
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAUSSIANS ON A DIET: HIGH-QUALITY MEMORY-
BOUNDED 3D GAUSSIAN SPLATTING TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

3D Gaussian Splatting (3DGS) has revolutionized novel view synthesis with high-
quality rendering through continuous aggregations of millions of 3D Gaussian
primitives. However, it suffers from a substantial memory footprint, particularly
during training due to uncontrolled densification, posing a critical bottleneck for
deployment on memory-constrained edge devices. While existing methods prune
redundant Gaussians post-training, they fail to address the peak memory spikes
caused by the abrupt growth of Gaussians early in the training process. To solve
the training memory consumption problem, we propose a systematic memory-
bounded training framework that dynamically optimizes Gaussians through itera-
tive growth and pruning. In other words, the proposed framework alternates be-
tween incremental pruning of low-impact Gaussians and strategic growing of new
primitives with an adaptive Gaussian compensation, maintaining a near-constant
low memory usage while progressively refining rendering fidelity. We compre-
hensively evaluate the proposed training framework on various real-world datasets
under strict memory constraints, showing significant improvements over existing
state-of-the-art methods. Particularly, our proposed method practically enables
memory-efficient 3DGS training on NVIDIA Jetson AGX Xavier, achieving sim-
ilar visual quality with up to 80% lower peak training memory consumption than
the original 3DGS. Our demo page is available at http://dietgaussian.work.gd/.

3DGS (PSNR:25.15dB) Taming 3DGS (PSNR:24.81dB) Ours (PSNR:25.20dB)

3DGS (PSNR:25.15dB) Taming 3DGS (PSNR:24.81dB) Ours (PSNR:25.20dB)
8 10 15 20 25

Peak Training Memory Usage (GB)

23

24

25

26

P
S

N
R

(d
B

)

Taming 3DGS
(9.00GB)

Mini-Splatting
(12.50GB)

3DGS
(18.29GB)

Ours
(8.86GB)

Compact-3DGS
(20.09GB)

EAGLES
(13.08GB)

Reducing-3DGS
(19.74GB)

Figure 1: We present a memory-bounded 3D Gaussian Splatting training framework, enabling lower
peak training memory and higher rendering quality, compared to existing state-of-the-art methods.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has recently emerged as a powerful paradigm
for novel view synthesis and 3D reconstruction (Chen & Wang, 2024). By representing a scene as
a set of 3D Gaussians, each with parameters such as spatial position, scale, opacity, rotation, and
spherical harmonic (SH) coefficients for view-dependent color. 3DGS enables differentiable ren-
dering with promising visual quality. This approach has demonstrated state-of-the-art performance
in rendering speed and quality, achieving immersive view synthesis at high resolutions in real time.
However, these gains come at a substantial memory cost – 3DGS models often employ millions of
Gaussians for a single scene, leading to significant memory consumption (Bagdasarian et al., 2024).
This reliance on a large number of primitives not only inflates the model size but also restricts de-
ployment on edge devices or other memory-constrained platforms (Morgenstern et al., 2024; Yu

1

http://dietgaussian.work.gd/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000 30000
0

1

2

3

4

5

N
um

be
ro

fG
au

ss
ia

ns

×106

Iteration

Our Peak

Peak of Taming 3DGS

3DGS Mini-Splatting Taming 3DGS Ours

Peak of Taming 3DGS

Figure 2: Gaussian number vs. iteration. Our
method grows and prunes Gaussians under memory
constraints, while 3DGS and Mini-Splatting densify
to millions and remove later.

Taming 3DGS (5K Iterations) Ours (5K Iterations)

Taming 3DGS (10K Iterations) Ours (10K Iterations)

Figure 3: Convergence comparison. Tam-
ing 3DGS fails to fix errors (e.g., grass),
while our method continues optimizing those
areas.

et al., 2024a). In practice, the heavy memory footprint of 3DGS-based models has become a key
bottleneck, limiting their scalability and adoption in resource-limited settings.

Existing works (Deng et al., 2024; Fang & Wang, 2024; Niemeyer et al., 2024; Papantonakis et al.,
2024; Zhang et al., 2024b) mainly focus on pruning redundant Gaussians to obtain a compact scene
representation. Nevertheless, the challenging problem is that existing pruning approaches are ap-
plied after the uncontrollable densification process in the original 3DGS training framework (Fan
et al., 2023; Rota Bulò et al., 2024; Kheradmand et al., 2024; Yu et al., 2024b; Lee et al., 2024a),
where the Gaussian primitives suddenly expand to a tremendous number as shown in Fig. 2, e.g.,
several million for the bycicle scene, leading to a substantial peak training memory consumption
(refer to Fig. 11). Even though those methods successfully reduce the memory footprints in the ren-
dering phase, the peak memory consumption is significantly higher than the memory size of edge
systems, thereby hindering real-time 3D applications in real-world settings (Matsuki et al., 2024).

Despite the practical significance of peak training memory usage in 3DGS, this issue remains under-
studied. Prior work (Mallick et al., 2024) mitigates memory spikes by regulating Gaussian growth
via a predictable curve and selectively cloning/splitting primitives using a computationally inten-
sive importance score. While this approach reduces peak Gaussian counts, it suffers from some key
drawbacks. (1) Strict growth restrictions in early training stages limit representational capacity, lead-
ing to accumulated rendering errors that persist due to insufficient dynamic refinement. (2) Cloned
Gaussians inherit identical initial positions, resulting in redundant gradient updates that fail to ef-
fectively capture missing scene details. (3) The absence of an active Gaussian removal mechanism
allows poorly optimized (“ill”) Gaussians to persist throughout training.

