
Harder Task Needs More Experts: Dynamic Routing in MoE Models

Anonymous ACL submission

Abstract

In this paper, we introduce a novel dynamic001
expert selection framework for Mixture of Ex-002
perts (MoE) models, aiming to enhance com-003
putational efficiency and model performance004
by adjusting the number of activated experts005
based on input difficulty. Unlike traditional006
MoE approaches that rely on fixed Top-K rout-007
ing, which activates a predetermined number008
of experts regardless of the input’s complexity,009
our method dynamically selects experts based010
on the confidence level in expert selection for011
each input. This allows for a more efficient uti-012
lization of computational resources, activating013
more experts for complex tasks requiring ad-014
vanced reasoning and fewer for simpler tasks.015
Through extensive evaluations, our dynamic016
routing method demonstrates substantial im-017
provements over conventional Top-2 routing018
across various benchmarks, achieving an aver-019
age improvement of 0.7% with less than 90%020
activated parameters. Further analysis shows021
our model dispatches more experts to tasks re-022
quiring complex reasoning skills, like BBH,023
confirming its ability to dynamically allocate024
computational resources in alignment with the025
input’s complexity. Our findings also highlight026
a variation in the number of experts needed027
across different layers of the transformer model,028
offering insights into the potential for design-029
ing heterogeneous MoE frameworks. We will030
open-source all the models we trained in this031
project.032

1 Introduction033

To effectively increase the model’s parameter size,034

researchers have proposed the Mixture of Experts035

(MoE) framework (Shazeer et al., 2017; Lepikhin036

et al., 2021). By setting up multiple experts to037

enhance the model’s overall capacity, MoE mod-038

els selectively activate a subset of parameters for039

use, thereby achieving more efficient parameter040

utilization. With the same number of activated pa-041

rameters, MoE models substantially outperform042

dense models in performance, achieving excep- 043

tional results in tasks such as QA and machine 044

translation (Kim et al., 2021). 045

Most MoE frameworks adopt a routing mecha- 046

nism that dispatches a fixed number of experts for 047

every input (Fedus et al., 2022; Du et al., 2022). 048

The most famous method is Top-K routing (Shazeer 049

et al., 2017), which initially calculates the proba- 050

bility of each expert being suited to the current 051

input and then activates the Top-K suitable experts. 052

Empirically, previous works (Lepikhin et al., 2021) 053

activate two experts per token, as activating more 054

experts offers limited improvements in model per- 055

formance but substaintially increases training over- 056

head. Most of the subsequent studies (Zoph et al., 057

2022; Lewis et al., 2021) can be seen as variants 058

of Top-K routing, where different constraints are 059

introduced to ensure that the number of tokens 060

processed by different experts is as balanced as 061

possible. Almost all these efforts activate a fixed 062

number of experts. 063

The Top-K routing, though achieves good per- 064

formance on downstream tasks, overlooks the dif- 065

ferent difficulties of inputs. Compared with sim- 066

pler input, the more challenging input, e.g, tasks 067

that require complex reasoning or logic inference, 068

might need more parameters to solve. Dispatching 069

experts equally across inputs could lead to com- 070

putational waste on simpler tasks and insufficient 071

computational resources for more difficult ones. 072

To fully leverage the potential of MoE models, 073

we propose a dynamic routing mechanism that ad- 074

justs the number of required experts based on the 075

confidence level in the expert selection. When the 076

model deems the currently selected experts as insuf- 077

ficient, it activates more experts. Specifically, we 078

first compute a probability distribution for select- 079

ing experts. If the highest probability for an expert 080

exceeds a predefined threshold p, indicating high 081

confidence, we activate only that one expert. Oth- 082

erwise, we progressively include additional experts 083

1



(a) Top-K routing (b) Top-P routing

Figure 1: Comparison between Top-K routing mechanism and Top-P routing mechanism. (a) Each token selects
fixed K=2 experts with Top-K routing probabilities. (b) In Top-P routing mechanism, each token selects experts
with higher routing probabilities until the cumulative probability exceeds threshold.

