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Abstract

General-purpose multilingual vector representations, used in retrieval,
regression, and classification, are traditionally obtained from bidirectional
encoder models. Despite their wide applicability, encoders have been
recently overshadowed by advances in generative decoder-only models.
However, many innovations driving this progress are not inherently tied
to decoders. In this paper, we revisit the development of multilingual
encoders through the lens of these advances, and introduce EuroBERT, a
family of multilingual encoders covering European and widely spoken
global languages. Our models outperform existing alternatives across a
diverse range of tasks, spanning multilingual capabilities, mathematics,
and coding, and natively support sequences of up to 8,192 tokens. We
also examine the design decisions behind EuroBERT, offering insights into
our dataset composition and training pipeline. We publicly release the
EuroBERT models,1 including intermediate training checkpoints, together
with our training framework.

1 Introduction

Many important tasks in Natural Language Processing (NLP), including information re-
trieval, classification, or regression, are built upon general-purpose vector representations.
These representations are traditionally obtained from bidirectional encoder models, which
aggregate information from the left and right contexts of each token (Devlin et al., 2019;
Conneau et al., 2020; He et al., 2023). In contrast, recent advances in generative modeling
have shifted the research community’s attention towards unidirectional architectures (Bai
et al., 2023; Llama Team, 2024; OLMo et al., 2025). Notably, these efforts have identified
several key performance drivers that span architectural advances, data improvements, and
increased scale. Yet, despite no apparent barrier to transferring these insights to bidirectional
architectures, little effort has been devoted towards this objective, forcing practitioners to
depend on outdated models.

∗Equal contribution.
1https://huggingface.co/EuroBERT
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Figure 1: Pareto plots for multilingual tasks (top), showing retrieval performance on MIR-
ACL and sentence classification on XNLI, and for math and code tasks (bottom), featuring
CodeSearchNet and MathShepherd. The shaded regions indicate the Pareto frontiers.

In this paper, we introduce a refreshed recipe for training general-purpose multilingual
encoders, resulting in the EuroBERT family. Drawing inspiration from recent progress in
decoder models, our models feature an updated architecture (§2.1), and are trained on a
5T-token multilingual dataset, covering widely spoken European and global languages,
along with mathematics and code (§2.2). We adopt a masked language modeling objective,
and employ a two-phase training pipeline, adjusting the data distribution in the second
training phase to improve downstream performance (§2.3).

We extensively evaluate the EuroBERT models, comparing with similarly sized alternatives
across a suite of tasks representative of real-world encoder applications (§3). Our models
match or exceed the performance of alternative models, such as XLM-RoBERTa (Conneau
et al., 2020), mGTE-MLM (Zhang et al., 2024) and ModernBERT (Warner et al., 2024), on
multilingual retrieval, classification and regression tasks, and outperform them on code and
mathematics tasks (Figure 1).

In order to provide further insights into the methodologies involved in large-scale encoder
training, we also examine the impact of our design choices through systematic ablations
on several components of our annealing recipe (§4). We explore the choice of masking
ratio, showing that while higher masking ratios benefit retrieval tasks, lower ratios improve
sentence classification. Additionally, we highlight that including data for code and mathe-
matics improves multilingual retrieval, but degrades classification accuracy. Contrary to
expectations, we also observe that only selecting documents with high educational value
degrades performance, which improves decoder LLMs (Penedo et al., 2024), and instead
find that encoders benefit from a broader range of data sources.

Accompanying this work, we release the EuroBERT family, comprising three models with
210M, 610M and 2.1B parameters. To facilitate future research, we also release intermediate
training checkpoints, as well as our training framework.
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2 EuroBERT: A Refreshed Multilingual Encoder

The EuroBERT models incorporate design choices similar to the Llama 3 architec-
ture (Llama Team, 2024) (§2.1). They are trained on a large multilingual corpus, which also
includes code and mathematics (§2.2). Their training pipeline has two stages, pre-training
and annealing, and employs the masked language modeling (MLM) objective (§2.3).

2.1 Architecture

The EuroBERT models are based on a standard dense transformer (Vaswani et al., 2017),
with several architectural changes. Similarly to Llama 2 (Touvron et al., 2023), we remove
all biases. Additionally, we incorporate grouped query attention (Ainslie et al., 2023), swish
gated linear units (Shazeer, 2020), root mean square layer normalization (Zhang & Sennrich,
2019), and rotary position embeddings (Su et al., 2024). However, unlike decoder models,
we do not apply causal masking.2

2.2 Dataset

To train EuroBERT, we construct a multilingual 5T-token corpus — 4.8T tokens for pre-
training and 200B for annealing — which includes 15 languages: English, French, German,
Spanish, Chinese, Italian, Russian, Polish, Portuguese, Japanese, Vietnamese, Dutch, Arabic,
Turkish, and Hindi.3 Following prior work on curriculum learning (Hu et al., 2024), we
adjust the data distribution to emphasize higher-quality datasets during annealing.

Pre-training mixture. We use FineWeb (Penedo et al., 2024) for English, and Cul-
turaX (Nguyen et al., 2024) for multilingual data. We also incorporate EuroLLM parallel
data (Martins et al., 2024), which can improve cross-lingual transfer (Conneau & Lample,
2019; Reid & Artetxe, 2022; 2023), by concatenating to-English and from-English translation
pairs, separated by a special <|parallel_sep|> token. Finally, inspired by the benefits of
training on code for decoder models (Aryabumi et al., 2024), we add 38 programming
languages from The Stack v2 (Lozhkov et al., 2024), and Proof-Pile-2 (Azerbayev et al., 2024)
for mathematics, both of which we find improve multilingual retrieval (§4).

Annealing mixture. We classified data not seen during pre-training into four quality
levels according to educational value using the multilingual classifier from Martins et al.
(2024).4 We then kept the documents above the third threshold which, contrary to our
expectations, improved performance on downstream tasks. Additionally, we adjusted the
data distribution based on multiple ablations. Specifically, we decreased English while
proportionally increasing the remaining languages. We also decreased the amount of code
and math while increasing parallel data (§4).5

2.3 Training Recipe

Masked language modeling. We pre-train EuroBERT models with a 50% masking ratio,
following the insights from Wettig et al. (2023), who find that masking 15% and 30% of
tokens is sub-optimal, and that larger models benefit from higher masking ratios. For the
subsequent annealing, however, we lower the masking ratio to 10% based on downstream
evaluations (§4), aligning with the findings from Yang et al. (2023) and Ankner et al. (2024).

Hyperparameters. We employed the Warmup-Stable-Decay (WSD) scheduler (Shen et al.,
2024), with a linear warm-up phase of 2,000 steps, a constant learning rate of 1 × 10−4

2We provide more architecture details in Appendix A.
3These languages were selected to balance European and widely spoken global languages, and

ensure representation across diverse alphabets and language families.
4Similar to Penedo et al. (2024), the classifier groups documents into buckets based on their

educational value, with higher numbers indicating higher quality.
5We provide further details on our pretraining and annealing datasets in Appendix C.
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during pre-training, and a cosine scheduler decaying to 0 during the annealing phase.
During pre-training, we packed sentences to 2,048 tokens and used a Rotary Position
Embedding (RoPE) value of 10,000. In the annealing phase, we increased the RoPE theta
to 250,000 and randomly cropped our training documents to lengths between 12 and
8,192 tokens. We adopted this approach because, due to pre-processing constraints, our
training data had already been segmented into fixed-length documents, making standard
variable-length training infeasible. Therefore, we introduced random cropping of these
fixed-length sequences as an approximation of variable-length training. We found that this
approach outperforms training only on fixed lengths (§4), further highlighting the necessity
for variable length documents during long context training (Gao et al., 2024).

Infrastructure. We trained EuroBERT using 92 MI250X GPUs for EuroBERT-210M, 384
MI250X GPUs for EuroBERT-610M, and 96 MI300A GPUs for EuroBERT-2.1B, for a total of
200k GPU hours. Our training framework incorporates FlashAttention (Dao, 2023), fused
cross-entropy from LigerKernel (Hsu et al., 2024), torch.compile (Ansel et al., 2024), and
hybrid sharding with Fully Sharded Data Parallel (Zhao et al., 2023).