To address those limitations and practically enable real-time 3DGS training on memory-constrained
devices, in this paper, we conduct an in-depth study on the unsatisfactory performance of existing
training approaches. Our motivation is inspired by the Lottery Ticket Hypothesis (Frankle & Carbin,
2018),which suggests the existence of a sparse subnetwork capable of achieving performance com-
parable to a dense one. We extend this hypothesis to 3DGS, whether an optimal sparse Gaussian
model can be trained from scratch under strict memory limitations. Building on this insight, we
propose a systematic memory-bounded 3DGS training framework based on dynamic growing and
removal of Gaussian primitives, which can strictly satisfy the practical memory constraints. Our
proposed training framework alternatively identifies, grows, and prunes Gaussian primitives in each
iteration, where “ill” Gaussians are dynamically deleted and “healthy” Gaussians are subsequently
regenerated. This iterative process ensures consistently low memory usage while discovering effec-
tive primitives that match the rendering quality of the original 3DGS at significantly reduced training
memory consumption. As illustrated in Fig. 1, our dynamic strategy outperforms one-shot pruning
(Fang & Wang, 2024; Girish et al., 2024) in both memory efficiency and visual fidelity.

Specifically, we first densify the Gaussians to the user-specified bound in the early training stage,
and then we iteratively grow and prune a small proportion of Gaussians until the training ends. Our
approach iteratively alternates between three steps: (1) Dynamical growing – we introduce a clone-

1Here, we report our peak memory usage on GTX 4090 without engineering optimization for a fair comparison,
while Mini-Splatting (Fang & Wang, 2024) leverages extra compression by downgrading the orders of SH
coefficients to one before pruning to reduce memory.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and-split strategy based on the hybrid position and color gradients to coarse-grainly refine rendering
quality. (2) Adaptive Gaussian compensation – we propose a mechanism that fine-grainly adds
new Gaussian primitives to the identified underfitting regions. By projecting high-reconstruction-
error pixels back to 3D space, we generate Gaussians in poorly represented areas, progressively
refining detail. (3) Memory-aware pruning – to maintain a fixed memory budget, we remove low-
importance Gaussians whenever the total count exceeds a predefined threshold based on the light-
computation criterion. This ensures balanced growth while preserving critical scene structures. By
iteratively refining the Gaussian set, adding discriminative primitives, and removing redundant ones,
our framework constructs a compact yet expressive representation that matches the original 3DGS in
quality while drastically reducing memory overhead. In summary, our contributions are as follows:

• We conduct an in-depth study on the inefficiency and inferior quality of existing 3DGS
training methods.

• We develop a systematic memory-efficient training framework that dynamically optimizes
Gaussians via iterative growth and pruning, achieving high rendering quality under strict
memory bounds.

• We propose a dual-level Gaussian growing approach, i.e., coarse-grained clone/split based
on hybrid gradients, fine-grained compensation based on pixel-level rendering errors, and
a dynamic primitive shift strategy reducing ineffective gradients update.

• We comprehensively evaluate our proposed training framework on various real-world
datasets, achieving improved rendering quality and reduced peak training memory. Par-
ticularly, we practically test on-device training on NVIDIA Jetson AGX Xavier, providing
up to 80% peak memory reduction with similar quality compared to the original 3DGS.

2 RELATED WORK

2.1 COMPACT 3D GAUSSIAN SPLATTING

Although 3DGS achieves significant progress in photorealistic scene representation and novel view
synthesis, its reliance on millions of primitives creates significant memory bottlenecks that hinder
practical deployment (Bagdasarian et al., 2024; Hanson et al., 2024; Lee et al., 2025). This challenge
has led to growing interest in compact 3DGS methods, which aim to preserve rendering fidelity while
significantly reducing the number of primitives (Bao et al., 2025; Liu et al., 2024; Ye et al., 2024).
For instance, LightGaussian (Fan et al., 2023) reduces final storage by pruning redundant Gaussians
based on a global importance score after training, while RadSplat (Niemeyer et al., 2024) improves
pruning robustness by replacing the sum with a max operator for score computation.

Although these post-training pruning strategies reduce memory usage during inference, they do not
alleviate the high peak memory consumption incurred during training (Feng et al., 2024; Navaneet
et al., 2024; Zhang et al., 2024a). To address this, Taming 3DGS (Mallick et al., 2024) introduces
a steerable densification mechanism that selectively densifies impactful Gaussians, enabling a more
predictable and memory-aware growth trajectory. However, its infrequent densification and slow
growing speed result in suboptimal and poorly positioned Gaussians remaining in the model, limit-
ing the representation details and overall rendering quality (see Fig. 3). Based on the in-depth study
on the limitations of (Mallick et al., 2024), our work progressively refines the model via iteratively
growing and pruning, dynamically preserving most “healthy” Gaussians under memory bounds.

3 BACKGROUND AND MOTIVATION

3.1 BACKGROUND OF 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents the scenes using an optimized collec-
tion of anisotropic 3D Gaussians. Each Gaussian G is defined by its covariance matrix Σ and center
position µ as

G(x) = exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 4: Illustration of Gaussian compensa-
tion. (Left) Color gradient per pixel. (Right)
Compensated Gaussians in yellow color. Our
compensation step recovers the high-frequency
region that is hard to capture by the original den-
sification (e.g., rubble under the train).