until the cumulative probability of the selected ex-084

perts exceeds the threshold p. This approach allows085

for a dynamic selection of experts, with the number086

of experts adjusted according to the input’s com-087

plexity.088

Evaluation across multiple common benchmarks089

has revealed that our method substantially outper-090

forms MoE models based on Top-K routing. Com-091

pared with Top-2 routing, our dynamic routing092

achieves an average improvement of 0.7% with093

less than 90% activated parameters. Further analy-094

sis has shown that our dynamic routing mechanism095

activates more experts in tasks requiring complex096

reasoning like BBH (Suzgun et al., 2023), while097

using fewer experts in relatively easier tasks such098

as Hellaswag (Zellers et al., 2019), confirming that099

our method indeed dynamically allocates experts100

based on the difficulty of the input. Token-level101

analysis indicates that tokens with ambiguous se-102

mantics are more challenging for the model, typi-103

cally activating more experts. Another interesting104

finding is that the number of experts needed varies105

across different layers of the transformer. Lower106

layers require more experts for combination, while107

the top layer needs only one. This may relate to108

the over-thinking phenomenon (Kaya et al., 2019)109

widely observed in deep neural networks.110

Our contributions can be summarized as follows:111

1. We proposed a dynamic routing strategy that112

can adjust the number of activated experts113

based on the input difficulty dynamically.114

2. We empirically validate that our proposed115

method is efficient in both training and in-116

ference, outperforming Top-2 routing while117

activating fewer experts.118

3. We observe that for MoE models, the number119

of experts needed to be activated varies across 120

different layers. This finding could help de- 121

sign heterogeneous MoE frameworks. 122

2 Method 123

In this section, we first briefly introduce the MoE 124

model with Top-K routing strategy, which activates 125

a fixed number of experts for each token. As Top-K 126

routing ignores the varying difficulty of different 127

inputs and the different requirements for experts 128

at different layers, we propose a dynamic routing 129

mechanism that adjusts the number of activated 130

experts according to the complexity of inputs. To 131

avoid activating too many parameters through the 132

dynamic routing mechanism, we also introduce a 133

dynamic loss to encourage the model to activate 134

only the necessary experts. 135

2.1 Top-K Routing MoE 136

In a Transformer model, the MoE layer is ap- 137

plied independently per token and replaces the 138

feed-forward (FFN) sub-block of the transformer 139

block (Lepikhin et al., 2021). For an MoE layer 140

with N experts, E = {e1, e2, .., eN}, an input x 141

will be sent to the experts and the output of the 142

MoE layer is the weighted average of the experts’: 143

MoE(x) =
N∑
i=1

gi(x) ∗ ei(x) (1) 144

where g∗(x) is computed by a routing network that 145

determines the contribution of each expert to the 146

final output. In consideration of computing effi- 147

ciency, a token is dispatched to limited experts. 148

Thus for most experts, the corresponding g∗(x) is 149

zero meaning that the token is not dispatched to 150

that expert. 151

2



To obtain g∗(x), we first compute the probability152

P of selecting each expert for input x:153

P = Softmax(Wr · xT ) (2)154

where Wr ∈ N × d is a learnable parameter and d155

is the dimension of the input x. P is a vector of size156

N and Pi represents the probability of selecting the157

ith expert ei to calculate the input x.158

Top-K routing selects the k experts, whose prob-159

abilities are the highest k in P. Then the probabili-160

ties of the selected experts are normalized and the161

weights of the remaining experts are set to zero, in-162

dicating they are not activated. The corresponding163

calculation of g∗(x) is as follows:164

gi(x) =

{
Pi∑

j∈TopK(P) Pj
, i ∈ TopK(P)

