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Abstract

Traditional stochastic control methods in finance rely on simplifying assumptions
that often fail in real-world markets. While these methods work well in specific,
well-defined scenarios, they underperform when market conditions change. We
introduce FinFlowRL, a novel framework for financial stochastic control that
combines imitation learning with reinforcement learning. The framework first
pre-trains an adaptive meta-policy by learning from multiple expert strategies,
then fine-tunes it through reinforcement learning in the noise space to optimize
the generation process. By employing action chunking—generating sequences of
actions rather than single decisions—it addresses the non-Markovian nature of
financial markets. FinFlowRL consistently outperforms individually optimized
experts across diverse market conditions.

1 Introduction

Stochastic control in finance addresses optimal decision-making under uncertainty, fundamental to
high-frequency trading, optimal execution (Almgren and Chriss| 2001)), and portfolio optimization
(Mertonl [1969)). Traditional approaches formulate the problem as an objective function governed by a
stochastic differential equation (SDE) with constraints. While tractable under stylized assumptions,
these models face key limitations in practice. They rely on parameter calibration from historical
data, which fails under regime shifts, and often assume stationary dynamics such as geometric
Brownian motion (Black and Scholes, |1973). Real markets exhibit jumps, stochastic volatility, and
non-stationary behavior, making such assumptions unrealistic and solutions suboptimal. Moreover,
framing decisions as a Markov Decision Process (MDP) ignores the path-dependent and memory-rich
nature of financial markets (Gatheral et al., 2022).

We propose FinFlowRL, a two-stage framework for financial stochastic control. First, we pre-train
a flow-matching model that learns from multiple expert strategies across diverse market scenarios,
integrating their strengths into a unified policy. Second, we fine-tune via reinforcement learning by
optimizing the noise generation process rather than actions directly—the pre-trained model remains
frozen while we learn to generate better input noise. Both stages employ action chunking (Chi et al.|
2024; |Li et al., [2025)), generating sequences of decisions over planning horizons rather than single
actions, naturally capturing the non-Markovian dynamics of financial markets.

To our knowledge, this is the first framework combining flow matching and RL for financial stochastic
control. Applied to high-frequency trading, FinFlowRL consistently outperforms individual expert
models and adapts effectively to changing market conditions.
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2 Methodology

FinFlowRL employs a two-stage approach: (1) pre-training a MeanFlow model based on expert
demonstrations, and (2) fine-tuning via reinforcement learning in noise space while keeping the
expert frozen.

2.1 Stage 1: MeanFlow Pre-training

Expert Demonstration Generation. We simulate 108 market scenarios varying volatility (o €
{0.05,0.1,0.3}), order arrival rates (A € {10, 20, 40}), and jump intensities. For each scenario, we
evaluate four experts—Avellaneda-Stoikov (AS) (Avellaneda and Stoikov,2008), GLFT (Guéant et al.,
2013)), modified GLFT with drift (Guéant et al., 2013)), and PPO (Schulman et al., 2017)—selecting
the best performer’s actions as demonstrations, yielding 3.24M state-action pairs.

MeanFlow Model. Unlike standard flow matching that models instantaneous velocity v(z¢,t),
MeanFlow (Geng et al.;|2025) models average velocity between time steps:

1 t
u(zg, rt) = / v(zp, T)dT

t—r
The key insight is the MeanFlow Identity, which connects average and instantaneous velocities:
u(ze,rt) = v(ze,t) — (t — T)%U(Zt, r,t)
This relationship enables training without access to the true instantaneous velocity. During training,

we construct interpolants between noise zo ~ N (0, I') and expert actions Gexpert:

Zt = (1 - t)z[) +t- Qexpert

The training objective minimizes:
['(0) = Et,r,zt,s [HUQ(Zt, r,t, 5) - sg(utm‘get)HQ]
where wigpger = v¢ — (8 — 1) (0,0 ug + Oyug) and vy = Gegpert — 2o is the straight-line velocity.

Conditioning and Generation. We condition on market state s using FiLM (Perez et al.| 2018),
which modulates network features via h’ = v(s) ® h + 3(s). This enables state-dependent action
generation through one-step inference:

a =z —up(z1,0,1,8)
where we set 7 = 0,t = 1 for generation. This one-step formulation is crucial for meeting HFT’s
microsecond latency requirements.

