. 703

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John 704
Wieting. 2022. Canine: Pre-training an Efficient 705
Tokenization-Free Encoder for Language Represen- 706
tation. Transactions of the Association for Computa- 707
tional Linguistics, 10:73–91. 708

Thomas Emerson. 2005. The second international Chi- 709
nese word segmentation bakeoff. In Proceedings of 710
the Fourth SIGHAN Workshop on Chinese Language 711
Processing. 712

Xinwei Geng, Longyue Wang, Xing Wang, Bing Qin, 713
Ting Liu, and Zhaopeng Tu. 2020. How does selec- 714
tive mechanism improve self-attention networks? In 715
Proceedings of the 58th Annual Meeting of the Asso- 716
ciation for Computational Linguistics, pages 2986– 717
2995, Online. Association for Computational Lin- 718
guistics. 719

Iacopo Ghinassi, Lin Wang, Chris Newell, and Matthew 720
Purver. 2023. Lessons learnt from linear text segmen- 721
tation: a fair comparison of architectural and sentence 722
encoding strategies for successful segmentation. In 723
Proceedings of the 14th International Conference 724
on Recent Advances in Natural Language Process- 725
ing, pages 408–418, Varna, Bulgaria. INCOMA Ltd., 726
Shoumen, Bulgaria. 727

Xuanli He, Gholamreza Haffari, and Mohammad 728
Norouzi. 2020. Dynamic programming encoding 729
for subword segmentation in neural machine transla- 730
tion. In Proceedings of the 58th Annual Meeting of 731

9

https://doi.org/10.1023/A:1007506220214
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://doi.org/10.18653/v1/2020.acl-main.269
https://doi.org/10.18653/v1/2020.acl-main.269
https://doi.org/10.18653/v1/2020.acl-main.269
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275

the Association for Computational Linguistics, pages732
3042–3051, Online. Association for Computational733
Linguistics.734

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,735
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,736
Diego de Las Casas, Lisa Anne Hendricks, Johannes737
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,738
Katie Millican, George van den Driessche, Bogdan739
Damoc, Aurelia Guy, Simon Osindero, Karen Si-740
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,741
and Laurent Sifre. 2022. Training compute-optimal742
large language models. CoRR, abs/2203.15556.743

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-744
sch, Chris Bamford, Devendra Singh Chaplot, Diego745
de Las Casas, Florian Bressand, Gianna Lengyel,746
Guillaume Lample, Lucile Saulnier, Lélio Re-747
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,748
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-749
thée Lacroix, and William El Sayed. 2023. Mistral750
7b. CoRR, abs/2310.06825.751

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.752
2019. Learning to discover, ground and use words753
with segmental neural language models. In Proceed-754
ings of the 57th Annual Meeting of the Association for755
Computational Linguistics, pages 6429–6441, Flo-756
rence, Italy. Association for Computational Linguis-757
tics.758

Diederik P. Kingma and Max Welling. 2014. Auto-759
encoding variational bayes. In 2nd International760
Conference on Learning Representations, ICLR 2014,761
Banff, AB, Canada, April 14-16, 2014, Conference762
Track Proceedings.763

Taku Kudo and John Richardson. 2018. SentencePiece:764
A simple and language independent subword tok-765
enizer and detokenizer for neural text processing. In766
Proceedings of the 2018 Conference on Empirical767
Methods in Natural Language Processing: System768
Demonstrations, pages 66–71, Brussels, Belgium.769
Association for Computational Linguistics.770

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang771
Kong. 2020. Deep transformers with latent depth. In772
Advances in Neural Information Processing Systems,773
volume 33, pages 1736–1746. Curran Associates,774
Inc.775

Francesco Locatello, Dirk Weissenborn, Thomas Un-776
terthiner, Aravindh Mahendran, Georg Heigold,777
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas778
Kipf. 2020. Object-centric learning with slot atten-779
tion. In Advances in Neural Information Processing780
Systems, volume 33, pages 11525–11538. Curran As-781
sociates, Inc.782

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann783
Marcinkiewicz. 1993. Building a large annotated cor-784
pus of English: The Penn Treebank. Computational785
Linguistics, 19(2):313–330.786

Francois Meyer and Jan Buys. 2022. Subword segmen- 787
tal language modelling for nguni languages. In Find- 788
ings of the Association for Computational Linguistics: 789
EMNLP 2022, pages 6636–6649, Abu Dhabi, United 790
Arab Emirates. Association for Computational Lin- 791
guistics. 792

