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ABSTRACT

Behavioral Foundation Models (BFMs) have been recently successful in
producing agents with the capabilities to adapt to any unknown reward or task.
In reality, these methods are only able to produce near-optimal policies for the
reward functions that are in the span of some pre-existing state features, making
the choice of state features crucial to the expressivity of the BFM. As a result,
these BFMs have used a wide variety of complex objectives, often sensitive to
environment coverage, to train task spanning features with different inductive
properties. With this work, our aim is to examine the question: are these complex
representation learning objectives necessary for zero-shot RL? Specifically, we
revisit the objective of self-supervised next-state prediction in latent space for state
feature learning, but observe that such an objective alone is prone to increasing
state-feature similarity, and subsequently reducing span. We propose an approach,
RLDP, that adds a simple regularization to maintain feature diversity and can
match or surpass state-of-the-art complex representation learning methods for
zero-shot RL. Furthermore, we demonstrate the prior approaches diverge in low-
coverage scenarios where Regularized Latent Dynamics Prediction (RLDP) still
succeeds.

1 INTRODUCTION

The reward hypothesis states that all goals and purposes can be understood as maximization of scalar
reward signals. This principle has motivated development of RL algorithms that learn efficiently
given a reward function. However, a large part of previous developments in RL focus on dealing
with a single reward function or a small subset of reward functions. But with the recent focus on
generalist agents, the generalization capabilities of RL to new tasks are being tested. Still, when
compared to their supervised ML counterparts, RL lags behind in showing zero-shot generalization
to new tasks in an environment.

Zero-shot reinforcement learning (RL) (Touati et al. [2023) is a problem setting where we learn an
agent that can solve any task in the environment without any additional training or planning, after
an initial pretraining phase. Zero-shot RL has significant practical potential in developing generalist
agents with wide applicability. For instance, robotics applications, like robotic manipulation or
drone navigation, often require agents to solve a wide variety of unknown tasks. A general-purpose
household robot needs to possess the capability to flexibly adapt to various household chores without
explicit training for each new task.

Behavioral foundation models, which are based on successor representations, have been shown to
be promising for zero-shot RL (Touati et al 2023} |Agarwal et al., |2024). They are algorithms
that output near-optimal policies for a wide class of reward functions without additional learning
or training during test-time by pretraining on a dataset of reward-free interactions. BFMs work by
a) learning a state representation ¢ : s — R? and b) learning a space of policies parameterized
by a latent vector z € R? trained to be optimal for reward defined as r(s) = ¢(s) 2. At test
time given any reward function r*¢**(s), the near-optimal policy Tz, .000 1S Obtained by projecting
reward functions into the space of state-representations, and solving for z,.:es: such that rt¢st(s) ~

©(8) " zptest.
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The success of modern zero-shot RL methods is often attributed to learning generalizable state-
representations. State-of-the-art methods usually learn state representations that retain information
suitable to represent successor measures under a wide class of policies. Successor measures are
information rich objects that capture a policy’s state visitation in the environment given any starting
state. Successor measures are usually learned for an explicitly defined class of policies (Agarwal
et al [2024) or implicitly by first defining a class of reward functions (Touat: et al., 2023 |Park
et al |2024) and considering optimal policies for those reward functions as the set of policies. The
main insight behind predicting successor measure as a target for state representation learning is
that representations sufficient to explain future state-visitation for a wide range of policies capture
features that are relevant for sequential decision making under various reward functions.

Unfortunately, state representation learning by estimating successor measures requires iteratively
applying Bellman evaluation backups or Bellman optimality backups, both of which are known
to result in a variety of learning difficulties. They can suffer from various forms of bias [Thrun
& Schwartz| (2014); [Fujimoto et al.[ (2019); [Lu et al.| (2018)); [Fu et al.[ (2019) and can suffer from
feature collapse (Kumar et al., 2021)) due to the instability inherent in bootstrapping in the function
approximation regime. Using Bellman backups to learn a representation requires choosing a class
of policies or a class of reward functions apriori. Choosing a policy that selects actions out of
distribution to the offline dataset can lead to incorrect generalization and degenerate representations.

Latent dynamics learning is an alternative loss for learning the state representation that has the
benefit that it is independent of the policy. However, using the learned latent dynamics model to
obtain a policy at test time would require a policy training phase with model based RL algorithm,
going against our objective of zero-shot RL. This work investigates the following question:

Is latent next-state prediction enough to learn state features that enable performant zero-shot RL?

Our investigation is inspired by the work of Fujimoto et al| (2025), which showed that using
dynamics prediction losses as auxiliary losses boosted performance of a single-task RL agent. Our
work differs by tackling a different setting — we present an empirical investigation of the simple
latent dynamics prediction objective for learning representations suitable for zero-shot RL. Unlike
the single task RL setting examined by [Fujimoto et al.[ (2025), we find that in its naive form, this
objective leads to a mild form of feature collapse where the representation of different states increase
in similarity over training. This collapse results in poor zero-shot RL performance when evaluated
on a number of downstream tasks. With a simple regularization to prevent collapse, we show that the
representations learned are competitive and present a scalable alternative to representations learned
via complex successor measure estimation methods for zero-shot RL. In summary, the contributions
of this paper are as follows. 1. We investigate latent-dynamics prediction as a simple alternative
to learning state features for zero-shot RL. We identify as well as mitigate feature collapse with
learned representation plaguing latent dynamics prediction. 2. We show that our method remains
competitive through an extensive empirical evaluation of representations for task generalization
across a variety of domains, in online and offline RL setting, including a full humanoid embodiment
with a large state-action space. 3. We show that the RLDP objective can learn performant policies
in low-coverage settings where other methods fail.

2 RELATED WORK

Unsupervised RL: Unsupervised RL encompasses the class of algorithms that enable learning
general-purpose skills and representations without relying on reward signal in the data. Works that
have focused on intent or skill discovery have used diversity-driven objectives (Eysenbach et al.,
2018} |Achiam et al., [2018)), maximizing mutual information (Warde-Farley et al.| (2018)), [Eysenbach
et al.|(2018), /Achiam et al.|(2018)), Eysenbach et al.|(2022)) or minimizing the Wasserstein distance
(Park et al.[ (2023))) between latents and the induced state-visitation distribution. These discovered
skills can be used to compose optimal policies for several rewards. Our work, on the other hand,
focuses on learning representations capable of producing optimal value functions for any arbitrary
function reward specification.

Recent pre-training approaches (e.g.,[Ma et al.|(2023)); Nair et al.)) borrow self-supervised techniques
such as temporal contrastive objectives to extract embeddings from large-scale datasets (Grauman
et al.| (2022)) that can be fine-tuned for downstream control. However, these representations are
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inherently tied to the behavior policies used during data collection. These policies are limited in
their ability to capture the full spectrum of possible behaviors or to approximate Q-functions for any
reward functions. HILP (Park et al.[{(2024)) goes beyond standard masked autoencoding approaches
by using Hilbert-space representations to preserve temporal dynamics. Auxiliary objectives, which
involve complementary predictive tasks to get richer semantic or temporal structures, have also been
explored in previous works (Agarwal et al., 2021} Schwarzer et al.|[2020). Although representations
from auxiliary objectives can accelerate policy learning, a new policy still needs to be learned
from scratch for each new reward function. Our work will also be using a self-supervised learning
objective to extract state-representations to be tied with Successor Feature based BEMs (Touati et al.}
2023} |Tirinzoni et al.||2025) to allow zero-shot policy learning for a wide-variety of tasks.

Behavioral Foundation Models: Behavioral Foundation Models deals with the class of approaches
that can be used to train an RL agent in an unsupervised manner using task-agnostic reward-free
offline transitions. During inference, BFMs can approximate the optimal policy for a wide class of
unseen reward functions without any further training.

Forward-Backward representations (Touati & Ollivier| (2021)) and PSM (Agarwal et al.| (2024))
provide a robust framework for BFMs based on stationary distribution, on which several successive
works are based. Fast Imitation with BFMs (Pirotta et al.| (2023))) demonstrates the ability
of successor-measure—based BFMs to imitate new behaviors from just a few demonstrations,
while [Sikchi et al.| (2025) builds upon this by fine-tuning BFMs’ latent embedding space, yielding
10-40% improvement over their zero-shot performance in a few of episodes. Recent progress in
imitation learning has led to the development of BFMs tailored for humanoid control tasks (Peng
et al.| (2022), [Won et al.| (2022), [Luo et al. (2023), [Tirinzon1 et al.| (2025)) which can produce
diverse behaviors trained using human demonstration data. Our work provides a stable, robust
state-representation learning objective that can be used to build successor feature based BFMs.

