© © N O o A~ W N

22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

37
38
39
40
41
42

Virtual Nodes Go Temporal

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract

Learning representations of temporally evolving graphs, also known as
Continuous-Time Dynamic Graphs (CTDGs), has gained considerable atten-
tion due to their ability to model a wide range of real-world phenomena. Recent
efforts extend the well-established message-passing paradigm and Graph Neural
Network (GNN) models, originally designed for static graphs, to account for the
temporal dimension of dynamic graphs. Although these methods have shown
promising results, they often inherit limitations from their static counterparts,
particularly regarding the capture of long-range interactions. In static settings,
adding Virtual Nodes (VNs) has proven effective in overcoming locality con-
straints and boosting performance. In this work, we conduct a theoretical analysis
of the impact of VNs in CTDG-based models. Specifically, we introduce the con-
cept of information flow, which examines how information propagates through
a graph following an event. From this perspective, we highlight inherent limi-
tations of existing CTDG-based approaches and demonstrate how adding VNs
can address these constraints. Building on these insights, we propose k-TVNSs, a
framework that incorporates a set of fully connected VNs, each representing a
distinct community within the graph. Through both theoretical investigation and
empirical validation, we show that incorporating VNs substantially improves the
performance of CTDG models.

1 Introduction

Graph Neural Networks (GNNs) [1-3] have become the standard approach for learning robust graph
representations that power a wide range of downstream tasks. From biomedical applications like
protein function prediction [4, 5] to recommendation systems [6], GNNs have consistently shown
remarkable effectiveness in capturing complex relational patterns. Following their success in static
settings, these models have been extended to dynamic graphs [7], which generalize static graphs
by evolving over time through events such as edge additions or deletions (friendship formation or
removal in a social network) or node insertions or removals (users joining or leaving the network).

According to Kazemi et al. [8], dynamic graphs are generally categorized into: (i) Discrete-Time
Dynamic Graphs (DTDGs), which aggregate events into fixed time intervals and (ii) Continuous-
Time Dynamic Graphs (CTDGs), which accommodate temporally irregular events and provide a
more flexible and widely adopted representation that subsumes the discrete case [9]. Unlike static
graphs, these dynamic variants must account for evolving neighborhood structures and capture
temporal dependencies. Consequently, specialized CTDG models have been developed to address
these challenges. By integrating the temporal dimension, these models produce evolving node
representations according to the continually shifting graph topology whenever an event occurs.

The family of CTDG models typically extends the message-passing framework [10] to accommodate
temporal evolving graph topology. However, similar to static graph settings, these models often suffer
from over-squashing and over-smoothing [11], which constrain their ability to propagate information
effectively when new events occur. Consequently, nodes distant from an event location may fail to
update their representations appropriately, posing challenges when capturing long-range dependencies,
which is often a requirement in real-world dynamic graphs, where successive events can arise in

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63

64
65

66
67

68
69
70

71

72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90

91
92
93
94
95
96

Virtual Nodes Go Temporal

different communities. One approach to mitigate this limitation is to enhance graph connectivity,
either by rewiring (introducing connections between different sub-graphs) or by employing Graph
Transformers [12], which leverage attention mechanisms to weight message-passing across all
node pairs. Although Graph Transformers have shown promising results, their computational and
memory overhead often make them infeasible for real-world dynamic settings, where updates must
be performed after each event. In this work, we explore Virtual Nodes (VNs) as a more practical
solution for propagating information while preserving local node structure. Specifically, we propose
k-Temporal VNs (k-TVNSs), which partitions the graph into £ communities, each represented by
a Virtual Node (VN). These VNs are fully connected with one another, thereby enabling global
information flow across the entire graph in addition to the local connectivity within each community.

Although VNs have been studied in static graph settings [13, 14], particularly in relation to graph
expressivity and over-smoothing, to the best of our knowledge, this is the first work to explore their
impact in dynamic graph settings. Our goal is to explore both the theoretical and empirical benefits of
incorporating VNs. To begin, we introduce the concept of “Information-Flow,” which quantifies how
events propagate through a graph and relates to the expressivity of a CTDG function. Building on
this notion, we conduct a theoretical examination of CTDG expressivity and show how adding VNs
can enhance information propagation. Motivated by these insights, we introduce a clustering-based
approach for constructing VN, facilitating the capture of community-level information. Finally,
we validate our theoretical findings via empirical evaluation on real-world benchmark datasets,
demonstrating that integrating VNs into CTDG functions yields performance gains compared to
existing benchmark methods. Our main contributions can be summarized as follows:

* We formalize the concept of information flow to quantify how events propagate in a CTDG,
establishing a clear connection to the expressivity of dynamic graphs.

» Through theoretical analysis, we demonstrate that incorporating VNs into a CTDG function
improves its capacity for information propagation, thereby capturing long-range dependencies.

* We introduce a clustering-based strategy for constructing VNs, termed k-TVNs, and demonstrate
empirically that our approach surpasses existing baselines in real-world benchmark datasets in
both information propagation and downstream task performance.

2 Related Work

Numerous approaches have recently been proposed for learning representations of dynamic graphs.
Broadly, existing methods can be classified into three categories:

Non-MP methods primarily rely on temporal embedding updates without explicit graph-based
message passing. JODIE [15] and DeepCoevolve [16] employ mutually recursive recurrent neural
networks to model node evolution, with JODIE introducing a temporal projection step to address
inactivity. Temporal random walk methods [17] impose temporal constraints on sampled sequences
before processing them with embedding models like Node2Vec [18]. Recent extensions enhance
sampling strategies by incorporating graph topology [19], yet these methods remain constrained by
their lack of explicit graph-level message passing, reducing their effectiveness in scenarios where
topology-driven propagation is crucial, such as stochastic or multi-community settings.

MP-based methods facilitate information propagation through explicit neighborhood aggregation.
DyRep [20] and DyGNN [21] incorporate recurrent memory components to update node represen-
tations based on temporal interactions; however, their dependence on one-hop neighborhoods can
result in over-smoothing. Temporal Graph Attention (TGAT) [22] and Temporal Graph Networks
(TGN) [23] extend this paradigm with attention-based aggregation and functional time encoding.
More recent works explore spectral approaches, such as FreeDyG [24], which applies frequency-
domain transformations for temporal dependency modeling. Finally, CTAN [25] refines information
propagation by formulating event-driven diffusion as a dynamical system, whereas Temporal Graph
Rewiring [26] improves long-range interaction efficiency by leveraging expander graph propagation.

Hybrid methods aim to strike a balance between computational efficiency and expressivity by
integrating multiple modeling paradigms. GraphMixer [27] streamlines the MP framework by
employing MLP-based encoders and neighborhood pooling, thereby lowering computational costs
while preserving performance. SimpleDyG [28] conceptualizes dynamic graphs as sequences and
uses a Transformer model to capture temporal patterns efficiently. PRES [29] enhances scalability by
incorporating a prediction-correction mechanism to address temporal discontinuities.

107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122

123
124

125
126
127
128
129
130
131

132

133
134

135
136
137
138

140
141
142
143
144
145

Virtual Nodes Go Temporal

3 Preliminaries

A static graph is defined as G = (V. E), where V is the set of vertices and F is the edges. Let
n = |V| (rep. m = |E|) denote the number of vertices (resp. edges). A graph is often represented by
its adjacency matrix A € R™*"!, where the (i, j)-th entry denotes the weight of the edge between
the ¢-th and j-th nodes, or 0 if no edge exists. On the other hand, a Continuous-time dynamic graph
(CTDG), evolves over time as nodes and edges are added or removed. In this perspective, the graph
at time ¢ can be represented as G; = (V;, Ey), where V; (resp. E}) is the set of nodes (resp. edges) at
time t. In accordance with the literature, we treat the node set V' as constant over time and we focus
on events consisting of adding edges. This assumption aligns with real-world scenarios where edge
existence is often irreversible (e.g., a purchase event remains permanently in the system).

