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Abstract001

Social media has become a crucial platform for002
information dissemination and opinion expres-003
sion. The massive and continuous generation004
of user content has given rise to various nat-005
ural language processing tasks, such as senti-006
ment analysis and topic classification. How-007
ever, existing mainstream approaches typically008
focus on modeling individual tasks in isola-009
tion, lacking systematic exploration of collab-010
orative modeling across multiple tasks. This011
neglects the inherent correlations among social012
media tasks, thereby limiting the model’s abil-013
ity to fully comprehend and exploit the rich,014
multi-dimensional semantic information em-015
bedded in text. To address this challenge, we016
propose Task-adaptive Contrastive Learning017
with Cooperative Mixture of Experts (TaCL-018
CoMoE), a unified framework for social me-019
dia multi-task learning. Specifically, we im-020
prove the gating mechanism by replacing the021
traditional softmax routing with sigmoid acti-022
vation, enabling cooperative selection among023
multiple experts and mitigating the “expert024
monopoly” phenomenon. In addition, we in-025
troduce a task-adaptive contrastive learning026
strategy to further enhance the model’s abil-027
ity to capture and distinguish semantic struc-028
tures across different tasks. Experimental re-029
sults on multiple public social media datasets030
demonstrate that TaCL-CoMoE consistently031
achieves state-of-the-art (SOTA) performance.032
The code is available at https://anonymous.033
4open.science/r/TaCL-CoMoE.034

1 Introduction035

In recent years, social media has become a ma-036

jor platform for information acquisition, opinion037

expression, and social interaction (Islam, 2025).038

The continuous and rapid growth of user-generated039

content has given rise to a variety of natural lan-040

guage processing tasks, including sentiment anal-041

ysis, topic classification, and misinformation de-042

tection (Zhou et al., 2025; Antypas et al., 2024;043

Figure 1: Comparison Between Traditional Methods
and TaCL-CoMoE on the Social Media Multi-task Anal-
ysis. Unlike traditional approaches that train separate
models for each task, TaCL-CoMoE adopts a unified
architecture capable of capturing underlying inter-task
relationships and enabling knowledge sharing.

Wang et al., 2025). Although these tasks differ in 044

objectives and characteristics, they often exhibit 045

underlying semantic correlations, which suggests 046

the potential for joint modeling. However, most 047

existing approaches focus on single-task learning 048

as shown in Figure 1 (a), overlooking the latent 049

relationships and shared knowledge across tasks. 050

Therefore, how to effectively leverage the seman- 051

tic correlations among tasks for joint multi-task 052

modeling remains an open and important research 053

question. 054

To address this challenge, researchers have in- 055

creasingly turned their attention to large language 056

models (LLMs), which have demonstrated remark- 057

able performance across a wide range of natural 058

language processing tasks due to their powerful 059

semantic understanding and generative capabili- 060

ties (Touvron et al., 2023; Hurst et al., 2024; Zeng 061
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et al., 2024). However, as model sizes continue to062