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, 793
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja, 794
Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Sam- 795
son Tan. 2021. Between words and characters: A 796
brief history of open-vocabulary modeling and tok- 797
enization in nlp. ArXiv, abs/2112.10508. 798

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan 799
Černocký, and Sanjeev Khudanpur. 2011. Extensions 800
of recurrent neural network language model. In 2011 801
IEEE International Conference on Acoustics, Speech 802
and Signal Processing (ICASSP), pages 5528–5531. 803

Shinsuke Mori, Hirotaka Kameko, and Akira Ogawa. 804
2019. Wikitext-JA: A Japanese WikiText Language 805
Modeling Dataset. https://nlp.accms.kyoto-u. 806
ac.jp/wikitext-ja. 807

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and 808
Edoardo Maria Ponti. 2023. Efficient transformers 809
with dynamic token pooling. In Proceedings of the 810
61st Annual Meeting of the Association for Compu- 811
tational Linguistics (Volume 1: Long Papers), pages 812
6403–6417, Toronto, Canada. Association for Com- 813
putational Linguistics. 814

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Al- 815
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, 816
Leandro von Werra, and Thomas Wolf. 2024. The 817
fineweb datasets: Decanting the web for the finest 818
text data at scale. CoRR, abs/2406.17557. 819

Alec Radford, Jeff Wu, Rewon Child, David Luan, 820
Dario Amodei, and Ilya Sutskever. 2019. Language 821
models are unsupervised multitask learners. 822

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 823
ine Lee, Sharan Narang, Michael Matena, Yanqi 824
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 825
limits of transfer learning with a unified text-to-text 826
transformer. Journal of Machine Learning Research, 827
21(140):1–67. 828

Rico Sennrich, Barry Haddow, and Alexandra Birch. 829
2016. Neural machine translation of rare words with 830
subword units. In Proceedings of the 54th Annual 831
Meeting of the Association for Computational Lin- 832
guistics (Volume 1: Long Papers), pages 1715–1725, 833
Berlin, Germany. Association for Computational Lin- 834
guistics. 835

Zhiqing Sun and Zhi-Hong Deng. 2018. Unsupervised 836
neural word segmentation for Chinese via segmental 837
language modeling. In Proceedings of the 2018 Con- 838
ference on Empirical Methods in Natural Language 839
Processing, pages 4915–4920, Brussels, Belgium. 840
Association for Computational Linguistics. 841

10

https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/v1/P19-1645
https://doi.org/10.18653/v1/P19-1645
https://doi.org/10.18653/v1/P19-1645
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://proceedings.neurips.cc/paper_files/paper/2020/file/1325cdae3b6f0f91a1b629307bf2d498-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,842
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon843
Baumgartner, Cong Yu, and Donald Metzler. 2022.844
Charformer: Fast character transformers via gradient-845
based subword tokenization. In International Con-846
ference on Learning Representations.847

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob848
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz849
Kaiser, and Illia Polosukhin. 2017. Attention is all850
you need. In Advances in Neural Information Pro-851
cessing Systems, volume 30. Curran Associates, Inc.852

Alex Wang, Amanpreet Singh, Julian Michael, Felix853
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:854
A multi-task benchmark and analysis platform for nat-855
ural language understanding. In Proceedings of the856
2018 EMNLP Workshop BlackboxNLP: Analyzing857
and Interpreting Neural Networks for NLP, pages858
353–355, Brussels, Belgium. Association for Com-859
putational Linguistics.860

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,861
Mohammad Norouzi, Wolfgang Macherey, Maxim862
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff863
Klingner, Apurva Shah, Melvin Johnson, Xiaobing864
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,865
Taku Kudo, Hideto Kazawa, Keith Stevens, George866
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason867
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,868
Greg Corrado, Macduff Hughes, and Jeffrey Dean.869
2016. Google’s neural machine translation system:870
Bridging the gap between human and machine trans-871
lation. CoRR, abs/1609.08144.872