3 PRELIMINARIES

We consider a reward-free Markov Decision Process (MDP) (Puterman), 2014) which is defined as
atuple M = (S, A, P,dy,~y), where S and A respectively denote the state and action spaces, P
denotes the transition dynamics with P(s’|s, a) indicating the probability of transitioning from s to
s’ by taking action a, dy denotes the initial state distribution and v € (0, 1) specifies the discount
factor. A policy 7 is a function 7 : & — A(A) mapping a state s to probabilities of action in A.
We denote by Pr(- | s,a,n) and E[- | s, a, 7] the probability and expectation operators under state-
action sequences (s¢, a;)¢>o starting at (s, a) and following policy 7 with s, ~ P(- | s¢—1,a¢—1)
and a; ~ m(- | s¢). Given any reward function r : S — R, the Q-function of 7 for r is Q7 (s, a) :=
ZtZO ’ytE[r(SH-l) | 5,4, TF}'

Successor Feature based Behavioral Foundation Models: A behavioral foundation model (BFM)
is an abstraction of the MDP that is trained using reward-free unsupervised transitions. At test-time,
they produce near-optimal policies for a large set of reward functions, without additional planning
or learning in a zero-shot manner. In this work, we will look into BFMs based on successor features.

These BFMs consider the distribution of downstream rewards that can be linearly spanned by state
features, ¢ : S — Z i.e. are given by 7, = ” 2. The Q-function for such rewards can be written as
Q(s,a) =Ex[>, ¢(s¢)|s,alz where (s, a, ) = Ex[>", ©(s¢)]s, a] is called successor features.
If 7, is defined as the optimal policy for the reward r, with Q.(s, a) being the corresponding Q-
function, the following fixed point exists,

7w, = argmax (s, a,m,)z or ¥(s,a,z)z (D)

BFMs consists of (v, ¢, ) such that given any reward function and dataset p, the correspondi
z can be extracted s(lzr/;lpgfy b)y solving thgé linear ¥egression, min, Ep[(wdraz — rfg} = (ﬁ@)p—lgm rg

Naturally, BFMs depend on the choice of the state representations . Recent works (Touati et al.,
2023;|Agarwal et al.,[2024) have shown that 1) and ¢ can be jointly obtained by predicting successor
measures.

The successor measure (Dayan, [1993; Blier et al., 2021)) of state-action (s, a) under a policy 7 is
the (discounted) distribution over future states obtained by taking action a in state s and following
policy 7 thereafter:
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M™(s,a,X) := thPr(stH e X|s,a,m VXCS. ()

t>0

Using successor measures, ) functions can be represented as, Q" (s, a) = > .+ M™(s,a,st)r(s™).
This simple linear relationship between Q functions and Successor Measures is similar to that of
successor features and has been exploited by recent works (Touati & Ollivier, |2021; |Agarwal et al.}
20244 |Park et al.| 2024) to train BFMs.

It has been shown by [Touati & Ollivier| (2021) that parameterizing the successor measures as
M™ (s, a,s%) = 9™ (s,a,2) ¢(sT) yields ¥ (s, a, z) as state features for the state feature p(s) =
(qbqu)_lcé(s)( Theorem 12 of [Touati & Ollivier| (2021))). Since, the closed form solution for z for
any reward function r was (@' )~ '¢r, using the parameterization of M™ implies z = ¢r.

To train BFM, we alternate between a successor measure learning phase and a policy improvement
phase. The successor measure learning phase learns to model densities M ™ (s, a, s™) using the
contrastive objective (Blier et al.,[2021):

Successor-measure estimation: Lgy (M™) = —E; 4 o p[M™ (s,a, )]
1 _
+ §]Es,a,s’~p,s+~p[(M7rz (Sa a, 5+) - ’YMWZ (S/a ﬂ-z(sl)a 5+))2]' (3)

For any reward function in 7, the policy improvement step greedily optimizes the corresponding
Q-function:

7.(s) = argmax Q™ (s,a) = argmaxZM;T(s, a,s)-r(st)
= argmax »_[¥/(s,a,2) " (¢(sT) - r(sT))]
= argmax (s, a,z) " Z p(sT)-r(sT) = argmaxy)(s,a,2) 'z (4)

The policy improvement step then equivalently minimizes the below loss function:
Policy Improvement: Lp(7.) = —Eqor_(5)[Y(s,a, 2) " 2] (5)

A brief overview of various approaches to train BFMs can be found in appendix [A.2} In this work
we present a new approach to estimate state representations ¢ enabling performant zero-shot RL.

4 METHOD

This method can be broadly divided into two parts — representation learning and zero-shot RL using
successor features. The state representation encoder is trained using latent dynamics prediction with
diversity regularization. We will show that these representations lead to a reduction in the prediction
error for successor measures for any policy. Leveraging these robust state embeddings, we then
pretrain a Behavioral Foundation Model (BFM) to predict successor measures, enabling zero-shot
inference of near-optimal policies for unseen reward functions. We refer to this method as RLDP
(Regularized Latent Dynamics Prediction based Behavioral Foundation Policies).

4.1 LEARNING REPRESENTATIONS WITH REGULARIZED LATENT DYNAMICS PREDICTION

Zero-shot RL based on successor features relies on learning a state representation denoted by ¢(s).
This state representation will define the span of reward functions that the zero-shot RL method is
guaranteed to output optimal policies for.

The primary representation learning objective is — unrolled latent dynamics prediction. We learn
a state representation encoder ¢ : S — R% (Z = R?) and a latent state-action representation
encoder g : R x A — R? such that latent dynamics can be expressed as ¢(s') = g(¢(s),a)w
with some constant weights w, informing our loss function for representation learning. A
sub-sequence of horizon H is sampled from the offline interaction dataset p given by 7¢ =
{sh,ab,st,al,....,s%y_1,a%_1,s%}. A sequence of future latent states h' , are obtained by
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encoding the initial state h{ = ¢(s}) and unrolling using the defined dynamics model h{,, =
g(h%, as) Tw. Then the objective is to predict the encoded future latent states:

2

H
‘Cd(d)a g) = IE'rir\«do Z h; - &(8%) ) (6)
t=1

where 71 = {s},ad, st,al, ..., shy_q,aly_q, sk} b = ¢(sh), model hi | = g(hi,al)"wand ¢ is

the slowly moving encoder target.

Latent dynamics models have been shown
to significantly improve sample efficiency for
single task RL when models are used for
planning (Hansen et al.||2022)), learning (Hafner
et all [2020), or as representations (Fujimoto
et al. 2025) for model-free RL, but their
suitability as general-purpose representations
for multi-task and zero-shot RL remains
understudied. Most successful methods (Touati
& Ollivier, 2021; |Agarwal et all [2024)
for zero-shot RL train representations to
predict successor measures. However, directly
estimating successor measures require learning
future state-occupancies under a predefined set
of policies. This poses a problem in the low-
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Figure 1: Average Cosine similarity between state-
representations sampled uniformly from the training
dataset: Feature similarity increases over the course of
training. Shaded region shows standard deviation over
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coverage setting as Bellman backups with policies that choose out of distribution action will result
in incorrect predictions and negatively affect representation learning. In contrast, latent dynamics
prediction is a policy-independent representation learning objective.

However, solely learning with the latent dynamics objective can lead to convergence to a collapsed
solution. This is unsurprising as trivial solutions of predicting a constant zero vector achieves a
perfect loss in Equation [§] To combat this, prior works (Grill et al., [2020) have proposed the use
of a semi-gradient update where a stop-gradient is used for target h;41 in Equation [6] along with
a slowly updating target. However, we find these techniques insufficient to maintain representation
diversity. We investigate this by computing the cosine similarity of state representations as a function
of gradient steps trained via minimizing Eq [6] on an offline dataset collected by an exploration
algorithm RND (Burda et al., 2019). Figure|[l|shows that while the solutions do not collapse, there
is an increase in feature similarity over the course of learning, which we refer to as a mild form of
collapse. As the space of reward functions is spanned by state features, such an increase in feature
similarity directly reduce the class of reward functions for which we can learn optimal policies and
negatively impact task generalization.