As in static graphs, the primary goal of temporal graph representation learning is to compute node
embeddings that capture relevant information for various downstream tasks, such as predicting future
events (link prediction) or classifying users (node classification). To incorporate temporal dynamics,
recent adaptations of the message-passing framework have been proposed. For our theoretical
analysis, we focus on the general TGN framework [23], which provides a unified perspective and
encompasses various other message-passing models. Within this model, each node is characterized
by two main components: (i) memory, which stores its historical information and tracks its evolution
over time, and (ii) current representation, which is updated via the message-passing framework.
When an event £ = (u, v, efw) occurs at time ¢ between nodes u and v, where ez,v represents the

event’s features, the memory state of node w is updated as follows:
su(t) = MEMUPD([s,(t7), s0(t7),t — 17, €, ,]),

with ¢~ denoting the most recent time before ¢ when the node’s state was updated, and MEMUPD is an
update function. This function can be implemented using a recurrent model such as Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), or a simpler MLP. Simultaneously, a message-passing
framework aggregates information from a node’s neighborhood to propagate updates based on the
graph’s topology. Specifically, for each node u, its temporal neighborhood N (u, t) at time ¢ is defined
to include all nodes that interacted with u at time ¢’ within a specified time window, in addition to the
corresponding event features, and can be formulated as: N'(u,t) = {(v, egm, t') | I(u,v,t') € Gi}.
A node’s representation at the [-th message-passing layer is given by the following update:

RO (1) = Acc@ (L (W1 (1), t =t e) | (v,e,8") € N(u, £)}); b () = UppaTE® (B (1), O (1)),

where AGG is a permutation-invariant function that aggregates information within a node’s neighbor-
hood. This aggregation can be based on node degrees, as in Graph Convolutional Networks [1] or
Graph Attention techniques [2], producing an aggregated vector that is subsequently passed to the
UPDATE function. This latter function then computes the resulting updated representation for node v.
In addition to modeling graph topology through message passing, a time projection mechanism is
incorporated to capture the temporal dynamics of the evolving graph. For our theoretical analysis, we
employ an attention-based approach similar to the one used in TGN [23], which can be formulated as:

to = (14 Aty - Wy) 0 5,(t),

with W is a learnable weight matrix and At, represents the time elapsed since the last interaction
involving node v, allowing to capture temporal dependencies and dynamically adjust representations.

Theoretical Assumptions. Our study is based on the TGN model, assuming that the activation
functions are 1-Lipschitz continuous — an assumption satisfied by commonly used functions such as
ReLU, LeakyReLU, and Tanh [30]. Additionally, we focus on the effect of a single event update, in
contrast to the setting where multiple events are processed in batches.

4 Information Flow in Continuous-Time Dynamic Graphs

In this section, we examine the theoretical impact of introducing a VN on a temporal graph function.
We begin by formally defining the notion of expressivity in the context of CTDG functions, and
subsequently leverage this framework to investigate how VNs can enhance a graph function’s
expressivity. While we focus on CTDGs, the insights extend to the Discrete-Time case due to the
reconstruction relationship between these two categories (Proposition 1 in [9]). Throughout this
paper ||-|| denotes the Euclidean (resp., spectral) norm for vectors (resp., matrices).

'We occasionally describe adjacency matrices at discrete times for clarity, but our model is event-driven
CTDG. The snapshot-like description is only a shorthand for events before and after.

150

163
164
165
166
167
168

170

171
172
173
174
175
176

177
178
179

181
182
183

184

186
187
188
189
190
191

192

193

194

196

Virtual Nodes Go Temporal

4.1 Expressivity through Information Flow

A widely used approach for analyzing the expressivity of graph-based functions is the Weisfeiler-
Lehman (WL) test which was extended to dynamic graphs through the temporal-WL framework [9].
This approach primarily evaluates if a graph function can distinguish isomorphic graphs, a key
requirement for graph-related downstream tasks. While valuable, this perspective has limitations,
particularly when applied to graphs where nodes have features, that is common in the majority of
dynamic graph datasets. In contrast, the current study approaches the expressivity subject differently
by examining how information propagates through the graph when a new event occurs. Ideally, after
an event, all node representations should be updated to reflect the modified structure. Otherwise, in
an edge prediction task for instance, the event occurrence has not provided any additional information
and any new perspective toward predicting the next link. Consequently, an ideal temporal graph
function should update every node’s embedding in response to a new edge, ensuring the graph’s state
is captured and the underlying distribution effectively modeled for downstream tasks.

Let f : G —) be a graph-based function where G denotes the state of the graph over time and) an
output space. To quantify how much a node’s embedding changes due to an event, we consider a
distance functiondy : Y x Y — R+ within the output manifold). For a node u € V, we define the

information flow as:

Iu[f] :EuwDV[dy(fu(Gt)afu(Gt+1))]a (1)
where G is graph at time ¢, f,,(G?) is the embedding of node u evaluated at that timestamp, and Dy
is the graph node distribution. Z,,[f] measures how much a node’s embedding changes, based on a
chosen distance metric, when the graph undergoes an event. This quantity, which is designed to focus
on the local, node-level behavior, intuitively captures the extent of information propagation in the
graph following an event. A larger change value indicates greater information spread, improving
accuracy in downstream tasks. In this direction, we introduce the following definition:

Definition 1. The graph-based function f : G —), in respect to a node u € V, is said to be
(u, o)—flowing if and only if: T,,[f] < o.

Definition 1 formally defines how the information is expected to propagate following an event.
Specifically, the parameter o defines the allowable margin for embedding changes; a larger o
corresponds to greater "expected" variations and a possibility for increase in information flow at time
t + 1. While this approach provides a theoretical upper bound on this propagation, it does not directly
guarantee the actual magnitude of updates in every case. Rather, it establishes an expected broader
propagation, ensuring that the model is structurally capable of gathering distant updates when needed.

We note that the value of o depends on the chosen distance metric dy within the output manifold. In
our analysis, we focus on Norm-2 (J|-||), which we consider induces a suitable distance. Nonetheless,
this choice does not restrict our theoretical conclusions, as norm equivalence holds in terms of
information flow as theoretically proven in Lemma 2 (Appendix A). Consequently, different distance
metrics can be used based on specific applications while yielding similar insights into a model’s
capacity for information propagation after an event. For example, in applications prioritizing outlier
detection, Norm-1 may be more advantageous.

4.2 On the Expressive Power of Virtual Nodes

Following the previously introduced information flow concept for CTDGs in Section 4, we aim to
analyze the effect of introducing VNs on a temporal graph function. Specifically, we focus on the
TGN framework, which we consider an appropriate choice for encompassing the general message-
passing CTDG function. Concretely, we consider a function f following the TGN framework, and
we aim to analyze its expressivity in line with what has been introduced in Definition 1.

Theorem 1 (GCN-based aggregation). Let f : G —)Y be a CTDG-based function based on L
GCN-layers. After an event between nodes i and v, for any node u not involved in the event, we have:

o If L < min(d(u,1),d(u,v)), then f is (u, o)-flowing with o = lbu||WtHHlL:1||W(l)H.
o If L > min(d(u, 1), d(u,v)), then f is (u, o)-flowing with
7 =TT WO N[l Will+ 0 10,051 (50)]
=1 u t u, 1=t 1)

with W, the linear temporal projection, ., is the sum of temporal normalized walks of length
(L — 1) starting from u and 1w, ; is the normalized shortest path between u and i and Ay 141(s;)
denoting the difference in memory state for node 1, as introduced by the event.

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213

214

215
216

217
218
219
220
221
222
223
224
225
226
227

228

229

231
232
233
234
235
236
237

239

Virtual Nodes Go Temporal

Theorem 1 examines how an event propagates through the graph and impacts the node embeddings.
As expected from the message-passing mechanism of TGN, an event primarily affects nodes within
the L-hop neighborhood of those directly involved. Nodes outside this neighborhood update only
via temporal projection, which does not effectively capture the structural changes. Consequently, if
subsequent events occur beyond this neighborhood, the node embeddings fail to incorporate them,
limiting the model’s effectiveness. A straightforward approach to address this limitation is to increase
the number of layers to extend the update reach, however, this can lead to over-smoothing [31], a
well-known issue in GNNs. Moreover, Theorem 1 shows that o depends on the shortest path between
the considered node and those involved in the event. While this dependence highlights a limitation
in classical message-passing-based CTDG functions for long-range interactions, it also presents an
opportunity: modifying the graph topology can influence information flow by strategically altering
shortest paths. Similar conclusions are seen in the case of attention-based aggregation (Theorem 2).
The proofs of the theorems are provided in Appendix B and Appendix C.