Figure 5: Rendered images with our growing
strategy. (Left) Our proposed hybrid gradient-
based method recovers the texture of the floor
more accurately. (Right) Existing approaches
based on position-only gradient lose details.

where x is an arbitrary position in the 3D scene. The covariance matrix Σ is generally decomposed
as Σ = RSS⊤R⊤, where R is a rotation matrix and S is a diagonal scaling matrix.

To render a 2D image from the 3D scene, 3DGS projects 3D Gaussians onto the image plane based
on the camera parameters. The projected 2D covariance matrix is computed as Σ′ = JWΣW⊤J⊤

where W represents the view transformation matrix, and J is the Jacobian of the affine approxima-
tion of the projective transformation. Then, the final color C at each image pixel is computed by
blending all N depth-ordered Gaussians contributing to the pixel as

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (2)

Here, ci is the color of each Gaussian derived from the SH coefficients. αi is the ray transmittance
calculated by overlapped Gaussians’ opacity oi and the relative distance between rendered pixel
position x and 2D view-plane Gaussian’s center µi (Niemeyer et al., 2024), i.e.,

αi(x) = oi exp

(
−1

2
(x−R (µi; θ))

⊤Rθ (Σi)
−1

(x−R (µi; θ))

)
, (3)

where θ is the camera pose andR is the 3D-to-image plane projection operation.

During training, the Gaussians are initialized from a sparse point cloud generated by Structure-from-
Motion (SfM) (Schonberger & Frahm, 2016). Then, each Gaussian attribute is optimized with the
gradient backpropagation to minimize the reconstruction error.

3.2 MOTIVATION FOR RESOLVING PROBLEMS IN 3DGS TRAINING

We conduct an in-depth study on existing training approaches, including the original 3DGS (Kerbl
et al., 2023) and subsequent pioneering works (Mallick et al., 2024), which propose the accelerated
3DGS training. Our analysis highlights significant limitations in these methods, motivating the
development of a new training framework that dynamically grows and removes Gaussians based on
more effective criteria. Below, we present three main explorations of existing approaches.

1 Existing strategies cannot adjust Gaussian primitives dynamically, leading to accumulated error.
The densification process in 3DGS (Kerbl et al., 2023) is governed by the adaptive density control,
which operates on a predetermined schedule. During the densification, the positional gradient mag-
nitude for each Gaussian is tracked and averaged over all rendered views, resulting in a score. If it
exceeds a user-defined threshold, the primitive is considered for growth through either cloning or
splitting, depending on its size as determined by the scaling matrix. To solve the uncontrollable num-
ber of Gaussians and the challenges in threshold determination, the subsequent methods (Mallick
et al., 2024; Rota Bulò et al., 2024) design a parabolic curve to define a schedule of new primitives
at each step. Based on the predictable densification curves, they add new Gaussians by cloning or
splitting existing ones according to the developed complex importance and error-correction scores.

Even though the above methods can effectively regulate the number of Gaussians, they grow the
Gaussians slowly and achieve the user-specified budget after a long-term period, i.e., 15,000 itera-
tions. This growing strategy limits the representation power due to the limited number of Gaussians

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

before reaching the budget, leading to a performance drop. Additionally, existing strategies prune
unimportant Gaussians based on opacity (Lu et al., 2024) or other criteria (Lee et al., 2024b) in every
long-term iteration, e.g., 500 iterations, which fails to figure out the truly important Gaussians. This
lies in that after 500 iterations, the “error” information is mixed among all Gaussians, making it
challenging to remove the redundancy without frequent operation on those Gaussians. As shown in
Fig. 3, with the two main limitations, existing methods cannot correctly optimize Gaussians under
a bounded number of Gaussians.

Proposed solution: Inspired by the sparse training method (Frankle & Carbin, 2018; Han et al.,
2016) for under-parameterized neural networks, we propose a dynamic approach that grows and
removes Gaussians frequently (e.g., every 50 iterations) and adaptively. In our proposed training
framework, at every step, we recognize a small proportion of “ill” Gaussians based on the blending
weight (which will be introduced in the next Section) instead of opacity. Then, after removing those
“ill” Gaussians, we add the same size of new Gaussians in the needed area. With this adaptive
strategy, we can keep a sufficient capacity of Gaussians at the beginning without crafted growing
curves. Our results show that our dynamic method can find the “healthy” Gaussians and remove the
redundancy effectively, outperforming existing work (Mallick et al., 2024) with fewer iterations.

2 Naive clone or split limits the representation. Following the 3DGS densification, prior methods
(Kerbl et al., 2023; Zhou et al., 2024) clone or split Gaussian primitives according to positional
gradients, and the added Gaussians overlap the original ones with similar parameters. This naive
operation causes cloned Gaussians to receive similar gradient updates during optimization. The
similarity in gradients hinders their ability to diverge spatially, leading them to remain overlapped
for extended periods (Deng et al., 2024). Consequently, a significant number of low-opacity Gaus-
sians persist in the scene, leading to redundancy that is challenging to mitigate while increasing
computational and memory overhead. Besides, due to the lack of pixel-wise information, existing
methods cannot deal with areas where more Gaussians are needed but gradients fail to recognize,
leading to permanently low-quality rendering results.