Mitigating collapse in latent dynamics prediction: In order to prevent the mild form of
feature collapse discussed earlier, we propose to add an auxiliary regularization objective that
encourages diversity. Orthogonal regularization has been also studied in self-supervised learning
(He et al) [2024; Bansal et al, [2018) as a way to mitigate collapse. We project all state
representations ¢ as well as state-action representations g(¢(s),a) in a hypersphere: S%~! =
{r € RY ||l = +/d} and regularize by minimizing cosine similarity between any
two states. We ablate the choice of hyperspherical normalization on g in Appendix and
observe it to give consistent improvements. We note that a similar regularization was applied to
state features in the implementation of the prior unsupervised RL approach of Forward-Backward
representations (Touati et al.,|2023) to encourage solution identifiability and uniqueness; in the case
of latent dynamics prediction this step becomes crucial to mitigate the increase in representation
similarity. The orthogonal regularization loss takes the following form:

L, = Es78’~p[¢(3)T¢(S/)] (7N
where ¢ € S, Our final loss is a weighted combination of dynamics prediction combined with
orthogonal diversity regularization:

: yiee Lripp = La+ M, ®)

where A controls the regularization strength. We evaluate the impact of orthogonality regularization
in Appendix section|A.4.2] and observe that adding a small regularization with coefficient A = 0.01
can prevent collapse.
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RLDP leads to representations capable of predicting successor measures: The representation
learning objective is simply latent dynamics prediction with an orthogonal regularization. Through
this objective, we are enforcing the representations to be good for predicting successor measures,
which forms the basis of the BFMs that will be constructed using these. Lets begin by looking at the
latent space MDP M defined using the state representation ¢.

Definition 4.1. Let MDP M corresponding to the state abstraction ¢ : S — Z be defined as
< QS(S)a Aa P(|¢(8), a)a Y, T >

Apart from facilitating the construction of BFMs and zero-shot RL, one of the utilities of the
state-representations is to compress the state space to a smaller space. MDP M represents this
compression. We will assume that M is Lipschitz. Formally,

Assumption 4.2. M is (K, Kp) — Lipschitz.

We now have all the components to show that L, pp leads to a reduction in the prediction error of
successor measure for any /Cy -Lipschitz valued policy.

Lemma 4.3. Given MDP M, let © be any Ky -Lipschitz valued policy, M™ be the successor
measure for m and M™ be the corresponding successor measure on M, Lrppp upper bounds
the prediction error in successor measure,

- Lrrpp
Es,a~d"’7s+~p”M7r(Svaa 5+) - M™(¢(s),a, ¢(S+))|] < 11—~ )
Lemma@]implies that minimizing £y pp will lead to reduction in prediction error for successor
measures.

4.2 ZERO-SHOT RL WITH RLDP REPRESENTATIONS

With the obtained RLDP representations ¢ learned using reward-free offline environment transitions,
we train a successor measure based behavioral foundation model by alternating successor measure
estimation and policy improvement. The RLDP representations are kept frozen in the successor
measure parameterization M7= (s,a,sT) = 7 (s,a,2) " ¢(sT) and (s, a,z) and 7, are trained
using losses[10] and [5 respectively.

ﬁzsrl(dj) - *]Es,a,s’wp[w(sv a, Z)(b(’sl)]
+ %Es,a,s’wp,erNp[(q/)(Sv a, Z)¢(S+) - ’71[](5/7 7TZ(SI)7 Z)¢(S+))2} (10)

Following prior work, in our experiments we consider variations of the policy improvement step
(Eq[5) where we use a expert regularization in the policy update (Tirinzoni et al., 2025) to guide
exploration during online RL for high-dimensional state-action space or use a behavior cloning
regularization (Fujimoto & Gul 2021) when learning offline for low-coverage datasets. These
modifications are discussed in detail in the next section. And we provide the full representation
and policy learning pipeline for RLDP in appendix section I}

5 EXPERIMENTS

The goal of our experiments is to perform an extensive empirical study of the suitability of state
representations learned by a regularized latent next-state prediction objective when compared to
other methods that employ more complex strategies. In particular, we aim to answer the following
questions: (a) Keeping all other learning factors similar, how does our method compare to baselines
in enabling generalization to unseen reward functions? We compare the representations learned
by training multi-task policies with zero-shot RL both in the offline setting and the online setting.
(b) Does the absence of explicit Bellman backups make RLDP a robust choice for low coverage
datasets? (c) What design decisions are crucial to the success of our method? We perform several
empirical ablations to understand our design choices.

For all datasets, we pretrain a BFM using the successor feature approach outlined in our method
section[d} Each algorithm is given the same budget of gradient steps during pretraining, controlling
the state representation dimension, and the final performance is obtained by taking the pre-trained
model at the end and querying it for different task-rewards for 50 episodes. All results are aggregated
across 4 seeds.
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Task Laplace FB HILP PSM RLDP
= Stand 243.70+£151.40 902.63+38.94 607.07£165.28 | 872.61+38.81 877.69+45.03
é Run 63.651+31.02 392.76+31.29 107.84+£34.24 351.50£19.46 324.85+54.57
g Walk 190.53+168.45 877.10+81.05 399.67+39.31 891.44+46.81 790.94£67.55

Flip 48.73£17.66 206.22+162.27 277.95+£59.63 640.75+31.88 491.64£37.30
< Run 96.32435.69 257.59+58.51 68.22+47.08 244.38+80.00 236.31+£20.75
% Run Backward 106.38+29.40 307.07+14.91 37.99+25.16 296.44£20.14 322.08+£39.28
2 Walk 409.15£56.08 799.83+67.51 318.30£168.42 984.21+0.49 895.31+49.84
© | Walk Backward | 654.29+219.81 980.76+2.32 349.61£236.29 979.01+7.73 984.76£0.85
T Stand 854.50+41.47 740.05£107.15 409.54497.59 842.86+£82.18 794.94£43.25
= Run 412.98+54.03 386.67+32.53 205.44+47.89 431.77+44.69 457.41+£74.70
?‘; Walk 494.56+62.49 566.57+53.22 218.54+86.67 603.97+73.67 | 465.40£185.29
= Jump 642.84+114.15 | 581.284107.38 325.51£93.06 596.37+£94.23 733.32£55.30
§ Top Left 713.46£58.90 897.83+35.79 944.46+12.94 831.431+69.51 890.41£60.79
E Top Right 581.14£214.79 | 274.95+197.90 96.04£166.34 730.27+£58.10 795.47+£21.10
£ Bottom Left 689.05£37.08 517.23+302.63 192.34£177.48 | 451.38+73.46 805.17+£20.44
& Bottom Right 21.29+42.54 19.37433.54 0.17£0.29 43.29+38.40 193.38+167.63

Table 1: Comparison of zero-shot offline RL performance between different methods. Entries in bold are
within one standard deviation of the per-task best mean (i.e., i > p* — ™).

5.1 BENCHMARKING ZERO-SHOT RL FOR CONTINUOUS CONTROL

Baselines: We broadly compare RLDP against commonly used state-of-the-art baselines for zero-
shot RL such as: FB, HILP, PSM, and Laplacian. These baselines represent a set of diverse and
strong approaches in the area of zero-shot RL.

5.1.1 OFFLINE ZERO-SHOT RL

Setup and Evaluation: We consider continuous control tasks from DeepMind control suite (Tassa
et al., 2018) — Pointmass, Cheetah, Walker, Quadruped under a similar setup considered by prior
works in zero-shot RL. We use the ExoRL suite (Yarats et al.| (2022)) for obtaining exploratory
datasets using RND (Burda et al.|(2019)). To evaluate the different zero-shot RL methods we take
the pretrained policies and query them on a variety of tasks. For each environment, we consider 4
tasks similar to prior works (Touati et al.| [2023; [Park et al.| 2024} |Agarwal et al., [2024).

Results: We conduct our experiments across two axes: a) Table[T] compares against representation
dimension for ¢ found to be best for prior methods and RLDP with the same number of gradient
updates for pretraining each BFM. b) Table [/] in the Appendix pretrains all the BFMs on same
number of representation dimensions (512) and gradient steps. For RLDP, we use a encoding horizon
of 5 and set the orthogonality regularization to 1. We train representations for 2 million steps and
train policy for additional 3 million steps.

Overall, RLDP fares competitively to baselines that employ complex strategies such as FB, PSM
to learn representation optimizing for successor measures across the environments despite its
simplicity. Furthermore training FB and PSM baselines is sensitive to hyperparameters and we
rely on author’s implementation to tune hyperparameters.

5.1.2 ONLINE ZERO-SHOT RL

Previous section validated that RLDP representations lead to competitive zero-shot RL. when the
learning policies use offline interaction data. We explore if the learned representation enable
competitive multi-task learning when agent is allowed interaction with the environment.