Theorem 2 (Attention-based aggregation). Let’s consider a CTDG-based function f : G —) based
on L attention-based layers. After an event between node i and another node, the following properties
hold for any node u not involved in the event, we have the following:

* If L < min(d(u,1),d(u,v)), then f is (u,0)-flowing with o = deg(u)[||W¢|+B|W¢||?].
o If L > min(d(u, 1), d(u,v)), we have (u, o)-flowing with
o = deg(u) [[Well+BIWe||*] + At era(si),

where Wy denotes the linear temporal projection, deg(u) denotes the degree of node u; and B
is an upper-bound of latent representation space.

An effective strategy for improving information propagation in temporal graphs is to establish
connections beyond immediate neighborhoods, enabling efficient diffusion across the entire graph. In
static graphs, a well-studied approach is the introduction of a VN [14], which acts as a central hub,
connecting multiple nodes to facilitate long-range message passing. While this technique has shown
promise in static settings, applying it directly to dynamic graphs poses challenges due to their large
scale and evolving nature. A single VN would need to process a vast amount of information, leading
to both computational inefficiencies and an information bottleneck. To overcome this limitation,
we propose a distributed VN framework, where multiple fully connected VNs represent distinct
communities or clusters within the graph. Rather than relying on a single aggregation point, these
VNs independently collect information from their associated “child” nodes and propagate it across
the network via inter-VN communication.

We theorize that this hierarchical structure ensures stable information flow within 10...00
the message-passing framework and enhances the model’s ability to capture A : :
long-range dependencies in dynamic graphs. 0 .
Problem Setup. We formally define the proposed multi-VN architecture. Con- 00...01

sider a temporal graph G* € G at time ¢, with its adjacency matrix denoted | 7T 00
as A" € R™ ", To structure the graph, we partition its nodes into k distinct | . . .
sets, denoted as V = {V, ..., Vi }. We introduce a permutation or assignment |~ | 1
Sunction 1 : {1,...,n} — {1,..., k} that reorders the adjacency matrix based |0 .0
on the assigned node clusters. With the inclusion of VNs, the modified adjacency 00...11
matrix Ay n can be formulated as follows:

By introducing VNs that aggregate local spatial information from each cluster and disseminate it
globally, we argue that this approach enhances the underlying graph function’s ability to capture
both local and global dynamics while ensuring effective information flow. While prior work [13] has
explored the role of VN5 in static graphs, primarily in relation to under-reaching and over-smoothing,
our focus is on their utility in facilitating information propagation following an event. To this end,
we analyze their impact through our proposed information flow principle, which we consider more
suited to the dynamic graph setting of interest.

Theorem 3 (VN Addition). Consider a CTDG-based function f : G — Y based on L GCN-like
layers. Let g be a variant of f by adding k VNs, where each VN represents m nodes at max. After an
event between nodes i1 and v, for any node u not involved in the event, we have:

e Yu €V, if f is (u,0)-flowing then g is (u, o’)-flowing with:

Apr1(si) + Aper1(se)
kxm

/

o =0+

240
241
242
243
244
245
246
247
248
249

250

251
252

254
255
256
257
258

260
261
262
263
264

266
267
268
269
270
271

272
273
274
275

Virtual Nodes Go Temporal

I | () Vintual Nodes i

= b !

@ O o |
D) i i

JK i Original Edges i

\ 1 1

H 1

H H

H H

Virtual Edges

New Event
,,,,,,,,,,,,,,,,,,,,,,,,,

(a) (b)

Figure 1: Illustration of the updated nodes after an event occurrence in the case of (a) the standard
TGN with 1 Message-passing layer and (b) the TGN augmented with VNs. When incorporating VNs,
the information is propagated to all the nodes and not only within the L-hop of the event.

Theorem 3 demonstrates how introducing a set of VNs enhances information flow across the graph.
Unlike the original model (Theorem 1, 2), which relies on traditional message-passing where updates
are restricted to nodes within a limited neighborhood, VNs introduce a structural mechanism that
facilitates more global information flow. While the theoretical bound on ¢’ does not guarantee
uniform updates across all nodes, it establishes a necessary condition for broader propagation. In
practice, this increased bound provides greater flexibility for downstream tasks, particularly those
requiring long-range dependencies, where events in one region of the graph may influence outcomes
elsewhere. By bridging local communities through fully connected VNs, global updates become
feasible without increasing the number of message-passing layers, thereby mitigating the risk of
over-smoothing, as previously discussed. The proof of the theorem is provided in Appendix D.

5 Virtual Nodes meet Graph Clustering

The theoretical insights provided in Section 4 underscore the advantages of integrating VNs into
a TGN model, which also holds for any CTDG-based function. VNs serve as intermediaries that
facilitate long-range message passing and mitigate the challenges posed by limited local neighborhood
aggregation. Building upon this concept, we propose a multi-virtual-node framework, where
instead of a single VN connected to all nodes, we introduce multiple VNs, each responsible for a
specific subset of the graph. This framework, denoted as k£ Temporal VNs (k-TVNs) ensures a more
structured approach of propagating information across different regions of the graph, thus enhancing
the expressivity of the underlying function.

As illustrated in Figure 1, at any considered time ¢, given a graph topology A and a number
of communities k, we define an assignment function IT : {1,...,n} — {1,...,k} that allocates
each node to its corresponding VNs. The choice of this assignment function plays a crucial role
in determining how effectively information is propagated. A naive strategy would be to randomly
assign nodes to clusters; however, this could result in inefficient message passing, where redundant
information circulates within communities without effectively reaching distant parts of the graph,
which is our main aim. This can lead to unnecessary computational overhead and a loss of expressivity
in node representations. To overcome this limitation, we propose leveraging graph clustering
techniques to assign nodes to VNs in a topology-aware manner. Specifically, nodes that exhibit
strong structural connectivity (e.g., those within the same densely connected community) are grouped
under the same VN. This clustering-based assignment ensures that intra-community information is
efficiently aggregated before being propagated to other clusters. This within-then-beyond community
structure balances local expressivity with global connectivity.

As outlined in Algorithm 1, our method dynamically determines node assignments based on the
graph’s evolving topology at each time step ¢. Once the assignment is established, the virtual
connections are generated, allowing nodes within each cluster to exchange information through their
respective VN. This process facilitates localized aggregation, ensuring that each node benefits from

276
277
278
279

291

292

293
294
295

297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312
313
314
315

Virtual Nodes Go Temporal

rich intra-cluster information before broader inter-cluster propagation extends insights across the
entire graph. By structuring information flow in this hierarchical manner, our approach enhances
long-range dependency modeling while avoiding the pitfalls of redundant aggregation, ultimately
improving the robustness and efficiency of message passing in dynamic graphs.

Algorithm 1 k-Temporal Virtual Nodes (Main Algorithm)

Require: Adjacency matrix A and corresponding node features X at ¢, graph-based function f,
number of clusters k, clustering function g
1: fort € 7 do
2 Compute the assignment function I1(.) = g(A® k).
3 Build the augmented adjacency matrix Ay .
4: Compute the prediction Y = fl(Ayn, X)
5 Compute the Loss and update the model.
6: return Trained model f

Defining the appropriate clustering algorithm for this task is subject to two main constraints. The
first constraint pertains to its effectiveness, as the algorithm must accurately identify and group the
underlying communities within the graph. The second constraint is related to its computational
efficiency. Given the dynamic nature of the graph, the clustering process must be executed multiple
times, as cluster assignments must be periodically updated to reflect structural changes. Although
this reassignment operation is performed in a batching-like manner, it must remain computationally
feasible to prevent excessive overhead.