0, i /∈ TopK(P)
(3)165

where TopK(P) returns the indices of the largest166

k elements in P.167

Top-K routing is initially proposed by (Shazeer168

et al., 2017), and subsequently, numerous studies169

have built upon it with improvements. The follow-170

ing works (Lepikhin et al., 2021; Zuo et al., 2022)171

introduce constraints aimed at ensuring a more bal-172

anced workload among the experts during training.173

The core of these works remains to select the most174

suitable experts for each token under specific con-175

straints, based on the probability distribution P176

calculated in Equation 2. And the number of ex-177

perts dispatched for each token is fixed across all178

these studies. Empirically, the value of k is set to179

2, serving as a trade-off between training costs and180

model capabilities.181

2.2 Dynamic Routing MoE182

Although the Top-K routing strategy has shown183

promising performance, its assumption that an184

equal number of experts should be dispatched for185

each token overlooks the variability in difficulty186

across different inputs. Moreover, since a fixed187

number of experts are activated at every layer of188

the transformer, this approach neglects the differ-189

ences in representations across layers, potentially190

requiring a different number of experts for different191

layers.192

To address these issues and make use of model193

parameters more efficiently, we propose a dynamic194

routing strategy based on model confidence. Unlike195

the Top-K routing, which selects a fixed number196

of experts, our method allows the model to assess197

whether the currently selected experts are sufficient. 198

If not, it continues to incorporate more experts. 199

Specifically, we regard that P in Equation 2 re- 200

flects the confidence level of input x in selecting 201

different experts. In other words, Pi represents how 202

confident the model is that the ith expert can ade- 203

quately handle input x. If the highest probability 204

in P is sufficiently large, then we may only need 205

to use the corresponding expert. However, if the 206

highest probability is not large enough, we need to 207

add more experts to increase the reliability of pro- 208

cessing x. We keep adding experts until the sum 209

of the probabilities of the selected experts exceeds 210

a specific threshold p, at which point we consider 211

the model confident enough that these experts can 212

effectively process the input x. We add new experts 213

in descending order of their probabilities in P to 214

minimize the number of activated experts as much 215

as possible. 216

Formally, we first sort the elements in P from 217

highest to lowest, resulting in a sorted index list 218

I . Then we find the smallest set of experts whose 219

cumulative probability exceeds the threshold p, and 220

the number of selected experts t is calculated by: 221

t = argmin
k∈{1...,N}

∑
j<=k

Pi,j ≥ p (4) 222

where p is the threshold that controls how confident 223

the model should be when stopping adding more 224

experts. p is a hyper-parameter whose range is 225

from 0 to 1. The higher the p is, the more experts 226

will be activated. 227

In dynamic routing mechanism, the calculation 228

of g∗(x) is: 229

gi(x) =

{
Pi ei ∈ S

0, ei /∈ S
(5) 230

where S is the set of selected experts controlled by 231

t in Equation 4: 232

S = {eI1 , eI2 ...eIt} (6) 233

2.3 Loss 234

Dynamic Loss There is a risk associated with our 235

dynamic routing mechanism: it could assign low 236

confidence to all experts, thereby activating a larger 237

number of experts to achieve better performance. 238

Suppose P is a uniform distribution and we set the 239

hyper-parameter p to 0.5, then the model would 240

activate up to half of the experts. This goes against 241

3



the original intention of the MoE framework, which242

is to scale the model with great efficiency.243

To prevent dynamic routing from using too many244

parameters to cheat and losing its ability to selec-245

tively choose experts, we introduce a constraint on246

P. We expect the routing mechanism to select a247

small set of necessary experts, therefore, we aim to248

minimize the entropy of the distribution P, ensur-249

ing that every token can focus on as less specific250

experts as possible. Our dynamic loss is designed251

to encourage the routing mechanism to select the252

minimal necessary set of experts, which is formal-253

ized as:254

Lossd = −
N∑
i=1

Pi ∗ log(Pi) (7)255

Load Balance Loss MoE models typically re-256

quire distributed training, where different experts257

are deployed across various nodes. To avoid sce-258

narios where some nodes are fully utilized while259

others are underutilized, thereby impacting train-260

ing efficiency, it is generally desirable for the261

number of tokens processed by different experts262

to be roughly the same. Furthermore, previous263

study (Zuo et al., 2022) has shown that evenly ac-264

tivated experts in an MoE layer can lead to better265

performance. To achieve balanced loading among266

different experts, we have also incorporated a load-267

balance loss, Lossb, which is widely used in pre-268

vious works (Lepikhin et al., 2021; Fedus et al.,269

2022)270

Lossb = N ∗
N∑
i=1

fi ∗Qi (8)271

where fi is the fraction of the tokens choosing ex-272

pert ei and Qi is the fraction of the router probabil-273

ity allocated for expert ei. For a sequence contain-274

ing M tokens, fi and Qi are calculated as:275

fi =
1

M

M∑
j=1

1{ei ∈ Sj} (9)276

277

Qi =
1

M

n∑
j=1

P j
i (10)278

where Sj is the set of activated experts for token279

j, which is calculated by Equation 6, and P j is the280

probability of selecting each experts for token j,281

calculated by Equation 2.282

Final Loss Our model is a generative model that 283

uses next token generation as the training objective. 284

We denote this loss as Losslm. Our final loss is a 285

combination of the language model loss, dynamic 286

loss, and load-balance loss: 287

Loss = Losslm + αLossb + βLossd (11) 288

where α and β are hyper-parameters to adjust the 289

contribution of the load balance loss and dynamic 290

loss, respectively. In our experiment, we set α as 291

1e-2 and β is set as 1e-4. 292

3 Experiments 293

3.1 Settings 294

3.1.1 Training data 295

We use RedPajama(Computer, 2023) as our train- 296

ing data, which is a fully open-source implemen- 297

tation of the LLaMa dataset. RedPajama data 298

consists of diverse sources including the common 299

crawl (CC), C4, github, Wikipedia, books, arxiv 300

and Stackexchange. In our main experiments, we 301

train all models for 100B tokens. 302

3.1.2 Model Settings 303

The model architecture follows LLaMA(Touvron 304

et al., 2023). We use Llama2 tokenizer whose vo- 305

cabulary size is 32,000. The number of transformer 306

layers is 24 and the hidden dimension is 1024. Each 307

MoE layer has 16 experts. Under this configuration, 308

dense model has approximately 374M parameters. 309

Each MoE model has 3.5B total parameters. Only 310

374M parameters are activated in MoE-Top1 and 311

581M parameters are activated in MoE-Top2. More 312

detailed model and training settings are shown in 313

Appendix 9. 314

3.1.3 Evaluation 315

We use opencompass1 to evaluate our model. 316

3.1.4 Experiment Models 317

We train several variants of our architecture from 318

scratch using the above model settings. 319

Dense We use dense models as our baseline. In 320

dense models, each transformer layer is composed 321

of a multi-head attention layer and a standard Feed 322

Forward Network. We implement two Dense mod- 323

els: Dense(374M) and Dense(570M) by setting the 324

hidden dimensions to 1024 and 1280, respectively. 325

1https://github.com/open-compass/OpenCompass/

4



Dense(374M) Dense(570M) MoE-Top1 MoE-Top2 MoE-Dynamic

PIQA (Bisk et al., 2020) 64.3 65.9 67.3 68.1 68.1
Hellaswag (Zellers et al., 2019) 36.1 39.6 42.3 43.9 44.3

ARC-e (Bhakthavatsalam et al., 2021) 37.9 37.6 39.5 40.4 39.9
Commonsense QA (Talmor et al., 2019) 32.2 31.7 30.3 32.1 33.6

BBH (Suzgun et al., 2023) 22.3 22.1 23.0 23.3 25.6

Avg 38.6 39.4 40.5 41.6 42.3

Table 1: Performance on downstream tasks. The best result for each task is emphasized in bold.