Setup, Algorithm, and Evaluation: We consider the SMPL (Loper et al.| (2023)) Humanoid
environment that aims to mimic real human embodiment and provides a complex learning challenge
with a 358 dimensional observation space and a 69 dimensional action space. Due to the exploratory
challenge of the environment |Tirinzoni et al.| (2025)) presented a new approach, Conditional Policy
Regularization (CPR), to guide RL learning regularized with expert real-human trajectories. CPR
trains successor measures in a similar way as Eq [3| but adds a regularization objective to policy
encouraging it to jointly maximize (Q-function while staying close to expert. This allows for better
exploration and more realistic motions. Further implementation details can be found in appendix

sections
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Our representation learning phase is offline and we use the metamotivo 5SM transition dataselﬂ
collected from replay buffer of an online RL agent to learn state-representations and then use the
CPR approach to train zero-shot policies. We train representations for 2 million gradient steps and
policy for 20 million environment steps. The offline phase of representations help us remove the
exploration confounder and help test the quality of representation obtained by different approaches.
The evaluation is performed on the full suite of 45 tasks provided by [Tirinzoni et al.| (2025). For
each task, we present the normalized scores with respect to fully-online trained representations and
policy in Fig 2| from Tirinzoni et al.| (2025)).

Results: Fig [2] suggests that overall RLDP fares competitively to the baselines. The performance
is task dependent - on some tasks (such as raisearms and lieonground), RLDP outperforms the
baselines, even beating the oracle performance for some tasks. In others (like crawl or rotate tasks),
all methods perform subpar to oracle. Complete results for this evaluation are provided in table[9]

Methods' performance as a % of online oracle agent across tasks « FB = PSM ¢ RLDP - HILP
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Figure 2: Evaluating offline representation learning methods using an online oracle policy in high dimensional
3D humanoid. Solid lines shows mean performance across tasks for each of the method.

5.2 LEARNING REPRESENTATIONS WITH LOW COVERAGE DATASETS

RLDP learns a Task FB PSM HILP RLDP
policy-independent halfcheetah-medium-expert-v2 5546775  63.93+595  62.53+6.64  $8.55+6.31
representation halfcheetah-medium-v2 41774199 42874061  4273+1.60  49.97+1.19
throush latent  hopper-medium-expert-v2 49.93£2878  150+0.53  62.6946.67  75.53+£12.70
gl Aat hopper-medium-v2 41.8547.07  44.41£2473 51864276  41.40+3.63
dynamics prediction.  walker2d-medium-expert-v2  36.85£1490 71754363  84.83£1945 101304392
Prior approaches _ Walker2d-medium-v2 5031+£1647  63.87+1435 504321678  84.661+2.98

assume a class of Table 2: Normalized returns comparing FB, PSM, HILP, and RLDP in low-
policies to learn coverage setting. RLDP shows significant gains over approaches that rely on explicit
representations Bellman backups for representation learning. Table shows mean + std; Boldface
predictive of results show statistically significant improvement with paired Wilcoxon signed-
successor measures, rank tests.

and this strategy can lead to poor out-of-distribution generalization when actions proposed by the
policy are not covered by the dataset. Setup. To evaluate this hypothesis concretely, we consider the
D4RL benchmark of OpenAl gym MuJoCo tasks (Fu et al.| (2020), [Todorov et al.| (2012}, [Brockman
et al.| (2016)). This dataset has been widely used to examine the effects of value estimation error
from out-of-distribution actions due to low coverage, which many offline RL algorithms struggle
with (Kostrikov et al.| (2021); [Fujimoto & Gul (2021)); [Kumar et al.| (2020); Wu et al.| (2019);
Sikchi et al.| (2024b)). We consider halfcheetah, hopper, and walker2d domains, and medium and
medium-expert datasets.

Evaluation: To evaluate the different zero-shot RL methods, we first pretrain the representation
learning methods on these datasets for 1 million gradient steps. We use a modified zero-shot
policy learning approach that alternates between Eq [3| and Eq [3] that is additionally augmented
policy improvement loss with a behavioral regularization inspired by |[Fujimoto & Gu! (2021). This
regularization allow the RL approach to learn without overestimation bias and enabling us to
establish a fair comparison among representations learned by different approaches. We use the
corresponding reward function provided by each dataset to do reward inference and evaluate the
zero-shot policy. Further details are provided in Appendix sections [A.3.3] [A.5.3]

'https://huggingface.co/facebook/metamotivo-M- 1
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Results: For each task, the normalized scores are presented in table 2] RLDP outperforms in 5
out of 6 tasks, with statistically significant margins. Overall, the results suggest that RLDP is a
reliable choice for feature learning in low coverage datasets while providing a simpler alternative to
otherwise complex representation learning approaches.

5.3 WHAT MATTERS FOR SUPERVISING REPRESENTATIONS SUITABLE FOR CONTROL?

In section we introduced RLDP method of representation learning with the loss used
(equation [6] [7] [8) and the encoder training process (section {.I). In this section, we aim to ablate
components of this loss and the architecture of the encoder.

Orthogonality regularization: Keeping the encoding horizon constant (H = 5), we change the
orthogonality regularization coefficient. The results, presented in Figure [3] show that for zero
regularization (A = 0), the average return decreases compared to A > 0. This shows that
diversity regularization is critical to the representation loss. For fixed encoding horizon, we see that
orthogonality regularizer A = 1 performs best. To further understand the role of the orthogonality
regularizer in representation learning and how it helps prevent feature collapse, we refer to
Section4.T]and Section where we look at the cosine similarity between representations.

Encoder architecture: In section {.I] we Encoding Horizon = 5

introduce encoder training, where we project 0 $ 1 e g over s
the state-action representations g(qﬁ(s),a) 6001 B o

to a hypersphere. ~Here, we examine the 500 g heerped

impact of this projection by comparing it
to a network where we do not perform
spherical normalization on the state-action
representations. The results are presented in
table 3] We observe that RLDP consistently 0 1 0 100
outperforms its variant without spherical Orthogenality Regularization
normalization on most tasks (Results for all Figure 3: Evaluating the impact of Orthogonality
environments can be found in appendix table[6). ~ Regularization: We ran one-sided Mann-Whitney
The standard deviation is also higher for most U tests on the per-seed retums to compare different
results on the variant without hypersphere Yalues of the orthogonality regularization, ~and
.. R . we observe that orthogonality regularization
p rOJeCtl.On'. .Thls. indicates that sP herlcal (coefficient=1.0) gives a statistically significant
norrpghzgtlon is an important design choice for improvement over coefficient=0.
stabilization and improving performance.
The complete encoder architecture is discussed in [A.4] where we provide additional results for
ablating encoder architecture.

Average Return
-
8

6 CONCLUSION

This paper introduces RLDP, a representation Task RLDP RLDP w/o SN
learning objective for effective task Stand 794.94+43.25  661.73+95.75
ot : Run 4574147470 378.97+148.47
generghzatmn .enabhng perfqrmgnt Quadruped Walk 465.40+185.29 519.39+251.11
behavioral foundation models. Our objective Jump 733.32+£55.30  495.98+133.81
takes the simple form of regularized latent- Average(*) 612.77 514.02
dynamics prediction, an objective that does Top Left 890.41:£60.79 ~ 892.13+41.74
: : Co TopRight ~ 795.47+21.10 728.724122.99
not require any reconstruction, making it Pointmass  Bottom Left  805.17+20.44  683.124£76.22
able to handle high-dimensional observation Bottom Right 193.38+167.63  22.5439.04
space and does not require explicit Bellman Average(*) 67111 >15.02

backups, making it more amenable to Table 3: Study of encoder architecture (subset). Table
optimization. We identify that simply using  shows mean =+ std; boldface indicates the highest mean
latent-dynamics prediction leads to a mild per task. SN: Spherical Normalization on g

form of feature collapse where the state-representation similarity increases over time. To combat this
issue, we propose using orthogonal regularization as a way to maintain feature diversity and prevent
collapse. Using our method enables learning generalizable, stable, and robust representations that
can achieve competitive performance compared to prior zero-shot RL techniques without relying on
reinforcement-driven signals. Importantly, we show that prior approaches struggle in low coverage
setting and RLDP works robustly across different dataset types, making it a practical unsupervised
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learning approach.This work, thus, paves the way for simpler yet effective approaches to learn zero
shot policies in behavioral foundation models.
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A APPENDIX

A.1 PROOF OF LEMMA 4.3

Lemma A.l. Given MDP M, let 7 be any Ky -Lipschitz valued policy, M™ be the successor
measure for m and M™ be the corresponding successor measure on M, Lprpp upper bounds
the prediction error in successor measure,

Buamtr g M7 (5,0,57) = M7 (6069, 0,00 < 2227 ®

Proof. Lets begin with Eg 4ax[|[M™(s,a,sT) — M™(s,a, s")]. For a fixed s*
Esandr[[M7(s,a,57) = M"(s,a,57)] < Esanar [p(s’ = s7) = p(d(s') = ¢(s)) [+
YEs,andm [EBsrmp(js,a) VT (5") = Egsr )~P( l6(s),a) V™ (0()]

)
<Lr+ ’YES a~d"|Es’~P( |s,a) [Vﬂ( ) - ( ( /)]H'
’yEs awd"|E9 '~P(:|s,a), ¢(s")~P(-|p(s), a)[ (S/) Vﬂ( ( ))H
< £R + 7E37a~d" UES’NP(-\s,a) [VW( ) - ( (S/)H

VRV Es,amar D(¢P(:|s, a), P(+|¢(s), a))

< L+ VEs amdn By p(1s,a) [V (s") = VT ((s)]]+
YV Es andr L

< LR +Esandn By op(s,a) [V (s") = VT (d(s") |+
YKV Es andan La

< LR +9Esamdr [V (s) = VT (o(s))|+
YRy L4

< LR +VEs amdr | M7 (s,a) = M™(¢(s),a, ¢(sT)) |+
YRv Ly

This implies, (1 — ¥)Es qar[|[M7(s,a,87) — M™(s,a,s7)] = Lr + vKvLq where Lr =
Esanar|p(s' = 57) = p(6(s') = ¢(sT))I.