Lemma 1. Let G be an undirected graph with adjacency matrix A € R™". Consider its rank-
k truncated singular value decomposition A = UkaUkT , with ¥, € RF¥* g diagonal matrix
containing k dominant singular values of A and Uy, € R™** a semi-orthogonal matrix containing
corresponding left singular vectors. Then, for any pair of nodes u,v € V, we have:

[Au,: — Au |l = [(Uk)u,: — (Uk)o,:) Zill

where the error is bounded:

Au,: = Av:ll = [((Uk)u,: = (Uk)v,) Zilll < 20%41,
with o1 being the (k + 1)-th smallest singular value of A.

Lemma 1 implies that distances in the original adjacency space A are well approximated by distances
in the lower-dimensional singular vector space Uy, scaled by the singular values. Thus, if Uj, has a
well-defined cluster structure (i.e., the rows of Uy can be clustered into well separated & clusters),
the adjacency matrix inherits this property, reflecting the clustering tendencies of the graph’s nodes.
Moreover, when the graph has strongly defined communities, the rank k of A tends to be low, as most
structural information is concentrated in a small number of dominant singular values. Leveraging
those insights, we can directly use the adjacency matrix to construct communities. Specifically,
building on algorithms previously introduced in the literature [32, 33], we introduce a variant of
k-means that explicitly integrates graph topology by operating directly on the adjacency matrix.

The main idea, which is summarized in Algorithm 2 (Appendix F) consists of an iterative procedure
of this adapted k-means method. At each iteration, we assign each node (represented by its adjacency-
matrix row) to the nearest cluster center in Euclidean distance, then update each center as the mean
of its assigned rows. Since each row in the adjacency matrix encodes a node’s connectivity pattern,
row-wise comparisons naturally capture both the number and identity of shared neighbors. These
shared neighborhoods, in turn, drive cluster formation, effectively capturing the graph’s underlying
communities. By dynamically updating cluster centers based on row-wise distances, the algorithm
groups nodes with similar adjacency patterns, i.e., those with strongly overlapping neighbor sets. As
aresult, the clustering yields a meaningful partition of the graph, where each cluster center represents
a prototypical connectivity pattern of its node subset.

On the complexity of the approach. In its current formulation, the algorithm process all n rows and
performs distance comparisons to K centers in each iteration, resulting in an O(Kyn?) complexity.
However, we note that for the dynamic graphs, and given their large scale, a batch-based procedure
is usually adopted in which only a sub-graph (subset of nodes and their corresponding rows) is

316
317

318
319
320
321
322
323
324
325
326
327

328

329

330
331
332
333
334
335
336

337
338
339
340
341
342
343
344

345

346
347
348

Virtual Nodes Go Temporal

Table 1: MRR performance of a TGN and k-TVNs on the TGB Benchmark with baseline results
imported directly from the leaderboard. ‘- refers to OOM [36].

tgbl-wiki tgbl-review tgbl-coin tgbl-comment tgbl-flight

Model Val Test Val Test Val Test Val Test Val Test
DyRep [20] 7.2 5.0 21.6 22.0 512 452 29.1 28.9 57.3 55.6
EdgeBank,,, [37] 60.0 57.1 24 2.5 492 58.0 124 14.9 36.3 38.7
EdgeBank__ [37] 527 495 23 2.3 31.5 359 109 12.9 16.6 16.7
DyGFormer [38] 81.6 79.8 219 224 730 752 613 67.0 - -
GraphMixer [27] 11.3 11.8 428 52.1 - - - - - -
TGAT [22] 13.1 141 324 35.5 - - - - - -
TNCN [39] 74.1 718 325 37.7 740 762 643 69.7 83.1 82.0
NAT [40] 773 749 302 34.1 - - - - - -
CAWN [41] 743 71.1 20.0 19.3 - - - - - -
TCL [42] 19.8 20.7 199 19.3 - - - - - -
TGN [23] 435 39.6 313 34.9 60.7 58.6 35.6 37.9 73.1 70.5
k-TVNs (Ours) 61.3 572 335 37.3 67.1 679 428 44.3 75.8 73.6

Relative Improvement (%) 40.9 444 7.0 6.9 10.5 15.8 20.2 16.9 3.7 43

processed at each iteration. Consequently, in the context of a CTDG-based function, the scalability of
the algorithm is ensured depending on the chosen batch size.

On the convergence of the method. Ensuring that our clustering procedure converges to a high-
quality solution is crucial for preserving the representativeness of the augmented (virtual) nodes. The
algorithm employed here is a variant of Lloyd’s k-means [32], applied to the rows of the adjacency
matrix (i.e., each node’s neighborhood). During each iteration, the total within-cluster sum of squared
distances either strictly decreases or remains unchanged. Since there are finitely many ways to
partition n nodes into K clusters, the algorithm necessarily terminates in a finite number of steps
and settles at a (possibly local) optimum of the clustering objective. We do not provide further
theoretical guarantees on its convergence behavior; however, prior work offers detailed insights on
such guarantees [34] and on the role of initialization [35]. In practice, we observe that small number
of iterations (e.g., 10) consistently delivers satisfactory performance for the downstream tasks.

We provide a complete analysis of a convergence and time complexity in Appendix F.2.

6 Empirical Validation

This section evaluates the practical impact of our theoretical findings on real-world datasets and the
improved downstream performance. We specifically examine their effect on link prediction within
temporal graph representation learning. We note that our objective is not to establish new state-of-the-
art results but to demonstrate how integrating VNs as an augmentation mechanism enhances model
performance. Specifically, following our theoretical analysis, we focus on TGN. We run the k-TVNs
at each batch and aggregate information within each community using a weighted average based on
node degrees. Full details on these choices are provided in Appendix G.2.

Experimental Setup. For our comparison, we have aimed to illustrate different families of method-
ologies as presented in Section 2. From a dataset perspective, we consider both a set of real-world
benchmark datasets, extracted from the classification TGB benchmark Huang et al. [36] and syn-
thetically generated dataset in which we control the graph’s topology to showcase the necessity for
long-range interactions. We set the number of clusters to 2 (an empirical analysis of this parameter is
provided in Appendix F), and we run the clustering at each batch. Our code and implementation are
provided in the supplementary materials. Details on the datasets, additional implementation regarding
both model and VNs hyper-parameters are provided in Appendix G.

6.1 Experimental Results

Real-World datasets. We start by considering real-world benchmark datasets, where we consider
the different temporal graphs constituting the TGB benchmark [36]. Table 1 presents the average
test Mean Reciprocal Rank (MRR) scores. The results clearly demonstrate that augmenting the

349
350
351
352

353
354
355
356
357
358
359

360
361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378

379

380
381
382
383
384
385
386
387
388

Virtual Nodes Go Temporal

Information Flow Difference on tgbl-wiki
Long-Range Graph 02
PascalVOC 10 PascalvVOC 30
JODIE 0.67 + 0.03 0.65 + 0.07

Model

DyRep 0.69 + 0.02 0.70 + 0.02 Zros
TGAT 0.77 + 0.02 0.76 + 0.03 g
CTAN 0.80 + 0.01 0.78 + 0.01 Qo
TGN 0.78 £0.10 0.71 £ 0.04

k-TVNs 0.80 + 0.08 0.76 £ 0.01

Table 2: Average test AUC (& denotes stan- i 81 [ﬁ(lfTVNlﬁ _ }“‘] i

dard deviation) of the different methods on __))))
long-range PascalVOC 10 and 30 datasets. Figure 2: Difference in terms of information flow be-

Best performance per dataset in bold. tween a standard TGN model f and a TGN augmented
with the k-TVNs framework firyns on tgbl-wiki.

TGN model with our proposed k-TVNs consistently improves performance. Notably, we observe a
significant increase in MRR across all datasets. In particular, the performance improvement reaches
up to 40% in one case. These findings highlight the effectiveness of k-TVNs in enhancing information
propagation and improving predictive accuracy in temporal graph learning.

Long-Range Temporal Graphs. We additionally evaluate our approach on datasets that require
long-range reasoning for effective performance. Specifically, we consider a temporal adaptation of the
Pascal VOC-SP graph [43], following the evaluation protocol proposed by Gravina et al. [25]. Table 2
presents the average and standard deviation of test AUC on this dataset. Consistent with our findings
on real-world datasets, our proposed k-TVNs demonstrate the ability to improve model performance.
In this scenario, where long-range dependencies play a crucial role and ensuring efficient information
flow is essential, the addition of VNs becomes even more significant.

