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Abstract

Due to the broad range of applications of reinforcement learning (RL), understand-
ing the effects of adversarial attacks against RL model is essential for the safe
applications of this model. Prior works on adversarial attacks against RL mainly
focus on either observation poisoning attacks or environment poisoning attacks.
In this paper, we introduce a new class of attacks named action poisoning attacks,
where an adversary can change the action signal selected by the agent. Compared
with existing attack models, the attacker’s ability in the proposed action poisoning
attack model is more restricted, and hence the attack model is more practical. We
study the action poisoning attack in both white-box and black-box settings. We
introduce an adaptive attack scheme called LCB-H, which works for most RL
agents in the black-box setting. We prove that the LCB-H attack can force any
efficient RL agent, whose dynamic regret scales sublinearly with the total number
of steps taken, to choose actions according to a policy selected by the attacker very
frequently, with only sublinear cost. In addition, we apply LCB-H attack against a
popular model-free RL algorithm: UCB-H. We show that, even in the black-box
setting, by spending only logarithm cost, the proposed LCB-H attack scheme can
force the UCB-H agent to choose actions according to the policy selected by the
attacker very frequently.

1 Introduction

Reinforcement learning (RL), a framework of control-theoretic problem that makes decisions over
time under uncertain environment, has many applications in a variety of scenarios such as recom-
mendation systems [Zhao et al., 2018], autonomous driving [O' Kelly et al., 2018], finance [Liu
et al., 2020] and business management [Nazari et al., 2018], to name a few. As RL models are
being increasingly used in safety critical and security related applications, it is critical to developing
trustworthy RL systems. Understanding the effects of adversarial attacks on RL systems is the first
step towards the goal of safe applications of RL models.

While there is much existing work addressing adversarial attacks on supervised learning models
[Szegedy et al., 2014, Goodfellow et al., 2015, Kurakin et al., 2017, Moosavi-Dezfooli et al., 2017,
Wang et al., 2018, Cohen et al., 2019, Dohmatob, 2019, Wang et al., 2019, Zhang and Zhu, 2019,
Carmon et al., 2019, Pinot et al., 2019, Alayrac et al., 2019, Dasgupta et al., 2019, Cicalese et al.,
2020], the understanding of adversarial attacks on RL models is less complete. Among the limited
existing works on adversarial attacks against RL, they formally or experimentally considers different
types of poisoning attack [Behzadan and Munir, 2017, Huang and Zhu, 2019, Ma et al., 2019, Zhang
et al., 2020, Sun et al., 2021, Rakhsha et al., 2020, 2021]. [Sun et al., 2021] discusses the differences
between the poisoning attacks. In the observation poisoning attack setting, the attacker is able to
manipulate the observations of the agent. Before the agent receives the reward signal or the state
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signal from the environment, the attacker is able to modify the data. In the environment poisoning
setting, the attacker could directly change the underlying environment, i.e., the Markov decision
process (MDP) model.

In this paper, we introduce a suite of novel attacks on RL named action poisoning attacks. In the
proposed action poisoning attacks models, an attacker sits between the agent and the environment and
could change the agent’s action. For example, in auto-driving systems, the attacker could implement
destabilizing forces or manipulate the action signal, so as to change the brake force. Compared with
the observation poisoning or environment poisoning attacks, the ability of the attacker in the action
poisoning attack is more restricted, which brings some design challenges. In particular, compared
with observation poisoning and environment poisoning attacks, the effects of the action poisoning
attack on the change of observation is less direct. Furthermore, when the action space is discrete and
finite, the ability of the action poisoning attacker is severely limited. We note that the goal of this
paper is not to promote action manipulation attacks. Our goal is to understand the potential risks of
action manipulation attacks. Understanding the risks of different kinds of adversarial attacks on RL
is essential for the safe applications of RL model and designing robust RL systems.

In this paper, we investigate action poisoning attacks in both white-box and black-box settings. The
white-box attack setting makes strong assumptions. In particular, the attacker has full information
of the underlying MDP, the agent’s algorithm or the agent’s previous policy models, or all of them.
While it is often unrealistic to exactly know the underlying environment or have the right to obtain the
information of the agent’s model, the understanding of the white-box attacks could provide insights
on how to design black-box attack schemes. In the black-box setting, the attacker has no prior
information of the underlying MDP and does not know the agent’s algorithm. The only information
the attacker has is observations generated from the environment when the agent interacts with the
environment. The black-box setting is much more practical and is suitable for more realistic scenarios.