Taking expectation under s™ ~ p(sT),

(1 =Y)E; godr st pl| M7 (s, a, sT) =M™ (s,a,s7)] = ]ES’GNdW’S+Np|p(s’ =5T) —p(o(s') = o(s))| +vKv Ly

=Lr+7KvLaq
This implies, E; oogr s+~ p[|M7(s,a,57) — M™(s,a,s7)] = ET*]_’E/V@ = ﬁffgp O

A.2 PRIOR APPROACHES FOR REPRESENTATION LEARNING IN BFM’s

Prior work has often relied on complex objectives to enable learning of ¢ and ) for BFMs. Forward-
Backward (FB) (Touati et al.l [2023) combine learning the state representation, ¢ with successor
features, v and the policy. ¢ and v are jointly learned to represent successor measures for a class of
reward-optimal policies. FB alternates minimizing the successor measure loss below jointly for ¢, ¢
alongside policy improvement by optimizing Eq[5] FB uses the following loss minimizing Bellman
residuals to learn representations:

L(6, ) = B a,5~pth(s, a,2)T6(5)]

B[00, )T 6(5T) = 70,7, 2)B(5T)] (D)
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HILP (Park et all [2024) learns state representation ¢ that are suitable to predict value function
for goal-reaching which is subsequently used for zero-shot RL in the same way as RLDP. HILP
parameterizes the value function to be V (s, g) = ||¢(s) — ¢(g)|| and then minimizes:

L(¢) = Ba v gupll3(=1(s # g) =7V (s, 9) + V (s, 9)] (12)
where K% is an expectile loss (Kostrikov et al.[(2021)).

The Laplacian approach (Wu et al., 2018)) learns state representation using eigenvectors of graph-
Laplacian induced by a random-walk operator. The representation objective for Laplacian approach
takes the following form:

1

L(®) = 5 Eanp, snpris) [I16(s) = (s I3] + BEs,srepld(s)T d(s)] (13)

A.3 EXPERIMENTAL DETAILS

A.3.1 EXORL

ExoRL (Exploratory Offline Reinforcement Learning) is a benchmark suite that provides large,
diverse offline datasets generated by exploratory policies across multiple domains (e.g., locomotion,
manipulation, navigation). = We consider three locomotion and one goal-based navigation
environments — Walker, Quadruped, Cheetah, Pointmass — from the Deepmind Control Suite (Tassa
et al.[(2018)). For offline training, we use data provided from the EXORL benchmark trained using
RND agent. These domains are explained further in table[d All DM control tasks have an episode
length of 1000.

Domain Description Type l()).bservz.ltlon/Actlon Tasks Reward
imension

stand
. walk
Walker two-legged robot Locomotion 24/6 un Dense

flip

jump
Quadruped  four-legged robot Locomotion 78/12 xarlllk Dense

stand

walk

run

walk backward
run backward

Cheetah planar, 2D robot Locomotion 17/6 Sparse

reach top left
reach top right
reach bottom right
reach bottom left

Pointmass  navigation in 2D plane  Goal-reaching  4/2 Sparse

Table 4: ExoRL dataset summary. Domain is the environment name in the ExoRL benchmark. Description
is a natural language description of the agent embodiment/environment. Type is the broad task category.
Observation/Action Dimension refers to the size of observation and action vectors from the environment. Tasks
refers to the evaluation tasks provided by ExoRL. Reward refers to the density of non-zero reward signals from
the environment.

A.3.2 SMPL 3D HUMANOID

SMPL (Skinned Multi-Person Linear Model) is a 3D parametric model of the human body that is
widely used for character animation. It has a 358 dimensional proprioceptive observation space that
includes body pose, rotation, and velocities. The action space is 69 dimensional where each action
dimension lies in [-1,1]. All episodes are of length 300.

A.3.3 D4RL

D4RL (Datasets for Deep Data-Driven Reinforcement Learning) (Fu et al.|(2020)) is an offline RL
benchmark suite built on the v2 Open Al Gym (Brockman et al.|(2016)) that provides standardized
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datasets and evaluation protocols across simulated and real-world tasks. We consider three simulated
locomotion tasks — Hopper, HalfCheetah, Walker2D — and two datasets — medium and medium-
expert. As described in [Fu et al.| (2020), the medium dataset is generated by online training a
Soft-Actor Critic (Haarnoja et al.|(2018)) agent, early-stopping the training, and collecting 1 million
samples from this partially-trained policy. The “medium-expert” dataset is generated by mixing
equal amounts of expert demonstrations and suboptimal data, generated via a partially trained policy
or by unrolling a uniform-at-random policy. Further details about these tasks have been provided in
table[5] Episodes have inconsistent length depending on termination/truncation with a maximum of
1000.

Domain Task Name # Samples
hopper-medium 106
hopper-medium-expert 2 x 106
halfcheetah-medium 106

Gym-MuJoC

ym-VIHIoLo halfcheetah-medium-expert 2 x 10°
walker2d-medium 106
walker2d-medium-expert 2 x 106

Table 5: Gym-MuJoCo tasks from D4RL.

A.4 REGULARIZED LATENT DYNAMICS PREDICTION

RLDP aims to learn a state representation encoder ¢ such that latent state dynamics can be expressed
as ¢(s') = g(¢(s),a) " w where g is a latent-state action encoder and w are some constant weights.

A.4.1 ARCHITECTURE

The architecture of the RLDP encoder network is as pictured in figure [

a

v
[[3:3] A

The state representation network ¢ is a
feedforward MLP with two hidden layers [@
of 256 units that maps a state s to a d-
dimensional embedding. In our default RLDP
architecture, the action a is mapped to 256- ®(s)( )
dimensional space using linear network A. In
this section, we make this distinction clear ( )
and use a to denote raw action input to the

network and A to denote a projection of action
as input to network. The outputs of these

Qe [¢w

—

two networks are concatenated and passed

through a feedforward neural network g that

has two hidden layers of 512 units and a =
d-dimensional output. The output of the g w
network is projected to a hypersphere and then n
passed through a linear layer w. The final o(s")

d-dimensional representations are spherically
normalized again. Figure 4: Architecture of RLDP network

During encoder training, the encoder map is

unrolled to perform next latent state prediction from current latent state and action as ¢(s’) =
g(o(s), A)Tw. After encoder training, the encoder network is frozen. To obtain latent state
embeddings, the states are passed through the state representation network to get ¢(s).The encoder
architecture for RLDP is kept consistent across all methods and datasets.
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A.4.2 ABLATIONS

In this section, we aim to examine the components of the RLDP state encoder to understand which
parts of the method are crucial to learn representations that can maximize the span of reward
functions we can represent optimal policies for.

We pretrain state representation network ¢ and policy using the ExoRL dataset generated with
RND exploration policy and evaluate the performance in DMC environments cheetah, pointmass,
quadruped, and walker.

Does orthogonality regularization matter?

Figure [5] shows the impact of changing orthogonality regularization while keeping a constant
encoding horizon (H = 5). The figure shows how the cosine similarity between latent states changes
during encoder training for different regularization coefficients.

For a regularization coefficient A\ = 0, the cosine similarity increases, indicating that all states are
getting mapped to similar representations. For any regularization coefficient A > 0, we observe
that the cosine similarity follows a steep descent, indicating that the states are being mapped to
diverse representations. These results indicate that adding even small orthogonality regularization
can reduce representation collapse significantly.