2.2 Stage 2: FlowRL Fine-tuning

Instead of retraining the entire model, we freeze the pre-trained MeanFlow expert gg and learn only a
noise policy W(‘;V that generates optimal input noise. Following (Lv et al., 2025} [Wagenmaker et al.,
2025)), we transform the MDP from action space to noise space:
w ~ W;V(|S), a = go(s,w)
The noise policy is a Gaussian ﬂgv(w|s) = N(ue(s),X,) optimized via PPO with clipped objective:
LPPO = By [min(r:(0) As, clip(r4(0), 1 — €,1 + €) Ay)]

This approach reduces trainable parameters by 84% while leveraging pre-trained knowledge.

2.3 Action Chunking

Both stages generate action sequences rather than single decisions. Given observation window
Tops = 2, we predict T),..q = 8 future actions but execute only T¢,.. = 4. This hierarchical planning
captures temporal dependencies and market memory, directly addressing non-Markovian dynamics
inherent in financial markets.
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Figure 1: Hierarchical temporal structure in MeanFlow-PPO. The model observes T, past states,
generates actions for T},,..q future steps, but only executes the first T actions before replanning.

3 Application in High-Frequency Trading
3.1 Problem Formulation

We formulate high-frequency trading market-making as a stochastic control problem over discrete
time steps ¢t € {0,...,T}. At each step, an agent observes state O, (including market data and
private information like inventory) and takes action A; (typically setting bid and ask spreads (62, 6¢)).

The goal is to learn an optimal policy 7(O;) = A; that maximizes expected terminal wealth minus

inventory risk:
max ET [Wr — ¢(Ir) | O]

where W is terminal wealth and ¢(I7) penalizes unsold inventory.

3.2 Generating Market Observation-Action Pairs

We model mid-price S; as a jump-diffusion process (Merton, [1976)):
dS; = S;— (pdt + odBg (t)) + S, (e’ — 1)dN;

where (1 is drift, o is volatility, d By (t) is fractional Brownian motion (Mandelbrot and Van Ness|
1968), J ~ N (s, 0%) represents jump size, and dN; is a Poisson process with intensity A .

Order arrivals follow mutually exciting Hawkes processes (Bacry et al.l [2015; [Hawkes|, [1971)),
capturing self-exciting (previous buy/sell orders increase subsequent same-type arrivals) and cross-
exciting effects (buy orders influence sell arrivals and vice versa).

Buy and sell order intensities are:

Aa(t) = pa + Z Oéaaefﬁ(tft"’) + Z aabe*ﬁ(t*tj) 1)
t, €N, t]er

/\b(t) = up + Z abbe_ﬁ(t_ti) + Z abae—ﬁ(t—tj) @)
tier tjej\/’a

We create market scenarios with varying liquidity levels (high, medium, low) and stress conditions
featuring sudden changes and increased volatility.

Our expert candidates include: (1) Avellaneda-Stoikov (AS) model, (2) Guéant-Lehalle-Fernandez-
Tapia (GLFT) model, (3) modified GLFT with price drift, and (4) PPO-trained RL agent (Schulman
et al.,[2017)). We generate actions from each agent for each market scenario, collecting 3.24 million
state-action pairs.

3.3 Results

Our investigation is designed to critically evaluate FinFlowRL’s advantages over existing approaches
and its capabilities to earn profit. Specifically, we address the following research questions: RQ1:
Can FinFlowRL effectively generalize strategies learned from expert demonstrations to new, unseen
market conditions? RQ2: Does the fine-tuning mechanism improve the performance of actions
initially proposed by the pre-trained model? RQ3: Can the FinFlowRL framework achieve greater
profitability than traditional strategies?

To evaluate FinFlowRL’s performance across a spectrum of out-of-sample market environments, we
systematically configured distinct test conditions by setting key market parameters to differ from



those used during training. We differentiated the market microstructure by creating four specific
situations based on combinations of market volatility (Vol) and overall order arrival rate (AR): (1)
High Vol/High AR (HH), representing active, potentially news-driven volatile markets; (2) High
Vol/Low AR (HL), mimicking risky market; (3) Low Vol/High AR (LH), reflecting stable, liquid
markets; and (4) Low Vol/Low AR (LL), simulating quiet market periods. For each of these market
situations, we perform traditional strategies as well as FinFlowRL to compare their performance.

