
Virtual Nodes Go Temporal

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Learning representations of temporally evolving graphs, also known as2

Continuous-Time Dynamic Graphs (CTDGs), has gained considerable atten-3

tion due to their ability to model a wide range of real-world phenomena. Recent4

efforts extend the well-established message-passing paradigm and Graph Neural5

Network (GNN) models, originally designed for static graphs, to account for the6

temporal dimension of dynamic graphs. Although these methods have shown7

promising results, they often inherit limitations from their static counterparts,8

particularly regarding the capture of long-range interactions. In static settings,9

adding Virtual Nodes (VNs) has proven effective in overcoming locality con-10

straints and boosting performance. In this work, we conduct a theoretical analysis11

of the impact of VNs in CTDG-based models. Specifically, we introduce the con-12

cept of information flow, which examines how information propagates through13

a graph following an event. From this perspective, we highlight inherent limi-14

tations of existing CTDG-based approaches and demonstrate how adding VNs15

can address these constraints. Building on these insights, we propose k-TVNs, a16

framework that incorporates a set of fully connected VNs, each representing a17

distinct community within the graph. Through both theoretical investigation and18

empirical validation, we show that incorporating VNs substantially improves the19

performance of CTDG models.20

1 Introduction21

Graph Neural Networks (GNNs) [1–3] have become the standard approach for learning robust graph22

representations that power a wide range of downstream tasks. From biomedical applications like23

protein function prediction [4, 5] to recommendation systems [6], GNNs have consistently shown24

remarkable effectiveness in capturing complex relational patterns. Following their success in static25

settings, these models have been extended to dynamic graphs [7], which generalize static graphs26

by evolving over time through events such as edge additions or deletions (friendship formation or27

removal in a social network) or node insertions or removals (users joining or leaving the network).28

According to Kazemi et al. [8], dynamic graphs are generally categorized into: (i) Discrete-Time29

Dynamic Graphs (DTDGs), which aggregate events into fixed time intervals and (ii) Continuous-30

Time Dynamic Graphs (CTDGs), which accommodate temporally irregular events and provide a31

more flexible and widely adopted representation that subsumes the discrete case [9]. Unlike static32

graphs, these dynamic variants must account for evolving neighborhood structures and capture33

temporal dependencies. Consequently, specialized CTDG models have been developed to address34

these challenges. By integrating the temporal dimension, these models produce evolving node35

representations according to the continually shifting graph topology whenever an event occurs.36

The family of CTDG models typically extends the message-passing framework [10] to accommodate37

temporal evolving graph topology. However, similar to static graph settings, these models often suffer38

from over-squashing and over-smoothing [11], which constrain their ability to propagate information39

effectively when new events occur. Consequently, nodes distant from an event location may fail to40

update their representations appropriately, posing challenges when capturing long-range dependencies,41

which is often a requirement in real-world dynamic graphs, where successive events can arise in42

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

Virtual Nodes Go Temporal

different communities. One approach to mitigate this limitation is to enhance graph connectivity,43

either by rewiring (introducing connections between different sub-graphs) or by employing Graph44

Transformers [12], which leverage attention mechanisms to weight message-passing across all45

node pairs. Although Graph Transformers have shown promising results, their computational and46

memory overhead often make them infeasible for real-world dynamic settings, where updates must47

be performed after each event. In this work, we explore Virtual Nodes (VNs) as a more practical48

solution for propagating information while preserving local node structure. Specifically, we propose49

k-Temporal VNs (k-TVNs), which partitions the graph into k communities, each represented by50

a Virtual Node (VN). These VNs are fully connected with one another, thereby enabling global51

information flow across the entire graph in addition to the local connectivity within each community.52

Although VNs have been studied in static graph settings [13, 14], particularly in relation to graph53

expressivity and over-smoothing, to the best of our knowledge, this is the first work to explore their54

impact in dynamic graph settings. Our goal is to explore both the theoretical and empirical benefits of55

incorporating VNs. To begin, we introduce the concept of “Information-Flow,” which quantifies how56

events propagate through a graph and relates to the expressivity of a CTDG function. Building on57

this notion, we conduct a theoretical examination of CTDG expressivity and show how adding VNs58

can enhance information propagation. Motivated by these insights, we introduce a clustering-based59

approach for constructing VNs, facilitating the capture of community-level information. Finally,60

we validate our theoretical findings via empirical evaluation on real-world benchmark datasets,61

demonstrating that integrating VNs into CTDG functions yields performance gains compared to62

existing benchmark methods. Our main contributions can be summarized as follows:63

• We formalize the concept of information flow to quantify how events propagate in a CTDG,64

establishing a clear connection to the expressivity of dynamic graphs.65

• Through theoretical analysis, we demonstrate that incorporating VNs into a CTDG function66

improves its capacity for information propagation, thereby capturing long-range dependencies.67

• We introduce a clustering-based strategy for constructing VNs, termed k-TVNs, and demonstrate68

empirically that our approach surpasses existing baselines in real-world benchmark datasets in69

both information propagation and downstream task performance.70

2 Related Work71

Numerous approaches have recently been proposed for learning representations of dynamic graphs.72

Broadly, existing methods can be classified into three categories:73

Non-MP methods primarily rely on temporal embedding updates without explicit graph-based74

message passing. JODIE [15] and DeepCoevolve [16] employ mutually recursive recurrent neural75

networks to model node evolution, with JODIE introducing a temporal projection step to address76

inactivity. Temporal random walk methods [17] impose temporal constraints on sampled sequences77

before processing them with embedding models like Node2Vec [18]. Recent extensions enhance78

sampling strategies by incorporating graph topology [19], yet these methods remain constrained by79

their lack of explicit graph-level message passing, reducing their effectiveness in scenarios where80

topology-driven propagation is crucial, such as stochastic or multi-community settings.81

MP-based methods facilitate information propagation through explicit neighborhood aggregation.82

DyRep [20] and DyGNN [21] incorporate recurrent memory components to update node represen-83

tations based on temporal interactions; however, their dependence on one-hop neighborhoods can84

result in over-smoothing. Temporal Graph Attention (TGAT) [22] and Temporal Graph Networks85

(TGN) [23] extend this paradigm with attention-based aggregation and functional time encoding.86

More recent works explore spectral approaches, such as FreeDyG [24], which applies frequency-87

domain transformations for temporal dependency modeling. Finally, CTAN [25] refines information88

propagation by formulating event-driven diffusion as a dynamical system, whereas Temporal Graph89

Rewiring [26] improves long-range interaction efficiency by leveraging expander graph propagation.90

Hybrid methods aim to strike a balance between computational efficiency and expressivity by91

integrating multiple modeling paradigms. GraphMixer [27] streamlines the MP framework by92

employing MLP-based encoders and neighborhood pooling, thereby lowering computational costs93

while preserving performance. SimpleDyG [28] conceptualizes dynamic graphs as sequences and94

uses a Transformer model to capture temporal patterns efficiently. PRES [29] enhances scalability by95

incorporating a prediction-correction mechanism to address temporal discontinuities.96

2

Virtual Nodes Go Temporal

3 Preliminaries97

A static graph is defined as G = (V,E), where V is the set of vertices and E is the edges. Let98

n = |V | (rep. m = |E|) denote the number of vertices (resp. edges). A graph is often represented by99

its adjacency matrix A ∈ Rn×n1, where the (i, j)-th entry denotes the weight of the edge between100

the i-th and j-th nodes, or 0 if no edge exists. On the other hand, a Continuous-time dynamic graph101

(CTDG), evolves over time as nodes and edges are added or removed. In this perspective, the graph102

at time t can be represented as Gt = (Vt, Et), where Vt (resp. Et) is the set of nodes (resp. edges) at103

time t. In accordance with the literature, we treat the node set V as constant over time and we focus104

on events consisting of adding edges. This assumption aligns with real-world scenarios where edge105

existence is often irreversible (e.g., a purchase event remains permanently in the system).106

As in static graphs, the primary goal of temporal graph representation learning is to compute node107

embeddings that capture relevant information for various downstream tasks, such as predicting future108

events (link prediction) or classifying users (node classification). To incorporate temporal dynamics,109

recent adaptations of the message-passing framework have been proposed. For our theoretical110

analysis, we focus on the general TGN framework [23], which provides a unified perspective and111

encompasses various other message-passing models. Within this model, each node is characterized112

by two main components: (i) memory, which stores its historical information and tracks its evolution113

over time, and (ii) current representation, which is updated via the message-passing framework.114

When an event E = (u, v, etu,v) occurs at time t between nodes u and v, where etu,v represents the115

event’s features, the memory state of node u is updated as follows:116

su(t) = MEMUPD([su(t
−), sv(t

−), t− t−, etu,v]),

with t− denoting the most recent time before t when the node’s state was updated, and MEMUPD is an117

update function. This function can be implemented using a recurrent model such as Long Short-Term118