3 Evaluation

3.1 Evaluation Setup

Datasets and tasks. We select a suite of tasks to cover various real-world use cases for
encoders. For multilingual tasks, we evaluate retrieval using MIRACL (Zhang et al., 2023),
MLDR (Chen et al., 2024), WikipediaRetrieval6, and CC-News (de Gibert et al., 2024). We
assess sentence classification with XNLI (Conneau et al., 2018), PAWS-X (Yang et al., 2019),
AmazonReviews (Keung et al., 2020) and MassiveIntent (Keung et al., 2020). Additionally,
we evaluate token classification using the NER task from the XGLUE benchmark (Liang
et al., 2020). We evaluate sequence regression on the WMT quality estimation task (Bojar
et al., 2017; 2018; Barrault et al., 2019; 2020; Akhbardeh et al., 2021; Kocmi et al., 2022), and on
summary evaluation using SeaHorse (Clark et al., 2023). For code-related tasks, we evaluate
retrieval on CodeSearchNet (Husain et al., 2019) and DupStackMath (Hoogeveen et al.,
2015), and classification on CodeDefect (Zhou et al., 2019) and CodeComplexity (Jeon et al.,
2023). Finally, in the mathematical domain, we test retrieval on the MathFormula (Drechsel
et al., 2025) task, and classification on MathShepherd (Wang et al., 2024b).7

Baselines. We compare with the multilingual XLM-RoBERTa (Conneau et al., 2020; Goyal
et al., 2021), mGTE-MLM (Zhang et al., 2024)8 and mDeBERTa-v3 (He et al., 2023). For code
and mathematics, we also compare with the English-only ModernBERT (Warner et al., 2024).

Fine-tuning. For each task, models are trained for 10,000 steps (unless otherwise specified)
on the corresponding training split using a batch size of 32, a 10% warm-up ratio, and a
linear learning rate decay. For small datasets requiring multiple epochs, we apply early
stopping with a patience of one epoch based on validation performance. To account for
model specificities, we fine-tune using 10 logarithmically spaced learning rates (1 × 10−5

to 1 × 10−4), selecting the one that achieves the highest validation metric.9 For sequence
classification, we use the cross-entropy loss during training, while for sequence regression,
we substitute it with mean squared error.10 For token classification tasks, we use the token-
level cross-entropy loss, assigning each sub-token in an entity to the corresponding entity

6https://huggingface.co/datasets/Samoed/WikipediaRetrievalMultilingual
7We detail the evaluation setup for each task in Appendix D.
8Since the EuroBERT models are general-purpose encoders, we evaluate them against the pre-

trained mGTE-MLM variant, which, similarly, was not optimized for retrieval tasks.
9For the baselines, we set additional fine-tuning hyperparameters according to the original paper.

For EuroBERT models, we maintain the values from pre-training and annealing.
10On summarization (SeaHorse), we train for 5,000 steps to reduce computational costs.
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Benchmark
mDeBERTa mGTE XLM-RoBERTa EuroBERT

280M 305M 280M 560M 3.5B 210M 610M 2.1B

Retrieval (nDCG@10)
MIRACL 37.5 6 91.2 2 85.4 4 89.4 3 91.4 2 90.8 2 92.6 2 92.9 1

43.7 5 93.8 2 89.5 4 91.6 3 92.6 3 95.1 1 95.0 1 94.8 1

MLDR 18.3 6 67.8 2 54.6 5 60.8 4 65.9 2 65.4 3 68.6 1 66.1 2
20.0 6 73.2 2 58.7 5 65.2 4 70.0 3 73.4 2 75.8 1 72.9 2

CC-News 18.5 7 71.3 4 61.6 6 72.8 3 80.9 1 67.2 5 75.6 2 75.9 2
15.8 7 71.5 4 60.4 6 72.1 4 80.9 1 69.0 4 76.6 2 76.9 2

Wikipedia 57.6 5 94.1 2 91.0 4 93.1 3 96.3 1 94.4 2 95.9 1 95.8 1
58.9 5 94.6 3 91.7 4 93.6 3 96.7 1 95.6 2 96.6 1 96.6 1

Sequence Classification (Accuracy)
XNLI 79.5 4 75.8 5 74.1 6 81.7 2 83.7 1 76.6 5 81.9 3 84.1 1

82.0 4 78.4 6 76.6 7 84.1 3 86.1 2 79.9 5 84.7 2 86.8 1

PAWS-X 91.9 2 89.8 3 88.9 4 92.4 2 92.9 1 89.9 3 92.2 2 93.0 1
91.9 2 89.8 3 88.9 4 92.4 2 92.9 1 89.9 3 92.2 2 93.0 1

AmazonReviews 62.1 2 61.5 3 61.1 3 63.1 1 63.6 1 61.7 2 62.6 2 63.2 1
63.7 2 62.7 3 62.7 3 64.5 1 64.7 1 63.0 2 64.0 2 64.5 1

MassiveIntent 86.5 3 86.9 2 86.3 3 88.2 1 87.9 1 86.5 3 87.2 2 87.5 2
87.3 2 87.5 2 87.2 2 88.8 1 88.5 1 87.2 2 87.8 2 88.2 2

Token Classification (F1 Score)
NER 96.2 2 95.2 6 95.5 5 96.1 2 96.3 2 94.7 6 95.9 4 95.2 6

96.2 2 95.2 6 95.5 5 96.1 2 96.3 2 94.7 6 95.9 4 95.2 6

Sequence Regression (Spearman)
WMT (Ref-based) 45.7 4 43.9 5 43.0 6 45.3 4 47.7 2 45.2 4 46.0 3 47.3 2

46.5 4 44.0 5 43.1 6 45.6 5 48.5 2 45.1 4 46.5 4 48.5 2

WMT (Ref-free) 42.0 3 38.5 5 36.5 7 40.8 4 44.5 1 41.0 3 41.5 3 38.7 5
41.6 2 37.7 5 34.2 6 39.0 4 44.4 1 40.5 3 41.1 3 38.8 4

SeaHorse 64.2 5 63.0 6 61.1 7 65.5 4 67.5 2 63.8 5 66.0 3 67.5 1
60.3 5 59.2 6 56.9 7 61.4 4 63.3 2 60.1 5 62.7 2 64.0 1

Table 1: Results for multilingual tasks, with scores aggregating all languages shown above
and scores aggregating European languages in italic below. Models are grouped into
statistically significant clusters, with best ranked models highlighted in bold.

label.11 For all retrieval tasks, we finetune for 1,000 steps on MS-MARCO (Bajaj et al., 2016)12

using the InfoNCE loss (Oord et al., 2018) with in-batch negatives and cosine similarity.

Evaluation metrics. We report accuracy for sequence classification, Spearman rank corre-
lation for regression, F1 score for token classification, and nDCG@10 for retrieval tasks. We
also follow Freitag et al. (2023), and group systems into language-specific clusters based on
statistically significant performance gaps at 95% confidence thresholds. We then compute
system-level rankings using a normalized Borda count (Colombo et al., 2022), defined as the
average over the obtained per-language clusters. Note that a first cluster will only exist if a
model significantly outperforms all others on a majority of languages.