Proposed solution: To resolve this issue, the densification process needs additional information to
provide randomness, but the introduced information should have a negligible impact on the render-
ing results. In our proposed framework, we shift the added Gaussians by a small distance based on
the accumulated positional gradient, reducing the overlap between the two primitives. In this way,
those Gaussians can receive gradually distinct gradient updates, thereby the new Gaussians will
move to the correct location adaptively, which benefits the rendering quality. In other words, our
proposed solution strengthens the robustness of the scene representation. Additionally, we propose a
pixel-wise Gaussian compensation method performed at the end of each step. Specifically, we select
pixels with the highest losses and put extra Gaussians on the rays rendering those pixels. As shown
in Fig. 4, our results show that our compensation identifies and recovers the high-frequency region
that is hard to be captured by the original growth method.

3 Growing by position-only gradient cannot capture the blurry areas that need more Gaussians.
3DGS (Kerbl et al., 2023) initializes the scene using a sparse point cloud generated from Structure-
from-Motion (SfM) (Schonberger & Frahm, 2016; Ullman, 1979), assigning default values to each
Gaussian’s attributes. Then, it employs an adaptive density control algorithm to add new Gaussians
during the densification step. In the densification, if the Gaussians’ view-space positional gradients
exceed a predefined threshold, they are candidates for duplication. Specifically, Gaussians with
scales above a certain threshold are split, and otherwise are cloned. This strategy uses the view-
space position gradient, computed via per-pixel color gradients, as an indicator for duplication.
Referring to Equation 2 and 3, we apply the chain rule to derive the gradient with respect to position
pk of the k-th Gaussian, i.e.,

dℓ

dpk
=

dℓ

dC

dC

dαk

dαk

dpk
, (4)

where ℓ is the rendering loss. Then, we analyze the second term, the partial derivative of C with
respect to αk, and expand it with other variables based on Equation 2. To be specific, this term can be
represented by dC

dαk
=

∑N
j=k −ckαkΠ(1−αk). This formulation shows that position gradients only

capture partial color information and are influenced by the magnitude of the overlapped Gaussians’
color. As a result, position gradients often fail to accurately detect underfit areas, particularly in
blurred or low-contrast regions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Compensation

Position Gradient ∇!

Color Gradient ∇"

∇!"#= ∇$ + ∇%

Radius#

Clone:	𝜇&'(
= 𝜇)*+ +&∇,-

-⊆/

Growing Pruning

Prune Least K
Error Pixels Depth

Clone ∆!

()
Split

OR

Importance

Underfitting Regions

Generate New
Gaussians

HL

Figure 6: Overall workflow of our proposed memory-bounded 3DGS training framework,
which iteratively performs growing, compensation, and pruning, progressively refining the repre-
sentation capability.

Proposed solution: According to Equation 4, we compute the gradient with respect to color ck of
the k-th Gaussians, i.e.,

dℓ

dck
=

dℓ

dC

dC

dck
. (5)

We also analyze the second term by expanding it as dC
dck

= αkΠ
k−1
j=1 (1− αj). It is seen that the gra-

dient of color is not influenced by the other Gaussians’ color and is only related to the transmittance.
To address the aforementioned problem, we proposed to combine the two types of gradients, i.e., a
mixture of both position and color gradients, to determine the areas where new Gaussians need to be
added. Our investigation shows that our solution can accurately locate the blurry regions, allocating
more primitives to complement the rendering quality, as shown in Fig. 5.

4 THE PROPOSED SYSTEMATIC TRAINING FRAMEWORK

4.1 FRAMEWORK OVERVIEW

In the previous section, we have in-depth analyzed the limitations of existing 3DGS training meth-
ods, and we have introduced the motivations for our proposed framework. In this section, we will
present our memory-efficient and high-quality training framework in detail. The overview of our
proposed framework is illustrated in Fig. 6. In summary, our framework dynamically grows, com-
pensates, and prunes Gaussians in an iterative way, where those steps are alternately performed in
each iteration, progressively refining the representative capability under a consistent memory bound.
In the growing step, we clone and split Gaussians based on the proposed hybrid gradients criterion
at a coarse-grained level. In other words, this step rapidly increases the number of Gaussians during
the early densification, then our method continuously introduces new Gaussians at the rest of the
clone step to refine the model by compensating for the representation capability in the low-quality
areas. In the Gaussian compensation step, we fine-grainly identify the low-quality pixels with the
highest error, project them back to their corresponding 3D location, and generate new Gaussians at
that point to better capture underfitting regions. On the other hand, in the pruning phase, to ensure
the model remains within a memory budget, we concurrently remove an equal number of less im-
portant Gaussians when the total count exceeds a predefined threshold. By iteratively performing
these two steps, our framework adaptively discovers and optimizes a compact subset of Gaussians
that preserves rendering fidelity while ensuring memory efficiency throughout training. The overall
algorithm is presented in Algorithm 1.

4.2 ITERATIVE GROWING AND PRUNING

The principle of our training framework is to alternately operate growing and pruning steps in each
iteration, dynamically adding informative Gaussians and removing redundant Gaussians. For the
growing step, as discussed in section 3.2, we incorporate the color gradient, ∇c, which reflects
rendering error more accurately in the actual rendering space. According to the gradient backpropa-
gation formulation, Eq. 4 and Eq. 5, color error flows entirely into the color gradients of individual
Gaussians after being scaled by the transmittance weight. Therefore, we propose a mixed criterion

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

that leverages color and position information to better identify regions requiring densification, i.e.,
∇mix = ∇p +∇c, to clone and split Gaussians.

As the comparison shown in Fig. 4, color gradients more reliably highlight underfitting regions, par-
ticularly in backgrounds and blurred areas. Our proposed hybrid metric provides a more informative
cue for identifying and densifying under-structured geometric regions, as shown in Fig. 5.