Empirical Validation of information flow. The primary motivation behind introducing VNs and our
proposed k-TVNs method is to enhance information propagation within the graph following an event
occurrence. In this perspective, we empirically validate the impact of VNs on node embeddings by
comparing a standard TGN model, denoted as f, with its augmented version incorporating k-TVNs,
denoted as fi_tvns through the quantity considered in Equation 1. We provide an average of Z,, for
each model providing therefore a valid unbiased estimator. Figure 2 reports the results for TGBL-Wiki
where we observe a an increased difference, indicating larger changes to node embeddings after an
event. This empirical pattern is consistent with the theoretical insights derived in Theorem 3.

Clustering Approaches. As outlined in Section 5 and tgbl-wiki
Algorithm 1, various clustering strategies can be em- “Val Test
ployed to assign nodes to VNs. To assess their impact, Random 362 519
we evaluate our used k-Means-Based Clustering against .) ’

a number of alternatives. First, we consider Random Louvain 56.3 52.3
assignment, where nodes are assigned to VNs randomly. k-TVNs 61.3 57.2
We afterwards consider Louvain Algorithm where nodes
are divided into clusters by maximizing intra-cluster
connectivity while minimizing inter-cluster links [44].
Table 3 provides the resulting MRR for each method for the tgbl-wiki, where we see that our proposed
Algorithm 2 provides the best performance.

Table 3: Effect of the clustering on down-
stream performance on tgbl-wiki.

7 Conclusion

In this work, we investigate the limitations of message-passing-based frameworks for Continuous-
Time Dynamic Graphs. Theoretically, we show that these models often fail to propagate information
effectively when an event occurs, reducing their accuracy in modeling and predicting subsequent
events. To address this issue, we propose augmenting temporal graphs with Virtual Nodes (VNs), a
concept well-established for static graphs, to enhance connectivity without leading to over-smoothing.
Specifically, we demonstrate that including these nodes improves the model’s overall information
flow. Building on this theoretical insight, we introduce k-TVNs, a method that uses a clustering
algorithm to identify key communities that should be connected. Experimental evaluations on both
real-world and long-range datasets empirically validate the effectiveness of k-TVNs.

389

390
391

392
393

394
395

396
397
398

399
400
401
402

403
404
405

406
407

408
409
410

411

Virtual Nodes Go Temporal

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations (ICLR), 2017. 1, 3

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph Attention Networks. In /CLR, 2018. 3

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In 7th International Conference on Learning Representations, 2019. 1

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular
graph convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design,
30(8):595-608, 2016. 1

Aymen Qabel, Sofiane Ennadir, Giannis Nikolentzos, Johannes F. Lutzeyer, Michail Chatzianas-
tasis, Henrik Bostrom, and Michalis Vazirgiannis. Structure-aware antibiotic resistance classifi-
cation using graph neural networks. In NeurIPS 2022 Al for Science: Progress and Promises,
2022. URL https://openreview.net/forum?id=_BjtI1ib8N9. 1

Shu Wu, Yuyuan Tang, Yanqgiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
Recommendation with Graph Neural Networks. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, pages 346-353, 2019. 1

Alessio Gravina and Davide Bacciu. Deep learning for dynamic graphs: models and benchmarks.
IEEE Transactions on Neural Networks and Learning Systems, 2024. 1

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. Journal of Machine
Learning Research, 21(70):1-73, 2020. 1

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal
graph networks. Advances in neural information processing systems, 35:32257-32269, 2022. 1,
3,4

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263-1272. PMLR, 2017. 1

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i800Ph0CVH2. 1

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877-28888, 2021. 2

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis
of virtual nodes in graph neural networks for link prediction (extended abstract). In The
First Learning on Graphs Conference, 2022. URL https://openreview.net/forum?id=
dIB6KBKNRp7. 2, 5

Joshua Southern, Francesco Di Giovanni, Michael Bronstein, and Johannes F Lutzeyer. Under-
standing virtual nodes: Oversmoothing, oversquashing, and node heterogeneity. arXiv preprint
arXiv:2405.13526,2024. 2,5

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD °19. ACM, July 2019. doi:
10.1145/3292500.3330895. URL http://dx.doi.org/10.1145/3292500.3330895. 2

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network:
Embedding user and item features for recommendation. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. 2

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion proceedings of
the the web conference 2018, pages 969-976, 2018. 2

10

https://openreview.net/forum?id=_BjtIlib8N9
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=dI6KBKNRp7
http://dx.doi.org/10.1145/3292500.3330895

Virtual Nodes Go Temporal

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Aditya Grover and Jure Leskovec. Node2Vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855-864, 2016. 2

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs. Advances in Neural Information Processing
Systems, 35:19874-19886, 2022. 2

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HyePrhR5KX. 2, 8

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. In Proceedings of the 43rd international ACM SIGIR conference on research and
development in information retrieval, pages 719-728, 2020. 2

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJeWlyHYwH. 2, 8

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In /ICML
2020 Workshop on Graph Representation Learning, 2020. 2, 3, 8

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dy-
namic graph model for link prediction. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=82Mc5i1InM. 2

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt.
Long range propagation on continuous-time dynamic graphs. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages 16206-16225. PMLR, 21-27 Jul 2024.
URL https://proceedings.mlr.press/v235/gravina24a.html. 2,9, 21, 22

Katarina Petrovi¢, Shenyang Huang, Farimah Poursafaei, and Petar Veli¢kovi¢. Temporal graph
rewiring with expander graphs. In ICML 2024 Workshop on Geometry-grounded Representation
Learning and Generative Modeling, 2024. URL https://openreview.net/forum?id=
LN9fe4CWIH. 2

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,
and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal
networks? In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=ayPPcOSyLv1l. 2, 8

Yuxia Wu, Yuan Fang, and Lizi Liao. On the feasibility of simple transformer for dynamic
graph modeling. In Proceedings of the ACM on Web Conference 2024, pages 870-880, 2024. 2

Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based dynamic graph
neural networks. arXiv preprint arXiv:2402.04284, 2024. 2

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf. 3

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993,2023. 5

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28
(2):129-137,1982. 7, 8

Sébastien Bubeck, Marina Meila, and Ulrike von Luxburg. How the initialization affects the
stability of the k-means algorithm. ESAIM: Probability and Statistics, 16:436-452,2012. 7

Shokri Z. Selim and M. A. Ismail. K-means-type algorithms: A generalized convergence
theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(1):81-87, 1984. doi: 10.1109/TPAMI.1984.4767478. 8

11

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=82Mc5ilInM
https://proceedings.mlr.press/v235/gravina24a.html
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=ayPPc0SyLv1
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf

494
495
496

497
498
499
500

501
502
503
504

505
506
507

508
509
510

511
512

513
514
515
516

517
518
519

520
521
522

523
524
525

526
527

Virtual Nodes Go Temporal

[35] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, page 1027-1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN
9780898716245. 8

[36] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-
ral graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems, 36, 2024. 8

[37] Farimah Poursafaei, Andy Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track,2022. URL https://openreview.net/
forum?id=1GVpwr2Tfdg. 8

[38] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=xHNzWHbk1lj. 8

[39] Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common
neighbor for temporal graph link prediction, 2024. URL https://arxiv.org/abs/2406.
07926. 8

[40] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference, pages 1-1. PMLR, 2022. 8

[41] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=KYPz4YsCPj.
8

[42] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 8

[43] Vijay Prakash Dwivedi, Ladislav Rampasek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326-22340, 2022. 9

[44] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008. 9

[45] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015. 22

12

https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=xHNzWHbklj
https://arxiv.org/abs/2406.07926
https://arxiv.org/abs/2406.07926
https://arxiv.org/abs/2406.07926
https://openreview.net/forum?id=KYPz4YsCPj

528

529
530
531

532
533
534
535
536

537
538
539
540
541
542

543

544
545

546

547

548

549

550

551

552

Virtual Nodes Go Temporal

Appendix: Virtual Nodes Go Temporal

A On the Equivalence of Norms

As explained in Section 4, we rather focus on the /5-norm in our analysis. In this section, we aim to
prove that such choice doesn’t limit the capacity of our analysis, and that similar insights can be seen
when considering other norms.