3.2 Results

Table 1 presents the aggregated results across multilingual tasks, and Table 2 summarizes
performance on code and mathematics benchmarks.13

11At inference time, the final label of an entity is determined by majority vote over the sub-tokens.
12Since many retrieval datasets lack dedicated training splits, we use MS-MARCO, an English-only

dataset. This choice also allows us to assess cross-lingual generalization.
13We provide per-language results in Appendix F.
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Benchmark
ModernBERT mDeBERTa mGTE XLM-RoBERTa EuroBERT
150M 395M 280M 305M 280M 560M 3.5B 210M 610M 2.1B

Code Retrieval (nDCG@10)
CodeSearchNet 53.9 5 65.8 3 2.8 34.0 7 23.0 8 40.8 6 54.1 5 58.9 4 69.9 2 72.6 1
DupStackMath 39.7 4 45.5 2 10.2 7 37.5 4 29.3 6 36.9 5 42.9 3 41.7 3 46.0 2 48.3 1

Code Classification (Accuracy)
CodeComplexity 86.1 3 88.6 3 73.9 5 74.5 5 74.1 5 83.6 4 84.3 4 91.9 2 94.2 1 95.2 1
CodeDefect 65.8 3 67.0 2 64.7 3 63.5 4 61.9 4 54.3 5 65.8 3 69.5 1 69.0 1 67.7 2

Math Retrieval (nDCG@10)
MathFormula 89.6 5 91.9 2 85.2 7 83.4 8 83.1 8 81.4 89.1 6 91.5 3 92.6 1 91.0 4

Math Classification (Accuracy)
MathShepherd 77.7 4 83.6 2 75.1 5 77.2 4 71.9 6 67.6 7 82.5 3 84.0 2 87.3 1 86.8 1

Table 2: Results for code and mathematical tasks. Models are grouped into statistically
significant clusters, with best ranked models highlighted in bold.
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XLM-RoBERTa

Figure 2: Difference in F1 Score between EuroBERT and XLM-RoBERTa by tokenizer fertil-
ity (left plot) and fertility distribution for both tokenizers (right plot) on the NER dataset.

The EuroBERT family delivers strong performance across diverse domains and tasks.
Our largest model, EuroBERT-2.1B, ranks first on 10 out of 18 tasks, competing closely with
the larger XLM-RoBERTa-3.5B. EuroBERT-610M is also on par with XLM-RoBERTa-3.5B
across several multilingual tasks while being five times smaller, and outperforms it on code
and mathematics benchmarks. Likewise, EuroBERT-210M matches XLM-RoBERTa-560M
performance while having less than half the parameters, and consistently outperforms other
models of similar size, showing especially strong results on European languages.

EuroBERT is effective at document ranking. Across domains, EuroBERT consistently
ranks high for retrieval tasks. Notably, the 210M and 610M models outperform all alterna-
tives of comparable sizes, and are competitive with the larger XLM-RoBERTa-3.5B.14

EuroBERT models are on par with similarly sized models for sequence classification.
On sequence classification, no model significantly outperforms all others. During the
development of EuroBERT, we found that several design decisions lead to a trade-off
between retrieval and classification capabilities (§4). We highlight, however, that EuroBERT-
2.1B is still among the highest ranking systems, and that the smaller models in the family
are competitive with models of comparable size.

14For retrieval, increasing model size did not always lead to better results. Further analysis, in
Appendix E, revealed that EuroBERT-2.1B benefits significantly from a more thorough grid search.
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Figure 3: Results by length of the positive documents for retrieval (MLDR) and input
documents for summarization (SeaHorse).

There is room for improvement on token classification. On the NER task, EuroBERT
lags behind XLM-RoBERTa. However, we observed that models achieve comparable F1
scores when splitting entities into a similar number of tokens, as shown in Figure 2. In
contrast, models perform significantly worse when segmenting entities into a larger number
of tokens. We posit that token classification tasks may benefit from larger vocabularies, with
lower fertility, such as the one used in the XLM-RoBERTa family. We also note, however,
that increasing the vocabulary size also increases the number of parameters, particularly for
smaller models.15

EuroBERT can function as an evaluation metric. EuroBERT models match or exceed
the performance of similarly sized systems in reference-based translation evaluation. For
reference-free evaluation, while EuroBERT-2.1B lags behind the larger XLM-RoBERTa, the
210M and 610M variants are competitive with other baselines. In the future, we will explore
other training signals to further enhance EuroBERT’s cross-lingual capabilities. For summary
evaluation, EuroBERT models consistently outperform similarly sized alternatives.

EuroBERT maintains performance at longer context lengths. Figure 3 compares the long
context performance of EuroBERT and XLM-RoBERTa. On both retrieval and summary
evaluation, EuroBERT maintains performance at longer contexts, whereas XLM-RoBERTa
suffers notable degradation.

The EuroBERT family performs strongly in tasks related to code and mathematics. On
these tasks in the code and math domain, all EuroBERT models consistently surpass other
systems. Notably, EuroBERT-210M reflects most of the performance of the larger models in
the family, and ranks above all baselines, highlighting its capabilities at a smaller scale.

4 Training Recipe Analysis

We measure the impact of various design decisions made during the development of
EuroBERT with extensive ablations. Following Blakeney et al. (2024) and Llama Team (2024),
we perform multiple annealing runs on 40B tokens, each varying a different component of
our recipe, and measure the performance on the XNLI and MIRACL validation sets, the
former representing multilingual classification and the latter multilingual retrieval.16

15For example, doubling the vocabulary size of EuroBERT-210M would add 100M parameters to
the model embeddings.

16We follow the procedure from §3, but instead evaluate on the validation splits considering only
European languages.
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Balancing the language distribution enhances performance. The left-most plot in Figure 4
reports retrieval and classification performance as the proportion of English is reduced
and re-distributed between other languages. We observe that a more balanced distribution
improves overall results. However, when the language distribution becomes too close to
uniform, there is a degradation in performance.

Including math and code improves multilingual retrieval, but degrades multilingual clas-
sification. The second and third plots in Figure 4 show MIRACL performance dropping
and XNLI accuracy rising as the quantity of math and code data decreases. In future work,
we will investigate how to better balance downstream task performance during pre-training.

Increasing parallel data improves multilingual classification and retrieval. The forth
plot in Figure 4 presents XNLI and MIRACL performance when increasing parallel data.
In line with recent work showing the benefits of pre-training with parallel data (Anil et al.,
2023; Briakou et al., 2023; Alves et al., 2024), we find it improves both benchmarks.

Adding instruction fine-tuning data degrades model performance. The right-most plot
in Figure 4 analyses the impact of adding instructions during annealing, which can improve
performance for decoder language models (Wei et al., 2022; Chung et al., 2024). In contrast
to decoders, it leads to worse performance when training an encoder model.

Varying sentence length improves performance. The first plot in Figure 5 examines
the impact of variable sentence lengths during annealing. Compared to the fixed packed
sentence lengths employed in pretraining, variable sentence lengths significantly boosts
XNLI and moderately MIRACL performance.17 This improvement remains stable, without
degradation when the maximum context length is extended to 8,192 tokens.

17We hypothesize this gap stems from the prevalence of shorter sequences in the XNLI dataset.
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A reduced masking ratio during annealing enhances classification accuracy. Similarly
to previous research advocating a lower masking ratio in later training (Yang et al., 2023;
Ankner et al., 2024), we also find that reducing it to 10% during the annealing phase
improves EuroBERT’s accuracy on XNLI, though it leads to a decline in MIRACL scores.

Filtering data based on educational value can degrade results. Contrary to initial expec-
tations, using the highest quality data bucket during annealing does not result in better
performance on XNLI and MIRACL. Instead, as illustrated in the right-most plot of Figure 5,
mixing the buckets with quality levels 3 and 4 leads to the best overall results. Curiously,
inspecting the evaluation splits of these datasets revealed that our quality filter would
discard nearly all examples in XNLI, and many in MIRACL, as shown in Figure 6. This
result highlights a potential domain mismatch, wherein our training data deviates from the
distribution of downstream tasks. Indeed, while educational value fits assistant-like tasks
typically delegated to LLMs, a broader coverage of textual data, reflected in mixing both
quality buckets, may be more inline with general-purpose vector representations. In future
work, we would like to explore quality filters that are better tailored to encoders.

Final annealing configuration. The previous results revealed several design choices that
trade off classification and retrieval performance. In the final data mix, we aimed to balance
these two tasks. Based on the previous analysis, we created our final annealing dataset by
selecting data above the third threshold. We reduced the proportion of English to 26% while
proportionally increasing the share of the remaining languages. We allocated 6% and 4% of
the data mix to math and code, respectively. Additionally, we increased the proportion of
parallel data to 6%, and removed instructions. We finally lowered the masking ratio to 10%
and performed annealing with random sentence lengths of up to 8,192 tokens.