Memory (LSTM), Gated Recurrent Unit (GRU), or a simpler MLP. Simultaneously, a message-passing119

framework aggregates information from a node’s neighborhood to propagate updates based on the120

graph’s topology. Specifically, for each node u, its temporal neighborhood N (u, t) at time t is defined121

to include all nodes that interacted with u at time t′ within a specified time window, in addition to the122

corresponding event features, and can be formulated as: N (u, t) = {(v, et′u,v, t′) | ∃(u, v, t′) ∈ Gt}.123

A node’s representation at the l-th message-passing layer is given by the following update:124

h̃(ℓ)
u (t) = AGG(ℓ)({{(h(ℓ−1)

v (t), t− t′, e) | (v, e, t′) ∈ N (u, t)}});h(ℓ)
u (t) = UPDATE(ℓ)(h(ℓ−1)

u (t), h̃(ℓ)
u (t)),

where AGG is a permutation-invariant function that aggregates information within a node’s neighbor-125

hood. This aggregation can be based on node degrees, as in Graph Convolutional Networks [1] or126

Graph Attention techniques [2], producing an aggregated vector that is subsequently passed to the127

UPDATE function. This latter function then computes the resulting updated representation for node v.128

In addition to modeling graph topology through message passing, a time projection mechanism is129

incorporated to capture the temporal dynamics of the evolving graph. For our theoretical analysis, we130

employ an attention-based approach similar to the one used in TGN [23], which can be formulated as:131

tv = (1 +∆tv ·Wt) ◦ sv(t),132

with Wt is a learnable weight matrix and ∆tv represents the time elapsed since the last interaction133

involving node v, allowing to capture temporal dependencies and dynamically adjust representations.134

Theoretical Assumptions. Our study is based on the TGN model, assuming that the activation135

functions are 1-Lipschitz continuous – an assumption satisfied by commonly used functions such as136

ReLU, LeakyReLU, and Tanh [30]. Additionally, we focus on the effect of a single event update, in137

contrast to the setting where multiple events are processed in batches.138

4 Information Flow in Continuous-Time Dynamic Graphs139

In this section, we examine the theoretical impact of introducing a VN on a temporal graph function.140

We begin by formally defining the notion of expressivity in the context of CTDG functions, and141

subsequently leverage this framework to investigate how VNs can enhance a graph function’s142

expressivity. While we focus on CTDGs, the insights extend to the Discrete-Time case due to the143

reconstruction relationship between these two categories (Proposition 1 in [9]). Throughout this144

paper ∥·∥ denotes the Euclidean (resp., spectral) norm for vectors (resp., matrices).145

1We occasionally describe adjacency matrices at discrete times for clarity, but our model is event-driven
CTDG. The snapshot-like description is only a shorthand for events before and after.

3

Virtual Nodes Go Temporal

4.1 Expressivity through Information Flow146

A widely used approach for analyzing the expressivity of graph-based functions is the Weisfeiler-147

Lehman (WL) test which was extended to dynamic graphs through the temporal-WL framework [9].148

This approach primarily evaluates if a graph function can distinguish isomorphic graphs, a key149

requirement for graph-related downstream tasks. While valuable, this perspective has limitations,150

particularly when applied to graphs where nodes have features, that is common in the majority of151

dynamic graph datasets. In contrast, the current study approaches the expressivity subject differently152

by examining how information propagates through the graph when a new event occurs. Ideally, after153

an event, all node representations should be updated to reflect the modified structure. Otherwise, in154

an edge prediction task for instance, the event occurrence has not provided any additional information155

and any new perspective toward predicting the next link. Consequently, an ideal temporal graph156

function should update every node’s embedding in response to a new edge, ensuring the graph’s state157

is captured and the underlying distribution effectively modeled for downstream tasks.158

Let f : G → Y be a graph-based function where G denotes the state of the graph over time and Y an159

output space. To quantify how much a node’s embedding changes due to an event, we consider a160

distance function dY : Y × Y → R+ within the output manifold Y . For a node u ∈ V , we define the161

information flow as:162

Iu[f] = Eu∼DV
[dY(fu(G

t), fu(G
t+1))], (1)

where Gt is graph at time t, fu(Gt) is the embedding of node u evaluated at that timestamp, and DV163

is the graph node distribution. Iu[f] measures how much a node’s embedding changes, based on a164

chosen distance metric, when the graph undergoes an event. This quantity, which is designed to focus165

on the local, node-level behavior, intuitively captures the extent of information propagation in the166

graph following an event. A larger change value indicates greater information spread, improving167

accuracy in downstream tasks. In this direction, we introduce the following definition:168

Definition 1. The graph-based function f : G → Y , in respect to a node u ∈ V , is said to be169

(u, σ)–flowing if and only if: Iu[f] ≤ σ.170

Definition 1 formally defines how the information is expected to propagate following an event.171

Specifically, the parameter σ defines the allowable margin for embedding changes; a larger σ172

corresponds to greater "expected" variations and a possibility for increase in information flow at time173

t+1. While this approach provides a theoretical upper bound on this propagation, it does not directly174

guarantee the actual magnitude of updates in every case. Rather, it establishes an expected broader175

propagation, ensuring that the model is structurally capable of gathering distant updates when needed.176

We note that the value of σ depends on the chosen distance metric dY within the output manifold. In177

our analysis, we focus on Norm-2 (∥·∥), which we consider induces a suitable distance. Nonetheless,178

this choice does not restrict our theoretical conclusions, as norm equivalence holds in terms of179

information flow as theoretically proven in Lemma 2 (Appendix A). Consequently, different distance180

metrics can be used based on specific applications while yielding similar insights into a model’s181

capacity for information propagation after an event. For example, in applications prioritizing outlier182

detection, Norm-1 may be more advantageous.183

4.2 On the Expressive Power of Virtual Nodes184

Following the previously introduced information flow concept for CTDGs in Section 4, we aim to185

analyze the effect of introducing VNs on a temporal graph function. Specifically, we focus on the186

TGN framework, which we consider an appropriate choice for encompassing the general message-187

passing CTDG function. Concretely, we consider a function f following the TGN framework, and188

we aim to analyze its expressivity in line with what has been introduced in Definition 1.189

Theorem 1 (GCN-based aggregation). Let f : G → Y be a CTDG-based function based on L190

GCN-layers. After an event between nodes i and v, for any node u not involved in the event, we have:191

• If L < min(d(u, i), d(u, v)), then f is (u, σ)-flowing with σ = ŵu∥Wt∥
∏L

l=1∥W (l)∥.192

• If L ≥ min(d(u, i), d(u, v)), then f is (u, σ)-flowing with193

σ =
∏L

l=1
∥W (l)∥

[
ŵu∥Wt∥+ŵu,i∆t,t+1(si)

]
,

with Wt the linear temporal projection, ŵu is the sum of temporal normalized walks of length194

(L− 1) starting from u and ŵu,i is the normalized shortest path between u and i and ∆t,t+1(si)195

denoting the difference in memory state for node i, as introduced by the event.196

4

Virtual Nodes Go Temporal

Theorem 1 examines how an event propagates through the graph and impacts the node embeddings.197

As expected from the message-passing mechanism of TGN, an event primarily affects nodes within198

the L-hop neighborhood of those directly involved. Nodes outside this neighborhood update only199

via temporal projection, which does not effectively capture the structural changes. Consequently, if200

subsequent events occur beyond this neighborhood, the node embeddings fail to incorporate them,201

limiting the model’s effectiveness. A straightforward approach to address this limitation is to increase202

the number of layers to extend the update reach, however, this can lead to over-smoothing [31], a203

well-known issue in GNNs. Moreover, Theorem 1 shows that σ depends on the shortest path between204

the considered node and those involved in the event. While this dependence highlights a limitation205

in classical message-passing-based CTDG functions for long-range interactions, it also presents an206

opportunity: modifying the graph topology can influence information flow by strategically altering207

shortest paths. Similar conclusions are seen in the case of attention-based aggregation (Theorem 2).208

The proofs of the theorems are provided in Appendix B and Appendix C.209

Theorem 2 (Attention-based aggregation). Let’s consider a CTDG-based function f : G → Y based210

on L attention-based layers. After an event between node i and another node, the following properties211

hold for any node u not involved in the event, we have the following:212

• If L < min(d(u, i), d(u, v)), then f is (u, σ)-flowing with σ = deg(u)
[
∥Wt∥+B∥Wt∥2

]
.213

• If L ≥ min(d(u, i), d(u, v)), we have (u, σ)-flowing with214

σ = deg(u)
[
∥Wt∥+B∥Wt∥2

]
+∆t,t+1(si),

where Wt denotes the linear temporal projection, deg(u) denotes the degree of node u; and B215

is an upper-bound of latent representation space.216

An effective strategy for improving information propagation in temporal graphs is to establish217

connections beyond immediate neighborhoods, enabling efficient diffusion across the entire graph. In218

static graphs, a well-studied approach is the introduction of a VN [14], which acts as a central hub,219

connecting multiple nodes to facilitate long-range message passing. While this technique has shown220

promise in static settings, applying it directly to dynamic graphs poses challenges due to their large221

scale and evolving nature. A single VN would need to process a vast amount of information, leading222

to both computational inefficiencies and an information bottleneck. To overcome this limitation,223

we propose a distributed VN framework, where multiple fully connected VNs represent distinct224

communities or clusters within the graph. Rather than relying on a single aggregation point, these225

VNs independently collect information from their associated “child” nodes and propagate it across226

the network via inter-VN communication.227

We theorize that this hierarchical structure ensures stable information flow within
the message-passing framework and enhances the model’s ability to capture
long-range dependencies in dynamic graphs.
Problem Setup. We formally define the proposed multi-VN architecture. Con-
sider a temporal graph Gt ∈ G at time t, with its adjacency matrix denoted
as At ∈ Rn×n. To structure the graph, we partition its nodes into k distinct
sets, denoted as V = {V0, . . . ,Vk}. We introduce a permutation or assignment
function Π : {1, . . . , n} → {1, . . . , k} that reorders the adjacency matrix based
on the assigned node clusters. With the inclusion of VNs, the modified adjacency
matrix AV N can be formulated as follows:



A

1 0 . . . 0 0
...