grow, the computational and storage costs associ-063

ated with fine-tuning have escalated significantly,064

posing serious limitations to the efficient deploy-065

ment of such models in real-world applications.066

Low-Rank Adaptation (LoRA), a representative067

parameter-efficient fine-tuning approach, mitigates068

these issues by freezing the backbone model and069

only training a small number of low-rank parame-070

ters (Hu et al., 2022). This strategy substantially071

reduces training costs while maintaining competi-072

tive performance. Nevertheless, in practical multi-073

task scenarios, methods like LoRA often require074

frequent switching between specialized models and075

lack flexible gating and routing mechanisms, mak-076

ing it challenging to efficiently adapt to the dy-077

namic variability across tasks (Zhao et al., 2024;078

Xia et al., 2024).079

To address the aforementioned issue, Liu et al.080

(2024) and Dou et al. (2024) propose MOELoRA,081

which integrates the Mixture-of-Experts (MoE)082

(Shazeer et al., 2017; Fedus et al., 2022) architec-083

ture with the LoRA efficient fine-tuning technique.084

A flexible gating network in MOE is leveraged to085

dynamically select the most appropriate expert sub-086

network across different tasks or input samples, ef-087

fectively alleviating the problem of frequent switch-088

ing between specialized models in multi-task sce-089

narios. However, existing MoE primarily rely on090

softmax-based gating mechanisms, which tend to091

make overly confident expert selections, i.e., “ex-092

pert monopoly” phenomenon (Nguyen et al., 2024).093

In this paper, we propose a unified multi-task094

learning framework for social media scenarios,095

called Task-adaptive Contrastive Learning with096

Cooperative Mixture of Experts (TaCL-CoMoE),097

aiming to enhance both collaborative modeling ca-098

pabilities and semantic discrimination in multi-task099

learning. Firstly, we introduce a sigmoid-based100

cooperative expert routing mechanism that allows101

multiple experts to be activated simultaneously, al-102

leviating the common issue of “expert monopoly”103

observed in softmax gating, and promoting bal-104

anced cooperation among experts. Secondly, we105

integrate a contrastive learning mechanism into106

TaCL-CoMoE and flexibly adopt supervised or un-107

supervised strategies depending on the availability108

of task label information, guiding the model to109

learn task-specific semantic representations and im-110

proving its fine-grained semantic discrimination.111

Finally, we conduct extensive experiments on mul-112

tiple public social media datasets to validate the113

effectiveness of the proposed approach. The re- 114

sults demonstrate that TaCL-CoMoE outperforms 115

existing SOTA methods across all tasks. The main 116

contributions of this paper are as follows: 117

• We propose TaCL-CoMoE, a unified multi- 118

task modeling framework for social media. 119

• We introduce a sigmoid-based cooperative ex- 120

pert routing mechanism to alleviate expert 121

selection polarization and task interference 122

issues commonly found in traditional MoE 123

architecture. 124

• We introduce a task-aware contrastive learn- 125

ing strategy that flexibly selects supervision 126

methods based on the nature of the task’s label 127

information, enhancing the model’s ability to 128

capture semantic structures across different 129

tasks. 130

• Extensive experimental results demonstrate 131

that our method outperforms existing SOTA 132

approaches. 133

2 Related Work 134

The related work is provided in Appendix A 135

3 Method 136

In this section, we elaborate on the methodological 137

details of TaCL-CoMoE. The overall architecture 138

of TaCL-CoMoE is illustrated in Figure 2. 139

3.1 Task Definition 140

This study aims to address various text analysis 141

tasks in the context of social media from a multi- 142

task learning perspective. Specifically, it focuses on 143

four representative tasks: Stance Detection, Hate 144

Detection, Named Entity Recognition (NER), and 145

Topic Classification. A unified language modeling 146

paradigm is adopted by formulating all tasks as text- 147

to-text generation problems. Specifically, given a 148

target task instruction µ ∈ G and a social media 149

post X = {x1, . . . , xi, . . . , xn}, where G is a set 150

of multi-task instructions, xi represents the ith to- 151

ken in the sequence, the model is required to learn 152

a conditional generation function Ft : X → Ŷt, 153

where Ŷt represents the predicted output. The set 154

G is shown in Appendix C. 155

3.2 Cooperative Mixture of Experts 156

LoRA has demonstrated remarkable advantages in 157

the parameter-efficient fine-tuning of LLMs. The 158

2



Figure 2: Illustration of the overall framework of TaCL-CoMoE, which consists of two essential components:
Cooperative Mixture of Experts, and Task-adaptive Contrastive Learning.