Dynamical position adjustment. To address the overlapping problem in existing densification
approaches that directly copy Gaussians, we propose an adaptive position adjustment method based
on the accumulated gradient information to move new Gaussians to appropriate places. Specifically,
we accumulate all position gradients over N views, i.e.,

µnew = µold +
∑
i∈N

∇µi (6)

representing a stable and optimal position where new Gaussians should be. This light shift effec-
tively resolves the overlapping problem that new Gaussians receive similar updating gradients.

In each iteration, as new Gaussians are added in the previous growing steps, an equal number of
the least important Gaussians are subsequently removed in this pruning step, keeping the total peak
training memory under the constraint. To achieve iterative pruning, it requires continuously iden-
tifying and removing the least important Gaussians. However, calculating a comprehensive impor-
tance score for each Gaussian can be computationally expensive. We apply the importance criterion
(Niemeyer et al., 2024) with light calculation by aggregating the ray contribution of Gaussians i
along all rays of N views. For Gaussians Gi,

Ri = max
r∈Rf

αr
i τ

r
i (7)

where Rf represent all rays in the N views, and τi = αi

∏i−1
j=1(1 − αj). This ray-based metric

reflects the blending contribution of each Gaussian to the final pixel color and can be computed
efficiently within the existing rendering pipeline, avoiding any significant overhead.

In summary, our iterative growing and pruning have two advantages: firstly, it enables consistent
training on devices with strict memory constraints where one-shot pruning approaches (Fan et al.,
2023; Fang & Wang, 2024) fail. Secondly, it allows the model to recover and re-optimize after each
pruning, leading to a more balanced and high-quality sparse representation.

4.3 ADAPTIVE GAUSSIAN COMPENSATION

Positions of Gaussians receive only infinitesimal fluctuating gradients, updated by gradients propa-
gated through the chain rule across varying camera views. As training progresses, the exponentially
decaying learning rate further leaves the Gaussian stable, while reconstruction errors in underfit,
blurry regions persist. To refine the poorly reconstructed and sparsely covered areas, we innova-
tively propose a Gaussian compensation approach before the pruning step to generate new Gaussians
in the underfitting area based on a per-pixel error that measures the difference between the ground
truth and the rendered image. Per-pixel error can be directly derived from the color gradient for each
pixel, computed in the original backward pass, without incurring additional computational cost.

Once underfitting pixels are identified, the next challenge is transforming 2D pixel coordinates into
corresponding 3D Gaussian positions. We can replace the color ci of the i-th Gaussian with the
depth of its center di as

D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj). (8)

This approach approximately estimates the depth for each pixel. Then, inspired by (Fang & Wang,
2024), we project the selected high-error pixels back into 3D space by replacing di with dmid, the
Gaussian midpoints that contribute most to the pixel. For each image, we identify the top-K pixels
with the highest color gradient magnitude and generate new Gaussians at the corresponding positions
derived from α-blended depth. We set the colors of these Gaussians same as the ground truth pixel
values.

To be specific, as shown in Algorithm 2, our Gaussian compensation identifies the top-K pixels perr
with the highest errors and computes their corresponding 3D positions Derr in world space using

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 The overall procedure of our train-
ing framework.

Input: Gaussian primitives G, target peak
number of Gaussians F , maximum number
of iterations T ;

1: t← 1;
2: while t < T do
3: if densifyBegin < t < densifyEnd

then
4: if |G| < F then
5: cloneAndSplit(G);
6: shiftNewGaussians(G);
7: end if
8: prune(G, oi < ot);
9: else if compensateBegin < t <

compensateEnd then
10: compensateGaussians(G);
11: end if
12: if |G| > F then
13: K = F − |G|;
14: G′ ←findLeastK(G,K);
15: prune(G,G′);
16: end if
17: t = t+ 1;
18: end while

Algorithm 2 The proposed Gaussian compen-
sation.
Input: Camera view v, ground truth image Igt

1: I ←render(v)
2: perr, pgt ←findErrorPixels(I, Igt)
3: Derr ←renderDepth(perr)
4: list.append(Derr,pgt)
5: if t % compensateInterval = 0 then
6: genGaussians(list)
7: list.clear()
8: end if

Taming 3DGS Ours

Figure 7: Rendered image example. Our
method presents significantly higher perceptual
quality with high-frequency details, while Tam-
ing 3DGS shows blurry background trees and
land.

depth alpha-blending. The ground truth color at each selected pixel, denoted as pgt, is also stored.
After every user-defined interval, new Gaussians are generated at the computed positions Derr, and
each is assigned the corresponding color pgt. Fig. 4 shows that the compensated Gaussians in
our proposed approach recover the underfitting regions missed by the original 3DGS, improving
reconstruction quality in blurry or sparse areas.

Table 1: Quantitative results on multiple datasets, compared with existing state-of-the-
art works. Reducing-3DGS, Compact-3DGS and EAGLES results are replicated using official
code. 3DGS, Mini-Splatting and Taming 3DGS results are reported from (Mallick et al., 2024).
“#G/M” denotes the peak number of Gaussians in training (in millions). The absolutely best
results are shown in bold, and the best results from efficient training methods are highlighted.
Horizontal bars provide an intuitive comparison of the peak number of Gaussian points. “↓” and

“↑” indicate lower and higher values are better, respectively.