. . .
...

0
. . . 1

0 0 . . . 0 1
1 1 . . . 0 0
...

. . .
...

0
. . . 0

0 0 . . . 1 1

1



228

By introducing VNs that aggregate local spatial information from each cluster and disseminate it229

globally, we argue that this approach enhances the underlying graph function’s ability to capture230

both local and global dynamics while ensuring effective information flow. While prior work [13] has231

explored the role of VNs in static graphs, primarily in relation to under-reaching and over-smoothing,232

our focus is on their utility in facilitating information propagation following an event. To this end,233

we analyze their impact through our proposed information flow principle, which we consider more234

suited to the dynamic graph setting of interest.235

Theorem 3 (VN Addition). Consider a CTDG-based function f : G → Y based on L GCN-like236

layers. Let g be a variant of f by adding k VNs, where each VN represents m nodes at max. After an237

event between nodes i and v, for any node u not involved in the event, we have:238

• ∀u ∈ V , if f is (u, σ)-flowing then g is (u, σ′)-flowing with:239

σ′ = σ +
∆t,t+1(si) + ∆t,t+1(sv)

k ×m
.

5

Virtual Nodes Go Temporal

Updated Nodes

Virtual Nodes

Original Edges

Virtual Edges

(a) (b)

New Event

Figure 1: Illustration of the updated nodes after an event occurrence in the case of (a) the standard
TGN with 1 Message-passing layer and (b) the TGN augmented with VNs. When incorporating VNs,
the information is propagated to all the nodes and not only within the L-hop of the event.

Theorem 3 demonstrates how introducing a set of VNs enhances information flow across the graph.240

Unlike the original model (Theorem 1, 2), which relies on traditional message-passing where updates241

are restricted to nodes within a limited neighborhood, VNs introduce a structural mechanism that242

facilitates more global information flow. While the theoretical bound on σ′ does not guarantee243

uniform updates across all nodes, it establishes a necessary condition for broader propagation. In244

practice, this increased bound provides greater flexibility for downstream tasks, particularly those245

requiring long-range dependencies, where events in one region of the graph may influence outcomes246

elsewhere. By bridging local communities through fully connected VNs, global updates become247

feasible without increasing the number of message-passing layers, thereby mitigating the risk of248

over-smoothing, as previously discussed. The proof of the theorem is provided in Appendix D.249

5 Virtual Nodes meet Graph Clustering250

The theoretical insights provided in Section 4 underscore the advantages of integrating VNs into251

a TGN model, which also holds for any CTDG-based function. VNs serve as intermediaries that252

facilitate long-range message passing and mitigate the challenges posed by limited local neighborhood253

aggregation. Building upon this concept, we propose a multi-virtual-node framework, where254

instead of a single VN connected to all nodes, we introduce multiple VNs, each responsible for a255

specific subset of the graph. This framework, denoted as k Temporal VNs (k-TVNs) ensures a more256

structured approach of propagating information across different regions of the graph, thus enhancing257

the expressivity of the underlying function.258

As illustrated in Figure 1, at any considered time t, given a graph topology A(t) and a number259

of communities k, we define an assignment function Π : {1, . . . , n} → {1, . . . , k} that allocates260

each node to its corresponding VNs. The choice of this assignment function plays a crucial role261

in determining how effectively information is propagated. A naive strategy would be to randomly262

assign nodes to clusters; however, this could result in inefficient message passing, where redundant263

information circulates within communities without effectively reaching distant parts of the graph,264

which is our main aim. This can lead to unnecessary computational overhead and a loss of expressivity265

in node representations. To overcome this limitation, we propose leveraging graph clustering266

techniques to assign nodes to VNs in a topology-aware manner. Specifically, nodes that exhibit267

strong structural connectivity (e.g., those within the same densely connected community) are grouped268

under the same VN. This clustering-based assignment ensures that intra-community information is269

efficiently aggregated before being propagated to other clusters. This within-then-beyond community270

structure balances local expressivity with global connectivity.271

As outlined in Algorithm 1, our method dynamically determines node assignments based on the272

graph’s evolving topology at each time step t. Once the assignment is established, the virtual273

connections are generated, allowing nodes within each cluster to exchange information through their274

respective VN. This process facilitates localized aggregation, ensuring that each node benefits from275

6

Virtual Nodes Go Temporal

rich intra-cluster information before broader inter-cluster propagation extends insights across the276

entire graph. By structuring information flow in this hierarchical manner, our approach enhances277

long-range dependency modeling while avoiding the pitfalls of redundant aggregation, ultimately278

improving the robustness and efficiency of message passing in dynamic graphs.279

Algorithm 1 k-Temporal Virtual Nodes (Main Algorithm)

Require: Adjacency matrix A and corresponding node features X at t, graph-based function f ,
number of clusters k, clustering function g

1: for t ∈ T do
2: Compute the assignment function Π(.) = g(A(t), k).
3: Build the augmented adjacency matrix AV N .
4: Compute the prediction Ŷ = f(AV N , X)
5: Compute the Loss and update the model.
6: return Trained model f

Defining the appropriate clustering algorithm for this task is subject to two main constraints. The280

first constraint pertains to its effectiveness, as the algorithm must accurately identify and group the281

underlying communities within the graph. The second constraint is related to its computational282

efficiency. Given the dynamic nature of the graph, the clustering process must be executed multiple283

times, as cluster assignments must be periodically updated to reflect structural changes. Although284

this reassignment operation is performed in a batching-like manner, it must remain computationally285

feasible to prevent excessive overhead.286

Lemma 1. Let G be an undirected graph with adjacency matrix A ∈ Rn×n. Consider its rank-287

k truncated singular value decomposition A ≈ UkΣkU
⊤
k , with Σk ∈ Rk×k a diagonal matrix288

containing k dominant singular values of A and Uk ∈ Rn×k a semi-orthogonal matrix containing289

corresponding left singular vectors. Then, for any pair of nodes u, v ∈ V , we have:290

∥Au,: −Av,:∥ ≈ ∥((Uk)u,: − (Uk)v,:)Σk∥,

where the error is bounded:291

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ 2σk+1,

with σk+1 being the (k + 1)-th smallest singular value of A.292

Lemma 1 implies that distances in the original adjacency space A are well approximated by distances293

in the lower-dimensional singular vector space Uk, scaled by the singular values. Thus, if Uk has a294

well-defined cluster structure (i.e., the rows of Uk can be clustered into well separated k clusters),295

the adjacency matrix inherits this property, reflecting the clustering tendencies of the graph’s nodes.296

Moreover, when the graph has strongly defined communities, the rank k of A tends to be low, as most297

structural information is concentrated in a small number of dominant singular values. Leveraging298

those insights, we can directly use the adjacency matrix to construct communities. Specifically,299

building on algorithms previously introduced in the literature [32, 33], we introduce a variant of300

k-means that explicitly integrates graph topology by operating directly on the adjacency matrix.301

The main idea, which is summarized in Algorithm 2 (Appendix F) consists of an iterative procedure302

of this adapted k-means method. At each iteration, we assign each node (represented by its adjacency-303

matrix row) to the nearest cluster center in Euclidean distance, then update each center as the mean304

of its assigned rows. Since each row in the adjacency matrix encodes a node’s connectivity pattern,305

row-wise comparisons naturally capture both the number and identity of shared neighbors. These306

shared neighborhoods, in turn, drive cluster formation, effectively capturing the graph’s underlying307

communities. By dynamically updating cluster centers based on row-wise distances, the algorithm308

groups nodes with similar adjacency patterns, i.e., those with strongly overlapping neighbor sets. As309

a result, the clustering yields a meaningful partition of the graph, where each cluster center represents310

a prototypical connectivity pattern of its node subset.311

On the complexity of the approach. In its current formulation, the algorithm process all n rows and312

performs distance comparisons to K0 centers in each iteration, resulting in an O(K0n
2) complexity.313

However, we note that for the dynamic graphs, and given their large scale, a batch-based procedure314

is usually adopted in which only a sub-graph (subset of nodes and their corresponding rows) is315

7

Virtual Nodes Go Temporal

Table 1: MRR performance of a TGN and k-TVNs on the TGB Benchmark with baseline results
imported directly from the leaderboard. ‘–’ refers to OOM [36].