We note, as explained previously, that the value of o depends on the chosen distance metric dy, within
the output manifold.
Lemma 2. Let f : G — Y be a CTDG graph-function, with D being the node embedding dimension.

2
If [is (u, 0)-flowing in respect to Norm-2 then f is (u, D* o)-flowing in respect to any Norm-p
withp > 1.

The previous Lemma shows that choosing Norm-2 to induce the output manifold distance does
not restrict our theoretical conclusions, as norm equivalence holds in terms of information flow.
Consequently, different distance metrics can be used based on specific applications while yielding
similar insights into a model’s capacity for information propagation after an event. In the rest of this
section we provide the proof of the Lemma.

Lemma. Let f : G — Y be a CTDG graph-function. If f is (u, o)-flowing in respect to Norm-2 then

fis (u, D%U)ﬂowing in respect to any Norm-p with p > 1.

Proof. Let’s consider that)) C RP with D being the dimension of our graph node’s embedding
space. Let v = (z1,...,2p) € Y. We recall that the set of norms p within RP are written as:

D 1/p
Vp >0, |z,= (Z Iwil”>
i=1

Let f : G — Y be a CTDG graph-function. Let’s consider that f is (u, o)-flowing in respect to
Norm-2:

Lulf] = Ep[llfu(G"™) = fulGYI] < o

Building on Holder’s inequality, we have the following:

11 1
q>p=1= Di7|zlp< |zfly< Dafll,,

Hence, for ¢ = 2:

1

1

g>p=1=D"7z|,< [z|2
—2

= D' ||z],< ||z

_2p
= [zllp< D=7 lz2

Consequently, we have the following:

Ep (|l fu(GTY) = fu(GY)]p) < Ep[DZ25 (| £,(GTH) = £u(GY]]

2p
D2>=ro

IN

Therefore, f is (u, D%U)-ﬂowing in respect to Norm-p with p > 1

13

553

554
555
556

557

558

559
560
561
562

563
564
565

566
567

568
569
570
571
572

573

Virtual Nodes Go Temporal

B Proof of Theorem 1

Theorem (GCN-based aggregation). Let’s consider a CTDG-based function f : G — Y based on L
GCN-like layers. After an event between nodes i and v, for any node u not involved in the event, we
have the following:

o if L < min(d(u,i),d(u,v)), then f is (u, c)-flowing with:

L
o — oW WO
e if L > min(d(u,), d(u,v)), then f is (u, o)-flowing with:

L
o= Hl:l ”W(Z)H [wu||WtH+wu,iAt,t+1(Si)]7

where W, is the sum of temporal normalized walks of length (L — 1) starting from u; the term i, ;
denotes the normalized shortest path between u and i; the terms Wy and W'V are weight matrices
involved in the propagation, with Wy capturing temporal updates; and A 111(s;) is the difference
in memory state for node i, as introduced by the event.

Proof. Let f : G —) be a CTDG graph-function, based on the framework described in Section 3.
We consider the aggregation to follow a GCN-like aggregation, which can be formulated at layer ¢
for a node as:

B — > WO o
veN T Uy V(1 deg) (1 + deg(v))

with W () € Re-1%¢¢ being the learnable weight matrix and e, being the embedding dimension of
layer ¢ and o(©) is the activation function of ¢-th layer.

For nodes not involved in the event and for which L < min(d(u, %), d(u,v)). We consider the
nodes that are not part of the event and that are distant from the nodes involved in the event. Distant
in this case is defined by the number of propagation layers used in the message-passing. For these
nodes, the update is only dependent on the temporal projection, since the nodes are not updated based
on the event.

In this proof, we consider that we are dealing with a GCN-like propagation:

£ (G = £u(GH]= 108y = a0

o wORH
=le 2 V(1 + deg()(1 + deg(v)) |

veN (u) U{u}
£—1
W(e) hw(),t)

@
’ ve/\/%:u{u} V(1 + deg(u))(1 + deg(v))

0—1
W(Z)hz(;,w%

<l > -

veN Uy V(L + deg) (1 + deg(v)
wORS Y
2 /(1 + deg(w)) (1 + deg(v))

veEN (u) U{u}
£— 0—
_ HW(@)” Z th(;,t-&% - hg},t 1)||
V(1 + deg(w)(1 + deg(v))

veN (u) U{u}

14

Virtual Nodes Go Temporal

5

N

4 Using the same process in an iterative way, we get the following:

£ (GHY) = fu(@)]= 128, = 2D

L
Wi
S J (LA t
=1

NG Uty V(L +deg) /(1 + deg(2))

L
< Wi TTIW @l
1=1

575 with w,, being the sum of temporal normalized walks of length (L — 1) starting from node w.

576 For nodes not involved in the event and for which L > min(d(u,), d(u, v)). We now consider the
577 nodes that are not included in the event but are within a reachable distance of the event. Specifically,
576 we consider the nodes that are L > d(u,¢). Similar to the previous part, we have the following
579 inequality:

£ (GHY) = (@)= 18 = B

S [el
< [T wiil
11;[1 ze/\/%:u{y} V(1 +deg(u) ... /(1 + deg(2))

ss0 Since we have that L > d(u, 7), the consider node u have some information from the node related to
ss1 the event ¢, in this perspective, we can write:

1£u(G) = fu(GY)]

ﬁ oy 1)y —)|
<TTIw®y v, v,
=1 2eN(y) U{v} V(1 +degw) ... /(1 + deg(2))

ﬁ 0 5 15541 — Pt
< [LI = =
=1 cen) Ut gy V(L deg@) /(1 + deg(@)

1A — il
(1 + deg(u))(1 + deg(j)) ... (1 4 deg(y))+/ (1 + deg(i))

ss2 The first term is related to the temporal projection update and the second is related to the event
se3 occurrence. Specifically, after the event happening, node ¢’s representation is updated and passed
ss4 along with the message-passing. Building on this, we have:

IF(GH) = F(GYl

L
<L [quIWtIIeru,z—t A (si)]
=1 ’

sss where like previously explained 1, being the sum of temporal normalized walks of length (L — 1)
se6 starting from node v and w,, ; is the normalized shortest path between w and <.

587 O

15

588

589
590
591

592

593

594
595

596
597
598
599

600

601
602

603

604

605
606
607
608
609

610

611

Virtual Nodes Go Temporal

C Proof of Theorem 2

Theorem (Attention-based aggregation). Let’s consider a CTDG-based function f : G — Y based
on L attention-based layers. After an event between node i and another node, the following properties
hold for any node u not involved in the event, we have the following:

o if L < min(d(u,1),d(u,v)), then f is (u, o)-flowing with:
o = deg(u) [[IWl|+BlW:]1*];

e if L > min(d(u,1),d(u,v)), we have (u, o)-flowing with:
o = deg(u) [[Wel[+BIWe|*] + A¢era(si),

where deg(u) denotes the degree of node u; and B is an upper-bound of latent representation
space.