5 Related Work

Encoder models have shown strong performance in non-generative tasks, such as classifica-
tion and retrieval (Devlin et al., 2019; Liu et al., 2019; He et al., 2023; Acheampong et al., 2021;
Ma et al., 2019; Karpukhin et al., 2020; Wang et al., 2024a). Variants of these models have
also extended support to multiple languages and cross-lingual tasks (Conneau et al., 2020).
However, scaling to many languages introduces the “curse of multilinguality” (Conneau
et al., 2020; Chang et al., 2024), where interference across languages degrades performance.
Notably, increasing model capacity has been shown to mitigate this effect (Conneau et al.,
2020), motivating our focus on scale.

Encoders are typically trained with masked language modeling (MLM) (Devlin et al., 2019).
While alternatives like replaced token detection (He et al., 2023) exist, we adopt the MLM
objective because initial evaluations of existing models showed more balanced results across
tasks. Building upon the effectiveness of higher masking ratios (Wettig et al., 2023), we mask
50% of the training tokens during pre-training. Prior work has also shown the benefits of
decreasing the masking ratio in later phases of training (Yang et al., 2023; Ankner et al., 2024),
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we also lower our masking ratio to 10% during annealing. Interestingly, we demonstrate
that this choice improves classification accuracy, but reduces retrieval quality.

Recent concurrent work, such as ModernBERT (Warner et al., 2024) and mGTE (Zhang
et al., 2024), also revisits encoders in light of advances in decoder models. Similar to our
approach, they incorporate grouped query attention (Ainslie et al., 2023), rotary positional
embeddings (Su et al., 2024), gated linear units (Shazeer, 2020), root mean square layer
normalization (Zhang & Sennrich, 2019), and support for longer context windows. However,
we additionally draw inspiration from Llama Team (2024); Yang et al. (2024) by including
code and mathematical data during pre-training, which we show improves retrieval quality.

6 Conclusion

We propose a recipe for training general-purpose multilingual encoders, creating the Eu-
roBERT family. We incorporate recent architectural advances from decoder models, and
train on a multilingual dataset containing European and globally spoken languages, to-
gether with code and mathematics. Our models outperform existing alternatives on a
comprehensive suite of tasks covering multilingual capabilities, mathematics and code.
We also extensively analyze the design decisions behind EuroBERT’s dataset and training
pipeline. Alongside this paper, we release all models in the EuroBERT family, including
intermediate training checkpoints, and our training framework to facilitate future research.
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are the best systems? new perspectives on nlp benchmarking. In Ad-
vances in Neural Information Processing Systems, volume 35. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
ac4920f4085b5662133dd751493946a6-Paper-Conference.pdf.

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretrain-
ing. In Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper files/paper/2019/
file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
URL https://aclanthology.org/D18-1269/.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov. Unsupervised cross-lingual representation learning at scale. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, Online, July 2020.
Association for Computational Linguistics. URL https://aclanthology.org/2020.acl-
main.747/.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
In The Twelfth International Conference on Learning Representations, 2023. URL https://
arxiv.org/abs/2307.08691.

13

https://aclanthology.org/2023.acl-long.524/
https://aclanthology.org/2024.emnlp-main.236/
https://aclanthology.org/2024.findings-acl.137/
https://jmlr.org/papers/v25/23-0870.html
https://aclanthology.org/2023.emnlp-main.584
https://aclanthology.org/2023.emnlp-main.584
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac4920f4085b5662133dd751493946a6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac4920f4085b5662133dd751493946a6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://aclanthology.org/D18-1269/
https://aclanthology.org/2020.acl-main.747/
https://aclanthology.org/2020.acl-main.747/
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691


Published as a conference paper at COLM 2025

Ona de Gibert, Graeme Nail, Nikolay Arefyev, Marta Bañón, Jelmer van der Linde, Shaox-
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A EuroBERT Model Architecture

Table 3 reports the architectural details of the EuroBERT model family.

Model Size 210M 610M 2.1B

Layers 12 26 32
Embedding Dimension 768 1,152 2,304
FFN Dimension 3,072 4,096 6,144
Attention Heads 12 18 18
Key/Value Heads 12 6 6
Layer Normalization RMSNorm
RMSNorm ϵ 1 × 10−5

Activation Function SwiGLU
Vocabulary Size 128,000
Positional Embeddings RoPE
RoPE θ 250,000
Tokenizer LLaMA 3

Table 3: Summary of architectural hyperparameters for EuroBERT models of different sizes.

B Training Details

We trained the EuroBERT family utilizing 92 MI250X GPUs for EuroBERT-210M over 15k
hours, 384 MI250X GPUs for EuroBERT-610M over 92k hours, and 96 MI300A GPUs for
EuroBERT-2.1B over 106k hours, hyperparameter selections are detailed in Table 4. We find
this training recipe highly stable, with no loss spikes or need for intervention to address
model training divergence (Figure 7).
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Figure 7: Pre-training Loss for all EuroBERT models on a logarithmic scale.
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Parameter 210M 610M 2.1B

Pre-training
LR 1e-4
LR Scheduler WSD
Warmup Steps 2,000
Context Length 2,048
Weight Initialisation N (µ = 0, σ2 = 0.2)

Annealing
LR 1e-4 to 0
LR Scheduler Cosine
Context Length 8,192

Optimizer
Optimizer AdamW
Beta1 0.9
Beta2 0.95
Epsilon (eps) 1e-5
Weight Decay 0.1
Clip Grad Norm 1.0

Training Setup
Per-GPU Batch Size 24 12 10
Gradient Accumulation Steps 1 1 5
GPUs 192 384 96
Tokens/Step 9,437,184 9,437,184 9,830,400

Table 4: Training hyperparameters for EuroBERT models (210M, 610M, 2.1B). The optimizer
and Tokens/Step remain consistent across both pre-training and annealing phases.
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C Data Mix

Table 5 details the data sources used throughout training, as well as the number of tokens
used from each of the data source during pre-training. Table 6 specifies the different
annealing mixes used for ablations.

Source Subset Tokens (M) Mix (%) Source Subset Tokens (M) Mix (%)

FineWeb English 2, 002, 327 41.34 The-Stack v2 JavaScript 58, 440 1.21
CulturaX French 295, 113 6.09 The-Stack v2 PHP 25, 620 0.53
CulturaX German 291, 514 6.02 The-Stack v2 C# 24, 842 0.51
CulturaX Spanish 290, 489 6.00 The-Stack v2 Python 21, 521 0.44
CulturaX Chinese 238, 467 4.92 The-Stack v2 Java 20, 950 0.43
CulturaX Italian 120, 128 2.48 The-Stack v2 Go 14, 766 0.30
CulturaX Russian 116, 797 2.41 The-Stack v2 TypeScript 11, 307 0.23
CulturaX Portuguese 112, 321 2.32 The-Stack v2 HTML 7, 962 0.16
CulturaX Japanese 112, 242 2.32 The-Stack v2 Lua 7, 733 0.16
CulturaX Polish 111, 659 2.31 The-Stack v2 Ruby 5, 524 0.11
CulturaX Turkish 53, 126 1.10 The-Stack v2 Vue 5, 411 0.11
CulturaX Arabic 52, 413 1.08 The-Stack v2 R 5, 287 0.11
CulturaX Vietnamese 50, 661 1.05 The-Stack v2 Shell 4, 793 0.10
CulturaX Dutch 50, 646 1.05 The-Stack v2 Swift 3, 766 0.08
CulturaX Hindi 25, 544 0.53 The-Stack v2 reStructuredText 3, 761 0.08
EuroLLM Parallel es ↔ en 50, 613 1.05 The-Stack v2 JSON 3, 586 0.07
EuroLLM Parallel fr ↔ en 44, 891 0.93 The-Stack v2 Rust 3, 152 0.07
EuroLLM Parallel de ↔ en 30, 541 0.63 The-Stack v2 YAML 2, 716 0.06
EuroLLM Parallel it ↔ en 18, 702 0.39 The-Stack v2 Dart 2, 678 0.06
EuroLLM Parallel ru ↔ en 13, 808 0.29 The-Stack v2 RMarkdown 2, 058 0.04
EuroLLM Parallel nl ↔ en 12, 666 0.26 The-Stack v2 HCL 1, 423 0.03
EuroLLM Parallel pl ↔ en 7, 280 0.15 The-Stack v2 PowerShell 1, 027 0.02
EuroLLM Parallel ar ↔ en 6, 414 0.13 The-Stack v2 VBA 1, 027 0.02
EuroLLM Parallel zh ↔ en 6, 206 0.13 The-Stack v2 AsciiDoc 970 0.02
EuroLLM Parallel cs ↔ en 5, 458 0.11 The-Stack v2 Groovy 540 0.01
EuroLLM Parallel hu ↔ en 4, 599 0.09 The-Stack v2 CUDA 406 0.01
EuroLLM Parallel vi ↔ en 3, 395 0.07 The-Stack v2 Dockerfile 281 0.01
EuroLLM Parallel tr ↔ en 2, 975 0.06 The-Stack v2 Cython 103 0.01
EuroLLM Parallel ja ↔ en 2, 687 0.06 The-Stack v2 COBOL 96 0.01
EuroLLM Parallel hi ↔ en 1, 136 0.02 The-Stack v2 GraphQL 83 0.01
Proof-pile-2 Arxiv 121, 503 2.51 The-Stack v2 HTTP 82 0.01
Proof-pile-2 Open-Web-Math 54, 168 1.12 The-Stack v2 ABAP 71 0.01
Proof-pile-2 Algebraic-stack 35, 985 0.74 The-Stack v2 RDoc 16 0.01
The-Stack v2 C++ 120, 085 2.48 The-Stack v2 Metal 8 0.01
The-Stack v2 SQL 75, 348 1.56 The-Stack v2 AppleScript 7 0.01
The-Stack v2 C 59, 404 1.23 Total 4, 843, 357 100