Contributions: Our main contributions are as follows: (1) We propose an action poisoning attack
model in which the attacker aims to force the agent to learn a policy selected by the attacker (will
be called target policy in the sequel) by changing the agent’s actions to other actions. We use loss
and cost functions to evaluate the effects of the action poisoning attack on a RL agent. The cost
is the cumulative number of times when the attacker changes the agent’s action, and the loss is
the cumulative number of times when the agent does not follow the target policy. It is clearly of
interest to minimize both the cost and loss functions. (2) In the white-box setting, we introduce an
attack strategy named α-portion attack. We show that the α-portion attack strategy can force any
sub-linear-regret RL agent to choose actions according to the target policy specified by the attacker
with sub-linear cost and sub-linear loss. (3) We develop a black-box attack strategy, LCB-H, that
nearly matches the performance of the white-box α-portion attack. To the best of our knowledge,
LCB-H is the first black-box action poisoning attack scheme that provably works against RL agents.
(4) We investigate the impact of the LCH-B attack on UCB-H [Jin et al., 2018], a popular and efficient
model-free Q-learning algorithm, and show that, by spending only logarithm cost, the LCB-H attack
can force the UCB-H agent to choose actions according to the target policy with logarithm loss.

Related work: Existing works on poisoning attacks against RL have studied different types of
adversarial manipulations. [Ma et al., 2019] studies reward poisoning attack against batch RL in which
the attacker is able to gather and modify the collected batch data. [Rakhsha et al., 2020] proposes a
white-box environment poisoning model in which the attacker could manipulate the original MDP to
a poisoned MDP. [Behzadan and Munir, 2017, Zhang et al., 2020] study online white-box reward
poisoning attacks in which the attacker could manipulate the reward signal before the agent receives it.
[Sun et al., 2021] proposes a practical black-box poisoning algorithm called VA2C-P. Their empirical
results show that VA2C-P works for deep policy gradient RL agents without any prior knowledge of
the environment. [Rakhsha et al., 2021] develops a black-box reward poisoning attack strategy called
U2, that can provably attack any efficient RL algorithms. There are also some interesting works that
focus on attacking multi-arm bandit problems. In particular, [Jun et al., 2018, Liu and Shroff, 2019]
investigate reward poisoning attacks and show that the attacker can manipulate the behavior of the
bandit algorithms by spending only logarithm cost. [Guan et al., 2020] considers a reward poisoning
attack model where an adversary attacks with a certain probability at each round.[Liu and Lai, 2020]
proposes an action poisoning attack strategy against multi-arm bandit problems. Existing work on
action poisoning attacks against RL is limited. There are some empirical studies in deep RL [Pinto
et al., 2017, Lee et al., 2020, Sun et al., 2021].
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Potential negative societal impacts: The attack strategies discussed in this paper could potentially
be used by malicious users to attack real RL systems. The goal of this paper is to understand and
highlight the potential negative consequences of action manipulation attacks, with the hope to raise
awareness of this issue in the research community. It is also our intention to design robust RL
algorithms that can defend against such attacks in our future work.

2 Problem Formulation

Consider a tabular episodic MDPM = (S,A, H, P,R), where S is the state space with |S| = S,
A is the action space with |A| = A, H ∈ Z+ is the number of steps in each episode, Ph :
S × A × S → [0, 1] is the probability transition function which maps state-action-state pair to a
probability, Rh : S × A → [0, 1] represents the reward function in the step h. In this paper, the
probability transition functions and the reward functions can be different at different steps.

The agent interacts with the environment in a sequence of episodes. The total number of episodes is
K. In each episode k ∈ [K] of this MDP, the initial states s1 is generated randomly by a distribution
or chosen by the environment. Initial states may be different between episodes. At each step h ∈ [H]
of an episode, the agent observes the state sh and chooses an action ah. After receiving the action, the
environment generates a random reward rh ∈ [0, 1] derived from a distribution with mean Rh(sh, ah)
and next state sh+1 which is drawn from the distribution Ph(·|sh, ah). Ph(·|s, a) represents the
probability distribution over states if action a is taken for state s. The agent stops interacting with
environment after H steps and starts another episode.