core idea is to replace full-parameter updates with159

the learning of a pair of low-rank matrices, thereby160

significantly reducing the number of trainable pa-161

rameters and improving convergence efficiency.162

Specifically, LoRA represents the update to lin-163

ear weights as W0 + ∆W = W0 + BA. Here,164

W0 ∈ Rdin×dout denotes the fixed weight matrix165

from the pre-trained LLMs, whileB ∈ Rdin×r and166

A ∈ Rr×dout are the trainable low-rank matrices.167

The forward pass is defined as:168

h =W0x+
α

r
·BAx (1)169

Here, α is a scaling factor that controls the influ-170

ence of the low-rank update on the output, and r is171

a rank hyperparameter that determines the number172

of trainable parameters. The input vector x has a173

dimensionality of din, and the output vector h has174

a dimensionality of dout.175

Existing research demonstrates that the widely176

used softmax gating mechanism in MoE models177

may induce unnecessary competition among ex-178

perts, leading to issues such as expert monopo-179

lization and representation collapse (Nguyen et al.,180

2024; Csordás et al., 2023). To address this prob-181

lem, we introduce a cooperative MoE layer to re-182

place each dense layer in LLM.183

In the cooperative MoE layer, each expert184

{Ei}Ni=1 consists of a pair of low-rank matrices185

Bi ∈ R
din× r

N and Ai ∈ R
r
N
×dout , where N de- 186

notes the number of experts. Collectively, these 187

experts form a trainable module for modeling the 188

parameter update ∆W . For each task Tj ∈ T we 189

assign a unique task identifier, which is mapped to a 190

task vector ej ∈ RdT via a task embedding matrix 191

E ∈ R|T|×dT , where dT denotes the task embed- 192

ding dimension and T denotes the set of all tasks. 193

The task vector is then fed into a task-aware gat- 194

ing network, which generates task-specific expert 195

weights through a linear transformation followed 196

by a sigmoid activation: 197

ωj = Sigmoid(WTej) (2) 198

where, WT ∈ RN×dT is a learnable gating matrix, 199

and ωj ∈ RN denotes the contribution of each ex- 200

pert to task Tj . Based on this structure, the forward 201

process of the cooperative MoE layer for task Tj 202

can be represented as: 203

hj = W0xj +
α

r
·

N∑
i=1

ωji · Ei(xj) 204

= W0xj +
α

r
·

N∑
i=1

ωji ·BiAixj (3) 205

where hj and xj represent the input and output of 206

intermediate LLM layers for samples from Tj . 207
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3.3 Task-adaptive Contrastive Learning208

In the task-adaptive contrastive learning module,209

we dynamically select between unsupervised and210

supervised contrastive strategies based on the na-211

ture of the task’s label information. All tasks share212

a unified contrastive loss framework.213

3.3.1 Contrastive Loss214

For each sample in a batch, two augmented views215

are generated, resulting in a total of 2N representa-216

tion vectors {zk}2Nk=1, where each zk ∈ Rd is a nor-217

malized embedding. In unsupervised contrastive218

learning, if zi and zj are two different augmented219

views derived from the same original sample, they220

are regarded as a positive pair, while all other sam-221

ples are treated as negative examples. In supervised222

contrastive learning, class labels are utilized to con-223

struct positive and negative sample pairs. Samples224

belonging to the same class are regarded as pos-225

itive samples, while those from different classes226

are treated as negative samples. The unsupervised227

and supervised contrastive losses are defined as228

follows:229

Lx =
1

|I|
∑
i∈I

lx(zi), x ∈ {unsup, sup} (4)230

lunsup(zi) = − log

∑
j∈I 1(i,j) · expS(i, j)∑
k∈I 1(i,k) · expS(i, k)

(5)231

lsup(zi) = − log

∑
j∈I 1

′

(i,j) · expS(i, j)∑
k∈I 1

′
(i,k) · expS(i, k)