Table 5: Pre-training data, with a total of 4.8 trillion tokens (as measured by EuroBERT’s
tokenizer). We report the list of all dataset names and subsets used, including the number
of tokens selected and their proportion in the final data mix.

Mix en fr de nl hi it ja pl pt ru es ar zh tr Code Math Parallel IFT

Reference 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 8.7 8.2 5.2 1.2

English 26% 26.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.0 4.0 6.0 4.0 4.0 4.0 5.0 1.0
English 17% 17.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 5.0 6.0 5.0 4.0 4.0 5.0 1.0

Math 4% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 8.7 4.0 5.2 1.2
Math 2% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 8.7 2.0 5.2 1.2

Code 8% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 6.0 8.2 5.2 1.2
Code 4% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 4.0 8.2 5.2 1.2
Code 2% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 2.0 8.2 5.2 1.2

Parallel 8% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 8.7 8.2 8.0 1.2

IFT 0% 46.3 5.8 5.7 1.0 0.3 1.5 0.8 1.0 1.4 1.0 5.7 0.4 4.7 1.0 8.7 8.2 5.2 0.0

Table 6: Data mix employed in the ablation study measuring the importance of different
data subsets in the EuroBERT annealing phase.
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D Details of Evaluation Datasets

This appendix offers additional details on the datasets used for evaluation. Table 7 presents
the language coverage of all evaluation datasets, and below are additional specifications on
the evaluated tasks.

European Languages Extra-European Languages Code Math
Task en de es fr it nl pl pt ar hi ja ru tr vi zh

Information Retrieval

MIRACL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MLDR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wikipedia ✓ ✓ ✓ ✓ ✓ ✓
CC-News ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CodeSearchNet ✓ ✓
DupStackMath ✓ ✓
MathFormula ✓ ✓

Sequence Classification

XNLI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PAWS-X ✓ ✓ ✓ ✓
AmazonReviews ✓ ✓ ✓ ✓ ✓ ✓
MassiveIntent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CodeDefect ✓ ✓
CodeComplexity ✓ ✓
MathShepherd ✓ ✓

Sequence Regression

WMT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SeaHorse ✓ ✓ ✓ ✓ ✓

Token Classification

NER ✓ ✓ ✓ ✓

Table 7: Language coverage across evaluation datasets.

Retrieval datasets:

• MS-MARCO (Bajaj et al., 2016) — English-only retrieval dataset used for fine-tuning,
where each anchor-positive pair includes a mined hard negative, forming a triplet
structure.

• MIRACL (Zhang et al., 2023) — Multilingual retrieval dataset. We use the semi-
supervised version with labeled positive pairs provided by SentenceTransformers18

as the primary data source. Anchors serve as queries, and the corpus consists of all
positive documents in the dataset. Since only a single data split is available, we create
validation and test sets by partitioning 50% of the original split for each, using queries
as the split key to ensure no data leakage.

• MLDR (Chen et al., 2024) — Long-context multilingual retrieval dataset. As with
MIRACL, we use the triplet version provided by SentenceTransformers and apply the
same validation-test split strategy.

• Wikipedia19 — Multilingual information retrieval dataset. Since only a single data split
is available, we partition 50% of the queries into validation and test sets.

• CC-News (de Gibert et al., 2024) — Highly multilingual retrieval dataset. As with
MIRACL, we use the SentenceTransformers dataset version as the primary data source
and apply the same test-validation split method.

• CodeSearchNet (Husain et al., 2019) — Code retrieval dataset with comment-code
query-positive pairs (SentenceTransformers version), processed similarly to the previous
datasets.

18https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-
6644d7a3673a511914aa7552

19https://huggingface.co/datasets/Samoed/WikipediaRetrievalMultilingual
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• DupStackMath (Hoogeveen et al., 2015) — Code retrieval dataset with queries, a corpus,
and relevant documents, processed the same way as the above datasets.

• MathFormula (Drechsel et al., 2025) — Mathematical retrieval dataset consisting of
pairs of equivalent formulas. The original dataset contains formula pairs labeled as true
or false based on their equivalence, spanning 71 well-known mathematical formulas.
To construct the retrieval dataset, we extract only equivalent formula pairs, retaining
positive instances. Due to the dataset’s large size, we sample 100 positive pairs per
formula type for both validation and test sets. The final dataset is processed following
the same methodology as other pair-based datasets.

Sequence classification datasets:

• XNLI (Conneau et al., 2018) — Natural language inference task extending
MNLI (Williams et al., 2018) to non-English languages, consisting in classifying sentence
pairs into entailment, contradiction, or neutral.

• PAWS-X (Yang et al., 2019) — Paraphrase identification task aimed at determining
whether two sentences convey the same meaning. Fine-tuning is performed cross-
lingually, with training on the English subset and evaluation across all available lan-
guages.

• AmazonReviews (Keung et al., 2020) — Sentiment analysis task consisting in estimating
the satisfaction level of multilingual Amazon product reviews on a 1-to-5 scale. Fine-
tuning is performed on all available languages.

• MassiveIntent (Keung et al., 2020) — Multilingual classification task consisting in
assigning sentences to one of 60 topic categories. Fine-tuning is performed on all
available languages.

• CodeDefect (Zhou et al., 2019) — Binary classification task aimed at identifying whether
a given code snippet contains a defect.

• CodeComplexity (Jeon et al., 2023) — Computational analysis task consisting in estimat-
ing the order of complexity of a code-formulated computer science problem.

• MathShepherd (Wang et al., 2024b) — Binary classification task aimed at determining
whether a step-by-step math rationale is correct given a problem prompt. We limited
the dataset to rationales with 3 steps to mitigate the class imbalance observed in longer
rationales, where incorrect solutions become more frequent. As the dataset lacks a
validation split, we allocate half of the test set for validation.

Sequence regression datasets:

• WMT (Bojar et al., 2017; 2018; Barrault et al., 2019; 2020; Akhbardeh et al., 2021; Kocmi
et al., 2022) — Regression task consisting in estimating translation quality given a source
sentence, and possibly a reference translation. As the original test set covers only three
language pairs, we construct validation and test sets by sampling 5% of the training set
for each, ensuring broader language coverage in evaluation. We report results under
both the reference-free and reference-based evaluation settings.

• SeaHorse (Clark et al., 2023) — Multilingual summarization evaluation task, where each
text-summary pair is annotated across 6 binary evaluation dimensions. The final score
is obtained by averaging these labels, yielding a continuous value between 0 and 1. To
avoid penalizing models with limited context lengths, the summary is placed first in the
input, followed by the main text, ensuring the model can attend to the full summary.