We take the following evaluation metrics. (1) Profit and Loss (PnL). Measure the total change in
the value over a specific period, reflecting the aggregate percentage gain or loss. (2) Sharpe Ratio
(SR). It helps investors understand how much excess return an investment generated for each unit of
risk it undertook. A higher Sharpe Ratio generally indicates a better risk-adjusted performance. (3)
Maximum Drawdown (MDD) Quantify the largest percentage decline in the value of a strategy from
a previous peak to a subsequent trough.

Table 1: Performance comparison across market conditions. Parameters: Hurst Exponent H = 0.5,
Drift Rate u = 0, volatility (o: {0.02, 0.25}) and arrival rate (\: {25, 50}). Each method evaluated
over 1 million trials. PnL: Profit and Loss, SR: Sharpe Ratio, MDD: Maximum Drawdown (%).

High Volatility & High Demand | High Volatility & Low Demand | Low Volatility & High Demand | Low Volatility & Low Demand

PaL1 SR? MDD | | PnL1 SR? MDD | | PnL1 SR? MDD | | PaL1 SR? MDD |
Random Action 1.99  0.06 2849 | 099 0.04 1924 | 210 031 271 1.08 022 1.87
AS 2422 0.09 241.65 | 13.54  0.09 12578 | 2520 1.05 7.66 | 13.67 0.72 6.61
GLFT 2510 037 60.57 | 13.56 0.24 5255 | 25.87 1.17 6.95 | 13.91 0.78 6.14
GLFT-drift 2510 037 60.57 | 13.56 0.24 5255 | 2587 1.17 6.95 | 13.91 078 6.14
Vanilla PPO 1476 0.10 13361 | 929 0.08 103.85 | 26.74 0.81 10.13 | 1980  0.46 14.56
Pretrained MeanFlow ~ 23.91  0.37 434 | 1297 022 4547 | 23.82  1.83 218 | 1293 1.07 2.69
FinFlowRL 2633 0.50 4547 | 1432 028 4535 | 2627 234 2,68 | 1429 1.36 3.08

Table [T] presents comprehensive results based on 1 million evaluation trials per method to ensure
statistical significance. Across all tested market conditions, from high to low volatility, FINFLOWRL
consistently demonstrates superior performance. It achieves the highest risk-adjusted returns (Sharpe
Ratios) and maintains lower maximum drawdowns compared to both traditional models and standard
reinforcement learning (PPO) approaches. For RQ1, the initial pre-trained model successfully learns
from the collection of experts, achieving performance comparable to its best instructor (the GLFT
model). This proves the imitation learning stage effectively internalizes expert strategies. For RQ2,
The fine-tuned model significantly outperforms all baseline methods, including the experts it learned
from and the initial pre-trained model. This demonstrates that the reinforcement learning stage
successfully improves upon the expert knowledge to discover superior, adaptive strategies tailored to
specific market conditions. For RQ3, our model consistently achieves the highest profit. FINFLOWRL
shows remarkable stability, especially in volatile markets with sudden price jumps. This is attributed
to its use of "action chunking"—generating sequences of actions—which provides a longer-term
planning perspective and mitigates the risk of compounding errors.

4 Conclusions

We introduced FinFlowRL, a novel framework for financial stochastic control that combines imitation
learning with reinforcement learning. The framework first learns from multiple expert strategies
through a MeanFlow policy, then fine-tunes by optimizing noise generation rather than actions
directly.

Our main contributions include: (1) first application of flow matching to financial stochastic control,
achieving higher Sharpe ratios and lower maximum drawdowns than traditional methods; (2) efficient
architecture using frozen experts with learnable noise policies, reducing trainable parameters by 84%;
(3) action chunking mechanism that addresses non-Markovian market dynamics

The simulation results demonstrate FinFlowRL’s superiority across diverse market conditions. The
pre-trained model successfully learns expert strategies, while fine-tuning discovers policies that
outperform individual experts. Action chunking proves particularly effective during market jumps,
mitigating error compounding inherent in single-step decisions.

FinFlowRL demonstrates that combining expert knowledge with adaptive learning overcomes limi-
tations of purely model-based or data-driven approaches, offering a practical solution for complex
financial stochastic control problems.
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