(6)232

Here, 1 and 1
′

denote the indicator function,233

which 1 returns 1 if the two input elements origi-234

nate from the same view, and 1
′

returns 1 only if235

the two input elements belong to the same label236

class. The function S(i, j) = sim(zi, zj)/τ com-237

putes the cosine similarity and scales it under the238

control of a temperature parameter τ . I denotes the239

index set of all augmented samples in the batch.240

3.3.2 Multi-task Contrastive Loss Integration241

We assign an independent contrastive loss balanc-242

ing parameter λt to each sub-task t ∈ T . The final243

contrastive loss is formulated as a weighted sum of244

the individual task-specific losses:245

Lcontrastive =
∑
t∈T

λt · L(t)
sup/unsup (7)246

The final training objective combines the con- 247

trastive learning loss with the primary task loss 248

from multi-task fine-tuning: 249

Ltotal = Lmain + Lcontrastive (8) 250

where Lmain denotes the sum of the primary loss 251

functions across all tasks, formulated as a cross- 252

entropy loss. 253

4 Experimental Settings 254

4.1 Dataset 255

Four representative datasets from social media are 256

utilized, each corresponding to a distinct task: Hate 257

Detection, Stance Detection, NER, and Topic Clas- 258

sification. The IHC dataset (ElSherief et al., 2021) 259

consists of annotated tweets labeled for hate speech, 260

distinguishing between hateful and normal con- 261

tent. The PStance dataset (Li et al., 2021) contains 262

stance annotations toward political figures, with 263

labels of favor or against. The TweetNER7 dataset 264

(Ushio et al., 2022) includes tweets annotated with 265

seven types of named entities, covering categories 266

such as person, corporation, location, etc. The 267

Tweet Topic Multi dataset (Antypas et al., 2022) 268

comprises multi-labeled tweets annotated with var- 269

ious topics, including family, gaming, sports, etc. 270

More details are given in Appendix B 271

4.2 Baselines 272

LLMs-based (Zero-shot) To evaluate the 273

zero-shot performance of LLMs in multi-task 274

social media scenarios, we conducted zero- 275

shot experiments on six LLMs: GLM-4-32B 276

(GLMTeam et al., 2024), DeepSeek-V3 (Guo 277

et al., 2025), InternLM2.5-20B-chat (Zang et al., 278

2025), Qwen2.5-72B-Instruct (Hui et al., 2024), 279

GPT-3.5-turbo, and GPT-4o (Hurst et al., 2024). 280

LLMs-based (Fine-tuning) To investigate the 281

fine-tuning capabilities of LLMs in multi-task 282

social media scenarios, we selected four represen- 283

tative open-source models: Baichuan2-7B (Yang 284

et al., 2023)1, DeepSeek-7B (Bi et al., 2024)2, 285

Llama2-7B (Touvron et al., 2023)3, and Qwen2-7B 286

(QwenTeam, 2024)4. All fine-tuning baselines 287

adopted LoRA as an efficient parameter-efficient 288

1https://huggingface.co/baichuan-inc/
Baichuan2-7B-Chat

2https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

3https://huggingface.co/meta-llama/Llama-2-7b
4https://huggingface.co/Qwen/

Qwen2-7B-Instruct
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Methods Hate Detection Stance Detection NER Topic Classification Avg

LLMs-based (Zero-shot)
GLM-4-32B 68.00 82.05 33.11 52.41 58.89
DeepSeek-V3 60.70 83.27 57.43 56.74 64.53
Internlm2.5-20B-chat 62.92 76.60 13.23 41.79 48.63
Qwen2.5-72B-Instruct 62.12 78.62 57.36 53.91 63.00
GPT-3.5-turbo 66.85 79.35 41.80 55.89 60.97
GPT-4o 70.83 82.98 52.85 55.16 65.45

LLMs-based (Fine-tuning)
Baichuan2-7B 74.80 84.12 73.27 62.99 73.79
DeepSeek-7B 74.28 84.55 73.52 62.21 73.64
Llama2-7B 76.72 84.23 72.66 62.60 74.05
Qwen2-7B 77.15 84.25 72.81 63.24 74.36

LLMs-based (KTO)
Baichuan2-7B 67.48 83.54 51.59 54.91 64.38
DeepSeek-7B 65.87 84.26 66.00 58.40 68.63
Llama2-7B 63.52 84.94 71.07 57.89 69.35
Qwen2-7B 63.76 84.53 70.92 60.05 69.81

SOTA 78.19 83.43 63.10 62.02 71.68

TaCL-CoMoE (Ours) 78.21 85.90 78.04 64.37 76.63

Table 1: The overall results(%) of the competing baselines and TaCL-CoMoE on the social media multi-task datasets.
The best results are highlighted in bold, and the second-best results are underlined. The results of all LLM-based
methods are derived from experiments conducted using self-constructed instruction data.