Token classification datasets:

• NER (Liang et al., 2020) — Named entity recognition task from the XGLUE bench-
mark, combining subsets of CoNLL2002 (Tjong Kim Sang, 2002) and CoNLL2003 (Tjong
Kim Sang & De Meulder, 2003), adapted for cross-lingual evaluation with English-only
training. It spans four languages (English, German, Spanish, and Dutch) and targets
four entity types (Person, Location, Organization, and Miscellaneous).
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E Results on larger hyper-parameter search

In this appendix, we investigate why the largest EuroBERT model does not significantly
outperform its 610M counterpart on retrieval tasks. We hypothesize the larger model may
benefit from a more comprehensive hyper-parameter search. To test this hypothesis, we
perform a more extensive grid search for fine-tuning on the MS-MARCO dataset across
the EuroBERT family. Rather than varying only the learning rate with fixed optimization
settings, we systematically explore a broader set of hyperparameters: Adam’s β2 (0.95
[default], 0.98, 0.999), Adam’s ϵ (10−5 [default], 10−8), and the number of training steps
(1,000 [default], 2,000).

Default Extensive

91

92

93

MIRACL

EuroBERT-210M EuroBERT-610M EuroBERT-2.1B

Default Extensive

66

68

70

MLDR

Default Extensive

95

96

Wikipedia

Default Extensive

70

75

CC-News

Figure 8: Retrieval performance of EuroBERT models under the default fine-tuning config-
uration (Default) compared to the more extensive hyperparameter grid search (Extensive).
Results are reported as average nDCG@10 across supported languages.

Figure 8 demonstrates that, while all models benefit from a denser hyperparameter grid
search, the largest EuroBERT model exhibits the most substantial improvements, particularly
on the MIRACL and MLDR datasets. Additionally, as shown in Table 8, increasing the
number of training steps from 1,000 to 2,000 consistently enhances performance across
all model sizes. Also, we observe that models generally benefit form increasing β2 and
reducing the ϵ and learning rate.
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MIRACL

Learning Rate Adam β2 Adam ϵ Steps

Model Default Extensive Default Extensive Default Extensive Default Extensive

EuroBERT-210M 4.6e-05 2.8e-05 0.95 0.98 1e-05 1e-05 1,000 2,000
EuroBERT-610M 3.6e-05 2.8e-05 0.95 0.98 1e-05 1e-08 1,000 1,000
EuroBERT-2.1B 3.6e-05 1.7e-05 0.95 0.98 1e-05 1e-08 1,000 2,000

MLDR

Learning Rate Adam β2 Adam ϵ Steps

Model Default Extensive Default Extensive Default Extensive Default Extensive

EuroBERT-210M 2.8e-05 2.8e-05 0.95 0.98 1e-05 1e-05 1,000 2,000
EuroBERT-610M 2.2e-05 2.8e-05 0.95 0.95 1e-05 1e-05 1,000 2,000
EuroBERT-2.1B 4.6e-05 1.3e-05 0.95 0.98 1e-05 1e-08 1,000 2,000

Wikipedia

Learning Rate Adam β2 Adam ϵ Steps

Model Default Extensive Default Extensive Default Extensive Default Extensive

EuroBERT-210M 2.8e-05 2.2e-05 0.95 0.98 1e-05 1e-08 1,000 2,000
EuroBERT-610M 3.6e-05 2.2e-05 0.95 0.95 1e-05 1e-08 1,000 2,000
EuroBERT-2.1B 2.8e-05 2.8e-05 0.95 0.95 1e-05 1e-05 1,000 2,000

CC-News

Learning Rate Adam β2 Adam ϵ Steps

Model Default Extensive Default Extensive Default Extensive Default Extensive

EuroBERT-210M 4.6e-05 3.6e-05 0.95 0.98 1e-05 1e-05 1,000 2,000
EuroBERT-610M 4.6e-05 2.8e-05 0.95 0.95 1e-05 1e-05 1,000 2,000
EuroBERT-2.1B 3.6e-05 3.6e-05 0.95 0.95 1e-05 1e-05 1,000 2,000

Table 8: Overview of the optimal hyperparameters selected on the validation set for both
the Default and Extensive fine-tuning configurations.
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F Detailed Results

Table 9 and Table 10 present per-language results for the retrieval and sequence classification
tasks, respectively. Table 11 and Table 12 report detailed performance on sequence regression.
Finally, Table 13 provides per-language results on token classification (NER task).

MIRACL

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 88.0 — 88.6 91.9 — — — — 84.6 77.9 85.7 82.5 — — 83.8 89.5 85.4
XLM-RoBERTa-560M 89.7 — 91.6 93.5 — — — — 89.0 81.1 91.1 88.6 — — 90.3 91.6 89.4
XLM-RoBERTa-3.5B 90.4 — 93.0 94.5 — — — — 91.5 85.1 92.6 92.1 — — 91.9 92.6 91.4
mDeBERTa-v3-280M 45.3 — 39.6 46.2 — — — — 34.4 36.0 33.7 29.6 — — 35.3 43.7 37.5
mGTE-MLM-305M 91.4 — 94.6 95.2 — — — — 91.6 85.3 91.5 88.3 — — 91.4 93.8 91.2
ModernBERT-150M 93.4 — 71.2 81.2 — — — — 8.6 3.0 36.0 21.3 — — 45.6 81.9 45.0
ModernBERT-395M 95.1 — 84.2 90.7 — — — — 5.7 8.7 32.7 19.2 — — 34.3 90.0 46.3

EuroBERT-210M 94.1 — 95.4 95.8 — — — — 90.0 83.2 90.8 85.7 — — 90.9 95.1 90.8
EuroBERT-610M 93.6 — 95.1 96.3 — — — — 91.8 88.3 92.4 90.7 — — 92.4 95.0 92.6
EuroBERT-2.1B 94.2 — 95.0 95.3 — — — — 93.0 87.1 93.4 91.5 — — 94.1 94.8 92.9

MLDR

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 59.4 56.7 58.0 64.5 53.4 — — 60.3 44.4 56.4 50.3 43.6 — — 53.8 58.7 54.6
XLM-RoBERTa-560M 63.4 61.1 66.9 71.1 61.9 — — 67.1 51.5 60.3 54.9 51.5 — — 58.9 65.2 60.8
XLM-RoBERTa-3.5B 68.9 66.1 72.7 73.5 67.5 — — 71.0 56.5 61.8 62.6 60.8 — — 63.5 70.0 65.9
mDeBERTa-v3-280M 18.8 24.3 15.4 23.9 18.2 — — 19.0 12.3 20.5 17.4 13.2 — — 18.1 20.0 18.3
mGTE-MLM-305M 63.5 68.7 79.5 78.2 71.4 — — 78.1 55.7 66.2 62.4 60.8 — — 60.9 73.2 67.8
ModernBERT-150M 61.0 11.3 23.5 25.8 18.4 — — 19.7 0.7 0.7 2.9 2.5 — — 0.8 26.6 15.2
ModernBERT-395M 68.4 25.3 42.6 58.0 21.2 — — 37.1 0.5 2.0 3.5 3.7 — — 0.9 42.1 23.9

EuroBERT-210M 67.2 68.1 78.2 80.0 68.9 — — 77.9 52.1 51.3 60.8 59.1 — — 56.4 73.4 65.4
EuroBERT-610M 72.5 69.5 80.3 79.8 73.9 — — 79.0 55.5 60.9 61.6 62.5 — — 59.0 75.8 68.6
EuroBERT-2.1B 72.5 65.4 77.6 77.6 69.2 — — 75.0 53.0 58.1 61.5 59.3 — — 57.6 72.9 66.1

Wikipedia

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 94.7 91.2 — — 91.5 90.2 — 90.8 — 87.4 — — — — — 91.7 91.0
XLM-RoBERTa-560M 95.4 93.5 — — 93.4 93.4 — 92.5 — 90.7 — — — — — 93.6 93.1
XLM-RoBERTa-3.5B 97.9 96.5 — — 96.6 96.3 — 96.0 — 94.5 — — — — — 96.7 96.3
mDeBERTa-v3-280M 66.1 60.4 — — 53.6 57.6 — 56.5 — 51.3 — — — — — 58.9 57.6
mGTE-MLM-305M 96.7 93.9 — — 94.7 93.9 — 93.6 — 92.0 — — — — — 94.6 94.1
ModernBERT-150M 97.3 56.5 — — 60.5 57.2 — 67.0 — 5.7 — — — — — 67.7 57.4
ModernBERT-395M 98.2 69.9 — — 70.0 67.4 — 83.2 — 12.0 — — — — — 77.7 66.8