The policy π of the agent is expressed as a mappings π : S × [H]×A → [0, 1]. πh(a|s) represents
the probability of taking action a in state s under stochastic policy π at step h. We have that∑
a∈A πh(a|s) = 1. A deterministic policy is a policy that maps each state to a particular action.

For notation convenience, for a deterministic policy π, we use πh(s) to denote the action a which
satisfies πh(a|s) = 1. Interacting with the environmentM, the policy induces a random trajectory
{s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH , sH+1}.
We use V πh : S → R to denote the value function at step h under policy π. Given a policy π and step h,
the value function of a state s ∈ S and theQ-functionQπh : S×A → R of a state-action pair (s, a) are

defined as: V πh (s) = E
[∑H

h′=h rh′ |sh = s, π
]

and Qπh(s, a) = E
[∑H

h′=h rh′ |sh = s, ah = a, π
]
,

which represent the expected total rewards received from step h to H , under policy π, starting
from state s and state-action pair (s, a) respectively. It is well-known that the value function and
Q-function satisfy the Bellman consistency equations. For notation simplicity, we denote V πH+1 = 0,
QπH+1 = 0 and PhV πh+1(s, a) = Es′∼Ph(·|s,a)[V

π
h+1(s′)].

In this paper, we assume that the state space S and action space A are finite sets, and the planning
horizonH is finite. Reward rh is bounded by [0, 1], so the value function andQ-function are bounded.
Under this case, there always exists an optimal policy π∗ such that π∗ maximize the value function
and Q-function: V ∗h (s) := V π

∗

h (s) = supπ V
π
h (s) and Q∗h(s, a) := Qπ

∗

h (s, a) = supπ Q
π
h(s, a), for

all s, a and h. We measure the performance of the agent over K episodes by the regret defined as:

Regret(K) =

K∑
k=1

[V ∗1 (sk1)− V π
k

1 (sk1)], (1)

where sk1 is the initial state and πk is the control policy followed by the agent for each episode k.

In this paper, we introduce a novel adversary setting, in which the attacker sits between the agent
and the environment. The attacker can monitor the state, the actions of the agent and the reward
signals from the environment. Furthermore, the attacker can introduce action poisoning attacks on RL
agent. In particular, at each episode k and step h, after the agent chooses an action akh, the attacker
can change it to another action ãkh ∈ A. If the attacker decides not to attack, ãkh = akh. Then the
environment receives ãkh, and generates a random reward rkh with mean Rh(skh, ã

k
h) and the next state

skh+1 which is drawn from the distribution Ph(·|skh, ãkh). The agent and attacker receive the reward
rkh and the next state skh+1 from the environment. Note that the agent does not know the attacker’s
manipulations and the presence of the attacker and hence will still view rkh as the reward and skh+1 as
the next state generated from state-action pair (skh, a

k
h).
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The attacker has a target policy π†. We assume that the target policy π† is a deterministic policy.
The attacker’s goal is to manipulate the agent into following the target policy π† to pick its actions.
We measure the performance of the attack over K episodes by the total attack cost and the total
number of the steps that the agent does not follow the target policy π†. By setting 1(·) as the indicator
function, the attack cost function and the loss function are defined as

Cost(K,H) =

K∑
k=1

H∑
h=1

1
(
ãkh 6= akh

)
, Loss(K,H) =

K∑
k=1

H∑
h=1

1
(
akh 6= π†(skh)

)
, (2)

The attacker aims to minimize both the attack cost and the loss of attacks, or minimize one of them
subject to a constraint on the one another. However, obtaining optimal solutions to these optimization
problems is challenging. As the first step towards understanding the impact of action poisoning
attacks, we design some specific simple yet effective attack strategies.

3 Attack Strategy and Analysis

In this paper, we study the black-box action poisoning attack problem. In black-box attack case, the
attacker has no prior knowledge about the underlying environment and the agent’s policy. It only
knows the observations, i.e., skh, akh, and rkh, generated when the agent interacts with the environment.
This makes the attack practical as the attacker only needs to hijack the communication between
the environment and the agent without stealing information from or attacking the agent and the
environment. To build up intuitions about the proposed black-box action poisoning attack strategy,
we first consider a white-box attack model, in which the attacker knows the underlying MDP and
hence it is easier to design attack schemes. Building on insights obtained from the white-box attack
schemes, we then introduce our proposed black-box attack strategy and analyze its performance.