Method
Mip-NeRF 360 Tanks&Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ #G/M↓ PSNR↑ SSIM↑ LPIPS↓ #G/M↓ PSNR↑ SSIM↑ LPIPS↓ #G/M↓

3DGS (Kerbl et al., 2023) 27.46 0.815 0.215 3.310 23.65 0.847 0.176 1.840 29.64 0.904 0.243 2.810

Mini-Splatting (Fang & Wang, 2024) 27.26 0.822 0.217 4.320 23.42 0.847 0.181 4.320 30.04 0.910 0.244 4.510
Reducing-3DGS (Papantonakis et al., 2024) 27.21 0.811 0.225 2.749 23.59 0.841 0.187 1.507 29.61 0.903 0.248 2.218
Compact-3DGS (Lee et al., 2024b) 26.96 0.797 0.244 2.590 23.34 0.831 0.202 1.465 29.80 0.900 0.257 2.268
EAGLES (Girish et al., 2024) 27.15 0.811 0.231 1.928 23.27 0.837 0.201 0.954 29.83 0.909 0.246 1.981

Taming 3DGS (Mallick et al., 2024) 27.22 0.795 0.260 0.632 23.68 0.836 0.211 0.319 29.49 0.900 0.270 0.294
Ours 27.30 0.809 0.234 0.628 23.62 0.842 0.192 0.318 29.64 0.906 0.256 0.292

5 EVALUATION

Dataset and metrics. Following the standard practice, we evaluate our rendering performance on
three novel view synthesis datasets: Mip-NeRF 360 (Barron et al., 2022), Tank&Temple (Knapitsch
et al., 2017), and Deep-Blending (Hedman et al., 2018). For quantitative evaluation, we report
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018). Furthermore, we assess memory efficiency by measuring
peak training memory usage on real-world edge settings, i.e., NVIDIA Jetson AGX Xavier. For

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

visualized evaluation, we show rendering results of 3DGS (Kerbl et al., 2023) and Taming 3DGS
(Mallick et al., 2024) on various scenes for comparison.

Implementation details. All render quality experiments are conducted under the same environment
specified in the original 3DGS (Kerbl et al., 2023) and Taming 3DGS (Mallick et al., 2024) using an
NVIDIA GTX 4090 GPU. Following Mini-Splatting (Fang & Wang, 2024), we reset all Gaussians’
opacity and position at the 5K-th iteration for Mip-NeRF 360 (Barron et al., 2022) outdoor scene.
Our Gaussian compensation step starts at the 10K-th iteration and ends at the 15K-th iteration. After
that, we fine-tune the result to a certain iteration depending on each scene.

5.1 QUANTITATIVE RESULTS

Quantitative results are summarized in Table 1, in comparison with the original 3DGS (Kerbl et al.,
2023) and the state-of-the-art training method Taming 3DGS (Mallick et al., 2024). We also compare
to the state-of-the-art pruning works like Mini-Splatting (Fang & Wang, 2024). It is seen that we
outperform Taming 3DGS (Mallick et al., 2024) by an average of 0.15 dB PSNR and 0.03 LPIPS
with fewer peak Gaussians across all scenes. Compared to the state-of-the-art pruning method, Mini-
Splatting (Fang & Wang, 2024), and the vanilla 3DGS (Kerbl et al., 2023), our method improves
PSNR by 0.5 dB on the Tank&Temple dataset and reduces peak numbers of Gaussians by more than
6×.

More importantly, our method practically achieves on-device training on memory-constrained plat-
forms. Experiments conducted on Jetson Xavier reveal our method reduces peak memory usage by
nearly 2× compared to the original 3DGS, as shown in Table 2(b). Notably, we observed that up to
three-quarters memory is used for dataset storage, we develop a parallel dataloader that dynamically
prefetches and moves data between the storage and the memory according to the training pipeline.
This effort further reduces peak training memory by more than 5 GB.

5.2 VISUAL QUALITY RESULTS

We compare the rendered images for the perceptual analysis, as illustrated in Fig. 7. It is seen that
our method brings significantly higher visual quality with high-frequency and textural fidelity. On
the contrary, Taming 3DGS (Mallick et al., 2024) loses details in textured regions such as tree bark
and gravel surfaces. As noted in (Zhang et al., 2018), such smoothness can artificially inflate PSNR
scores (e.g., Taming 3DGS: 26.48dB vs. Ours: 24.36dB), which explains why our method yields
lower PSNR yet achieves better perceptual quality, as reflected by LPIPS. Fig. 8 and Fig. 9 show
more rendered images on multiple scenes compared to Taming 3DGS (Mallick et al., 2024) and
the original 3DGS (Kerbl et al., 2023). Our approach consistently achieves superior visual quality,
particularly in high-frequency regions such as textured lawns and patterned blankets, where fine
details are more faithfully preserved.

Additionally, we provide visualizations of Gaussian ellipsoids on the playroom scene to illustrate the
spatial distribution of Gaussians Fig. 10. Our method significantly reduces redundancy by eliminat-
ing excessive overlap among Gaussians (middle image) and dynamically allocates a higher density
of Gaussians to texture-rich regions (right image), effectively capturing complex scene content under
memory-bounded.

Moreover, Fig. 11 demonstrates that our actual rendering quality is superior to Taming 3DGS
(Mallick et al., 2024) at the iterations. Those results further show the effectiveness of our itera-
tive growing and pruning over the existing slow densification based on prediction. Additional visual
quality comparisons are seen in the Appendix.