Model tgbl-wiki tgbl-review tgbl-coin tgbl-comment tgbl-flight
Val Test Val Test Val Test Val Test Val Test

DyRep [20] 7.2 5.0 21.6 22.0 51.2 45.2 29.1 28.9 57.3 55.6
EdgeBanktw [37] 60.0 57.1 2.4 2.5 49.2 58.0 12.4 14.9 36.3 38.7
EdgeBank∞ [37] 52.7 49.5 2.3 2.3 31.5 35.9 10.9 12.9 16.6 16.7
DyGFormer [38] 81.6 79.8 21.9 22.4 73.0 75.2 61.3 67.0 – –
GraphMixer [27] 11.3 11.8 42.8 52.1 – – – – – –
TGAT [22] 13.1 14.1 32.4 35.5 – – – – – –
TNCN [39] 74.1 71.8 32.5 37.7 74.0 76.2 64.3 69.7 83.1 82.0
NAT [40] 77.3 74.9 30.2 34.1 – – – – – –
CAWN [41] 74.3 71.1 20.0 19.3 – – – – – –
TCL [42] 19.8 20.7 19.9 19.3 – – – – – –
TGN [23] 43.5 39.6 31.3 34.9 60.7 58.6 35.6 37.9 73.1 70.5
k-TVNs (Ours) 61.3 57.2 33.5 37.3 67.1 67.9 42.8 44.3 75.8 73.6
Relative Improvement (%) 40.9 44.4 7.0 6.9 10.5 15.8 20.2 16.9 3.7 4.3

processed at each iteration. Consequently, in the context of a CTDG-based function, the scalability of316

the algorithm is ensured depending on the chosen batch size.317

On the convergence of the method. Ensuring that our clustering procedure converges to a high-318

quality solution is crucial for preserving the representativeness of the augmented (virtual) nodes. The319

algorithm employed here is a variant of Lloyd’s k-means [32], applied to the rows of the adjacency320

matrix (i.e., each node’s neighborhood). During each iteration, the total within-cluster sum of squared321

distances either strictly decreases or remains unchanged. Since there are finitely many ways to322

partition n nodes into K0 clusters, the algorithm necessarily terminates in a finite number of steps323

and settles at a (possibly local) optimum of the clustering objective. We do not provide further324

theoretical guarantees on its convergence behavior; however, prior work offers detailed insights on325

such guarantees [34] and on the role of initialization [35]. In practice, we observe that small number326

of iterations (e.g., 10) consistently delivers satisfactory performance for the downstream tasks.327

We provide a complete analysis of a convergence and time complexity in Appendix F.2.328

6 Empirical Validation329

This section evaluates the practical impact of our theoretical findings on real-world datasets and the330

improved downstream performance. We specifically examine their effect on link prediction within331

temporal graph representation learning. We note that our objective is not to establish new state-of-the-332

art results but to demonstrate how integrating VNs as an augmentation mechanism enhances model333

performance. Specifically, following our theoretical analysis, we focus on TGN. We run the k-TVNs334

at each batch and aggregate information within each community using a weighted average based on335

node degrees. Full details on these choices are provided in Appendix G.2.336

Experimental Setup. For our comparison, we have aimed to illustrate different families of method-337

ologies as presented in Section 2. From a dataset perspective, we consider both a set of real-world338

benchmark datasets, extracted from the classification TGB benchmark Huang et al. [36] and syn-339

thetically generated dataset in which we control the graph’s topology to showcase the necessity for340

long-range interactions. We set the number of clusters to 2 (an empirical analysis of this parameter is341

provided in Appendix F), and we run the clustering at each batch. Our code and implementation are342

provided in the supplementary materials. Details on the datasets, additional implementation regarding343

both model and VNs hyper-parameters are provided in Appendix G.344

6.1 Experimental Results345

Real-World datasets. We start by considering real-world benchmark datasets, where we consider346

the different temporal graphs constituting the TGB benchmark [36]. Table 1 presents the average347

test Mean Reciprocal Rank (MRR) scores. The results clearly demonstrate that augmenting the348

8

Virtual Nodes Go Temporal

Model Long-Range Graph
PascalVOC 10 PascalVOC 30

JODIE 0.67 ± 0.03 0.65 ± 0.07
DyRep 0.69 ± 0.02 0.70 ± 0.02
TGAT 0.77 ± 0.02 0.76 ± 0.03
CTAN 0.80 ± 0.01 0.78 ± 0.01
TGN 0.78 ± 0.10 0.71 ± 0.04
k-TVNs 0.80 ± 0.08 0.76 ± 0.01

Table 2: Average test AUC (± denotes stan-
dard deviation) of the different methods on
long-range PascalVOC 10 and 30 datasets.
Best performance per dataset in bold.

Information Flow Difference on tgbl-wiki

D
en

sit
y

Iu[fk−TVNs] − Iu[f]

Figure 2: Difference in terms of information flow be-
tween a standard TGN model f and a TGN augmented
with the k-TVNs framework fk-TVNs on tgbl-wiki.

TGN model with our proposed k-TVNs consistently improves performance. Notably, we observe a349

significant increase in MRR across all datasets. In particular, the performance improvement reaches350

up to 40% in one case. These findings highlight the effectiveness of k-TVNs in enhancing information351

propagation and improving predictive accuracy in temporal graph learning.352

Long-Range Temporal Graphs. We additionally evaluate our approach on datasets that require353

long-range reasoning for effective performance. Specifically, we consider a temporal adaptation of the354

PascalVOC-SP graph [43], following the evaluation protocol proposed by Gravina et al. [25]. Table 2355

presents the average and standard deviation of test AUC on this dataset. Consistent with our findings356

on real-world datasets, our proposed k-TVNs demonstrate the ability to improve model performance.357

In this scenario, where long-range dependencies play a crucial role and ensuring efficient information358

flow is essential, the addition of VNs becomes even more significant.359

Empirical Validation of information flow. The primary motivation behind introducing VNs and our360

proposed k-TVNs method is to enhance information propagation within the graph following an event361

occurrence. In this perspective, we empirically validate the impact of VNs on node embeddings by362

comparing a standard TGN model, denoted as f , with its augmented version incorporating k-TVNs,363

denoted as fk-TVNs through the quantity considered in Equation 1. We provide an average of Iu for364

each model providing therefore a valid unbiased estimator. Figure 2 reports the results for TGBL-Wiki365

where we observe a an increased difference, indicating larger changes to node embeddings after an366

event. This empirical pattern is consistent with the theoretical insights derived in Theorem 3.367

tgbl-wiki
Val Test

Random 56.2 51.9
Louvain 56.3 52.3
k-TVNs 61.3 57.2

Table 3: Effect of the clustering on down-
stream performance on tgbl-wiki.

Clustering Approaches. As outlined in Section 5 and368

Algorithm 1, various clustering strategies can be em-369

ployed to assign nodes to VNs. To assess their impact,370

we evaluate our used k-Means-Based Clustering against371

a number of alternatives. First, we consider Random372

assignment, where nodes are assigned to VNs randomly.373

We afterwards consider Louvain Algorithm where nodes374

are divided into clusters by maximizing intra-cluster375

connectivity while minimizing inter-cluster links [44].376

Table 3 provides the resulting MRR for each method for the tgbl-wiki, where we see that our proposed377

Algorithm 2 provides the best performance.378

7 Conclusion379

In this work, we investigate the limitations of message-passing-based frameworks for Continuous-380

Time Dynamic Graphs. Theoretically, we show that these models often fail to propagate information381

effectively when an event occurs, reducing their accuracy in modeling and predicting subsequent382

events. To address this issue, we propose augmenting temporal graphs with Virtual Nodes (VNs), a383

concept well-established for static graphs, to enhance connectivity without leading to over-smoothing.384

Specifically, we demonstrate that including these nodes improves the model’s overall information385

flow. Building on this theoretical insight, we introduce k-TVNs, a method that uses a clustering386

algorithm to identify key communities that should be connected. Experimental evaluations on both387

real-world and long-range datasets empirically validate the effectiveness of k-TVNs.388

9

Virtual Nodes Go Temporal

References389

[1] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional390

Networks. In International Conference on Learning Representations (ICLR), 2017. 1, 3391

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua392

Bengio. Graph Attention Networks. In ICLR, 2018. 3393

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural394

Networks? In 7th International Conference on Learning Representations, 2019. 1395