MoE-Top1 / Top2 The MoE models with Top-K326

routing, where K = 1 and 2, respectively. Only327

language modeling loss, Losslm, and load-balance328

loss Lossb are used for training. The MoE-Top1329

could be seen as a re-implementation of Switch330

Transformer (Fedus et al., 2022) and the MoE-Top2331

is a re-implementation of Gshard(Lepikhin et al.,332

2021). The activated parameters of MoE-Top1 and333

MoE-Top2 are nearly the same as Dense(374M)334

and Dense(570M), respectively.335

MoE-Dynamic MoE-Dynamic model uses our336

dynamic adaptive routing mechanism, activating337

a various number of experts depending on the in-338

put token representation. The threshold p in our339

routing mechanism is 0.4. During inference, MoE-340

Dynamic model activates no more than 2 experts,341

which means it uses fewer parameters than MoE-342

Top2.343

3.2 Main Results344

Table 1 shows the performance of different models345

on downstream tasks. Overall, the MoE models346

outperform the Dense models. Among all the MoE347

variants, our proposed Dynamic Adaptive MoE348

demonstrates the best performance, achieving at349

least a 0.7% higher score on average compared to350

other models.351

We first compare models with an equal number352

of activated parameters. It is observed that MoE-353

Top1 outperforms the Dense model with 374M354

parameters by an average of 1.9% score, and MoE-355

Top2 surpasses the Dense model with 570M param-356

eters by 2.2% score. This indicates that, with the357

same number of activated parameters, MoE models358

substantially outshine their corresponding Dense359

counterparts.360

When comparing models with the same archi-361

tecture, we generally observe a positive correlation362

between model performance and the number of ac-363

tivated parameters. For Dense models, the model364

with 570M parameters outperforms the model with365

374M parameters by 0.8% score on average. Sim-366

Figure 2: Average scores of MoE-Dynamic with differ-
ent threshold p on downstream tasks

ilarly, among models using the MoE architecture 367

with a fixed number of activated experts, MoE- 368

Top2, which activates two experts, reaches an av- 369

erage of 41.6% score, outperforming MoE-Top1, 370

which only activates one expert, by 1.1% score. In 371

fact, MoE-Top2 performs better than MoE-Top1 in 372

all subtasks, demonstrating the rule of more param- 373

eters leading to better performance. 374

However, our proposed Dynamic Routing mech- 375

anism breaks this rule. As shown in Table 3, the 376

average number of activated experts in the MoE- 377

Dynamic during evaluation phases is less than two, 378

meaning it activates fewer parameters than MoE- 379

Top2. Yet, as shown in Table 1, compared to MoE- 380

Top2, MoE-Dynamic achieves comparable or even 381

better performance on nearly all the tasks and out- 382

performs MoE-Top2 by 0.7% score on average. 383

MoE-Dynamic obtains better performance, indi- 384

cating that our dynamic routing mechanism can 385

allocate the necessary experts for different inputs 386

more reasonably and make use of parameters more 387

efficiently. 388

3.3 Effect of Threshold p 389

Threshold p is a hyper-parameter used to control 390

the dynamic routing mechanism. Training models 391

from scratch with different values of p is resource- 392

intensive. Hence, we explore the impact of this 393

hyper-parameter by performing inference on a pre- 394

trained model with varying values of p from 0.1 to 395

0.7. Table 2 demonstrates the average performance 396

5



Figure 3: Average activated experts number across train-
ing procedure.

on downstream tasks with different p.397

The table reveals that when p is too low, like 0.1398

and 0.2, the model’s performance on downstream399

tasks markedly decreases due to the activation of400

too few experts. Conversely, once p surpasses a cer-401

tain threshold, the model’s performance stabilizes,402

and the impact of this parameter on downstream403

tasks will become minimal.404

4 Efficiency of Dynamic Routing405

The greatest advantage of MoE models is their abil-406

ity to efficiently scale to larger models. The Top-K407

routing mechanism controls the number of parame-408

ters used by the entire model by activating a fixed409

number of experts. In contrast, our proposed dy-410

namic routing mechanism removes the limitation411

of a fixed number of experts. Naturally, there may412

be concerns that our method might assign too many413

experts to each token. To address these concerns,414

we demonstrate the efficiency of the dynamic rout-415

ing mechanism from both training and inference416

perspectives.417

4.1 Efficient Training418

We sample 1000 pieces of data from different419

sources within Redpajama and calculate the aver-420

age number of experts activated per token at differ-421

ent stages of training. Figure 3 shows the change in422

the average number of experts activated throughout423

the training process of 100B tokens. From the fig-424

ure, we can see that the number of experts activated425

per token decreases over time. In the early stages426

of training, dynamic routing assigns more experts427

to each token, but after 60B tokens, the average428

number of activated experts is already less than 2.429

Table 2 displays the number of experts activated by430

MoE-Dynamic at the end of the 100B training. It431

is evident that across all data sources, the number432

of experts activated by MoE-Dynamic is less than433

2.434

Sources Ratio Activated Experts

CC 67% 1.82
C4 15% 1.84
Github 4.5% 1.88
Wiki 4.5% 1.78
Book 4.5% 1.73
Arxiv 2.5% 1.90
StackExchange 2% 1.79

Avg 100% 1.82

Table 2: Average activated experts in different parts of
the training corpus.