3.1 White-box Attack

In the white-box attack model, the attacker has full information of the underlying MDPM. Thus, the
attacker is able to calculate V ∗h (s) and Q∗h(s, a) according to the Bellman optimality equations:

Q∗h(s, a) = Rh(s, a) + PhV
∗
h+1(s, a), V ∗h (s) = max

a∈A
Q∗h(s, a). (3)

Since V πH+1 = 0 and QπH+1 = 0, V ∗h (s) and Q∗h(s, a) can be obtained from the Bellman optimality
equation. The optimal policy π∗ are derived from π∗h(s) = arg maxa∈AQ

∗
h(s, a).

With the knowledge of the optimal policy, the attacker can perform an intuitive attack: exchange the
optimal action and the target action. In particular, at the step h and state s, when the agent picks
the optimal action a = π∗h(s), the attacker changes it to the action specified by the target policy
ã = π†h(s). When the agent selects the target action a = π†h(s), the attacker changes it to the action
might be taken under the optimal policy ã = π∗h(s). In addition, when the agent’s action does not
follow the optimal policy or the target policy, the attacker does not attack. We name this attack
scheme as the exchange attack (E-attack) strategy. From the agent’s point of view, π† becomes the
optimal strategy under the E-attack strategy, as the agent does not know the presence of the attacker.
If the optimal policy is singular, any RL algorithm with sub-linear regret will learn to follow the
optimal strategy in his observation, i.e. π†, with a sub-linear regret. As the result, the loss will be
sub-linear. However, the cost of the E-attack strategy may be up to O(T ), where T = KH is the
total number of steps. The main reason is that, in the E-attack strategy, the attacker needs to change
the actions whenever the agent chooses an action specified by the target policy π†, which happens
most of the time as the agent views π† as the optimal policy. Furthermore, another drawback of the
E-attack is that the expected reward the agent receives is not impacted.

Even though the E-attack strategy discussed above could force the agent to follow the target policy
π†, the cost is too high and it does not affect the agent’s total expected rewards. In order to reduce the
cost and have real impact on the agent’s total expected rewards, the attacker should avoid to attack
when the agent takes an action specified by π†. This is possible if π† satisfies certain conditions to be
specified in the sequel.

Before presenting the proposed attack strategy, we first discuss conditions under which such an attack
is possible. If the target policy is the worst policy such that V π

†

h (s) = infπ V
π
h (s), the attacker

4



can not force the agent to learn the target policy without attacking the target action. For notation
simplicity, we denote V †h (s) := V π

†

h (s). The combination of the attacker and the environment can
be considered as a new environment to the agent. As the action poisoning attack only changes the
actions, it can impact but does not have direct control of the agent’s observations. Although the
action poisoning attack is widely applicable, the attacker’s ability is weaker than the attacker in the
environment poisoning attack model. It is reasonable to limit the choice of the target policy. In this
paper, we study a class of target policies denoted as Π†, for which each element π† ∈ Π† satisfies

V †h (s) > min
a∈A

Q†h(s, a), (4)

for all state s and all step h. That is π† is not the worst policy.
Assumption 1. For the underlying MDPM = (S,A, H, P,R), Π† 6= ∅, and the attacker’s target
policy π† satisfies π† ∈ Π†.

For a given target policy π†, as |S|, |A| and H are finite, the minimum of Q†h(s, a) subject to a ∈ A
exists for all step h and state s. We define the minimum gap ∆min by

∆min = min
h∈[H],s∈S

(
V †h (s)−min

a∈A
Q†h(s, a)

)
. (5)

Under Assumption 1, the minimum gap is positive, i.e. ∆min > 0. This positive gap provides a
chance of efficient action poisoning attacks. All results in this paper are based on Assumption 1.

We now introduce an effective white-box attack schemes: α-portion attack. Specifically, at the step
h and state s, if the agent picks the target action, i.e., a = π†h(s), the attacker does not attack, i.e.
ã = a = π†h(s). If the agent picks a non-target action, i.e., a 6= π†h(s), the α-portion attack sets ã as

ã =

π
†
h(s),with probability 1− α

arg min
a∈A

Q†h(s, a),with probability α. (6)

For a given target policy π†, we define π−h (s) = arg mina∈AQ
†
h(s, a). We have the following result:

Lemma 1. If the attacker follows the α-portion attack scheme on an RL agent, in the observation of
the agent, the target policy π† is the optimal policy.