6 CONCLUSION

We have presented a memory-efficient training framework for 3DGS that dynamically balances
primitive growth and pruning under strict memory constraints. By iteratively refining Gaussians,
coarse-grainly growing hybrid gradient varying areas, fine-grainly compensating underfitting re-
gions while removing redundant ones, our approach achieves high-fidelity rendering with signifi-
cantly reduced peak training memory consumption throughout training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our results are reproducible. Our source codes, including the
training script, dataset, and checkpoints, have been available on our GitHub repository..

REFERENCES

Milena T Bagdasarian, Paul Knoll, Yi-Hsin Li, Florian Barthel, Anna Hilsmann, Peter Eisert, and
Wieland Morgenstern. 3dgs. zip: A survey on 3d gaussian splatting compression methods. arXiv
preprint arXiv:2407.09510, 2024.

Yanqi Bao, Tianyu Ding, Jing Huo, Yaoli Liu, Yuxin Li, Wenbin Li, Yang Gao, and Jiebo Luo. 3d
gaussian splatting: Survey, technologies, challenges, and opportunities. IEEE Transactions on
Circuits and Systems for Video Technology, 2025.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting. arXiv preprint
arXiv:2401.03890, 2024.

Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, and Duanqing Xu. Efficient density control for
3d gaussian splatting. arXiv preprint arXiv:2411.10133, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. arXiv preprint arXiv:2403.14166, 2024.

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Zhilin Pei, Hengjie Li,
Xingcheng Zhang, and Bo Dai. Flashgs: Efficient 3d gaussian splatting for large-scale and high-
resolution rendering. arXiv preprint arXiv:2408.07967, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. In European Conference on Computer Vision, pp. 54–71. Springer,
2024.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
arXiv preprint arXiv:1607.04381, 2016.

Alex Hanson, Allen Tu, Geng Lin, Vasu Singla, Matthias Zwicker, and Tom Goldstein. Speedy-
splat: Fast 3d gaussian splatting with sparse pixels and sparse primitives. arXiv preprint
arXiv:2412.00578, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam Isack,
Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
monte carlo. Advances in Neural Information Processing Systems, 37:80965–80986, 2024.

10

https://anonymous.4open.science/r/diet_gaussian-C0D9/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, and Eunbyung Park. Deblurring 3d
gaussian splatting. In European Conference on Computer Vision, pp. 127–143. Springer, 2024a.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024b.

Joo Chan Lee, Jong Hwan Ko, and Eunbyung Park. Optimized minimal 3d gaussian splatting. arXiv
preprint arXiv:2503.16924, 2025.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. arXiv preprint arXiv:2412.20522, 2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
18039–18048, 2024.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene rep-
resentation via self-organizing gaussian grids. In European Conference on Computer Vision, pp.
18–34. Springer, 2024.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization. In European Conference
on Computer Vision, 2024.

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel Duck-
worth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari. Rad-
splat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps.
arXiv preprint arXiv:2403.13806, 2024.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1):1–17, 2024.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Revising densification in gaussian splat-
ting. In European Conference on Computer Vision, pp. 347–362. Springer, 2024.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Shimon Ullman. The interpretation of structure from motion. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 203(1153):405–426, 1979.

Zhifan Ye, Chenxi Wan, Chaojian Li, Jihoon Hong, Sixu Li, Leshu Li, Yongan Zhang, and
Yingyan Celine Lin. 3d gaussian rendering can be sparser: Efficient rendering via learned frag-
ment pruning. Advances in Neural Information Processing Systems, 37:5850–5869, 2024.

Heng Yu, Joel Julin, Zoltán Á Milacski, Koichiro Niinuma, and László A Jeni. Cogs: Controllable
gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21624–21633, 2024a.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 19447–19456, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin, and Haoqian Wang. Gaus-
sian in the wild: 3d gaussian splatting for unconstrained image collections. In European Confer-
ence on Computer Vision, pp. 341–359. Springer, 2024a.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, and Deliang
Fan. Lp-3dgs: Learning to prune 3d gaussian splatting. arXiv preprint arXiv:2405.18784, 2024b.

Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari,
Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d gaussian
splatting to enable distilled feature fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 21676–21685, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 2: (a) LPIPS for the “Playroom” and “Drjohnson” scences. “I.P.” denotes “Iterative Pruning”,
“G.C.” denotes “Gaussians Compensation”. (b) Peak training memory usage on NVIDIA Jetson
Xavier.

(a) Ablation study
Method Playroom Drjohnson

Ours 0.259 0.253

Baseline 0.279 0.270
+I.P. 0.264 0.257
+G.C. 0.259 0.253

(b) Memory usage (GB)
Method Mem.

3DGS 18.59
Taming 3DGS 10.01

Ours 8.55
Ours w/loader 2.98

A ADDITIONAL ABLATION STUDY

We conduct ablation studies to show the effectiveness of the components in our training framework.
We test on the Deep-Blending (Hedman et al., 2018) dataset and report LPIPS scores to quantify the
contribution of each component. We stop densification after Gaussians exceed a target number in
the original 3DGS (Kerbl et al., 2023) and report it as the baseline. Note that all configurations yield
the same final number of Gaussians.

Our first contribution involves an iterative pruning strategy, including hybrid gradients to grow new
Gaussians and position adjustment after cloning the Gaussians. This procedure enables continual
model refinement and yields an improvement of approximately 0.015 in LPIPS. Subsequently, we
introduce the proposed Gaussian compensation, as illustrated in Fig. 4, which results in a further
LPIPS improvement of 0.005. This demonstrates that generating new Gaussians in the highest error
pixel enhances perceptual fidelity in underfitting regions.