A Illustrative Example 873

For instance, consider a short sequence of four 874

tokens {x1, x2, x3, x4}. If the boundary variables 875

are {z1 = 0, z2 = 1, z3 = 0, z4 = 1}, then we 876

form two segments: 877

Y1 = {x1, x2}, Y2 = {x3, x4}. 878

Here, z2 = 1 ends the first segment at position 2, 879

and z4 = 1 closes the second segment at the end of 880

the sequence. Such flexibility allows the model to 881

discover meaningful segmentations without relying 882

on any predefined subword rules. 883

B Model Hyper-parameters 884

In all experiments except the ablation study, we 885

employed a 14-layer Transformer encoder. Four 886

layers function as the character encoder, while the 887

remaining 10 layers serve as the segment encoder, 888

processing the pooled representations. The decoder 889

is a 4-layer Transformer operating on segmented 890

sequences Ym. It has access to all previous segment 891

representations s′0:m−1 for cross-attention compu- 892

tation. Unless specified otherwise, the hidden di- 893

mension of each Transformer layer is 512, and 894

the intermediate feed-forward dimension is 2048. 895

Attention is split into eight heads in the segment en- 896

coder and four heads in both the character encoder 897

and decoder. 898

Models were trained for 125,000 steps using 899

the AdamW optimizer with a batch size of 64, a 900

learning rate of 3e-4, 10,000 warm-up updates, and 901

weight decay of 1e-4. Training data was divided 902

into equal-length sequences, disregarding sentence 903

boundaries, with chunk sizes of 150 for English 904

and 256 for Chinese and Japanese. 905

For the downstream tasks, the Base model con- 906

sists of 12 layers: two layers as the character en- 907

coder, eight layers as the segment encoder, and 908

the final two layers as the character decoder. Each 909

Transformer layer has a hidden dimension of 768 910

and an intermediate feed-forward dimension of 911

3072. To ensure optimal utilization of training 912

FLOPs, we follow the scaling law studied by Hoff- 913

mann et al. (2022) for pre-training. With this con- 914

figuration, the model was trained for 19k steps. 915

The Medium model consists of 24 layers: six lay- 916

ers each for the character encoder and decoder, and 917

12 layers for the segment encoder. Each Trans- 918

former layer has a hidden dimension of 1024 and 919

an intermediate feed-forward dimension of 4096. 920

This model was trained for 67k steps. Both models 921

11

https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

were trained with a batch size of 128 sequences.922

Each sequence consists of 1024 bytes. The learning923

rate was set to 3e-4 for the Base model and 2.5e-4924

for the Medium model. Both models had 2,000925

warm-up steps and a weight decay rate of 0.1.926

En Ch(byte) Ja(byte)
Full model 1.363* 1.667* 1.564

Small encoder 1.442 1.772 1.572
Small decoder 1.415 1.824 1.718

Both small 1.459 1.806 1.658

Table 5: BPC with smaller encoder or decoder vs. the
full LSLM. Asterisks (*) indicate significant gains over
all smaller variants (Student’s t-test, p < 0.05).

C Impact of Encoder-Decoder Sizes927

While LSLM effectively pools token representa-928

tions into shorter segments, its token encoder and929

decoder must still process each token in the se-930

quence. To explore possible efficiency gains, we931

reduce their parameter sizes and assess the effect932

on performance. Specifically, we set the number of933

layers to 2, the hidden dimension to 128, and split934

the attention into 2 heads. Residual connections are935

omitted whenever dimension mismatches occur.936

Table 5 presents a comparison under this smaller937

configuration. We observe that both English and938

Chinese experience performance drops when the939

encoder or decoder is under-parameterized, sug-940

gesting these languages benefit more from larger941

model capacity. In contrast, the Japanese model942

with a small encoder remains on par with the full943

model, indicating that its agglutinative morphol-944

ogy, in which words are composed of multiple mor-945

phemes, is easier to segment and model even with946

fewer parameters.947

We hypothesize that the smaller decoder strug-948

gles to leverage the encoder’s contextual signals,949

especially in languages requiring extensive mor-950

phological or syntactic analysis. This aligns with951

earlier observations of negative results: a reduced952

decoder can diminish the model’s ability to han-953

dle long sequences effectively. For Japanese, each954

morpheme contributes incremental meaning, en-955

abling an under-parameterized inference module to956

segment the language with less performance loss957

compared to English or Chinese.958

Latency (ms)
GPT2 212
DTP
p=.4 174
p=.7 214

LSLM
Full model, DP, p=.4 165

Small encode,
3hops, p=.7

201

Full model, DP, p=.7 212

Table 6: Latency (in milliseconds) for different models
and configurations.

12

	Introduction
	Latent Segment Language Models
	Motivation and Overview
	Model Definition
	Generative Model Lg
	Parametrization of Lg
	Pooling Token Representations
	Optimization

	Experimental Setup
	Datasets
	Models
	Results

	Results and Discussion
	Overall Performance
	Character vs. Byte Vocabulary
	N-hops vs. Dynamic Pooling
	Performance on Downstream Tasks

	Related Work
	Segmentation Models
	Pooling Token Representations

	Conclusion and Future Directions
	Limitations
	Illustrative Example
	Model Hyper-parameters
	Impact of Encoder-Decoder Sizes