EuroBERT-210M 97.7 94.7 — — 94.5 95.6 — 95.7 — 88.6 — — — — — 95.6 94.4
EuroBERT-610M 98.3 95.9 — — 96.0 96.6 — 96.1 — 92.6 — — — — — 96.6 95.9
EuroBERT-2.1B 99.0 96.1 — — 96.0 96.0 — 95.9 — 92.0 — — — — — 96.6 95.8

CC-News

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 69.9 57.8 55.8 57.5 57.2 66.8 55.1 63.1 72.2 31.1 75.7 76.2 47.8 61.5 77.1 60.4 61.6
XLM-RoBERTa-560M 77.3 68.6 69.1 70.1 70.8 75.9 69.6 75.3 82.8 51.0 82.3 83.3 61.1 73.7 81.2 72.1 72.8
XLM-RoBERTa-3.5B 84.4 77.4 79.7 79.1 79.6 83.8 79.5 84.0 88.1 59.5 87.4 88.8 72.1 82.9 86.8 80.9 80.9
mDeBERTa-v3-280M 25.0 15.7 11.9 12.4 13.1 20.4 12.4 15.8 23.1 4.7 33.6 23.6 10.7 20.4 34.8 15.8 18.5
mGTE-MLM-305M 76.1 68.7 72.8 70.1 68.4 76.5 65.1 74.3 79.6 32.5 85.1 83.3 56.7 72.3 88.2 71.5 71.3
ModernBERT-150M 75.6 16.1 15.6 14.4 15.0 29.6 7.0 10.9 2.3 1.8 6.7 2.5 8.5 5.2 10.0 23.0 14.7
ModernBERT-395M 84.9 21.5 33.4 41.3 20.0 36.2 4.2 27.8 2.2 2.0 9.5 4.1 9.6 10.0 9.9 33.6 21.1

EuroBERT-210M 80.0 66.9 69.2 69.7 65.9 73.5 57.8 69.1 76.7 17.0 82.4 79.7 52.1 57.4 90.9 69.0 67.2
EuroBERT-610M 84.0 72.9 76.4 75.5 73.8 79.6 70.9 79.9 84.0 49.7 84.9 85.1 62.4 66.7 88.1 76.6 75.6
EuroBERT-2.1B 85.8 73.1 77.1 76.9 73.8 79.0 70.3 79.7 84.2 49.9 88.2 86.5 60.7 63.0 89.9 76.9 75.9

Table 9: Detailed results on multilingual retrieval tasks (nDCG@10, in %).
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XNLI

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 80.0 74.8 76.4 75.1 — — — — 71.5 69.1 — 74.4 72.4 74.0 73.2 76.6 74.1
XLM-RoBERTa-560M 87.1 83.0 83.5 82.9 — — — — 80.4 77.8 — 81.2 80.6 80.2 80.6 84.1 81.7
XLM-RoBERTa-3.5B 89.0 85.5 85.3 84.5 — — — — 81.5 80.5 — 83.1 82.4 83.3 82.3 86.1 83.7
mDeBERTa-v3-280M 84.9 81.2 81.1 81.0 — — — — 77.6 76.1 — 79.1 77.7 78.1 78.4 82.0 79.5
mGTE-MLM-305M 81.1 76.9 78.5 77.2 — — — — 73.6 71.3 — 75.4 72.9 75.9 75.5 78.4 75.8
ModernBERT-150M 82.8 65.7 69.9 70.6 — — — — 56.9 54.0 — 63.1 53.9 58.3 68.1 72.3 64.3
ModernBERT-395M 89.4 75.6 79.2 79.1 — — — — 59.6 55.7 — 70.9 60.6 63.0 76.1 80.8 70.9

EuroBERT-210M 83.5 77.8 79.4 78.9 — — — — 74.3 70.6 — 76.6 74.2 75.1 75.3 79.9 76.6
EuroBERT-610M 87.8 82.9 84.6 83.6 — — — — 79.5 76.7 — 82.0 80.3 80.8 80.7 84.7 81.9
EuroBERT-2.1B 89.6 85.5 86.4 85.8 — — — — 82.8 79.9 — 83.3 83.0 82.3 82.3 86.8 84.1

PAWS-X

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 93.8 86.4 87.5 88.0 — — — — — — — — — — — 88.9 88.9
XLM-RoBERTa-560M 95.5 91.0 91.4 91.8 — — — — — — — — — — — 92.4 92.4
XLM-RoBERTa-3.5B 95.8 91.9 91.7 92.3 — — — — — — — — — — — 92.9 92.9
mDeBERTa-v3-280M 95.7 90.2 90.4 91.3 — — — — — — — — — — — 91.9 91.9
mGTE-MLM-305M 94.7 87.5 88.2 88.8 — — — — — — — — — — — 89.8 89.8
ModernBERT-150M 94.7 72.0 74.0 77.7 — — — — — — — — — — — 79.6 79.6
ModernBERT-395M 95.8 75.4 82.7 83.5 — — — — — — — — — — — 84.3 84.3

EuroBERT-210M 95.6 86.5 88.7 88.9 — — — — — — — — — — — 89.9 89.9
EuroBERT-610M 95.6 90.0 91.3 92.0 — — — — — — — — — — — 92.2 92.2
EuroBERT-2.1B 96.2 91.6 91.8 92.5 — — — — — — — — — — — 93.0 93.0

AmazonReviews

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 64.9 65.0 60.6 60.0 — — — — — — 59.0 — — — 56.8 62.7 61.1
XLM-RoBERTa-560M 66.9 67.0 62.4 61.5 — — — — — — 62.1 — — — 58.5 64.5 63.1
XLM-RoBERTa-3.5B 67.1 67.8 62.4 61.5 — — — — — — 63.7 — — — 59.2 64.7 63.6
mDeBERTa-v3-280M 66.4 66.1 61.6 60.6 — — — — — — 60.4 — — — 57.7 63.7 62.1
mGTE-MLM-305M 65.0 65.3 60.9 59.5 — — — — — — 61.2 — — — 57.4 62.7 61.5
ModernBERT-150M 66.1 61.4 57.5 57.8 — — — — — — 54.2 — — — 53.9 60.7 58.5
ModernBERT-395M 67.6 64.9 60.8 60.0 — — — — — — 58.2 — — — 57.8 63.3 61.5

EuroBERT-210M 65.9 65.4 60.5 60.2 — — — — — — 60.4 — — — 57.7 63.0 61.7
EuroBERT-610M 66.7 66.4 61.6 61.2 — — — — — — 61.7 — — — 58.1 64.0 62.6
EuroBERT-2.1B 66.5 67.8 62.8 60.9 — — — — — — 62.4 — — — 59.0 64.5 63.2

MassiveIntent

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 89.1 86.1 87.0 86.6 87.5 87.5 86.8 87.3 79.0 86.2 86.5 87.3 85.6 86.7 86.0 87.2 86.3
XLM-RoBERTa-560M 90.3 87.7 88.0 89.0 88.5 89.1 88.8 88.8 83.5 88.1 88.9 89.0 87.8 88.9 87.1 88.8 88.2
XLM-RoBERTa-3.5B 89.9 87.6 88.2 88.6 88.7 88.3 87.9 88.6 81.8 88.0 88.4 89.2 87.8 88.4 86.9 88.5 87.9
mDeBERTa-v3-280M 88.1 86.4 86.9 87.3 87.6 88.0 87.0 86.9 79.8 86.0 87.3 87.3 85.9 86.5 85.9 87.3 86.5
mGTE-MLM-305M 89.0 86.3 87.4 87.9 87.2 87.9 86.3 87.8 80.7 86.6 87.9 87.8 86.4 87.4 86.3 87.5 86.9
ModernBERT-150M 85.5 74.8 76.6 79.4 75.1 74.2 71.1 78.2 57.6 56.1 76.6 74.4 62.3 66.3 79.9 76.9 72.6
ModernBERT-395M 89.8 83.9 84.9 86.9 84.7 84.1 82.4 86.0 72.5 76.7 84.4 83.9 79.6 80.8 84.9 85.3 83.0