We also conducted an ablation study to evaluate the impact of using mixed gradients. The mixed
gradient strategy yields a modest improvement on the test dataset (+0.04 dB PSNR) but shows
a significant gain in training dataset (+0.87 dB PSNR) on the kitchen, indicating better realistic
practical application.

B ADDITIONAL QUANTITATIVE RESULTS

We summarize additional quantitative results on the Mip-NeRF 360, Tanks&Temples, and Deep
Blending datasets in Table 4, Table 5, and Table 3.

Table 3: Deep Blending per scene results. 3DGS results are reported from (Girish et al., 2024).
Taming 3DGS (Mallick et al., 2024) results are replicated using official code.

Scene Method PSNR↑ SSIM↑ LPIPS↓ #G/M↓

Drjohnson

3DGS 28.77 0.900 0.250 3.260
Taming 3DGS 29.40 0.903 0.266 0.404

Ours 29.33 0.904 0.253 0.400

Playroom

3DGS 30.07 0.900 0.250 2.290
Taming 3DGS 29.59 0.898 0.274 0.185

Ours 30.04 0.908 0.259 0.185

Average

3DGS 29.42 0.900 0.250 2.780
Taming 3DGS 29.49 0.900 0.270 0.294

Ours 29.69 0.906 0.256 0.292

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Mip-NeRF 360 per scene results. 3DGS results are reported from (Girish et al., 2024).
Taming 3DGS (Mallick et al., 2024) results are replicated using official code.

Scene Method PSNR ↑ SSIM ↑ LPIPS ↓ #G/M↓

Bicycle
3DGS 25.13 0.750 0.240 5.310

Taming 3DGS 24.85 0.718 0.295 0.813
Ours 25.20 0.759 0.244 0.800

Bonsai
3DGS 32.19 0.950 0.180 1.250

Taming 3DGS 31.86 0.936 0.220 0.413
Ours 31.88 0.938 0.212 0.410

Counter
3DGS 29.11 0.910 0.180 1.170

Taming 3DGS 28.59 0.898 0.223 0.311
Ours 28.77 0.901 0.214 0.310

Flowers
3DGS 21.37 0.590 0.360 3.470

Taming 3DGS 21.07 0.554 0.407 0.575
Ours 21.16 0.590 0.354 0.570

Garden
3DGS 27.32 0.860 0.120 5.690

Taming 3DGS 27.43 0.858 0.126 1.900
Ours 27.36 0.865 0.107 1.900

Kitchen
3DGS 31.53 0.930 0.120 1.770

Taming 3DGS 30.95 0.922 0.141 0.482
Ours 31.35 0.924 0.135 0.480

Room
3DGS 31.59 0.920 0.200 1.500

Taming 3DGS 31.27 0.908 0.250 0.225
Ours 31.16 0.911 0.240 0.220

Stump
3DGS 26.73 0.770 0.240 4.420

Taming 3DGS 26.01 0.735 0.293 0.480
Ours 26.37 0.754 0.268 0.480

Treehill
3DGS 22.61 0.640 0.350 3.420

Taming 3DGS 22.95 0.624 0.386 0.482
Ours 22.48 0.635 0.329 0.480

Average
3DGS 27.45 0.810 0.220 3.110

Taming 3DGS 27.22 0.795 0.260 0.632
Ours 27.30 0.809 0.234 0.628

Table 5: Tanks&Temples per scene results. 3DGS results are reported from (Girish et al., 2024).
Taming 3DGS (Mallick et al., 2024) results are replicated using official code.

Scene Method PSNR↑ SSIM↑ LPIPS↓ #G/M↓

Train
3DGS 21.94 0.810 0.200 1.110

Taming 3DGS 22.14 0.804 0.237 0.365
Ours 22.24 0.815 0.214 0.365

Truck
3DGS 25.31 0.880 0.150 2.540

Taming 3DGS 25.22 0.868 0.184 0.272
Ours 25.00 0.869 0.170 0.270

Average
3DGS 23.63 0.850 0.180 1.830

Taming 3DGS 23.68 0.836 0.211 0.319
Ours 23.62 .842 0.192 0.318

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C USE OF LARGE LANGUAGE MODELS (LLMS)

We used the large language models to assist with grammar polishing. The core research contribu-
tions were developed without relying on LLM.

D ADDITIONAL VISUAL EXPERIMENTS

Figure 8: Visualized results. Our method achieves superior rendering quality compared against
original 3DGS and Taming 3DGS (Mallick et al., 2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Visualized results. Our method achieves superior rendering quality compared against
original 3DGS and Taming 3DGS (Mallick et al., 2024).

Figure 10: Visualized ellipsoid results. Our position adjustment reduces overlapped Gaussians
(middle image), dynamically allocating more Gaussians to texture-rich regions (right image, texture
of blanket), leading to a superior rendering quality.

Figure 11: Visualized results on flowers at the 8K-th iteration and kitchen at the 2K-th itera-
tion. Our method shows significantly improved rendering quality after the same training iterations
compared to Taming 3DGS (Mallick et al., 2024).

16

	Introduction
	Related Work
	Compact 3D Gaussian Splatting

	Background and Motivation
	Background of 3D Gaussian Splatting
	Motivation for Resolving Problems in 3DGS Training

	The Proposed Systematic Training Framework
	Framework Overview
	Iterative Growing and Pruning
	Adaptive Gaussian Compensation

	Evaluation
	Quantitative Results
	Visual Quality Results

	Conclusion
	Additional Ablation Study
	Additional Quantitative Results
	Use of Large Language Models (LLMs)
	Additional Visual Experiments