Recently, the amount of tokens used in training 435

for large language models far exceeds 100B, for in- 436

stance, Pythia uses 300B tokens, and Llama2 uses 437

2T tokens. If we continue to train on an even larger 438

scale corpus, the average number of parameters 439

used throughout the training process is guaranteed 440

to be lower than that of Top2-Routing. 441

4.2 Efficient Inference 442

To further explore whether our proposed method 443

is efficient in inference, we calculate the average 444

number of experts activated by the model across 445

different downstream tasks. For every question, we 446

use the template from the evaluation to concatenate 447

the question with the gold answer into a complete 448

input and truncate the tokens exceeding 2048 to 449

fit our model’s maximum input length. Table 3 450

shows the average number of experts activated per 451

token across various downstream tasks. The result 452

is averaged across all the layers of transformers 453

and it is evaluated using the checkpoint trained on 454

100B tokens. 455

From the table, we can observe that across all 456

five downstream tasks, the number of activated 457

experts is less than two, averaging 1.76 activated 458

experts, which is fewer than the fixed activation of 459

two experts by the Top2 routing method. During 460

the training phase, our method and Top2 routing 461

are comparable in efficiency, but upon completion 462

of training, our inference efficiency substantially 463

outperforms Top2 routing. Given that models are 464

mostly trained once with a greater burden placed on 465

the subsequent deployment nowadays, the advan- 466

tages of our method over traditional MoE routing 467

mechanisms like Top2 become even more apparent. 468

5 What is Challenging Input? 469

The motivation for designing dynamic routing is to 470

enable the model to dynamically adjust the number 471

of allocated experts based on the difficulty of the 472

6



Sources Activated Experts

PIQA 1.72
Winogrande 1.76
ARC-e 1.73
Commonsense QA 1.74
BBH 1.87

Avg 1.76

Table 3: Average activated experts in different down-
stream tasks.

input. In this section, we will explore what kinds473

of inputs are considered challenging for the model474

from various perspectives.475

5.1 Tasks Requiring Reasoning476

From Table 3, we could observe that solving the477

BBH task requires activating an average of 1.87478

experts, more than the number needed for other479

tasks. BBH, which stands for BIG-Bench Hard, is480

a suite of 23 challenging BIG-Bench tasks. These481

tasks demand capabilities such as multi-hop rea-482

soning, causal inference, logical deduction, and483

so on, making them substantially more difficult484

than normal NLP tasks (Suzgun et al., 2022). Our485

model’s use of more experts on BBH tasks implies486

that our method indeed can dynamically monitor487

task difficulty and apply more parameters to tackle488

more challenging tasks. Interestingly, as shown in489

Table 1, MoE-Dynamic, compared to MoE-Top2,490

sees the most improvement on BBH tasks. While491

the average improvement across all tasks is less492

than 1.0%, the improvement on BBH is more than493

2.0%, which is more than double that of other tasks.494

This further illustrates that dynamically adjusting495

the number of activated experts is beneficial for496

solving downstream tasks, especially more chal-497

lenging ones.498

5.2 Tokens with Ambiguous Semantics499

To further analyze what types of tokens are consid-500

ered more challenging for a model, we examine the501

average number of experts activated for each token502

in the vocabulary across different contexts.503

We sample 1 million tokens from each part of the504

training dataset Redpajama, like arxiv and CC, re-505

sulting in a new corpus of a total of 7 million tokens.506

In this corpus, we calculate the average number of507

experts activated for each token in the vocabulary.508

To minimize the effect of randomness, we only con-509

sider tokens that appear more than 10,000 times in510

the corpus.511

Examples C-Words Ratio

Most Experts tr, eq, mu, frac 10
Least Expers to, that, and, show 51

Table 4: The first column shows examples of tokens
requiring the most experts and least experts. The last
column shows the complete words ratio in these two
groups of tokens.