EuroBERT-210M 89.0 86.0 86.9 86.9 87.0 87.1 86.8 87.9 81.2 86.9 87.4 87.2 85.8 85.0 86.0 87.2 86.5
EuroBERT-610M 89.2 86.6 87.4 87.6 88.1 88.2 87.3 87.8 82.7 87.3 88.3 88.2 86.8 86.1 87.0 87.8 87.2
EuroBERT-2.1B 88.9 87.2 88.0 88.7 87.9 88.2 88.1 88.2 83.2 87.6 89.0 88.1 87.1 85.4 87.0 88.2 87.5

Table 10: Detailed results on multilingual sequence classification tasks (accuracy, in %).
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Ref-free

European Pairs Extra-European Pairs Average

en-xx xx-en Other en-xx xx-en Euro World
Model en-de en-pl de-en pl-en de-fr fr-de en-ja en-ru en-tr en-zh ja-en ru-en tr-en zh-en

XLM-RoBERTa-280M 45.3 53.6 26.7 16.3 31.4 32.0 47.0 56.5 61.5 42.5 10.4 21.8 40.7 25.3 34.2 36.5
XLM-RoBERTa-560M 50.7 66.0 30.7 15.8 41.1 29.8 52.1 61.2 66.2 47.2 11.0 24.8 45.4 29.0 39.0 40.8
XLM-RoBERTa-3.5B 55.1 66.9 35.9 18.7 46.7 43.3 56.3 64.9 64.8 52.2 13.1 27.0 47.7 30.6 44.4 44.5
mDeBERTa-v3-280M 52.8 61.6 33.1 18.3 44.4 39.6 51.6 61.2 67.2 46.7 11.2 24.2 47.3 28.9 41.6 42.0
mGTE-MLM-305M 48.6 55.2 30.4 18.5 37.5 35.9 48.3 57.2 59.7 45.5 10.6 23.4 41.5 27.3 37.7 38.5
ModernBERT-150M 39.7 47.4 29.8 18.2 20.5 21.9 36.0 41.6 39.6 37.8 10.7 21.5 41.3 23.9 29.6 30.7
ModernBERT-395M 45.3 51.7 32.4 20.0 23.8 27.6 37.8 44.7 43.6 41.5 12.3 24.1 42.7 27.1 33.5 33.9

EuroBERT-210M 52.9 58.4 33.2 17.5 40.6 40.3 51.1 57.9 57.3 48.3 14.3 26.7 44.3 30.8 40.5 41.0
EuroBERT-610M 52.9 61.1 32.4 18.2 42.6 39.2 51.3 59.4 62.3 48.6 12.2 26.6 44.1 29.7 41.1 41.5
EuroBERT-2.1B 49.1 57.8 29.8 19.3 38.3 38.5 47.8 56.9 56.5 45.0 10.7 23.5 41.3 27.5 38.8 38.7

Ref-based

European Pairs Extra-European Pairs Average

en-xx xx-en Other en-xx xx-en Euro World
Model en-de en-pl de-en pl-en de-fr fr-de en-ja en-ru en-tr en-zh ja-en ru-en tr-en zh-en

XLM-RoBERTa-280M 49.6 56.0 34.4 29.2 47.8 41.9 49.8 60.5 63.1 50.1 14.2 25.3 48.7 31.1 43.1 43.0
XLM-RoBERTa-560M 52.3 63.9 37.3 26.8 51.1 42.3 53.6 63.3 70.9 53.0 12.6 25.2 49.2 32.3 45.6 45.3
XLM-RoBERTa-3.5B 55.9 68.2 39.1 28.2 53.7 45.6 56.7 66.3 71.1 55.2 12.8 28.9 52.4 34.0 48.5 47.7
mDeBERTa-v3-280M 53.0 65.6 37.6 27.9 50.9 43.7 52.7 63.5 69.1 53.0 13.1 27.8 49.9 32.5 46.5 45.7
mGTE-MLM-305M 51.0 57.4 36.6 29.9 49.6 39.3 51.5 61.8 63.5 52.4 13.8 26.0 48.7 32.8 44.0 43.9
ModernBERT-150M 43.5 50.2 36.8 28.2 42.5 33.1 45.4 50.4 54.2 46.0 13.8 26.6 50.8 31.7 39.1 39.5
ModernBERT-395M 47.4 53.9 39.2 31.6 43.5 34.8 47.1 52.3 60.0 48.6 14.9 28.9 53.1 34.0 41.7 42.1

EuroBERT-210M 52.5 59.8 38.8 30.5 49.7 39.6 52.2 61.5 65.9 53.1 15.2 28.7 50.5 34.7 45.1 45.2
EuroBERT-610M 53.8 64.0 37.8 29.4 51.3 42.5 53.2 62.9 67.9 52.3 16.2 29.2 50.6 33.5 46.5 46.0
EuroBERT-2.1B 54.9 65.7 39.4 31.0 54.9 45.0 55.0 64.3 68.3 54.5 14.9 28.3 52.0 34.3 48.5 47.3

Table 11: Detailed results on the WMT tasks (Spearman rank correlation, in %).

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 53.2 55.6 62.0 — — — — — — — — 69.1 67.3 59.3 — 56.9 61.1
XLM-RoBERTa-560M 57.1 60.1 66.9 — — — — — — — — 73.6 72.6 62.7 — 61.4 65.5
XLM-RoBERTa-3.5B 58.1 62.1 69.7 — — — — — — — — 75.6 75.5 64.0 — 63.3 67.5
mDeBERTa-v3-280M 56.2 58.5 66.3 — — — — — — — — 72.6 71.9 59.6 — 60.3 64.2
mGTE-MLM-305M 52.7 58.6 66.3 — — — — — — — — 69.7 69.6 61.4 — 59.2 63.0
ModernBERT-150M 44.6 47.9 52.8 — — — — — — — — 59.6 53.8 52.1 — 48.4 51.8
ModernBERT-395M 56.9 56.8 64.0 — — — — — — — — 66.7 65.6 59.0 — 59.3 61.5

EuroBERT-210M 54.4 58.7 67.2 — — — — — — — — 70.0 71.2 61.3 — 60.1 63.8
EuroBERT-610M 57.2 60.6 70.3 — — — — — — — — 72.6 73.5 61.5 — 62.7 66.0
EuroBERT-2.1B 58.8 62.1 71.1 — — — — — — — — 74.4 75.7 62.8 — 64.0 67.5

Table 12: Detailed results on the SeaHorse summary evaluation task (Spearman rank
correlation, in %).

European Languages Extra-European Languages Average

Model en de es fr it nl pl pt ar hi ja ru tr vi zh Euro World

XLM-RoBERTa-280M 97.6 94.5 93.6 — — 96.1 — — — — — — — — — 95.5 95.5
XLM-RoBERTa-560M 97.7 96.4 93.9 — — 96.2 — — — — — — — — — 96.1 96.1
XLM-RoBERTa-3.5B 98.3 96.4 94.5 — — 96.1 — — — — — — — — — 96.3 96.3
mDeBERTa-v3-280M 98.1 96.4 94.2 — — 96.1 — — — — — — — — — 96.2 96.2
mGTE-MLM-305M 97.9 94.0 93.0 — — 95.7 — — — — — — — — — 95.2 95.2
ModernBERT-150M 84.0 89.4 89.8 — — 92.8 — — — — — — — — — 89.0 89.0
ModernBERT-395M 97.8 81.5 92.5 — — 94.6 — — — — — — — — — 91.6 91.6

EuroBERT-210M 97.7 91.8 93.8 — — 95.5 — — — — — — — — — 94.7 94.7
EuroBERT-610M 97.6 96.0 94.0 — — 95.8 — — — — — — — — — 95.9 95.9
EuroBERT-2.1B 97.6 94.2 93.8 — — 95.0 — — — — — — — — — 95.2 95.2

Table 13: Detailed results on the NER task (F1 score, in %).
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