Proof. In this theorem, and similar to the previous section in which we discuss Theorem 1, in this
theorem we consider the function f : G —) to be based on attention-like aggregation, where the
aggregation of the representation of the neighborhood is weighted based on attention and can be
written as:

R+ — (0 (SN h(t)) 3
u keN () U{u} © R
Let’s consider a node v at time ¢, we have the following:
1D =D l=1 30 @R = 3T am)
EeEN (t+1) kENL (L)
S D e R SRR
kEN, (t+1)

The previous quantity is divided into a first part related to the attention mechanism and the second is
related to the neighborhood update. We start by analyzing the attention part, we have:

W _ exp (el(_;)>

o —, @)
ZkEN(i) €xp (ev(ik))
with:
el!) — LeakyReLU (wT s, sgt)}) : (5)
where [a, b] denote the concatenation of two vectors a and b. We can therefore derive the following:
o™ = o) < ol (s, 5] = [0, 50]) ®)
< Jwl|é(su)d(s:) o

For nodes not involved in the event and for which L < min(d(u,), d(u,v)). Similar to the previ-
ous proof, we first consider the node that are not within reach of the events L < min(d(u, 1), d(u,v)).
Specifically, we consider that the number of propagation L < min(d(u, i), d(u,v)) with u being the
node and ¢ being the node included in the event and d. The difference in terms of representation is
related only to the temporal projection aspect:

t+1 t
o™ — ol < Jwll|Wel?A2

We additionally assume that the representation space is bounded; specifically for each node u € A at
any timestamp ¢, there exists a finite constant Bt(f) > 0 such that:

[h®) < BY, where B = max BY) = ||| < B Vu,t
ueN, t

16

613
614
615
616

617

618

619

620
621
622
623

624

625
626

627
628
629

630

631

Virtual Nodes Go Temporal

We consequently derive the corresponding upper-bound and derive that:

o= Y A(sk) + B[Wi A
kEN (u)

For nodes not involved in the event and for which L > min(d(u,), d(u,v)). Let’s now consider a
node w that is not involved in the event and for which L > min(d(u,), d(u, v)). For the considered
node u, one of the nodes ¢ included in the event is within the neighborhood, then its memory will be
updated as well. From the previously derived inequality, we can directly write:

RS —RPl< D Alsk) + BIWal?

kEN (u)
<Y Alse)+ BIWA? | + Als) + B Wif?
keN (u)\{i}
< >0 W+BIWLP+A(s:) + BI[W?
keN (u)\{i}

< deg(u)[|Wel|+BIWilP] + A(si)

We consequently derive that:

o = deg(u) [|[W|[+B|[W:[[*] + A(s:)

D Proof of Theorem 3

Theorem. Consider a CTDG-based function f : (G, X) — Y based on L GCN-like layers. Let g be
a variant of [generated by adding k Virtual Nodes (VNs), where each Virtual Node (VN) represents
m nodes. After an event between nodes i and v, for any node u not involved in the event, we have the
following:

e Yu €V, if f is (u,0)-flowing then g is (u, o’)-flowing with:

Ay r1(8:) + Apira(se)
kxm

/

o =0+

)

Proof. Let f : G — Y be a CTDG graph-function, based on the framework described in Section 3.
Let u € V be a node within our considered graph and we consider that f is (u, o)-flowing, therefore:

Lulf] = Ep[llfu(G"™) = fu(GYI] < o

Let g be an augmented version of f based on & VNs, where each VN represents m nodes. Specifically,
we consider Sy, = {V7, Va, ..., Vi } be the set of augmented VNs. The consider node u is connected
to its corresponding VN ©. The final representation of node u, using g, can be composed as follows:

n, = h + h,,

where th’) is related to f’s computation (either through message-passing or temporal encoding) and
h,, is related to the information gotten from the corresponding VN ©. We can consequently write:

19u(G**Y) = gu(GO)|= 1Rty iy — hiy il
= thﬁ)t+1 —hi+ hu7t+1 - ilu,t

YA V4
S A

)
t
WA A1 — P

17

632
633
634
635

636
637
638

639

640

641

642

643
644
645
646

647

Virtual Nodes Go Temporal

In our analysis, we consider a unique event that happens within a community/cluster and that all
the VNs are fully connected between them and to all their “child” nodes, denoted as the set C, and
finally that the information is propagated using an average-like aggregation. Therefore, we have the
following:

2 5 hﬁt 1 h’A‘t
[Au,t+1 = haell = || Z 7’7]; - Z %H

JESY JESY
i,t+1 hz,t
=||ZZk -2 2 o]
JGSV ’LGC 565\} ZGC;
gA4+1
<) > b ol
jesv ZEC

Since we consider only a unique event, then there will be only two updates (each related to one of the
nodes involved in the event). We note that here we consider updates related to the message-passing
information and not the temporal projection. We can therefore write:

5 hi+1 —
a1 — Frel] < Z ZH X m =l

jesv ZEC

Ay ir1(8:) + Apra(se)

<
kxm

Hence, we have:

19u(G*1) — gu(Gt)H— ([7e, 17 "
<R 1 = B+ e —

At,t+1(8i) + A yi1(sy)
kxm

Y4 Y4
<)y = h N+

And consequently we have that g is (u, o’)-flowing with:

At,t-‘,—l(si) + At,t-‘,—l(sv)
kxm

o =0+

E Proof of Lemma 1

Lemma. Let G be an undirected graph with adjacency matrix A € R"*". Consider its rank-
k truncated singular value decomposition A ~ UkEkU,j, with ¥, € R¥*k a diagonal matrix

containing k dominant singular values of A and Uy, € R"** a semi-orthogonal matrix containing
corresponding left singular vectors. Then, for any pair of nodes u,v € V, we have:

[Au,: — Au || = [(Uk)u,: = (Uk)w,:) kel
where the error is bounded:

MAw,: = Al = 1((Uk)u,: = (Uk)o:)2kl < Oort)-

Proof. Using the rank-k truncated singular value decomposition, the adjacency matrix can be decom-
posed as
A=A+ AL,

18

648

649

650

651

652

653
654
655

656

657

658

659
660
661
662
663
664
665
666
667
668

Virtual Nodes Go Temporal

where
Ay = UpSp Uy

is the best rank-% approximation of A, and A contains the remaining singular values o1, . ..

For any nodes u, v € V, their row representations satisfy:
Auy = (UERUY Jup + (ULELU] uyis
Ay = (USkU) + (ULS LU,

Taking the row difference:

Au7: - Av,: = (Uk)u,EkUJ - (Uk)v,:ZkU];r + (UJ_)u7:2J_UI - (UJ_>U,:ZJ_UI-

Applying the triangle inequality:
[Au; = Aoall = 1(Uk)us: = Or)o,) Blll S NUL)w: = (UL)o,)BLUL -

From the previous formulation, we can write:
1Au,: = Al = 1((Uk)u,: = (Uk)w,:) Sl
< NU L) = (U)o,)SLUL ||
< H(UJ-)M,:EJ-UI - ((UJ-)u,:EJ-UI)H

<NUL) LU HI(UL)u, LU |
< 2041

Since the residual term A is at most 01 in spectral norm, we obtain the bound:
Au: = Aol = 1((Uk)u: = (Uk)v,:) Ekll] < 20441

Opverall, this can also be written as:
[Au,: = Av: [l = [(Uk)u,: — (Uk)v,) Zkll] £ O(0k+1)-

®

From the topology perspective. The previous bound can also be upper-bound by a term depending
on the graph’s topology represented by its adjacency matrix A. By ordering the singular values:

01> 09 > --- > 0y > 0. We have the following:

k+1

(k+1)op,, < Za < Zo || All%,
Hence, using Equation 8, we have:

2| F
s~ Aol = (U — WSl < 2V 2

F Practical Implementation

In the following section, we aim to provide practical implementation guidelines for our proposed
approach k-TVNs, which is based on an adaptation of the k-means algorithm. Algorithm 2 outlines
the iterative procedure of this adapted k-means method. Specifically, at each individual iteration,
each node (represented by its adjacency-matrix row) is assigned to the nearest cluster center in
Euclidean distance, then update each center as the mean of its assigned rows. Since each row in the
adjacency matrix encodes a node’s connectivity pattern, row-wise comparisons naturally capture
both the number and identity of shared neighbors. These shared neighborhoods, in turn, drive cluster
formation, effectively capturing the graph’s underlying communities. By dynamically updating
cluster centers based on row-wise distances, the algorithm groups nodes with similar adjacency

patterns, i.e., those with strongly overlapping neighbor sets.

19

669

670
671
672
673
674
675
676
677

678

679
680
681

682
683
684
685
686
687

688
689
690
691

Virtual Nodes Go Temporal

Algorithm 2 k-Means-Based Clustering

Require: Adjacency matrix A € R™*", number of clusters Ky € N, number of iterations 7'
1: Interpret each row of A as a data point:

X; = (A117Ai27---aAin) fori:1,2,...,n.