Table 4 shows the number of complete words 512

among the top 100 and bottom 100 tokens by the 513

average number of experts activated, along with 514

some examples. 515

Upon manually reviewing the 100 tokens that 516

activate the most experts and the 100 tokens that 517

activate the least, we observe an interesting phe- 518

nomenon: Tokens with relatively definite semantics 519

are considered easier by the model, activating fewer 520

experts. In contrast, tokens with uncertain seman- 521

tics are deemed more challenging and require more 522

experts for processing. 523

Specifically, since our model’s tokenizer is 524

trained with Byte Pair Encoding (BPE), many to- 525

kens are not complete words but subwords. These 526

subwords have vaguer semantics compared to full 527

words because they can combine with many other 528

subwords to form words with different meanings. 529

For example, the subword ’tr’ can lead to the for- 530

mation of hundreds of words with varied meanings, 531

such as tree, triple, train, trick, trouble, and so 532

on. Due to the multitude of possible semantics, 533

different meanings may require different experts 534

for processing, making such subwords require a 535

comprehensive understanding by more experts. 536

6 Bottom Layers Need More Experts 537

An intriguing observation from our study is that 538

our model achieves superior performance while ac- 539

tivating fewer parameters. As shown in Table 3, 540

on all the tasks, our MoE-Dynamic activates an 541

average of fewer than two experts. But it out- 542

performs the MoE-Top2 in downstream tasks as 543

shown in Table 1. This result is quite surprising, 544

as performance on downstream tasks is typically 545

correlated with the quantity of activated parame- 546

ters. We attribute this unexpected phenomenon to 547

our method’s more proper allocation of the experts 548

to be activated across different layers, employing 549

more experts at lower levels and fewer at the top. 550

This layer-wise dynamic allocation, as opposed to 551

the fixed number of experts per layer, somewhat 552

mitigates the common issue of overthinking in deep 553

7



Figure 4: Activated experts in different layers

neural networks, thereby enhancing performance.554

The overthinking refers to the situations where555

simpler representations of an input sample at an ear-556

lier layer, relative to the complex representations557

at the final layer, are adequate to make a correct558

prediction (Kaya et al., 2019). Previous works (Liu559

et al., 2020; Schwartz et al., 2020; Xin et al., 2021)560

have demonstrated that shallower representations561

can achieve comparable, if not better, performance562

across various tasks than deeper representations.563

This could be due to deeper representations overfit-564

ting specific distributions, lacking generalizability,565

and being more vulnerable to attacks (Hu et al.,566

2019; Zhou et al., 2020). It suggests that in some567

cases, acquiring a better shallow representation is568

more valuable than obtaining a more complex deep569

representation, which correlates to previous find-570

ings that removing top layers has a limited impact571

on the downstream tasks (Sajjad et al., 2023).572

Compared with Top2 routing, our dynamic adap-573

tive routing activates more experts at the bottom574

layers to obtain better shallow representations and575

use the simpler network in the top layers to allevi-576

ate the overthinking issue. Figure 4 displays the577

number of experts activated per token at different578

layers2. From the figure, we observe a gradual de-579

crease in the average number of experts activated580

per token with increasing layer depth. The lowest581

layer activates the most experts, up to 4 experts582

per token, enabling better shallow representations583

through a wider network, which is beneficial for584

various downstream tasks. At the topmost layer, the585

number of activated experts per token is reduced586

to even one. This phenomenon can avoid model587

being too complex and preserve generality in the588

final representation.589

2The results are evaluated using a checkpoint trained on
100B tokens.

7 Related Work 590

The Mixture of Experts (MoE) model is initially 591

introduced by (Jacobs et al., 1991). Recent stud- 592

ies have demonstrated sparsely gated MoE models 593

have substantial improvements in model capacity 594

and efficiency, enabling superiors performance than 595

dense models(Shazeer et al., 2017). Particularly 596

MoE has shown great potential with the integration 597

of transformer architectures (Zoph et al., 2022). 598

In previous MoE architectures, a static number 599

of experts are activated regardless of the varying 600

complexity presented by input tokens. Most of 601

MoE models activate Top-1 or Top-2 experts (Lep- 602

ikhin et al., 2021; Fedus et al., 2022), which could 603

potentially limit the efficacy of MoE models. 604

There are works allocating various number of ex- 605

perts for input tokens. Expert-Choice MoE model 606

selects Top-K tokens for each expert(Zhou et al., 607

2022). However, in Expert-choice MoE model, the 608

floating-point operations per second(FLOPS) in 609

each MoE layer are the same. Previous work indi- 610

cates that different MoE layers may need different 611

FLOPS to achieve optimal performance(Jawahar 612

et al., 2023). 613

Different from these prior works, our dynamic 614

routing mechanism can allocate more experts for 615

complex tokens and fewer for simpler ones. Addi- 616

tionally, it strategically selects more experts in the 617

lower layers and fewer in the upper layers, thereby 618

minimizing computational redundancy. Experimen- 619

tal results demonstrate that this dynamic routing 620

approach contributes to improvements in both the 621

efficiency and performance of MoE models. 622

8 Conclusion 623

Our paper introduces a dynamic expert selection 624

framework for Mixture of Experts (MoE) models, 625

surpassing traditional fixed Top-K routing by ad- 626

justing expert activation based on input complexity. 627

Our approach not only improves computational ef- 628

ficiency but also model performance, evidenced 629

by obvious gains over conventional Top-K routing 630

in our evaluations. Our findings reveal the frame- 631

work’s effectiveness at dynamically dispatching 632

different numbers of experts, particularly for com- 633

plex reasoning tasks, and suggest the potential for 634

developing more challenging heterogeneous MoE 635

models. In support of further research, we will 636

open-source our models, contributing to advance- 637

ments in the MoE domain. 638

8



Limitation639

Due to resource constraints, the size of the model640

we trained is limited, with only about 600M acti-641

vation parameters, and the entire MoE (Mixture of642

Experts) model being just over 3B in size. How-643

ever, (Dai et al., 2024) has validated that within the644

MoE framework, conclusions drawn from smaller645

models can be generalized to larger models with646

more parameters. Hence, we believe our proposed647

dynamic routing method could also be effective in648

larger-scale models. Additionally, we have only649

trained on 100B tokens, which may not be suffi-650

cient for model training. Yet, given the same scale651

of training data, our method demonstrated superior652

performance, which also underscores the efficiency653

of our training process.654

References655

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar656
Khot, Bhavana Dalvi Mishra, Kyle Richardson,657
Ashish Sabharwal, Carissa Schoenick, Oyvind658
Tafjord, and Peter Clark. 2021. Think you have659
solved direct-answer question answering? try arc-da,660
the direct-answer AI2 reasoning challenge. CoRR,661
abs/2102.03315.662