Encoding Horizon = 5, Cheetah env Encoding Horizon = 5, Pointmass env
0.6 0.45
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205 )
s © 035
£ o4 —— reg. coeff: 0.0 E 030 — reg. coeff: 0.0
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Figure 5: Evaluating the impact of Orthogonality Regularization on representations learned across four
environments: Cheetah (top left), Pointmass (top right), Quadruped (bottom left), and Walker (bottom right).

How does encoding horizon impact performance?

As discussed in section[d] RLDP is trained with the objective to do latent next state prediction from
latent current state and action. This prediction can be done multiple steps into the future latent states
(6), depending to the choice of encoding horizon H.

In this section, we examine if the choice of encoding horizon impacts performance. To this end,
we set the orthogonality regularization coefficient A = 1.0 and sweep over encoding horizon
(1,5,10,20).

The results are presented in figure [7]] The average performance across environments is relatively
stable with a small dip at I = 10, indicating that encoding horizon does not significantly
impact performance. For our experiments, we use encoding horizon H = 1 or H = 5
depending on the setting. Specific encoding horizon setting for each experiment is discussed in
section[A.5] We do not choose higher encoding horizon H = 20 despite comparable performance
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in [7] because higher encoding horizon can result in slower encoder training. This is because
each additional future state prediction involves a forward pass through the encoder network.

What is important for the encoder

architecture?

In this section, we aim to ablate components of
the encoder map to understand which factors
contribute to RLDP’s performance. For this
setting, we fix encoding horizon H = 5 and
orthogonality regularization coefficient A =
1.0.

We focus on two components of the encoder
architecture — linear layer A and linear layer W

(figure [d).

We compare the complete RLDP encoder
network with its variations — a. RLDP w/o SN
where W is replaced with an identity mapping;
b. RLDP w/o A where A is replaced with an
identity mapping; c. RLDP w/o SN & A where
both W and A are replaced with an identity

mappingﬂ

The results are shown in table[§] Although per-
task results are variable, the full RLDP encoder
delivered the strongest average performance
on all four domains. Removing spherical
normalization lowers returns and increases
variance on most tasks and removing A also
degrades performance.  There are isolated
wins for all variants, but these do not impact
the domain-level results that favor the full
RLDP encoder network. Thus, both SN and
A contribute meaningfully to representation
learning.

0.6

03 /—/’N

0.4 f\

0.3

0.2

0.14 <

Average Cosine Similarity

0 0.5M 1M
Representation Learning Gradient Steps
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- - Cheetah (A = 1.0) - - Pointmass (A = 1.0)

Figure 6: Average Cosine similarity between state-
representations sampled uniformly from the training
dataset: Feature similarity increases over the course of
training when A = 0.0 and decreases when A = 1.0.
Shaded region shows standard deviation over 4 seeds

Orthogonality Regularization = 1
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—e— Avg over envs
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Average Return
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Encoding Horizon

Figure 7: Evaluating the impact of Encoding Horizon

Task RLDP RLDP w/o SN RLDP w/o A RLDP w/o SN & A
Stand 890.40+27.33  860.74+62.47 810.792+100.895 881.69+6.92
Run 334.26+49.69  324.041+6.73  290.779+26.520 276.30+47.21
Walker Walk 779.77+£137.16 728.294+43.09  715.8254+92.427 583.60+28.26
Flip 4929442279  501.59+45.04 477.953+37.876 447.73£33.59
Average(*) 624.34 603.66 573.837 547.33
Run 157.124+29.92  84.99467.31 115.25+14.13 118.67432.67
Run Backward ~ 170.52+15.30  193.69+40.10 192.20+42.07 156.561+45.98
Cheetah Walk 592.92+104.66 387.50+£244.76  526.021+52.89 559.824177.29
Walk Backward  821.514+50.62 838.12+145.37 836.29+173.10 668.46+186.17
Average(*) 435.52 376.08 417.440 375.88
Stand 794.94+43.25 661.73£95.75  518.61+69.24 687.43+155.33
Run 457.41£74770 378.97+£148.47  358.551+53.61 475.07+45.66
Quadruped Walk 465.40+£185.29 519.394+251.11  384.924+119.49 575.32+£120.82
Jump 733.32+55.30 495.984+133.81  319.18+55.16 510.55+151.176
Average(*) 612.77 514.02 395.34 562.09
Top Left 890.41+60.79 892.131+41.74  886.19+10.07 890.89413.06
Top Right 795.47+21.10 72872412299  809.64+11.23 797.59+19.44
Pointmass  Bottom Left 805.17+20.44  683.12+£76.22  730.74+63.72 735.42+61.83
Bottom Right ~ 193.38+£167.63  22.54£39.04  206.59+214.98 178.77+130.17
Average(*) 671.11 515.02 547.617 583.78

Table 6: Study of encoder architecture. Cells show mean + std over 4 seeds; boldface indicates the highest

mean per task.

2SN: Spherical Normalization on g
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(a) Pointmass observations (b) Latent states before encoder
training

(c) Latent states after training (d) Latent states after training
(prediction error) (prediction error + orthogonality)

Figure 8: t-SNE visualizations of state features in Pointmass. Each panel shows the 2D projection of 10,000
uniformly sampled states.

A.4.3 WHAT DO THESE REPRESENTATIONS
LOOK LIKE?

To qualitatively assess the learned state representations, we use the Pointmass environment, where
we uniformly sampled 10,000 equidistant states from the underlying state space (figure [§] (a)).

We initialize a state representation encoder ¢ and pass these states through the encoder to get latent
embedding before training (ﬁgure|§| (b)).

We then train two encoders with different losses: a. we set A = 0.0 in[8]and train using only latent
state prediction loss (figure[§](c)); b. we set A = 1.0 in[8]and train using latent state prediction loss
and orthogonality regularization

We project all these embeddings into two dimensions t-distributed Stochastic Neighbor Embedding
(t-SNE). This visualization highlights the geometric structure captured by the representation and
provides intuition about how the encoder organizes states in latent space.

The results in [8] show that training an encoder using only latent state prediction loss (figure (c))
is ineffective at capturing the layout of the environment and maps different states to similar latent
representations. Using both latent state prediction loss and orthogonality regularization enables the
encoder to better capture the environment layout (figure(d)).

A.4.4 FUTURE DIRECTIONS: EXTENSION TO REAL-WORLD EMBODIMENTS

RLDP presents a simple, stable and performant approach to train behavior foundation models in
applications like robotics. An agent can be promptable to obtain low-level actions with such a
BFM. Recent works (Tessler et al.l 2025} [Li et al.l 2025) have made promising attempts to extend
BFM algorithms to real-world domains and prior works have made it possible to prompt BFMs
with language and videos (Sikchi et al.| 2024a) which can be more intuitive interface for humans

19



Under review as a conference paper at ICLR 2026

than reward functions. We believe the simplicity of this method and stability across hyperparameter
choices, as demonstrated in tables[6] [3] makes it a promising candidate for real-world embodiments.

A.5 IMPLEMENTATION DETAILS

Here, we discuss the implementation details of all the methods and experiments described in the
paper.

A.5.1 OFFLINE ZERO-SHOT RL

We use the same architecture for forward and policy networks as presented in (Touati et al., 2023)
for all representation learning methods.

The forward network F'(s,a,z) has two parallel embedding layers that take in (s,a) and (s, 2)
independently using feedforward networks with a single hidden layer of 1024 units, projecting to
512 dimensions. Their outputs are concatenated and passed into two separate feedforward heads
(each with one hidden layer of 1024 units), which output a d-dimensional vector.

The policy network 7(s, z) has two parallel embedding layers that take inputs s and (s, z) and
embeds them similar to the forward network (one hidden layer of 1024 units mapping to 512
dimensions). The outputs of the embedding layers are concatenated, and then passed into another
single-hidden-layer feedforward network (1024 units) to produce an action vector of dimension d 4.
A final Tanh activation ensures that actions lie in the space [—1, 1]%4.

For results in table

For RLDP, we sweep over representation dimensions (64, 128, 256, 512, 1024) and report the results
for the dimension that achieves the highest average performance across all tasks within each
environment.

For FB, PSM, HILP, and Laplacian, we use the representation dimensions previously identified as
optimal for each respective method.

For results in table [7:

For all methods, the backward representation network B(s) is implemented as a feedforward
neural network with two hidden layers of 512 units each, mapping a state s to a 512-dimensional
embedding.

A.5.2 ONLINE ZERO-SHOT RL

Results for oracle baseline, FB-CPR, are taken from |Tirinzoni et al.| (2025), where the model was
trained for 30M environment steps and averaged across five seeds.