The detailed proof can be found in the Appendix B.1 of the supplementary material. Using Lemma 1,
we can derive upper bounds of the loss and the cost functions of the α-portion attack scheme.
Theorem 1. Assume the expected regret Regret(K) of the RL agent’s algorithm is bounded by a
sub-linear boundR(T ), i.e., Regret(K) ≤ R(T ). The α-portion attack will force the agent to learn
the target policy π† with the expected cost and the expected loss bounded by

E[Cost(K,H)] ≤ E[Loss(K,H)] ≤ R(T )/(α∆min), (7)

In addition, with probability 1− p, the loss and the cost is bounded by

Cost(K,H) ≤ Loss(K,H) ≤
(
R(T ) + 2H2

√
log(1/p)R(T )

)
/(α∆min). (8)

The detailed proofs can be found in the Appendix B.2 of the supplementary material. In the white-box
setting, the attacker can simply choose α = 1 to most effectively attack RL agents. Intuitively
speaking, if α = 1, whenever the agent chooses a non-target action, the attacker changes it to the
worst action under policy π†, so that all non-target actions become worse than the target action and
the target policy becomes optimal in the observation of the agent.

3.2 Black-box Attack

In the black-box attack setting, the attacker has no prior information about the underlying environment
and the agent’s algorithm, it only observes the samples generated when the agent interacts with
the environment. Since the α-portion attack described in (6) for the white-box setting relies on the
information of the underlying environment to solve π−h , the α-portion attack is not applicable in the
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black-box setting. However, by collecting the observations and evaluating the Q-function Q†h(s, a),
the attacker can perform an attack to approximate the α-portion attack. In the proposed attack scheme,
the attacker evaluates the Q-values of the target policy π† with an important sampling (IS) estimator.
Then, the attacker calculates the lower confidence bound (LCB) on theQ-values so that he can explore
and exploit the worst action by the LCB method. In this paper, we use Hoeffding-type martingale
concentration inequalities to build the confidence bound. Using this information, the attacker can
then carry out an attack similar to the α-portion attack. We name the proposed attack strategy as
LCB-H attack. The algorithm is summarized in Algorithm 1. In the following, we will show that the
LCB-H attack nearly matches the performance of the α-portion attack.

Algorithm 1: LCB-H attack strategy on RL algorithm
Input:

Target policy π†.
1: Initialize Lh(s, a) = −∞, Q̂†h(s, a) = 0, and Nh(s, a) = 0 for all state s ∈ S , all action a ∈ A

and all step h ∈ [H].
2: for episode k = 1, 2, . . . ,K do
3: Receive sk1 . Initialize the set of trajectory traj = {sk1}.
4: for step h = 1, 2, . . . ,H do
5: The agent chooses an action akh.
6: if akh = π†h(skh) then
7: The attacker does not attack, i.e. ãkh = akh, and sets the IS weight wh = 1.
8: else

9: ãkh =


arg min
a 6=π†h(skh)

Lh(skh, a) and set wh = 0, with probability 1/H,

π†h(skh) and set wh = H/(H − 1), with probability 1− 1/H.
10: end if
11: The environment receives action ãkh, and returns the reward rkh and the next state skh+1.
12: Update the trajectory by plugging ãkh, rkh and skh+1 into traj.
13: end for
14: Set the cumulative reward GH+1 = 0 and the importance ratio ρH+1:H+1 = 1.
15: for step h = H,H − 1, . . . , 1 do
16: Gh = rkh +Gh+1, ρh:H+1 = ρh+1:H+1 · wh, t = Nh(skh, ã

k
h)← Nh(skh, ã

k
h) + 1.

17: Q̂†h(skh, ã
k
h)← (1− 1

t )Q̂
†
h(skh, ã

k
h) + 1

t

(
rkh +Gh+1 · ρh+1:H+1

)
.

18: Lh(skh, ã
k
h) = Q̂†h(skh, ã

k
h)− (e(H − h) + 1)

√
2 log(2SAT/p)/t.