tuning strategy.289

LLMs-based (KTO) Knowledge Transfer Op-290

timization (KTO) (Ethayarajh et al., 2024) is a291

reinforcement learning method based on human292

preference, which aims to optimize the behavior293

of language models through human feedback. All294

baseline models are trained with the KTO strategy.295

SOTA To validate the superiority of our approach,296

we conducted a comparative study against current297

SOTA methods on four selected social media298

tasks. Hate Speech Detection: Hoang et al. (2024)299

propose ToXCL, a unified framework for detecting300

and explaining implicit harmful speech. ToXCL301

integrates a target group generator, an encoder-302

decoder architecture, and a teacher classifier,303

leveraging knowledge distillation to enhance304

detection performance. Stance Detection: Lan et al.305

(2024) introduce COLA, a three-stage framework306

composed of collaborative large language model307

agents. The framework includes multidimen-308

sional text analysis, reasoning-enhanced debate,309

and stance inference stages. NER and Topic310

Classification: Due to inconsistent dataset splits311

in prior work, fair comparisons are infeasible.312

Therefore, we follow the original dataset splits for313

our experiments and report the best performance314

reported in the respective papers as baselines315

(Ushio et al., 2022; Antypas et al., 2022). 316

Evaluation Metrics All tasks are evaluated using 317

the Macro F1 score as a unified metric. 318

4.3 Implementation Details 319

ChatGLM3-6B (GLMTeam et al., 2024)5 is em- 320

ployed as the base model in TaCL-CoMoE, which 321

is built upon the transformer architecture and con- 322

sists of 28 transformer layers, exhibiting strong 323

capabilities in language understanding and gener- 324

ation. The model is fine-tuned using LoRA for 325

parameter-efficient adaptation, with a rank of 16 326

and a dropout rate of α = 0.1. The number of ex- 327

perts is set to 8. All training stages use the AdamW 328

optimizer (Loshchilov and Hutter, 2017) with an 329

initial learning rate of 2e-4. The maximum input 330

and output lengths are set to 2048 and 512, re- 331

spectively. All experiments are conducted on two 332

NVIDIA RTX 4090 GPUs, each with 24GB of 333

memory. For all experiments, we report the re- 334

sults as the average over three runs with different 335

random seeds. 336

5https://huggingface.co/THUDM/chatglm3-6b

5
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5 Results and Discussions337

5.1 Main Results338

The performance of TaCL-CoMoE compared to339

all baselines is presented in Table 1. The detailed340

analyses are as follows.341

Hate Detection TaCL-CoMoE achieves an F1342

score of 78.21%, slightly outperforming the current343

SOTA result of 78.19%. Compared to GPT-4o and344

the best result under the KTO paradigm, TaCL-345

CoMoE yields absolute improvements of 7.38%346

and 10.73%, respectively. The result suggests that347

both zero-shot and KTO methods exhibit certain348

limitations in recognizing offensive intent within349

social contexts.350

Stance Detection TaCL-CoMoE achieves an F1351

score of 85.90%, outperforming GPT-4o, the best352

KTO-based model, and the best supervised fine-353

tuned model by 2.92%, 0.96%, and 1.35% , respec-354

tively. This result demonstrates the effectiveness355

of TaCL-CoMoE in Stance Detection.356

NER TaCL-CoMoE achieves an F1 score of357

78.04%, substantially surpassing existing best-358

performing methods. Compared to the current359

SOTA, the best supervised fine-tuned model, and360

the best KTO-based approach, it yields improve-361

ments of 14.94%, 4.52%, and 6.97%, respectively.362

The generally poor performance of zero-shot meth-363

ods indicates that pretrained language models ex-364

hibit clear limitations in structured information ex-365

traction tasks.366

Topic Classification TaCL-CoMoE achieves an367

F1 score of 64.37%, outperforming the current368

SOTA by 2.35 %. Compared to GPT-4o, the best369

KTO-based model, and the best supervised fine-370

tuned model, TaCL-CoMoE yields improvements371

of 9.21%, 4.32%, and 1.13%, respectively.372

Overall, TaCL-CoMoE achieves SOTA perfor-373

mance across four social media tasks, demonstrat-374

ing notable advantages particularly in NER and375

Stance Detection. These results validate the effec-376

tiveness of TaCL-CoMoE in multi-task modeling377

within the context of social media.378

5.2 Ablation Study379

In this section, we perform ablation studies to an-380

alyze the effects of critical modules in our TaCL-381

CoMoE, detailed in Table 2.382

Impact of the MoE Architecture To evaluate383

the impact of the MoE architecture on model per-384

formance, we remove the MoE module and directly385

fine-tune the base model, ChatGLM3-6B, on the386

four tasks (θ). Experimental results show that re- 387

moving the MoE leads to performance degradation 388

across all four tasks, with the most notable drop of 389

4.38% observed in the NER task. 390

Impact of Contrastive Learning To investigate 391

the impact of contrastive learning on model per- 392

formance, we remove the Lcon (ρ) and replace the 393

task-adaptive contrastive learning (ϕ) with a uni- 394

fied unsupervised contrastive learning approach. 395

Experimental results show that both modifications 396

lead to performance degradation, with average F1 397

scores decreasing by 1.86% and 0.69%, respec- 398

tively. These findings demonstrate the effectiveness 399

of task-adaptive contrastive learning. 400

Methods Hate Stance NER Topic

TaCL-CoMoE 78.21 85.90 78.04 64.37

(θ) w/o MoE 76.18↓2.03 84.49↓1.41 73.66↓4.38 62.60↓1.77

(ρ) w/o Lcon 76.37↓1.84 84.87↓1.03 75.38↓2.66 62.47↓1.90
(ϕ) w CLunsup 77.19↓1.02 84.89↓1.01 77.58↓0.46 64.12↓0.25