2: Initialize the cluster centers c(10)7 cgo), e ,c% e R”
3: repeat
4: (1) Assignment step:
5: fori=1,...,ndo
. . t
6: Assign x; to cluster: k=argmin; ;g [[xi — c§)||
7 (2) Update step:
8: fork=1,...,Kydo
9: Recompute center c,(fH) as the mean:
(t+1) _ 1
Cr = [Cr(c®)] D ox, € Cru(e) Xi-

10: until convergence
11: return Cluster assignments.

F.1 Time Complexity Analysis

While our proposed k-TVNs, which is based on a clustering method, increases the performance of
the an underlying TGN model, it comes with a certain price in terms of complexity as previously
discussed in Section 5. In this perspective, we investigate the added complexity in terms of training
time of a TGN with its counter-part of an augmented version using our proposed method. Note that
we used the same set of hyper-parameters for both models and that all the experiments have been run
on a NVIDIA L4 and A100 (for the larger datasets tgbl-comment and tgbl-flight) GPU. Table
4 reports the average training time in seconds (with the corresponding standard deviation) for each
method on the considered benchmark datasets.

Method TGN k-TVNs Louvain Random

Train 154401 176+04 7839469 15.84+0.1
Validation 77.5+0.2 789+0.5 1883+27 7814+0.3
Test 777T+£03 79.3+£05 2059+21 782+0.3

Table 4: Average training, validation and test time (in s) per epoch (4 denotes standard deviation) for
our proposed k-TVN in comparison to the original TGN model and the other considered clustering
approaches.

F.2 Hyper-parameters Analysis

To better understand the effect of the different hyper-parameters involved in the Algorithm, we provide
an empirical analysis consisting of changing the values and discussing their resulting validation and
test performance.

Effect of number of iterations. We start by analyze the effect of number of iterations (denoted as T’
in the Algorithm). Table 5 provides the validation and test MRR for different number of iterations
(ranging from 3 to 50). We see that there seem to be a sweet spot point at 7' = 10, where the maximal
validation and test values are reached. Interestingly, when increasing the number of iterations beyond
that point, both the validation and test MRR value decreases. In particular, we see that the gap
between validation and test becomes much bigger.

Effect of number of clusters. While some clustering methods doesn’t necessary need a pre-defined
number of clusters, in the proposed Algorithm which is based on k-means, we need to define
this number. In this perspective, in this analysis, we aim to analyze how such choice affects the
performance of the model in terms of downstream performance. We note that the majority of the used

20

692
693
694

695

696

697
698
699

700
701

702

704
705
706

707
708

709
710

711
712
713
714
715
716

Virtual Nodes Go Temporal

tgbl-wiki

T=3 T=5 T=10 T=50 T=100
ValMRR 60.8 60.9 61.3 60.5 59.5
Test MRR 56.1 56.6 57.2 56.0 55.7

Table 5: Validation and MRR for different number of iterations 7" on the tgbl-wiki dataset.

tgbl-wiki

Ko=2 Ko=3 Ko=5 Ko=10
ValMRR 613 56.2 58.9 58.6
Test MRR ~ 57.2 54.2 55.6 54.9

Table 6: Validation and MRR for different number of clusters K on the tgbl-wiki dataset.

graphs are bi-partite and therefore the ultimate choice would be to choose Ky = 2. Table 6 provides
the Test and Validation MRR values for the tgbl-wiki dataset. We see that /{, = 2 is the one yielding
the best performance, which was expected given the bi-partite aspect of the graphs.

G Datasets and Implementation Details
G.1 Datasets

Real-world Datasets. Table 7 presents an overview of the datasets used in our experimental
evaluation. As detailed in the main paper, we conduct experiments on the datasets constituting the
TGB benchmark. Specifically, we consider the following datasets:

* tgbl-wiki: The dataset is a bi-partite network where Wiki pages and editors are nodes, while
an edge is added when a user edits a page at a specific timestamp.

* tgbl-review: Itis also a bi-partite network where nodes are Amazon product and users, and
edges represents a particular review from a user to a product at a given time.

* tgbl-coin: This a network representing different cryptocurrency transactions. Specifically, the
nodes represent an address and each edge represents the transfer of funds from one adress to
another at a time.

* tgbl-comment: The graph compromises replies from Reddit where users reply to each other’s
threads.

* tgbl-flight: The dataset represents flight network, where nodes represent airports while the
edges are flights between airports at a given day.

Synthetic Datasets. We also assess the benchmark’s performance on graphs requiring long-range
dependencies, where interactions among distant nodes play a crucial role. For this purpose, we
consider a family of graphs derived from the static PascalVOC-SP dataset. In this family, each node
corresponds to a region in an image associated with a particular class, and the temporal dimension is
introduced by sequentially revealing nodes from the top-left to the bottom-right of the image. Further
details can be found in the original work by Gravina et al. [25].

Table 7: Statistics of the link prediction datasets used in our experiments.

Nodes # Edges # Edge ft. Split Surprise Index

tgbl-wiki 9,227 157,474 172 70/15/15, Chronological 0.108
tgbl-review 352,637 4,873,540 - 70/15/15, Chronological 0.987
tgbl-coin 638,486 22,809,486 - 70/15/15, Chronological 0.120
tgbl-comment 994,790 44,314,507 - 70/15/15, Chronological 0.823
tgbl-flight 18,143 67,169,570 - 70/15/15, Chronological 0.024
T-PascalVOCio 2,671,704 2,660,352 14 70/15/15 1.0

T-PascalVOCso 2,990,466 2,906,113 14 70/15/15 1.0

21

718
719
720
721
722

723
724
725

726
727
728
729

730
731
732
733
734

735

736
737
738
739

740
741
742
743
744

Virtual Nodes Go Temporal

G.2 Clustering Specification

For our proposed k-TVNs, we set the number of clusters £ = 2 and limit the maximum number of
iterations to 10. Clustering is performed at every batch: for each batch of events, we apply clustering
to the nodes involved in that batch and subsequently construct the VNs. These nodes are fully
connected to one another and also linked to their respective child nodes (i.e., the original nodes in the
cluster).

We cluster every batch to adapt to non-stationary temporal neighborhoods; this keeps VN assignments
aligned with the most recent local structure. While less frequent reclustering reduces compute, it can
lag structural drift; we therefore prioritize per-batch updates in our main results.

Note that Algorithm 2 is not required to converge to an optimal solution; instead, we only require
a sufficiently good clustering outcome, as discussed in Appendix F.2. To accommodate this, we
introduce a tolerance threshold when comparing distances during clustering. In our experiments, this
threshold is set to 1072,

The aggregation within each cluster, used to compute the embedding of the corresponding VN, is
implemented as a weighted average, where weights are determined by the degree of each node.
While alternative aggregation methods (e.g., attention-based mechanisms) are possible, we adopt the
weighted average approach for our empirical evaluations, aligning with the focus of our theoretical
analysis.

G.3 Experimental Setup

Hyper-parameters. For all experiments, we used the Adam optimizer [45] with a learning rate of
1 x 10~* and a batch size of 200 for training, validation, and testing. The training process consisted
of 50 epochs with a patience threshold of 5. We set the embedding dimension to 256 as the original
parameter used for the TGN.

Implantation Details. Our code is provided in the supplementary materials section (and will be
publicly available afterwards upon publication). Our implementation is built on top of two main
publicly available implementations: (i) the TGN implementation, which is publicly available from
the TGB Github and was used to do the experiments on the TGB benchmark graphs, and on the ii the
CTAN [25] implementation for the long-range synthetic datasets.

22

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Information Flow in Continuous-Time Dynamic Graphs
	4.1 Expressivity through Information Flow
	4.2 On the Expressive Power of Virtual Nodes

	5 Virtual Nodes meet Graph Clustering
	6 Empirical Validation
	6.1 Experimental Results

	7 Conclusion
	A On the Equivalence of Norms
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Proof of Theorem 3
	E Proof of Lemma 1
	F Practical Implementation
	F.1 Time Complexity Analysis
	F.2 Hyper-parameters Analysis

	G Datasets and Implementation Details
	G.1 Datasets
	G.2 Clustering Specification
	G.3 Experimental Setup