[4] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular396

graph convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design,397

30(8):595–608, 2016. 1398

[5] Aymen Qabel, Sofiane Ennadir, Giannis Nikolentzos, Johannes F. Lutzeyer, Michail Chatzianas-399

tasis, Henrik Boström, and Michalis Vazirgiannis. Structure-aware antibiotic resistance classifi-400

cation using graph neural networks. In NeurIPS 2022 AI for Science: Progress and Promises,401

2022. URL https://openreview.net/forum?id=_BjtIlib8N9. 1402

[6] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based403

Recommendation with Graph Neural Networks. In Proceedings of the 33rd AAAI Conference404

on Artificial Intelligence, pages 346–353, 2019. 1405

[7] Alessio Gravina and Davide Bacciu. Deep learning for dynamic graphs: models and benchmarks.406

IEEE Transactions on Neural Networks and Learning Systems, 2024. 1407

[8] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,408

and Pascal Poupart. Representation learning for dynamic graphs: A survey. Journal of Machine409

Learning Research, 21(70):1–73, 2020. 1410

[9] Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal411

graph networks. Advances in neural information processing systems, 35:32257–32269, 2022. 1,412

3, 4413

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural414

message passing for quantum chemistry. In International Conference on Machine Learning,415

pages 1263–1272. PMLR, 2017. 1416

[11] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical417

implications. In International Conference on Learning Representations, 2021. URL https:418

//openreview.net/forum?id=i80OPhOCVH2. 1419

[12] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,420

and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in421

neural information processing systems, 34:28877–28888, 2021. 2422

[13] EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis423

of virtual nodes in graph neural networks for link prediction (extended abstract). In The424

First Learning on Graphs Conference, 2022. URL https://openreview.net/forum?id=425

dI6KBKNRp7. 2, 5426

[14] Joshua Southern, Francesco Di Giovanni, Michael Bronstein, and Johannes F Lutzeyer. Under-427

standing virtual nodes: Oversmoothing, oversquashing, and node heterogeneity. arXiv preprint428

arXiv:2405.13526, 2024. 2, 5429

[15] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory430

in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International431

Conference on Knowledge Discovery and Data Mining, KDD ’19. ACM, July 2019. doi:432

10.1145/3292500.3330895. URL http://dx.doi.org/10.1145/3292500.3330895. 2433

[16] Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network:434

Embedding user and item features for recommendation. In Proceedings of the 23rd ACM435

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. 2436

[17] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and437

Sungchul Kim. Continuous-time dynamic network embeddings. In Companion proceedings of438

the the web conference 2018, pages 969–976, 2018. 2439

10

https://openreview.net/forum?id=_BjtIlib8N9
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=dI6KBKNRp7
http://dx.doi.org/10.1145/3292500.3330895

Virtual Nodes Go Temporal

[18] Aditya Grover and Jure Leskovec. Node2Vec: Scalable feature learning for networks. In440

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and441

data mining, pages 855–864, 2016. 2442

[19] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation443

learning on continuous-time dynamic graphs. Advances in Neural Information Processing444

Systems, 35:19874–19886, 2022. 2445

[20] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning446

representations over dynamic graphs. In International Conference on Learning Representations,447

2019. URL https://openreview.net/forum?id=HyePrhR5KX. 2, 8448

[21] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural449

networks. In Proceedings of the 43rd international ACM SIGIR conference on research and450

development in information retrieval, pages 719–728, 2020. 2451

[22] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-452

sentation learning on temporal graphs. In International Conference on Learning Representations,453

2020. URL https://openreview.net/forum?id=rJeW1yHYwH. 2, 8454

[23] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and455

Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML456

2020 Workshop on Graph Representation Learning, 2020. 2, 3, 8457

[24] Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dy-458

namic graph model for link prediction. In The Twelfth International Conference on Learning459

Representations, 2024. URL https://openreview.net/forum?id=82Mc5ilInM. 2460

[25] Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt.461

Long range propagation on continuous-time dynamic graphs. In Ruslan Salakhutdinov, Zico462

Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,463

editors, Proceedings of the 41st International Conference on Machine Learning, volume 235464

of Proceedings of Machine Learning Research, pages 16206–16225. PMLR, 21–27 Jul 2024.465

URL https://proceedings.mlr.press/v235/gravina24a.html. 2, 9, 21, 22466

[26] Katarina Petrović, Shenyang Huang, Farimah Poursafaei, and Petar Veličković. Temporal graph467

rewiring with expander graphs. In ICML 2024 Workshop on Geometry-grounded Representation468

Learning and Generative Modeling, 2024. URL https://openreview.net/forum?id=469

LN9fe4CWIH. 2470

[27] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,471

and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal472

networks? In The Eleventh International Conference on Learning Representations, 2023. URL473

https://openreview.net/forum?id=ayPPc0SyLv1. 2, 8474

[28] Yuxia Wu, Yuan Fang, and Lizi Liao. On the feasibility of simple transformer for dynamic475

graph modeling. In Proceedings of the ACM on Web Conference 2024, pages 870–880, 2024. 2476

[29] Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based dynamic graph477

neural networks. arXiv preprint arXiv:2402.04284, 2024. 2478

[30] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and479

efficient estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,480

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran481

Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/482

2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf. 3483

[31] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing484

in graph neural networks. arXiv preprint arXiv:2303.10993, 2023. 5485

[32] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28486

(2):129–137, 1982. 7, 8487

[33] Sébastien Bubeck, Marina Meilă, and Ulrike von Luxburg. How the initialization affects the488

stability of the k-means algorithm. ESAIM: Probability and Statistics, 16:436–452, 2012. 7489

[34] Shokri Z. Selim and M. A. Ismail. K-means-type algorithms: A generalized convergence490

theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and491

Machine Intelligence, PAMI-6(1):81–87, 1984. doi: 10.1109/TPAMI.1984.4767478. 8492

11

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=82Mc5ilInM
https://proceedings.mlr.press/v235/gravina24a.html
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=LN9fe4CWIH
https://openreview.net/forum?id=ayPPc0SyLv1
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf

Virtual Nodes Go Temporal

[35] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In493

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA494

’07, page 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN495

9780898716245. 8496

[36] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele497

Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-498

ral graph benchmark for machine learning on temporal graphs. Advances in Neural Information499

Processing Systems, 36, 2024. 8500

[37] Farimah Poursafaei, Andy Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better501

evaluation for dynamic link prediction. In Thirty-sixth Conference on Neural Information502

Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/503

forum?id=1GVpwr2Tfdg. 8504

[38] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New505

architecture and unified library. In Thirty-seventh Conference on Neural Information Processing506

Systems, 2023. URL https://openreview.net/forum?id=xHNzWHbklj. 8507

[39] Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common508

neighbor for temporal graph link prediction, 2024. URL https://arxiv.org/abs/2406.509

07926. 8510

[40] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.511

In Learning on Graphs Conference, pages 1–1. PMLR, 2022. 8512

[41] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation513

learning in temporal networks via causal anonymous walks. In International Conference on514

Learning Representations, 2021. URL https://openreview.net/forum?id=KYPz4YsCPj.515

8516

[42] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,517

Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via518

contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 8519

[43] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan520

Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information521

Processing Systems, 35:22326–22340, 2022. 9522

[44] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast523

unfolding of communities in large networks. Journal of statistical mechanics: theory and524

experiment, 2008(10):P10008, 2008. 9525

[45] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-526

tional Conference on Learning Representations, 2015. 22527

12

https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=xHNzWHbklj
https://arxiv.org/abs/2406.07926
https://arxiv.org/abs/2406.07926
https://arxiv.org/abs/2406.07926
https://openreview.net/forum?id=KYPz4YsCPj

Virtual Nodes Go Temporal

Appendix: Virtual Nodes Go Temporal

A On the Equivalence of Norms528

As explained in Section 4, we rather focus on the ℓ2-norm in our analysis. In this section, we aim to529

prove that such choice doesn’t limit the capacity of our analysis, and that similar insights can be seen530

when considering other norms.531

We note, as explained previously, that the value of σ depends on the chosen distance metric dY within532

the output manifold.533

Lemma 2. Let f : G → Y be a CTDG graph-function, with D being the node embedding dimension.534

If f is (u, σ)-flowing in respect to Norm-2 then f is (u,D
2p

2−pσ)-flowing in respect to any Norm-p535

with p ≥ 1.536

The previous Lemma shows that choosing Norm-2 to induce the output manifold distance does537

not restrict our theoretical conclusions, as norm equivalence holds in terms of information flow.538

Consequently, different distance metrics can be used based on specific applications while yielding539

similar insights into a model’s capacity for information propagation after an event. In the rest of this540

section we provide the proof of the Lemma.541

Lemma. Let f : G → Y be a CTDG graph-function. If f is (u, σ)-flowing in respect to Norm-2 then542

f is (u,D
2p

2−pσ)-flowing in respect to any Norm-p with p ≥ 1.543

Proof. Let’s consider that Y ⊆ RD with D being the dimension of our graph node’s embedding544

space. Let x = (x1, . . . , xD) ∈ Y . We recall that the set of norms p within RD are written as:545