(κ) w Softmax 77.04↓1.17 84.55↓1.35 76.95↓1.09 63.20↓1.17
(Ω) w Random 76.15↓2.06 84.10↓1.80 74.68↓3.36 62.53↓1.84

(η) w/o N.+T. 77.50↓0.71 84.80↓1.10 / /
(ζ) w/o H.+S. / 77.02↓1.02 63.74↓0.63 /
(ψ) w/o MTL 75.48↓2.73 84.27↓1.63 72.61↓5.43 61.02↓3.35

Table 2: The experimental results(%) of the ablation
study for TaCL-CoMoE (F1 score).

Impact of the Gating Mechanism To evalu- 401

ate the impact of the gating mechanism design on 402

model performance, we conduct comparative ex- 403

periments by replacing the Sigmoid gating function 404

with Softmax (κ) and random (Ω) gating mecha- 405

nisms, respectively. The experimental results show 406

that both alternative designs lead to a decline in 407

overall performance, with the average F1 score 408

dropping by 1.2% and 2.27%, respectively. 409

Impact of Task Interactions To investigate the 410

influence of different tasks on each other, we de- 411

signed three task ablation settings: (1) removing 412

NER and Topic Classification while training the 413

model only on Hate Detection and Stance Detection 414

(η); (2) removing Hate Detection and Stance De- 415

tection while retaining only NER and Topic Clas- 416

sification (ζ). (3) removing the multi-task learn- 417

ing (MTL) mechanism and fine-tuning the base 418

model ChatGLM3-6B separately on each of the 419

four tasks (ψ). Experimental results show that all 420

three ablation settings lead to a degradation in over- 421

all model performance, which verifies the impor- 422

tance of cross-task joint training. 423
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Figure 3: Case Study of TaCL-CoMoE and w/o MoE on Social Media Multi-task Datasets

Figure 4: The Impact of the Number of Experts

5.3 Case Study424

To better understand the impact of the MoE module425

on multi-task learning, we selected four represen-426

tative examples from four distinct tasks. Figure 3427

presents a comparative analysis of the performance428

of TaCL-CoMoE and w/o MoE on these examples.429

In both the hate speech detection and stance de-430

tection tasks, TaCL-CoMoE accurately captures431

the emotional tone and stance expressed in the in-432

puts, successfully identifying hateful content and433

correctly determining the supportive stance. In con-434

trast, w/o MoE fails in both cases, misclassifying435

the inputs. This suggests that TaCL-CoMoE ex-436

hibits a stronger capacity for fine-grained opinion437

understanding.438

For the NER task, the input text includes three439

entities: two person names and one location. TaCL-440

CoMoE successfully identifies and categorizes all441

entities, whereas w/o MoE identifies only a sub-442

set, missing a key person name. A similar pattern 443

is observed in the topic classification task, where 444

w/o MoE identifies only part of the topic informa- 445

tion, while TaCL-CoMoE correctly captures the 446

complete set of topic categories. 447

5.4 The Impact of the Number of Experts 448

Figure 4 illustrates the impact of varying the num- 449

ber of experts on the performance across different 450

tasks. As the number of experts increases from 451

2 to 8, the F1 scores generally exhibit an upward 452

trend, particularly in Hate Detection and Stance 453

Detection, indicating that appropriately increasing 454

the number of experts can effectively enhance the 455

model’s performance in multi-task learning. How- 456

ever, when the number of experts further increases 457

to 16, the performance of all tasks declines to vary- 458

ing degrees. This phenomenon suggests that more 459

experts do not necessarily lead to better results. An 460

excessive number of experts may introduce redun- 461

dancy or noise, thereby undermining the model’s 462

performance. 463

5.5 Feature Representation Visualization 464

To more intuitively illustrate the role of contrastive 465

learning, we visualize the learned representations 466

on four tasks using dimensionality reduction, as 467

shown in Figure 5. The figure presents the distri- 468

bution of samples in the feature space at both the 469

Initial State and Trained State. 470

For the hate speech detection and stance detec- 471

tion tasks, we adopt supervised contrastive learning. 472

As observed, at the initial state, samples from dif- 473

ferent classes are mixed and poorly separated, with 474
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Figure 5: Visualization of Feature Representations on Social Media Multi-task Datasets