19: end for
20: end for

Here, we highlight the main idea of the LCB-H attack. As discussed in Section 3.1, if the attacker
has full information of the MDP and knows the worst action of any state s at any step h under policy
π†, he can simply change the agent’s non-target action to the worst action. However, in the black-box
setting, the attacker does not know the worst actions under policy π†. One intuitive idea is to estimate
Q† and find the possible worst actions by the estimates of Q†. Once the attacker obtains esimate
Q̂†, it carries out an attack similar to the α-portion attack by setting α = 1/H (the reason why we
set α = 1/H will be discussed in the sequel): 1) when the agent picks a target action, the LCB-H
attacker does not attack ; 2) when the agent picks a non-target action, with probability 1− 1

H , the
LCB-H attacker changes it to the target action, while with probability 1

H , the LCB-H attacker changes
it to the action that has the lowest lower confidence bound value. Here, we use the lower confidence
bound value because in the black-box setting, the LCB-H attacker does not know which action is the
worst, and hence uses confidence bounds to explore and exploit the worst action.

As shown in Algorithm 1, after collecting observations, the LCB-H attacker uses IS estimator to
evaluate the target policy, which is an off-policy method [Precup, 2000, Thomas et al., 2015]. The
IS estimator provides an unbiased estimate of the target policy π†. Suppose πk is the control policy
followed by the agent at episode k and the attacker applies LCB-H attack on the agent. From
Algorithm 1, the probability of an action ã chosen by the behavior policy bkh at the state s and step h
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can be written as

P(ã|s, bkh) =



1 if ã = akh = π†h(s),

1/H if ã = arg min
a6=π†h(s)

Lkh(s, a) and akh 6= π†h(s),

1− 1/H if ã = π†h(s) and akh 6= π†h(s),

0 if otherwise.

(9)

Then, the trajectory at episode k, {sk1 , ãk1 , rk1 , sk2 , ãk2 , rk2 , · · · , skH , ãkH , rkH , skH+1}, is generated under
the behavior policy bk. Since we assume that the target policy is a deterministic function, we have

P(ã|s, π†h) = 1(ã = π†h(s)). (10)

The importance sampling ratio ρkh:H =
∏H
h′=h

P(ãk
h′ |s

k
h′ ,π

†)

P(ãk
h′ |s

k
h′ ,b

k)
can be computed using (9) and (10),

which is also used in Algorithm 1. Define the cumulative reward as Gkh:H =
∑H
h′=h r

k
h. For notation

simplicity, we set ρkh:H+1 = ρkh:H and Gkh:H+1 = Gkh:H when 1 ≤ h ≤ H , and ρkH+1:H+1 = 1 and
GkH+1:H+1 = 0. Since the trajectory is generated by following the behavior policy bk, we have that
for all step h with 1 ≤ h ≤ H + 1, V b

k

h (s) = E[Gkh:H |skh = s] and V †h (s) = E[ρkh:HG
k
h:H |skh =

s] = E[ρkh:H+1G
k
h:H+1|skh = s].

We here explain why we set α = 1/H . The main reason is that the performance of the estimates of
Q† depends on the number of the observations that follow π†. Even though IS estimator provides an
unbiased estimate, the variance of the IS might be very high. By choosing α = 1/H , we can control
the variance. In particular, to obtain estimate Q̂†h, by the Bellman consistency equations, we first
estimate V †h+1. By setting α = 1

H , we can show that the importance ratio ρkh+1:H+1 = ρkh+1:H ≤
1

(1−α)H−h ≤ 1
(1−α)H−1 ≤ e when H ≥ 2 and 1 ≤ h ≤ H − 1, and ρkH+1:H+1 = 1. As the result,

ρkh+1:HG
k
h+1:H will be bounded, and the variance of the estimate of V †h+1 can be controlled.

We build a confidence bound to show the performance of the estimate error of Q†. The confidence
bound is built based on Hoeffding inequalities and shown in the following Lemma.
Lemma 2. If the attacker follows the LCB-H attack strategy on the RL agent, for any p ∈ (0, 1),
with probability at least 1− p, the following confidence bound of Q̂†h holds simultaneously for all
(s, a, h, k) ∈ S ×A× [H]× [k]:∣∣∣Q̂†h,k(s, a)−Q†h(s, a)

∣∣∣ ≤ (e(H − h) + 1)
√

2 log(2SAT/p)/Nk
h (s, a), (11)

where Q̂†h,k(s, a) represents the attacker’s evaluation of Q-values at the step h at the beginning of
the episode k, and Nk

h (s, a) represents the cumulative number of attacker’s state-action pair (s, a)

at the step h until the beginning of the episode k, i.e. Nk
h (s, a) =

∑k−1
k′=1 1(sk

′

h = s)1(ãk
′

h = a) .