∀p > 0, ∥x∥p=

(
D∑
i=1

|xi|p
)1/p

Let f : G → Y be a CTDG graph-function. Let’s consider that f is (u, σ)-flowing in respect to546

Norm-2:547

Iu[f] = ED[∥fu(Gt+1)− fu(G
t)∥] ≤ σ

Building on Holder’s inequality, we have the following:548

q > p ≥ 1 ⇒ D
1
q−

1
p ∥x∥p≤ ∥x∥q≤ D

1
q ∥x∥p,

Hence, for q = 2:549

q > p ≥ 1 ⇒ D
1
2−

1
p ∥x∥p≤ ∥x∥2

⇒ D
p−2
2p ∥x∥p≤ ∥x∥2

⇒ ∥x∥p≤ D
2p

2−p ∥x∥2

Consequently, we have the following:550

ED[∥fu(Gt+1)− fu(G
t)∥p] ≤ ED[D

2p
2−p ∥fu(Gt+1)− fu(G

t)∥]

≤ D
2p

2−pσ

Therefore, f is (u,D
2p

2−pσ)-flowing in respect to Norm-p with p ≥ 1551

552

13

Virtual Nodes Go Temporal

B Proof of Theorem 1553

Theorem (GCN-based aggregation). Let’s consider a CTDG-based function f : G → Y based on L554

GCN-like layers. After an event between nodes i and v, for any node u not involved in the event, we555

have the following:556

• if L < min(d(u, i), d(u, v)), then f is (u, σ)-flowing with:557

σ = ŵu∥Wt∥
∏L

l=1
∥W (l)∥

• if L ≥ min(d(u, i), d(u, v)), then f is (u, σ)-flowing with:558

σ =
∏L

l=1
∥W (l)∥

[
ŵu∥Wt∥+ŵu,i∆t,t+1(si)

]
,

where ŵu is the sum of temporal normalized walks of length (L− 1) starting from u; the term ŵu,i559

denotes the normalized shortest path between u and i; the terms Wt and W (l) are weight matrices560

involved in the propagation, with Wt capturing temporal updates; and ∆t,t+1(si) is the difference561

in memory state for node i, as introduced by the event.562

Proof. Let f : G → Y be a CTDG graph-function, based on the framework described in Section 3.563

We consider the aggregation to follow a GCN-like aggregation, which can be formulated at layer ℓ564

for a node as:565

h(ℓ)
u = σ(ℓ)

 ∑
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v√

(1 + deg(u))(1 + deg(v))

 (2)

with W (ℓ) ∈ Reℓ−1×eℓ being the learnable weight matrix and eℓ being the embedding dimension of566

layer ℓ and σ(ℓ) is the activation function of ℓ-th layer.567

For nodes not involved in the event and for which L < min(d(u, i), d(u, v)). We consider the568

nodes that are not part of the event and that are distant from the nodes involved in the event. Distant569

in this case is defined by the number of propagation layers used in the message-passing. For these570

nodes, the update is only dependent on the temporal projection, since the nodes are not updated based571

on the event.572

In this proof, we consider that we are dealing with a GCN-like propagation:573

∥fu(Gt+1)− fu(G
t)∥= ∥h(l)

u,t+1 − h
(l)
u,t∥

= ∥σ(l)

 ∑
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v,t+1√

(1 + deg(u))(1 + deg(v))

−

σ(l)

 ∑
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v,t√

(1 + deg(u))(1 + deg(v))

 ∥

≤ ∥
∑

v∈N (u)
⋃
{u}

W (ℓ)h
(ℓ−1)
v,t+1√

(1 + deg(u))(1 + deg(v))
−

∑
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v,t√

(1 + deg(u))(1 + deg(v))
∥

= ∥W (ℓ)∥
∑

v∈N (u)
⋃
{u}

∥h(ℓ−1)
v,t+1 − h

(ℓ−1)
v,t ∥√

(1 + deg(u))(1 + deg(v))

14

Virtual Nodes Go Temporal

Using the same process in an iterative way, we get the following:574

∥fu(Gt+1)− fu(G
t)∥= ∥h(l)

u,t+1 − h
(l)
u,t∥

≤
L∏

l=1

∥W (l)∥
∑

z∈N (y)
⋃
{y}

∥Wt∥√
(1 + deg(u)) . . .

√
(1 + deg(z))

≤ ŵu∥Wt∥
L∏

l=1

∥W (l)∥

with ŵu being the sum of temporal normalized walks of length (L− 1) starting from node u.575

For nodes not involved in the event and for which L ≥ min(d(u, i), d(u, v)). We now consider the576

nodes that are not included in the event but are within a reachable distance of the event. Specifically,577

we consider the nodes that are L ≥ d(u, i). Similar to the previous part, we have the following578

inequality:579

∥fu(Gt+1)− fu(G
t)∥= ∥h(l)

u,t+1 − h
(l)
u,t∥

≤
L∏

l=1

∥W (l)∥
∑

z∈N (y)
⋃
{y}

∥h(0)
v,t+1 − h

(0)
v,t∥√

(1 + deg(u)) . . .
√

(1 + deg(z))

Since we have that L ≥ d(u, i), the consider node u have some information from the node related to580

the event i, in this perspective, we can write:581

∥fu(Gt+1)− fu(G
t)∥

≤
L∏

l=1

∥W (l)∥
∑

z∈N (y)
⋃
{y}

∥h(0)
v,t+1 − h

(0)
v,t∥√

(1 + deg(u)) . . .
√

(1 + deg(z))

≤
L∏

l=1

∥W (l)∥

 ∑
z∈N (y)

⋃
{y}\{i}

∥h(0)
v,t+1 − h

(0)
v,t∥√

(1 + deg(u)) . . .
√

(1 + deg(z))

+
∥h(0)

i,t+1 − h
(0)
i,t ∥√

(1 + deg(u))(1 + deg(j)) . . . (1 + deg(y))
√

(1 + deg(i))

]

The first term is related to the temporal projection update and the second is related to the event582

occurrence. Specifically, after the event happening, node i’s representation is updated and passed583

along with the message-passing. Building on this, we have:584

∥f(Gt+1)− f(Gt)∥

≤
L∏

l=1

∥W (l)∥
[
ŵu∥Wt∥+ŵu,i ∆

t,t+1
(si)]

where like previously explained ŵu being the sum of temporal normalized walks of length (L− 1)585

starting from node u and ŵu,i is the normalized shortest path between u and i.586

587

15

Virtual Nodes Go Temporal

C Proof of Theorem 2588

Theorem (Attention-based aggregation). Let’s consider a CTDG-based function f : G → Y based589

on L attention-based layers. After an event between node i and another node, the following properties590

hold for any node u not involved in the event, we have the following:591

• if L < min(d(u, i), d(u, v)), then f is (u, σ)-flowing with:592

σ = deg(u)
[
∥Wt∥+B∥Wt∥2

]
;

• if L ≥ min(d(u, i), d(u, v)), we have (u, σ)-flowing with:593

σ = deg(u)
[
∥Wt∥+B∥Wt∥2

]
+∆t,t+1(si),

where deg(u) denotes the degree of node u; and B is an upper-bound of latent representation594

space.595

Proof. In this theorem, and similar to the previous section in which we discuss Theorem 1, in this596

theorem we consider the function f : G → Y to be based on attention-like aggregation, where the597

aggregation of the representation of the neighborhood is weighted based on attention and can be598

written as:599

h(t+1)
u = σ(ℓ)

(
Σ

k∈N (u)
⋃
{u}

α
(t)
k h

(t)
k

)
(3)

Let’s consider a node u at time t, we have the following:600

∥h(t+1)
u − h(t)

u ∥= ∥
∑

k∈Nu(t+1)

α
(t+1)
k h

(t+1)
k −

∑
k∈Nu(t)

α
(t)
k h

(t)
k ∥

≤
∑

k∈Nu(t+1)

∥α(t+1)
k [h

(t+1)
k − h

(t)
k] + h

(t)
k [α

(t+1)
k − α

(t)
k]∥

The previous quantity is divided into a first part related to the attention mechanism and the second is601

related to the neighborhood update. We start by analyzing the attention part, we have:602

α
(t)
ij =

exp
(
e
(t)
ij

)
∑

k∈N(i) exp
(
e
(t)
ik

) , (4)

with:603

e
(t)
ij = LeakyReLU

(
w⊤[s

(t)
i , s

(t)
j]
)
, (5)

where [a, b] denote the concatenation of two vectors a and b. We can therefore derive the following:604

∥α(t+1)
k − α

(t)
k ∥ ≤ ∥w∥([s(t+1)

i , s
(t)
i]− [s(t+1)

u , s(t)u]) (6)
≤ ∥w∥δ(su)δ(si) (7)