Figure 6: The Visualization of Expert Weights for Vari-
ous Tasks. In each task, the length of the bar in different
colors represents the weights for the corresponding ex-
pert.

fuzzy class boundaries. After training, the samples475

exhibit a clearer clustering structure, with improved476

intra-class compactness and increased inter-class477

separation.478

In the named entity recognition and topic classi-479

fication tasks, we adopt unsupervised contrastive480

learning. Initially, the sample distribution appears481

scattered and lacks discernible semantic structure.482

After training, the samples progressively form483

dense clusters in the feature space, revealing more484

coherent and semantically meaningful groupings.485

Overall, both supervised and unsupervised con-486

trastive learning effectively facilitate the emergence487

of semantic structures in the feature space across488

different tasks, enabling the model to learn more489

organized and discriminative semantic representa- 490

tions. 491

5.6 Expert Weights Visualization 492

Figure 6 presents the visualization of expert 493

weights across four tasks under two gating mech- 494

anisms: Sigmoid and Softmax. It is observed that 495

the Softmax gating tends to concentrate weights 496

on a small subset of experts, exhibiting the issue 497

of “expert monopoly”. In contrast, the Sigmoid 498

gating more evenly activates multiple experts in 499

each task, resulting in a more balanced distribution 500

of expert weights. These results suggest that the 501

Sigmoid gating, by independently computing the 502

activation probability of each expert, effectively 503

mitigates the over-reliance on a few experts seen in 504

Softmax gating and promotes better collaboration 505

among experts. 506

6 Conclusion 507

In this paper, we propose TaCL-CoMoE, a multi- 508

task learning framework for the social media do- 509

main that incorporates task-adaptive contrastive 510

learning into an MoE architecture. To mitigate the 511

expert domination issue inherent in traditional MoE 512

models, we design a sigmoid-based expert routing 513

mechanism that facilitates cooperative expert selec- 514

tion and reduces task interference. Experimental 515

results and analyses demonstrate the effectiveness 516

of the proposed TaCL-CoMoE. 517
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7 Limitations518

Despite achieving state-of-the-art results on multi-519

ple social media tasks, the proposed TaCL-CoMoE520

still has certain limitations. Firstly, due to con-521

straints in computational resources and time, ex-522

periments are conducted on only four social media523

tasks. Future work will aim to extend the evalua-524

tion to a broader range of tasks to further verify the525

model’s generalizability and effectiveness across526

diverse social media scenarios. Secondly, the pro-527

posed task-adaptive contrastive learning relies on528

task labels or semantic similarity to construct pos-529

itive and negative sample pairs, which introduces530

additional training overhead to some extent.531

8 Ethical Considerations532

For the Hate Detection task, the examples provided533

in this paper are solely for research purposes and534

do not reflect the authors’ personal values or view-535

points. The goal of this task is to identify and536

prevent the spread of harmful content on social537

media, thereby fostering a healthy and positive on-538

line environment. All data used in this study are539

derived from publicly available datasets, with no540

additional data collection, annotation, or external541

dissemination involved.542
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A Related Work752