The detailed proof can be found in Appendix C.1 of the supplementary material. In Lemma 2, the
given bound on LCB-H attacker’s estimation of the Q-values mainly based on Nk

h (s, a) the number
of state-action pair (s, a) at the step h. This bound is similar to the confidence bound in the UCB
algorithm for the bandit problem, except for the additional H factor. Compared with the bandit
problem, Q-values are the expected cumulative rewards, which bring the additional H factor.

The LCB-H attack scheme uses a LCB method to explore and exploit the worst action. Thus, when
the agent picks a non-target action, the LCB-H attacker changes it to different post-attack actions in
different episodes. In the observation of the agent, the environment is non-stationary, i.e., the reward
functions and probability transition function may change over episodes. Following the existing
works on non-stationary RL [Fei et al., 2020, Mao et al., 2020, Cheung et al., 2020], we define
V k,πh (s) = E

[∑H
h′=h r

k
h′ |skh = s, π

]
and define the expected dynamic regret for the agent as:

D-Regret(K) =

K∑
k=1

[V k,π
k,∗

1 (sk1)− V k,π
k

1 (sk1)], (12)
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where πk,∗ is the optimal policy at episode k, i.e. V k,π
k,∗

h (s) = supπ V
k,π
h (s).

Here we state our main theorem, whose proof is deferred to the supplementary material.
Theorem 2. Assume the expected dynamic regret of the RL agent’s algorithm D-Regret(K) is
bounded by a sub-linear bound R(T ), i.e., D-Regret(K) ≤ R(T ). With probability 1 − 4p, the
LCB-H attack will force the agent to learn the target policy π† with the cost and loss bounded by

Cost(K,H) ≤ Loss(K,H) ≤
H
(
R(T ) + 2H2

√
log(1/p)R(T )

)
∆min

+
307SAH4 log(2SAT/p)

∆2
min

.

From Theorem 2 we see that whenR(T ) ≤ O(SAH
3 log(2SAT/p)

∆min
), the cost and loss are bounded by

O(SAH
4 log(2SAT/p)

∆2
min

), which scales as log(T ), otherwise the cost and loss are bounded by O(R(T ))

that scales linearly withR(T ). The LCB-H attack nearly matches the performance of the α-portion
attack, without requiring any information of the underlying environment and the agent’s algorithm.
Compared with the results of the α-portion attack, the additional part of the bound in Theorem 2, i.e.
307SAH4 log(2SAT/p)

∆2
min

, is from the cost of exploring the worst action. Note that we use a LCB method
to explore the worst action and the confidence bound is built by Hoeffding inequalities. The bound of
the loss and cost can potentially be improved by using Bernstein-type concentration inequalities.

3.3 Black-box attack on UCB-H

In this section, we use UCB-H algorithm [Jin et al., 2018] as an example to illustrate the effects of
the proposed LCB-H action poisoning attack strategy. UCB-H algorithm is a model-free Q-learning
algorithm equipped with a UCB-Hoeffding exploration policy. At a high level, this algorithm builds
an high-probability upper bound of Q-function for every state-action pairs. Then, it greedily chooses
the action according to the optimistic estimations. In this section, we derive an upper bound of the
loss and the cost of the LCB-H attack against UCB-H agent. Complete proofs of Theorem 3 and its
supporting lemmas are provided in Appendix D of the supplementary material.
Theorem 3. For any given target policy π† ∈ Π†, with probability 1− 4p, the LCB-H attacker can
successfully manipulate the UCB-H algorithm to implement the target policy π†, with the cost and
the loss bounded as follow:

Cost(K,H) ≤ Loss(K) ≤ O
(
H5 log(2H/p) +

1

∆min
SAH4 +

1

∆2
min

H10SA log(2SAT/p)

)
.

Theorem 3 reveals a significant security threat of efficient RL agents. It shows that by spending only
logarithm cost, the LCB-H attack is able to force UCB-H agent to choose actions specified by a
policy decided by the attack with only logarithm loss.

The results in Theorem 3 are consistent with the results in Theorem 2. In particular, [Yang et al.,
2021] proved a gap-independence bound on UCB-H that scales as O(H

6SA
∆ log(T )), where ∆ =

minh,s,a{V ∗h (s)−Q∗h(s, a) : V ∗h (s)−Q∗h(s, a) > 0} is the sub-optimality gap. If an algorithm whose
dynamic regret bound scales as O(H

6SA
∆ log(T )), the cost and loss are scale as O(H

7SA
∆2 log(T )).