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng663
Gao, and Yejin Choi. 2020. PIQA: reasoning about664
physical commonsense in natural language. In The665
Thirty-Fourth AAAI Conference on Artificial Intelli-666
gence, AAAI 2020, The Thirty-Second Innovative Ap-667
plications of Artificial Intelligence Conference, IAAI668
2020, The Tenth AAAI Symposium on Educational669
Advances in Artificial Intelligence, EAAI 2020, New670
York, NY, USA, February 7-12, 2020, pages 7432–671
7439. AAAI Press.672

Together Computer. 2023. Redpajama: An open source673
recipe to reproduce llama training dataset.674

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.675
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding676
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,677
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,678
and Wenfeng Liang. 2024. Deepseekmoe: Towards679
ultimate expert specialization in mixture-of-experts680
language models. CoRR, abs/2401.06066.681

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,682
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,683
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret684
Zoph, Liam Fedus, Maarten P. Bosma, Zongwei685
Zhou, Tao Wang, Yu Emma Wang, Kellie Webster,686
Marie Pellat, Kevin Robinson, Kathleen S. Meier-687
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,688
Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire689
Cui. 2022. Glam: Efficient scaling of language mod-690
els with mixture-of-experts. In International Con-691
ference on Machine Learning, ICML 2022, 17-23692

July 2022, Baltimore, Maryland, USA, volume 162 of 693
Proceedings of Machine Learning Research, pages 694
5547–5569. PMLR. 695

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 696
Switch transformers: Scaling to trillion parameter 697
models with simple and efficient sparsity. J. Mach. 698
Learn. Res., 23:120:1–120:39. 699

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and 700
Zhangyang Wang. 2019. Triple wins: Boosting accu- 701
racy, robustness and efficiency together by enabling 702
input-adaptive inference. In International Confer- 703
ence on Learning Representations. 704

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, 705
and Geoffrey E. Hinton. 1991. Adaptive mixtures of 706
local experts. Neural Comput., 3(1):79–87. 707

Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong 708
Liu, Young Jin Kim, Muhammad Abdul-Mageed, 709
Laks V. S. Lakshmanan, Ahmed Hassan Awadallah, 710
Sébastien Bubeck, and Jianfeng Gao. 2023. Auto- 711
moe: Heterogeneous mixture-of-experts with adap- 712
tive computation for efficient neural machine trans- 713
lation. In Findings of the Association for Compu- 714
tational Linguistics: ACL 2023, Toronto, Canada, 715
July 9-14, 2023, pages 9116–9132. Association for 716
Computational Linguistics. 717

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. 718
2019. Shallow-deep networks: Understanding and 719
mitigating network overthinking. In International 720
conference on machine learning, pages 3301–3310. 721
PMLR. 722

Young Jin Kim, Ammar Ahmad Awan, Alexandre 723
Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu, Amr 724
Hendy, Samyam Rajbhandari, Yuxiong He, and 725
Hany Hassan Awadalla. 2021. Scalable and effi- 726
cient moe training for multitask multilingual models. 727
CoRR, abs/2109.10465. 728

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 729
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 730
Krikun, Noam Shazeer, and Zhifeng Chen. 2021. 731
Gshard: Scaling giant models with conditional com- 732
putation and automatic sharding. In 9th International 733
Conference on Learning Representations, ICLR 2021, 734
Virtual Event, Austria, May 3-7, 2021. OpenRe- 735
view.net. 736

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman 737
Goyal, and Luke Zettlemoyer. 2021. BASE layers: 738
Simplifying training of large, sparse models. In Pro- 739
ceedings of the 38th International Conference on 740
Machine Learning, ICML 2021, 18-24 July 2021, Vir- 741
tual Event, volume 139 of Proceedings of Machine 742
Learning Research, pages 6265–6274. PMLR. 743

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, 744
Haotang Deng, and Qi Ju. 2020. Fastbert: a self- 745
distilling bert with adaptive inference time. In Pro- 746
ceedings of the 58th Annual Meeting of the Asso- 747
ciation for Computational Linguistics, pages 6035– 748
6044. 749

9

http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.1162/NECO.1991.3.1.79
https://doi.org/10.1162/NECO.1991.3.1.79
https://doi.org/10.1162/NECO.1991.3.1.79
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.580
http://arxiv.org/abs/2109.10465
http://arxiv.org/abs/2109.10465
http://arxiv.org/abs/2109.10465
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html


Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav750
Nakov. 2023. On the effect of dropping layers of751
pre-trained transformer models. Computer Speech &752
Language, 77:101429.753

Roy Schwartz, Gabriel Stanovsky, Swabha754
Swayamdipta, Jesse Dodge, and Noah A Smith.755
2020. The right tool for the job: Matching model756
and instance complexities. In Proceedings of757
the 58th Annual Meeting of the Association for758
Computational Linguistics, pages 6640–6651.759

Noam Shazeer. 2020. GLU variants improve trans-760
former. CoRR, abs/2002.05202.761