For nodes not involved in the event and for which L < min(d(u, i), d(u, v)). Similar to the previ-605

ous proof, we first consider the node that are not within reach of the events L < min(d(u, i), d(u, v)).606

Specifically, we consider that the number of propagation L < min(d(u, i), d(u, v)) with u being the607

node and i being the node included in the event and d. The difference in terms of representation is608

related only to the temporal projection aspect:609

∥α(t+1)
k − α

(t)
k ∥ ≤ ∥w∥∥Wt∥2∆t

2

We additionally assume that the representation space is bounded; specifically for each node u ∈ N at610

any timestamp t, there exists a finite constant B(t)
u ≥ 0 such that:611

∥h(t)
u ∥ ≤ B(t)

u , where B = max
u∈N , t

B(t)
u =⇒ ∥h(t)

u ∥ ≤ B ∀u, t

16

Virtual Nodes Go Temporal

We consequently derive the corresponding upper-bound and derive that:612

σ =
∑

k∈N (u)

∆(sk) +B∥Wt∥2∆t
2

For nodes not involved in the event and for which L ≥ min(d(u, i), d(u, v)). Let’s now consider a613

node u that is not involved in the event and for which L ≥ min(d(u, i), d(u, v)). For the considered614

node u, one of the nodes i included in the event is within the neighborhood, then its memory will be615

updated as well. From the previously derived inequality, we can directly write:616

∥h(t+1)
u − h(t)

u ∥≤
∑

k∈N (u)

∆(sk) +B∥Wt∥2

≤

 ∑
k∈N (u)\{i}

∆(sk) +B∥Wt∥2
+∆(si) +B∥Wt∥2

≤
∑

k∈N (u)\{i}

∥Wt∥+B∥Wt∥2+∆(si) +B∥Wt∥2

≤ deg(u)
[
∥Wt∥+B∥Wt∥2

]
+∆(si)

We consequently derive that:617

σ = deg(u)
[
∥Wt∥+B∥Wt∥2

]
+∆(si)

618

D Proof of Theorem 3619

Theorem. Consider a CTDG-based function f : (G,X) → Y based on L GCN-like layers. Let g be620

a variant of f generated by adding k Virtual Nodes (VNs), where each Virtual Node (VN) represents621

m nodes. After an event between nodes i and v, for any node u not involved in the event, we have the622

following:623

• ∀u ∈ V , if f is (u, σ)-flowing then g is (u, σ′)-flowing with:624

σ′ = σ +
∆t,t+1(si) + ∆t,t+1(sv)

k ×m
,

Proof. Let f : G → Y be a CTDG graph-function, based on the framework described in Section 3.625

Let u ∈ V be a node within our considered graph and we consider that f is (u, σ)-flowing, therefore:626

Iu[f] = ED[∥fu(Gt+1)− fu(G
t)∥] ≤ σ

Let g be an augmented version of f based on k VNs, where each VN represents m nodes. Specifically,627

we consider SV = {V1, V2, . . . , Vk} be the set of augmented VNs. The consider node u is connected628

to its corresponding VN v̂. The final representation of node u, using g, can be composed as follows:629

h′
u = h(ℓ)

u + ĥu,

where h
(ℓ)
u is related to f ’s computation (either through message-passing or temporal encoding) and630

ĥu is related to the information gotten from the corresponding VN v̂. We can consequently write:631

∥gu(Gt+1)− gu(G
t)∥= ∥h′

u,t+1 − h′
u,t∥

= ∥h(ℓ)
u,t+1 − h

(ℓ)
u,t + ĥu,t+1 − ĥu,t∥

≤ ∥h(ℓ)
u,t+1 − h

(ℓ)
u,t∥+∥ĥu,t+1 − ĥu,t∥

17

Virtual Nodes Go Temporal

In our analysis, we consider a unique event that happens within a community/cluster and that all632

the VNs are fully connected between them and to all their “child” nodes, denoted as the set C, and633

finally that the information is propagated using an average-like aggregation. Therefore, we have the634

following:635

∥ĥu,t+1 − ĥu,t∥ = ∥
∑
ĵ∈SV

hĵ,t+1

k
−
∑
ĵ∈SV

hĵ,t

k
∥

= ∥
∑
ĵ∈SV

∑
i∈Cĵ

hi,t+1

k ×m
−
∑
ĵ∈SV

∑
i∈Cĵ

hi,t

k ×m
∥

≤
∑
ĵ∈SV

∑
i∈Cĵ

∥hi,t+1 − hi,t

k ×m
∥

Since we consider only a unique event, then there will be only two updates (each related to one of the636

nodes involved in the event). We note that here we consider updates related to the message-passing637

information and not the temporal projection. We can therefore write:638

∥ĥu,t+1 − ĥu,t∥ ≤
∑
ĵ∈SV

∑
i∈Cĵ

∥hi,t+1 − hi,t

k ×m
∥

≤ ∆t,t+1(si) + ∆t,t+1(sv)

k ×m

Hence, we have:639

∥gu(Gt+1)− gu(G
t)∥= ∥h′

u,t+1 − h′
u,t∥

≤ ∥h(ℓ)
u,t+1 − h

(ℓ)
u,t∥+∥ĥu,t+1 − ĥu,t∥

≤ ∥h(ℓ)
u,t+1 − h

(ℓ)
u,t∥+

∆t,t+1(si) + ∆t,t+1(sv)

k ×m

And consequently we have that g is (u, σ′)-flowing with:640

σ′ = σ +
∆t,t+1(si) + ∆t,t+1(sv)

k ×m

641

E Proof of Lemma 1642

Lemma. Let G be an undirected graph with adjacency matrix A ∈ Rn×n. Consider its rank-643

k truncated singular value decomposition A ≈ UkΣkU
⊤
k , with Σk ∈ Rk×k a diagonal matrix644

containing k dominant singular values of A and Uk ∈ Rn×k a semi-orthogonal matrix containing645

corresponding left singular vectors. Then, for any pair of nodes u, v ∈ V , we have:646

∥Au,: −Av,:∥ ≈ ∥((Uk)u,: − (Uk)v,:)Σk∥,

where the error is bounded:647

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ O(σk+1).

Proof. Using the rank-k truncated singular value decomposition, the adjacency matrix can be decom-
posed as

A = Ak +A⊥,

18

Virtual Nodes Go Temporal

where
Ak = UkΣkU

⊤
k

is the best rank-k approximation of A, and A⊥ contains the remaining singular values σk+1, . . . , σn.648

For any nodes u, v ∈ V , their row representations satisfy:649

Au,: = (UkΣkU
⊤
k)u,: + (U⊥Σ⊥U

⊤
⊥)u,:,

Av,: = (UkΣkU
⊤
k)v,: + (U⊥Σ⊥U

⊤
⊥)v,:.

Taking the row difference:

Au,: −Av,: = (Uk)u,:ΣkU
⊤
k − (Uk)v,:ΣkU

⊤
k + (U⊥)u,:Σ⊥U

⊤
⊥ − (U⊥)v,:Σ⊥U

⊤
⊥ .

Applying the triangle inequality:

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ ∥((U⊥)u,: − (U⊥)v,:)Σ⊥U
⊤
⊥ ∥.

From the previous formulation, we can write:650

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥|
≤ ∥((U⊥)u,: − (U⊥)v,:)Σ⊥U

⊤
⊥ ∥

≤ ∥(U⊥)u,:Σ⊥U
⊤
⊥ − ((U⊥)u,:Σ⊥U

⊤
⊥)∥

≤ ∥(U⊥)u,:Σ⊥U
⊤
⊥ ∥+∥(U⊥)u,:Σ⊥U

⊤
⊥ ∥

≤ 2σk+1

Since the residual term A⊥ is at most σk+1 in spectral norm, we obtain the bound:651

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ 2σk+1 (8)

Overall, this can also be written as:652

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ O(σk+1).

From the topology perspective. The previous bound can also be upper-bound by a term depending653

on the graph’s topology represented by its adjacency matrix A. By ordering the singular values:654

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We have the following:655

(k + 1)σ2
k+1 ≤

k+1∑
i=1

σ2
i ≤

n∑
i=1

σ2
i = ∥A∥2F ,

Hence, using Equation 8, we have:656

|∥Au,: −Av,:∥ − ∥((Uk)u,: − (Uk)v,:)Σk∥| ≤ 2

√
2 | E |
k + 1

657

F Practical Implementation658

In the following section, we aim to provide practical implementation guidelines for our proposed659

approach k-TVNs, which is based on an adaptation of the k-means algorithm. Algorithm 2 outlines660

the iterative procedure of this adapted k-means method. Specifically, at each individual iteration,661

each node (represented by its adjacency-matrix row) is assigned to the nearest cluster center in662

Euclidean distance, then update each center as the mean of its assigned rows. Since each row in the663

adjacency matrix encodes a node’s connectivity pattern, row-wise comparisons naturally capture664

both the number and identity of shared neighbors. These shared neighborhoods, in turn, drive cluster665

formation, effectively capturing the graph’s underlying communities. By dynamically updating666

cluster centers based on row-wise distances, the algorithm groups nodes with similar adjacency667

patterns, i.e., those with strongly overlapping neighbor sets.668

19

Virtual Nodes Go Temporal

Algorithm 2 k-Means-Based Clustering

Require: Adjacency matrix A ∈ Rn×n, number of clusters K0 ∈ N, number of iterations T
1: Interpret each row of A as a data point:

xi = (Ai1, Ai2, . . . , Ain) for i = 1, 2, . . . , n.