Parameter-Efficient Fine-Tuning for LLMs.753

With the continuous growth in the number of pa-754

rameters in LLMs, traditional full-parameter fine-755

tuning faces significant computational and stor-756

age overhead, limiting its scalability in real-world757

applications. To address this challenge, various758

approaches have been proposed to improve fine-759

tuning efficiency. Representative techniques in-760

clude Adapter (Houlsby et al., 2019), BitFit (Zaken761

et al., 2022), Prefix Tuning (Li and Liang, 2021),762

and LoRA (Hu et al., 2022). Among them, LoRA763

introduces trainable low-rank matrices into the lin-764

ear transformations of pretrained models, enabling765

effective adaptation to downstream tasks without766

updating the original model parameters. Owing to767

its simplicity, low resource overhead, and stable768

performance, LoRA has been widely adopted in769

practice.770

Mixture-of-Experts. The Mixture of Experts771

(MoE) is an approach that expands model capac-772

ity through sparsely activated expert networks,773

without significantly increasing computational cost774

(Shazeer et al., 2017; Fedus et al., 2022). Tradi-775

tional MoE architectures have been widely adopted776

in both pretrained language models and vision mod-777

els (Lepikhin et al., 2021; Riquelme et al., 2021).778

The core idea is to utilize a router network to dy-779

namically assign input data to different expert net-780

works, thereby enabling specialization and collabo-781

ration among experts.782

Recently, researchers have begun to explore the783

integration of MoE with Parameter-Efficient Fine-784

Tuning approaches. For instance, Liu et al. (2024)785

introduce a multi-expert architecture in which each786

expert consists of a pair of low-rank matrices. A 787

task-driven gating function generates task-specific 788

parameters, enabling the model to achieve notable 789

performance gains in multi-task medical applica- 790

tions. Similarly, Dou et al. (2024) impose a local 791

balancing constraint to encourage a subset of ex- 792

perts to focus on leveraging world knowledge for 793

downstream tasks, while the remaining experts con- 794

centrate on task-specific objectives. This design 795

enhances multi-task performance while preserving 796

essential world knowledge. 797

Contrastive Learning. Contrastive Learning 798

aims to learn more discriminative feature repre- 799

sentations by constructing positive and negative 800

sample pairs, guiding the model to draw seman- 801

tically similar samples closer while pushing dis- 802

similar ones apart in the embedding space. Khosla 803

et al. (2020) propose Supervised Contrastive Learn- 804

ing, which extends the self-supervised contrastive 805

learning framework by utilizing label information 806

to cluster embeddings of samples from the same 807

class more tightly. This method significantly im- 808

proves classification accuracy on the ImageNet 809

benchmark and strengthens the model’s robustness 810

to noise and hyperparameter sensitivity. Moreover, 811

Liang et al. (2021) introduce contrastive learning 812

into aspect-based sentiment analysis by designing 813

a multi-task framework that jointly optimizes the 814

supervised contrastive objective and the primary 815

task, thereby enhancing the model’s capacity to 816

distinguish aspect-specific sentiment features. 817

B Dataset Statistics 818

In this section, we present the dataset statistics 819

for social media multitask learning, as shown in 820

Table 3 and Figure 7. Table 3 lists the sizes of the 821

training, validation, and test sets, the average token 822

lengths, and the number of labels for the four tasks. 823

Figure 7 illustrates the label distribution for each 824

task. 825

Hate Detection This task aims to determine 826

whether a given text contains hate speech. It in- 827

cludes 13,797 training samples, 1,838 validation 828

samples, and 3,912 test samples, with an average 829

token count of 21.77. It comprises two labels: Nor- 830

mal and Hate. The Normal class contains 13,291 831

samples, while the Hate class contains 6,256 sam- 832

ples. 833

Stance Detection This task aims to identify the 834

attitude expressed in a text toward a specific target 835

individual. The targets include three former U.S. 836
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Task Type # Train # Validation # Test # Avg Tokens # Label Num
Hate Detection 13797 1838 3912 21.77 2
Stance Detection 17191 2174 2176 43.50 2
NER 7111 886 3383 45.71 7
Topic Classification 5005 708 5536 44.54 19

Table 3: Data Statistics of Social Media Multi-task Datasets

Figure 7: Label Distribution Statistics on Social Media Multi-task Datasets

presidential candidates: Donald Trump, Joe Biden,837

and Bernie Sanders. The stance labels consist of838

Favor and Against. The dataset comprises 17,191839

training samples, 2,174 validation samples, and840

2,176 test samples, with an average token count of841

43.50. It includes two labels, with 10,398 samples842

labeled as Favor and 11,143 samples labeled as843

Against.844

Named Entity Recognition This task aims to845

identify and classify named entities in text into846

predefined categories. It includes 7,111 training847

samples, 886 validation samples, and 3,383 test848

samples, with an average token count of 45.71. It849

comprises seven entity categories: Person, Creative850

Work, Location, Corporation, Group, Product, and851

Event.852

Topic Classification This task is formulated as 853

a multi-label text classification problem, aiming to 854

assign one or more relevant topics to each social 855

media post. The dataset consists of 5,005 training 856

samples, 708 validation samples, and 5,536 test 857

samples. The average number of tokens per sample 858

is 44.54, and the label space includes 19 distinct 859

topic categories. 860

C Task Instructions 861

The instruction design for the four tasks is shown 862

in Figure 8. 863
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Figure 8: Instruction Design for the Four Tasks
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