For the offline representation learning methods (HILP, PSM, FB, RLDP), the backward
representation network B(s) follows the architecture of the backward network of FB-CPR. It is
a 2-layer MLP with 256 hidden dimension that maps a state s to a 256-dimensional embedding. We
train this for 2 million timesteps on a dataset provided by |Tirinzoni et al.|(2025), which is generated
by online training an FB-CPR agent for 30 million environment steps and saving the final 5 million
steps. The RLDP representations are trained with encoding horizon 1.

We integrate the learned representation network into an FB-CPR agent to train the forward and
policy networks. This training is performed online for 20 million environment steps where no
updates are performed on the representation network.

A.5.3 Low COVERAGE DATASETS

For all offline representation learning methods (HILP, PSM, FB, RLDP), the backward
representation network B(s) is a feedforward neural network with two hidden layers of 256
dimension that maps a state s to a 512-dimensional embedding. The RLDP representations are
trained with encoding horizon 1.
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The forward network F'(s, a, z) and policy network (s, z) follow the same architecture as FB. We
introduce an additional loss term for training the policy network that resembles TD3+BC (Fujimoto
& Gul 2021)). The policy improvement loss is defined as

Lp(m,) = —)\z/)(s,a,z)Tz + (71'2(3) — a)2 (14)
where
A= ° :
N Z(Sq‘,,aq‘,) Q(s“al)’

Following [Fujimoto & Gu|(2021)), we set o = 2.5

A.6 ZERO-SHOT RL

Algorithm 1 ZERO-SHOT RL: PRETRAINING AND INFERENCE

Require: Offline dataset of trajectories D.
Require: Randomly initialized encoder ¢, successor-measure model 1), actor .
Require: Representation-learning steps Vycpr, total steps V.

1: Part I: Pretraining (offline)

2: for learning stepn =1,2,..., N do

3t if n < Niepr then

4: Sample segment batch 7 = {s{ ;;,ab ;}B, ~D

s hh=d(sh). hiyy = glhi, a?)TW

2
6 La(6.9) = oo [0 - a0

7 Lo(¢) =B v [(s) T (s )]
8: L(¢) — Ed(qﬁ,g) + )\»CT(¢)
0: ¢ —aypVeL(p)

10:  else

11: Sample transitions {(s, a, s’,done)} ~ D

12: Sample z ~ MixUniform {mix random prior + goal-encoded}
13: Policy Evaluation:

14: L. (1) from Equation
15: < — apL,sr (V)

16: Policy update:

17: a~7(s,z)

18: Q=1v(s,a,z) z

19: T T+ arV.Q(s,7(s,2))
20:  endif

21: end for

22:

23: Part II: Inference (reward-based task embedding)

Require: Task specification for the test task (e.g., name, parameters).

24: Set up the task-specific reward function 7 (s) using the environment’s reward routine {e.g.,
via an environment constructor such as MAKEENV }

25: Sample transitions {(sz, a;, sl, W, ~D

26: 2 qu 7 task (5

A.7 ADDITIONAL RESULTS

This section details additional experiments we conducted to evaluate RLDP against baseline
methods.
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A.7.1 OFFLINE ZERO-SHOT RL

In table[7] we provide results for RLDP representations and baseline methods trained on the same
representation dimensionality (d = 512). We have also included results for a reference baseline of a
randomly initialized encoder that is frozen without any training.

Across all methods, using learned representations (FB, PSM, RLDP) outperforms random features,
confirming that representation learning is crucial for zero-shot RL. Among learned methods, PSM

and RLDP generally achieve the strongest performance.

Task Random Features FB PSM RLDP
= Stand 392.40458.03 918.291-28.83 899.541+-30.73 890.40+27.33
é Run 75.39420.97 381.314+17.32 450.571+-28.95 334.264-49.69
g Walk 193.844-112.98 779.29463.60 875.611+33.44 779.77+137.16

Flip 132.02467.85 977.081+2.76 621.361+75.62 492.94422.79
<= Run 31.82436.88 129.39437.63 181.85+54.17 157.12+£29.92
S Run Backward 60.08412.82 142.41436.77 158.64+18.56 170.52+15.30
= Walk 147.524155.66 604.541-80.51 576.984+209.45 592.924-104.66
© Walk Backward 272.77442.40 630.404144.23 817.92198.86 821.51+50.62
B Stand 240.01466.06 732.594+101.33 708.031+34.99 794.941+43.25
5 Run 114.19430.22 425.15+£52.02 404.324+23.26 457.41+74.70
'cl: Walk 137.65447.57 492.91+17.55 523.94+52.13 465.401+-185.29
5 Jump 190.62446.63 567.271+48.90 549.57+15.86 733.321+55.30
2 Top Left 258.59+183.56 943.85+-17.31 924.20+-10.64 890.41+60.79
E Top Right 216.30+189.05 550.844-282.41 666.001+-133.15 795.47+21.10
= Bottom Left 193.32490.37 672.28+153.06 800.93+15.62 805.17+20.44
I~ Bottom Right 64.08+72.21 272.97+274.99 123.44+138.82 193.38+167.63

Table 7: Comparison (over 4 seeds) of zero-shot RL performance between using an untrained initialized
encoder, FB, PSM, and RLDP with representation size d = 512. Bold indicates the best mean and any method
whose mean plus one standard deviation overlaps with the best mean. Random features use representations
from a randomly initialized encoder.

In table [8] we examine the impact of directly learning Universal Successor Features on top of
RLDP representations. Typically for offline zero-shot RL on RLDP representations, we use loss
equation [T0[to update the critic network. To train USFAs, we use the following loss:

EUSFA (¢) = Es,a,s’~p,s+~p[(¢(s7 a, Z) - [¢(8) + W/_J(Slv 7Tz(sl)7 Z)])Z] (15)

We find that across a wide range of control tasks, training a USFA module on top of RLDP’s state
representations does not consistently outperform directly using successor measure loss [[0]for policy
evaluation. Critic learned using successor measure loss achieves overlapping-best performance on
most Walker, Quadruped, and Pointmass tasks, while USFAs occasionally match or slightly exceed
on certain Cheetah behaviors. Overall, these results indicate that RLDP’s learned representations
capture most of the structure required for effective zero-shot generalization using either loss. The
critic trained with successor measure loss typically achieves the strongest overall performance.

A.7.2 ONLINE ZERO-SHOT RL

In table[9] we provide the full suite of results on 45 SMPL Humanoid task for all baseline methods,
RLDP, and the oracle method FB-CPR. FB-CPR is an off-policy online unsupervised RL algorithm
that introduces a latent conditional-discriminator in the form of Conditional-Policy Regularization
to output policies close to an unlabeled demonstration dataset M. The results for FB-CPR are as
reported in Tirinzoni et al.| (2025)).

In figure 0] we summarize the results of RLDP representations with respect to baseline methods
across all 45 tasks as reported in table [0 and figure [2J] Positive values indicate tasks where RLDP
achieves higher normalized returns. The median line, interquartile ranges, and interquartile mean
(indicated by the gray diamond shape) across 45 tasks show that RLDP consistently outperforms FB,
PSM, and HILP on average. The distribution widths further suggest that while RLDP yields better
average performance, some tasks remain challenging, indicating room for further improvement in
generalization.
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Task RLDP Learning USFAs on RLDP representations
= Stand 890.40+£27.33 844.13423.55
é Run 334.26+£49.69 293.50+40.40
‘g‘ Walk 779.77+£137.16 660.30+109.15

Flip 492.94+22.79 482.511+57.69
= Run 157.124£29.92 138.30+11.24
g Run Backward 170.52£15.30 174.47+49.41
= Walk 592.92+104.66 650.53+89.34
© | Walk Backward 821.51+50.62 723.10+224.30
3 Stand 794.94+43.25 537.154+206.87
£ Run 457.41+£74.70 370.321+116.61
-§ Walk 465.40+185.29 543.531+57.74
= Jump 733.32+£55.30 536.26+128.89
ﬁ Top Left 890.41£60.79 773.63+49.11
] Top Right 795.47+21.10 702.99+61.25
E Bottom Left 805.17+£20.44 740.06+45.06
N~ Bottom Right 193.38+167.63 133.05+62.88

Table 8: Comparison (over 4 seeds) of zero-shot RL performance when equationis used to train the critic
and when Universal Successor Features are trained on top of the state features. For fair comparison, we set
RLDP representation dimension d = 512 for both methods. Bold indicates the best mean and any method
whose mean plus one standard deviation overlaps with the best mean.
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Figure 9: Comparing RLDP against prior offline representation learning methods using per-task normalized
performance differences (A = RLDP — Baseline).

A.7.3 ADDITIONAL RESULTS ON D4RL
We also test RLDP on D4RL medium-replay datasets, which have broader coverage than the datasets

used in section[5.2] Based on the results as reported in table[T0] we find RLDP to be competitive to
the baselines methods.