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,762
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and763
Jeff Dean. 2017. Outrageously large neural networks:764
The sparsely-gated mixture-of-experts layer. In 5th765
International Conference on Learning Representa-766
tions, ICLR 2017, Toulon, France, April 24-26, 2017,767
Conference Track Proceedings. OpenReview.net.768

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-769
bastian Gehrmann, Yi Tay, Hyung Won Chung,770
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,771
Denny Zhou, and Jason Wei. 2023. Challenging772
big-bench tasks and whether chain-of-thought can773
solve them. In Findings of the Association for Com-774
putational Linguistics: ACL 2023, Toronto, Canada,775
July 9-14, 2023, pages 13003–13051. Association for776
Computational Linguistics.777

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-778
bastian Gehrmann, Yi Tay, Hyung Won Chung,779
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny780
Zhou, et al. 2022. Challenging big-bench tasks and781
whether chain-of-thought can solve them. arXiv782
preprint arXiv:2210.09261.783

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and784
Jonathan Berant. 2019. Commonsenseqa: A question785
answering challenge targeting commonsense knowl-786
edge. In Proceedings of the 2019 Conference of787
the North American Chapter of the Association for788
Computational Linguistics: Human Language Tech-789
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,790
June 2-7, 2019, Volume 1 (Long and Short Papers),791
pages 4149–4158. Association for Computational792
Linguistics.793

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier794
Martinet, Marie-Anne Lachaux, Timothée Lacroix,795
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal796
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard797
Grave, and Guillaume Lample. 2023. Llama: Open798
and efficient foundation language models. CoRR,799
abs/2302.13971.800

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.801
2021. Berxit: Early exiting for bert with better fine-802
tuning and extension to regression. In Proceedings803
of the 16th conference of the European chapter of804
the association for computational linguistics: Main805
Volume, pages 91–104.806

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 807
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 808
machine really finish your sentence? In Proceedings 809
of the 57th Conference of the Association for Compu- 810
tational Linguistics, ACL 2019, Florence, Italy, July 811
28- August 2, 2019, Volume 1: Long Papers, pages 812
4791–4800. Association for Computational Linguis- 813
tics. 814

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian 815
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses 816
patience: Fast and robust inference with early exit. 817
Advances in Neural Information Processing Systems, 818
33:18330–18341. 819

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping 820
Huang, Vincent Zhao, Andrew M. Dai, Zhifeng Chen, 821
Quoc V. Le, and James Laudon. 2022. Mixture-of- 822
experts with expert choice routing. In Advances in 823
Neural Information Processing Systems 35: Annual 824
Conference on Neural Information Processing Sys- 825
tems 2022, NeurIPS 2022, New Orleans, LA, USA, 826
November 28 - December 9, 2022. 827

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, 828
Yanping Huang, Jeff Dean, Noam Shazeer, and 829
William Fedus. 2022. St-moe: Designing stable and 830
transferable sparse expert models. arXiv preprint 831
arXiv:2202.08906. 832

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, 833
Hany Hassan, Ruofei Zhang, Jianfeng Gao, and Tuo 834
Zhao. 2022. Taming sparsely activated transformer 835
with stochastic experts. In The Tenth International 836
Conference on Learning Representations, ICLR 2022, 837
Virtual Event, April 25-29, 2022. OpenReview.net. 838

9 Detailed Training Setting 839

9.1 Model Setting 840

The model architecture follows LLaMA(Touvron 841

et al., 2023). We use Llama2 tokenizer whose vo- 842

cabulary size is 32000. Unless specifically stated 843

otherwise, we set the number of transformer layers 844

to 24, the hidden dimension to 1024. We employ 845

the multi-head attention mechanism with a total of 846

16 attention heads, where each head has a dimen- 847

sion of 64. We use SwiGLU(Shazeer, 2020) in FFN 848

layers. For initialization, all learnable parameters 849

are randomly initialized with a standard deviation 850

of 0.006. Each MoE layer has 16 experts, which 851

have the same initialized parameters as a standard 852

FFN. Under this configuration, each dense model 853

has has approximately 374M parameters. Each 854

MoE model has 3.5B total parameters. Only 374 855

parameters are activated in MoE-Top1 and 581M 856

parameters are activated in MoE-Top2. 857

10

http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://openreview.net/forum?id=B72HXs80q4
https://openreview.net/forum?id=B72HXs80q4
https://openreview.net/forum?id=B72HXs80q4


9.2 Training Setting858

We adopt AdamW optimizer with first-moment de-859

cay β1 = 0.9 and second-moment decay β2 =860

0.95. The weight decay is 0.1. The learning rate861

warms up from 0 to 3e-4 in the first 2000 steps862

and decays in the remaining steps using the cosine863

decay schedule to 3e-5. We set the context length864

to 2048 and adopt the batch size of 2048.865

11


	Introduction
	Method
	Top-K Routing MoE
	Dynamic Routing MoE
	Loss

	Experiments
	Settings
	Training data
	Model Settings
	Evaluation
	Experiment Models

	Main Results
	Effect of Threshold p

	Efficiency of Dynamic Routing
	Efficient Training
	Efficient Inference

	What is Challenging Input?
	Tasks Requiring Reasoning
	Tokens with Ambiguous Semantics

	Bottom Layers Need More Experts
	Related Work
	Conclusion
	Detailed Training Setting
	Model Setting
	Training Setting