2: Initialize the cluster centers c(0)1 , c
(0)
2 , . . . , c

(0)
K0

∈ Rn

3: repeat
4: (1) Assignment step:
5: for i = 1, . . . , n do
6: Assign xi to cluster: k=argmin1≤j≤K0

∥xi − c
(t)
j ∥

7: (2) Update step:
8: for k = 1, . . . ,K0 do
9: Recompute center c(t+1)

k as the mean:

c
(t+1)
k = 1

|Ck(c(t))|
∑

xi ∈Ck(c(t)) xi.

10: until convergence
11: return Cluster assignments.

F.1 Time Complexity Analysis669

While our proposed k-TVNs, which is based on a clustering method, increases the performance of670

the an underlying TGN model, it comes with a certain price in terms of complexity as previously671

discussed in Section 5. In this perspective, we investigate the added complexity in terms of training672

time of a TGN with its counter-part of an augmented version using our proposed method. Note that673

we used the same set of hyper-parameters for both models and that all the experiments have been run674

on a NVIDIA L4 and A100 (for the larger datasets tgbl-comment and tgbl-flight) GPU. Table675

4 reports the average training time in seconds (with the corresponding standard deviation) for each676

method on the considered benchmark datasets.677

Method TGN k-TVNs Louvain Random

Train 15.4± 0.1 17.6± 0.4 783.9± 6.9 15.8± 0.1
Validation 77.5± 0.2 78.9± 0.5 188.3± 2.7 78.1± 0.3
Test 77.7± 0.3 79.3± 0.5 205.9± 2.1 78.2± 0.3

Table 4: Average training, validation and test time (in s) per epoch (± denotes standard deviation) for
our proposed k-TVN in comparison to the original TGN model and the other considered clustering
approaches.

F.2 Hyper-parameters Analysis678

To better understand the effect of the different hyper-parameters involved in the Algorithm, we provide679

an empirical analysis consisting of changing the values and discussing their resulting validation and680

test performance.681

Effect of number of iterations. We start by analyze the effect of number of iterations (denoted as T682

in the Algorithm). Table 5 provides the validation and test MRR for different number of iterations683

(ranging from 3 to 50). We see that there seem to be a sweet spot point at T = 10, where the maximal684

validation and test values are reached. Interestingly, when increasing the number of iterations beyond685

that point, both the validation and test MRR value decreases. In particular, we see that the gap686

between validation and test becomes much bigger.687

Effect of number of clusters. While some clustering methods doesn’t necessary need a pre-defined688

number of clusters, in the proposed Algorithm which is based on k-means, we need to define689

this number. In this perspective, in this analysis, we aim to analyze how such choice affects the690

performance of the model in terms of downstream performance. We note that the majority of the used691

20

Virtual Nodes Go Temporal

tgbl-wiki
T = 3 T = 5 T = 10 T = 50 T = 100

Val MRR 60.8 60.9 61.3 60.5 59.5
Test MRR 56.1 56.6 57.2 56.0 55.7

Table 5: Validation and MRR for different number of iterations T on the tgbl-wiki dataset.

tgbl-wiki
K0 = 2 K0 = 3 K0 = 5 K0 = 10

Val MRR 61.3 56.2 58.9 58.6
Test MRR 57.2 54.2 55.6 54.9

Table 6: Validation and MRR for different number of clusters K0 on the tgbl-wiki dataset.

graphs are bi-partite and therefore the ultimate choice would be to choose K0 = 2. Table 6 provides692

the Test and Validation MRR values for the tgbl-wiki dataset. We see that K0 = 2 is the one yielding693

the best performance, which was expected given the bi-partite aspect of the graphs.694

G Datasets and Implementation Details695

G.1 Datasets696

Real-world Datasets. Table 7 presents an overview of the datasets used in our experimental697

evaluation. As detailed in the main paper, we conduct experiments on the datasets constituting the698

TGB benchmark. Specifically, we consider the following datasets:699

• tgbl-wiki: The dataset is a bi-partite network where Wiki pages and editors are nodes, while700

an edge is added when a user edits a page at a specific timestamp.701

• tgbl-review: It is also a bi-partite network where nodes are Amazon product and users, and702

edges represents a particular review from a user to a product at a given time.703

• tgbl-coin: This a network representing different cryptocurrency transactions. Specifically, the704

nodes represent an address and each edge represents the transfer of funds from one adress to705

another at a time.706

• tgbl-comment: The graph compromises replies from Reddit where users reply to each other’s707

threads.708

• tgbl-flight: The dataset represents flight network, where nodes represent airports while the709

edges are flights between airports at a given day.710

Synthetic Datasets. We also assess the benchmark’s performance on graphs requiring long-range711

dependencies, where interactions among distant nodes play a crucial role. For this purpose, we712

consider a family of graphs derived from the static PascalVOC-SP dataset. In this family, each node713

corresponds to a region in an image associated with a particular class, and the temporal dimension is714

introduced by sequentially revealing nodes from the top-left to the bottom-right of the image. Further715

details can be found in the original work by Gravina et al. [25].716

Table 7: Statistics of the link prediction datasets used in our experiments.

Nodes # Edges # Edge ft. Split Surprise Index

tgbl-wiki 9,227 157,474 172 70/15/15, Chronological 0.108
tgbl-review 352,637 4,873,540 - 70/15/15, Chronological 0.987
tgbl-coin 638,486 22,809,486 - 70/15/15, Chronological 0.120
tgbl-comment 994,790 44,314,507 - 70/15/15, Chronological 0.823
tgbl-flight 18,143 67,169,570 - 70/15/15, Chronological 0.024
T-PascalVOC10 2,671,704 2,660,352 14 70/15/15 1.0
T-PascalVOC30 2,990,466 2,906,113 14 70/15/15 1.0

21

Virtual Nodes Go Temporal

G.2 Clustering Specification717

For our proposed k-TVNs, we set the number of clusters k = 2 and limit the maximum number of718

iterations to 10. Clustering is performed at every batch: for each batch of events, we apply clustering719

to the nodes involved in that batch and subsequently construct the VNs. These nodes are fully720

connected to one another and also linked to their respective child nodes (i.e., the original nodes in the721

cluster).722

We cluster every batch to adapt to non-stationary temporal neighborhoods; this keeps VN assignments723

aligned with the most recent local structure. While less frequent reclustering reduces compute, it can724

lag structural drift; we therefore prioritize per-batch updates in our main results.725

Note that Algorithm 2 is not required to converge to an optimal solution; instead, we only require726

a sufficiently good clustering outcome, as discussed in Appendix F.2. To accommodate this, we727

introduce a tolerance threshold when comparing distances during clustering. In our experiments, this728

threshold is set to 10−2.729

The aggregation within each cluster, used to compute the embedding of the corresponding VN, is730

implemented as a weighted average, where weights are determined by the degree of each node.731

While alternative aggregation methods (e.g., attention-based mechanisms) are possible, we adopt the732

weighted average approach for our empirical evaluations, aligning with the focus of our theoretical733

analysis.734

G.3 Experimental Setup735

Hyper-parameters. For all experiments, we used the Adam optimizer [45] with a learning rate of736

1× 10−4 and a batch size of 200 for training, validation, and testing. The training process consisted737

of 50 epochs with a patience threshold of 5. We set the embedding dimension to 256 as the original738

parameter used for the TGN.739

Implantation Details. Our code is provided in the supplementary materials section (and will be740

publicly available afterwards upon publication). Our implementation is built on top of two main741

publicly available implementations: (i) the TGN implementation, which is publicly available from742

the TGB Github and was used to do the experiments on the TGB benchmark graphs, and on the ii the743

CTAN [25] implementation for the long-range synthetic datasets.744

22

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Information Flow in Continuous-Time Dynamic Graphs
	4.1 Expressivity through Information Flow
	4.2 On the Expressive Power of Virtual Nodes

	5 Virtual Nodes meet Graph Clustering
	6 Empirical Validation
	6.1 Experimental Results

	7 Conclusion
	A On the Equivalence of Norms
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Proof of Theorem 3
	E Proof of Lemma 1
	F Practical Implementation
	F.1 Time Complexity Analysis
	F.2 Hyper-parameters Analysis

	G Datasets and Implementation Details
	G.1 Datasets
	G.2 Clustering Specification
	G.3 Experimental Setup