A.8 VISUALIZATIONS OF LEARNED SUCCESSOR MEASURES

We used a four room Task FB PSM HILP RLDP

gridworld (as used halfcheetah-medium-replay-v2 ~ 30.71+3.17  31.1454£3.17  33.824220  42.07+1.89

in [Touati & OlllVlSﬂ hopper-medium-replay-v2 27.8443.78 14.66+7.76 27.56415.68 10.2242.34

2021): |Agarwal etal | walker2d-medium-replay-v2 24.9442.13 27.474+4.58 39.02+8.89 34.1546.77
; .

2024)) to plot the Table 10: Normalized returns comparing FB, PSM, HILP, and RLDP on D4RL
successor measures Mmedium-replay datasets. Table shows mean =+ std. For medium-replay datasets, we
learned by RLDP. We find that no method significantly outperforms other methods.

collect a dataset of all transitions and run RLDP with horizon 1 to learn representations ¢, successor
features ¢ and policy m. Note that any policy parameterized by latent z produces a successor
measure parameterized by M™ (s,a,sT) = (s,a,2)T¢(sT). We have plotted the observed
successor measures: M ™ (sq, ag, sT), where we fix sg and aq for a few different z in ﬁgure We
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metric FB-CPR FB PSM HILP RLDP
crawl-0.4-0-d 191.75 £ 43.60 26.06 £ 39.43 38.38 &+ 14.73 52.314+23.15 86.48 + 45.87
crawl-0.4-0-u 101.76 £ 15.90 8.38 +9.01 452 +£7.47 18.59 £ 20.42 25.00 £ 27.32
crawl-0.4-2-d 19.00 + 4.00 3.05 £ 3.65 6.52 £+ 1.27 8.97 +5.62 11.21 +4.72
crawl-0.4-2-u 15.02 £ 6.03 0.79 £ 1.07 0.64 £ 0.82 2.95 £ 1.37 276 £3.73
crawl-0.5-0-d 131.13 £ 64.97 43.27 + 34.66 46.17 + 13.56 52.41 £+ 27.82 55.82 1 18.40
crawl-0.5-0-u 101.92 £ 16.39 4.04 £5.87 4.18 £ 4.83 21.14 + 24.26 20.22 43091
crawl-0.5-2-d 2293 £+ 5.31 4.14 £4.10 5.64 £ 1.79 8.64 +4.21 569 £2.18
crawl-0.5-2-u 15.81 +6.10 0.94 £ 0.99 0.77 £ 0.70 2,67 £1.03 2.95 +3.28
crouch-0 226.28 £ 28.17 55.12 & 47.09 92.70 + 60.86 72.94 £76.25 483 £528
headstand 41.27 +10.20 0.00 £ 0.00 0.00 £ 0.01 0.11 £ 0.16 2.63 +1.99
jump-2 34.88 £ 3.52 29.08 + 3.76 21.21 £+ 11.60 12.25 4+ 14.05 27.89 + 1.66
lieonground-down 193.50 £ 18.89 35.41 £ 26.08 63.87 £ 26.68 69.79 £ 27.02 74.69 £ 30.03
lieonground-up 193.66 + 33.18 20.83 + 12.70 13.92 + 5.54 30.81 4 1.37 54.38 + 31.06
move-ego—-90-2 210.99 £ 6.55 207.47 +9.92 179.67 49.64  196.81 £40.36  178.82 £ 45.10
move-ego—90-4 202.99 £ 9.33 161.84 + 12.65 102.35 £35.15  102.98 +4047  99.96 4 32.58
move-ego-0-0 274.68 £ 1.48 261.63 £ 1.76 264.32 £ 1.95 267.57 £ 0.95 178.92 £ 92.57
move-ego-0-2 260.93 £+ 5.21 87.46 & 21.99 25275 £15.03  260.35 £ 2.58 250.92 £+ 6.75
move-ego-0-4 235.44 £+ 29.42 133.47 £ 33.86 234.14 + 8.81 233.02 + 1475 201.90 + 38.55
move-ego-180-2 227.34 £ 27.01 232.14 £ 20.35 141.56 +32.41  139.12 £83.74  222.83 £ 28.29
move-ego-180-4 205.54 £ 14.40 109.04 + 27.89 71.42 £+ 19.98 53.37 +25.65 81.92 £ 29.90
move-ego-90-2 210.99 £ 6.55 217.16 £ 26.35 214.64 £37.08 17896 +45.28  221.43 + 33.90
move-ego-90-4 202.99 £+ 9.33 154.20 £ 41.82 104.73 £20.95  102.51 £63.37  160.31 + 37.02

move-ego-low—90-2 221.37 £35.35 75.28 £ 29.80 76.96 £ 49.83 126.80 + 80.76 30.15 £ 26.04
move-ego-low-0-0 215.61 £ 27.63 168.33 £5.95 150.34 £ 62.07  188.29 + 49.41 133.68 £ 52.10
move-ego-low-0-2 207.27 £ 58.01 82.66 £ 20.55 73.60 £ 49.86 104.77 + 23.00 66.84 £ 44.92
move-ego-low-180-2 65.20 £ 32.64 52.38 £ 27.67 46.28 +22.28 43.90 £ 39.86 28.71 £ 12.52
move-ego-low-90-2 222.81 £21.94 100.75 + 39.27 53.20 £21.26 85.54 £ 82.04 63.19 £ 42.99

raisearms-h-h 199.88 +£42.03  192.49 +101.91 94.64 £+ 94.26 17141 £71.90  217.09 + 34.35
raisearms-h-1 167.98 + 82.03 226.33 £ 35.55 90.57 £ 68.37 82.42 +43.38 201.33 £ 87.51
raisearms-h-m 104.26 + 81.69 100.49 + 76.12 61.82 £ 20.38 112.16 £76.75  155.36 + 85.85
raisearms-l-h 243.16 + 19.18 255.41 £+ 1.55 128.56 £ 63.06  136.49 +85.25  233.82 £+ 27.26
raisearms-1-1 270.43 £ 0.37 251.82 £9.70 260.48 + 3.52 258.50 + 6.07 39.87 £+ 34.16
raisearms-1-m 97.66 + 81.17 135.05 + 80.31 254.91 + 3.78 91.49 4 46.58 217.42 + 39.30
raisearms-m-h 75.05 £ 69.32 79.25 £ 31.99 41.58 4+ 13.58 126.62 + 80.07  107.70 4= 79.18
raisearms-m-1 134.83 £ 70.28 218.22 + 46.82 17328 £72.83 15521 +£71.93  220.67 & 50.89
raisearms-m-m 87.25 +98.42 179.60 + 74.63 109.47 £ 91.62 82.36 + 38.59 211.30 + 48.89
rotate-x—5-0.8 229 +1.78 1.69 + 2.32 1.49 + 143 0.29 +0.18 2.44 £ 2.02

rotate-x-5-0.8 7.42 +5.69 2.55+1.29 0.53 +0.43 0.32 +0.28 6.43 + 3.15

rotate-y—5-0.8 199.08 + 51.78 5.87 £3.63 2.13 £2.17 1.04 £0.11 8.18 + 4.71

rotate-y-5-0.8 217.70 + 43.67 4.86 + 1.44 1.58 £ 0.44 0.89 £0.13 14.03 + 12.12
rotate-z—5-0.8 124.95 + 17.61 0.72 + 0.79 0.42 +0.30 0.31 +£0.23 17.09 £+ 9.10

rotate-z-5-0.8 95.23 + 15.75 1.71 £+ 1.67 0.39 +0.37 0.38 +0.22 0.66 + 0.76

sitonground 199.44 + 22.15 5.88 +4.75 27.39 £+ 22.19 26.12 + 21.69 97.88 + 34.91
split-0.5 232.18 £ 20.26 12.64 £+ 14.48 34.31 £ 32.98 87.22 £5.92 55.50 £ 33.46
split-1 117.67 £ 61.27 6.80 +9.14 6.12 £ 7.17 6.13 £5.72 13.02 + 16.90

Table 9: Comparing (over 4 seeds) FB, PSM, HILP, RLDP performance on SMPL Humanoid. FB-CPR (online
oracle baseline) results are from Tirinzoni et al.|(2025). Bold indicates the best mean across methods.

have fixed sq to the corner state and ag to action: right. We have plotted the policy for visualizing
the policy represent by z.
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(@ (b)

(c) (@)

Figure 10: Visualization of successor measures M ™ (sq, ao, s+) for randomly sampled z (a) and (b); and
goal-conditioned z (c) and (d).
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