UCB-H is a stationary RL algorithm, while the LCB-H adaptively attacks the agent and hence the
effective environment observed by the agent is non-stationary. This adds a factor to the loss and cost.

4 Numerical Experiments

In this section, we empirically evaluate the performance of LCB-H attacks against three efficient
RL agents, namely UCB-H [Jin et al., 2018], UCB-B [Jin et al., 2018] and UCBVI-CH [Azar et al.,
2017], respectively. We perform numerical simulations on an environment represented as an MDP
with ten states and five actions, i.e. S = 10 and A = 5. The environment is a periodic 1-d grid
world. The action space A is given by {two steps left, one step left, stay, one step right, two steps
right}. For any given state-action pair (s, a), with probability p(s, a), the agent navigates by the
action; with probability 1− p(s, a), the agent’s next state is sampled randomly from the five adjacent
states (include itself). For example, if the environment receives state-action pair (s, a) = (5, stay),
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with probability p(5, stay), the next state is 5; with probability 1−p(5,stay)
5 , the next state is 3, 4,

5, 6 or 7. By randomly generating p(s, a) with 0.5 < p(s, a) < 1, we randomly generate the
transition probabilities P (s′|s, a) for all action a and state s. The mean reward of state-action pairs
are randomly generated from a set of values {0.2, 0.35, 0.5, 0.65, 0.8}. In this paper, we assume the
rewards are bounded by [0, 1]. Thus, we use Bernoulli distribution to randomize the reward signal.
The target policy is randomly chosen by deleting the worst action, so as to satisfy Assumption 1. We
set the total number of steps H = 10 and the total number of episodes K = 109.
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(b) Attack UCB-B

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

1

2

3

4

5

6
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCBVI under no attack

(c) Attack UCBVI-CH

Figure 1: Action poisoning attacks against RL agents

In Figure 1, we illustrate 1
H -portion white-box attack and LCB-H black-box attack against three

different agents separately and compare the loss and cost of these two attack schemes. For comparison
purposes, we also add the curves for the regret of three agents under no attack. In the figure, the
non-optimal action pull count are defined as

∑K
k=1

∑H
h=1 1(Q∗h(skh, a

k
h) < V ∗h (skh)). The x-axis

uses a base-10 logarithmic scale and represents the time step t with the total time step T = KH . The
y-axis represents the cumulative loss, cost and regret that change over time steps. The results show
that, the loss and cost of 1

H -portion white-box attack and LCB-H black-box attack scale as log(T ).
Furthermore the performances of our black-box attack scheme, LCB-H, nearly matches those of the
1
H -portion white-box attack scheme. In addition, the cost and loss are about H/∆min times as much
as the regret. This is consistent with our analysis in Theorem 2. Each of the individual experimental
runs costs about twenty hours on one physical CPU core. The type of CPU is Intel Core i7-8700.
More numerical results can be found in the appendix.

5 Limitations

Here we highlight the assumptions and limitations of our work. Our theoretical results rely on
Assumption 1 which limits the choice of the target policy. A violation of Assumption 1 may cause
linear cost or loss of the proposed attack scheme. In Theorem 2, we assume the expected dynamic
regret of the RL agent is bounded. Generally, the expected dynamic regret is a stronger notation
than the dynamic regret. In other words, the optimal policy πk,∗ in (12) may change in each episode
k, while the optimal policy πk in (1) is fixed over episodes. In this paper, we discuss the action
poisoning attack in the tabular episodic MDP context. Although we are convinced that the idea of our
proposed attack scheme can be carried over to RL with function approximation, the current results
only apply to the tabular episodic MDP setting.

6 Conclusions and Discussion

In this paper, we have introduced a new class of attacks on RL: action poisoning attacks. We have
proposed the α-portion white-box attack and the LCB-H black-box attack. We have shown that the
α-portion white-box attack is able to attack any efficient RL agent and the LCB-H black-box attack
nearly matches the performance of the α-portion attack. We have analyzed the LCB-H attack against
the UCB-H algorithm and proved that the proposed attack scheme can force the agent to almost
always follow a particular class of target policy with only logarithm loss and cost. In the future, we
will investigate action poisoning attacks on other RL models such as multi-agent RL model. It is also
of interest to investigate the defense strategy to mitigate the effects of this attack.
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