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DEEPVERSE: 4D AUTOREGRESSIVE VIDEO GENERA-
TION AS A WORLD MODEL
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Figure 1: We introduce DeepVerse, an interactive world model grounded in 4D autoregressive
video generation. By establishing a 4D spatiotemporal distribution of the world, DeepVerse enables
continuous and coherent 4D future prediction from merely a single input image, effectively modeling
both spatial layouts and temporal dynamics simultaneously.

ABSTRACT

World models serve as essential building blocks toward Artificial General Intelli-
gence (AGI), enabling intelligent agents to predict future states and plan actions by
simulating complex physical interactions. However, existing interactive models
primarily predict visual observations, thereby neglecting crucial hidden states like
geometric structures and spatial coherence. This leads to rapid error accumulation
and temporal inconsistency. To address these limitations, we introduce DeepVerse,
a novel 4D interactive world model explicitly incorporating geometric predictions
from previous timesteps into current predictions conditioned on actions. Experi-
ments demonstrate that by incorporating explicit geometric constraints, DeepVerse
captures richer spatio-temporal relationships and underlying physical dynamics.
This capability significantly reduces drift and enhances temporal consistency,
enabling the model to reliably generate extended future sequences and achieve
substantial improvements in prediction accuracy, visual realism, and scene rational-
ity. Furthermore, our method provides an effective solution for geometry-aware
memory retrieval, effectively preserving long-term spatial consistency. We validate
the effectiveness of DeepVerse across diverse scenarios, establishing its capacity
for high-fidelity, long-horizon predictions grounded in geometry-aware dynamics.
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1 INTRODUCTION

Interactive understanding of the physical world is a fundamental task for intelligent systems. World
models, which aim to learn state transition functions from raw observations of external environments,
provide essential predictive capabilities for intelligent agents, enabling them to imagine future states,
evaluate possible actions, and navigate complex, dynamic scenarios. Recent progress in world models
has demonstrated considerable potential in tasks such as visual simulation (NVIDIA et al., 2025),
embodied navigation (Team et al., 2025), and manipulation (Zhen et al., 2025).

Despite notable advancements in constructing effective world models, current online ap-
proaches (Feng et al., 2024; Valevski et al., 2024; Decart et al., 2024) still suffer significantly
from cumulative prediction errors and the forgetting issue. Addressing the above challenges is non-
trivial. Most existing methods (Song et al., 2025a; Xiao et al., 2025) attempt to mitigate these issues
by developing sophisticated techniques to efficiently incorporate historical frames. For instance,
FramePack (Zhang & Agrawala, 2025) compresses past frames into a fixed-length representation,
thereby maintaining context within a transformer’s limited memory. However, these visual-centric
strategies fundamentally overlook a critical aspect: videos inherently represent 2D projections of
a dynamic 3D/4D physical world. Without explicit modeling of underlying geometric structures,
models inevitably struggle to maintain long-term accuracy and consistency in visual predictions.

To address this core challenge, we introduce DeepVerse, a novel autoregressive world model that
directly learns the dynamics of the underlying 4D world. Unlike methods that predict future pixels,
DeepVerse operates on 4D states, grounding its predictions in a consistent geometric reality. This
approach mitigates key issues in purely visual autoregressive systems, such as scale ambiguity
(Fig. 3a), and directly addresses the problems of drifting and forgetting prevalent in conventional
methods. Specifically, shifting the predictive target from pixels to 4D states inherently mitigates
error accumulation (drift) by enforcing geometric constraints on spatial correlations. Furthermore,
to combat long-term forgetting, we propose a global 4D memory bank that stores all historical
states aligned to a common initial coordinate frame. During inference, DeepVerse retrieves relevant
past states from this memory based on similarity to the current viewpoint. This retrieved context
conditions the next prediction, ensuring the model maintains spatiotemporal coherence over extended
sequences without catastrophic forgetting.

To sum up, our contributions can be summarized as follows:

• We introduce DeepVerse, an autoregressive framework for 4D world modeling, establishing
foundational guidelines for architectural design in future interactive world model development.

• We innovatively incorporate 4D information into an autoregressive world modeling framework. By
modeling the 4D world explicitly during generation, our approach significantly improves visual
consistency and resolves scale ambiguity issues common in unimodal visual paradigms.

• Building upon the DeepVerse framework’s capability for concurrent spatial distribution modeling,
we have engineered a spatial memory mechanism to enhance long-term temporal consistency in
generated sequences, ensuring spatiotemporal continuity in autoregressive generation.

2 METHOD

To provide a comprehensive illustration of our method, we elaborate on our problem formulation
in section 2.1 and discribe the methodology for tailoring model architecture in section 2.2. The
construction of training datasets is systematically addressed in Section 2.3. Finally, Section 2.4
demonstrates DeepVerse’s operational workflow during the inference phase.

2.1 PROBLEM FORMULATION

World models aim to learn the transition function P (st+1|at, st) in a Markov Decision Process
(MDP), where st denotes the environment state at timestamp t. However, many real-world appli-
cations are fundamentally Partially Observable MDPs (POMDPs), where the true state st is latent.
Prior works (Bruce et al., 2024; Valevski et al., 2024; Decart et al., 2024) often rely directly on
visual observations vt as input. However, this signal is incomplete and non-Markovian, which can
degrade model performance. To address this limitation, DeepVerse introduces a composite 4D state
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Figure 2: Our framework. The inputs to DeepVerse consist of: (1) a sequence of m consecutive 4D
observations encompassing current and recent estimated states; (2) spatial conditions retrieved from a
global memory pool through the selective mechanism ψ; (3) textually specified control signals. The
system subsequently generates k temporally coherent 4D future observations, which are automatically
archived into the global memory repository for persistent world state tracking.

representation, ŝt, as a more effective proxy for the latent state st:

ŝt = (vt, gt). (1)

Here, vt is the visual observation, while gt encapsulates geometric information, specifically the
camera ct and depth map dt. By fusing visual and geometric data, each ŝt forms a local 3D
representation of the scene. To model the dynamics of this representation and mitigate the long-term
drift caused by non-Markovian observations in POMDPs, DeepVerse employs an adaptive memory
architecture. The task is framed as an auto-regressive sequential prediction problem:

fθ = P

ŝt+1:t+k | at, ŝt, ŝt−m:t−1︸ ︷︷ ︸
Recent Context

, ψ (ŝ0:t−m−1)︸ ︷︷ ︸
Long-term Memory

 . (2)

As shown in Eq. 2, our predictive model fθ conditions its output on three components: (1) the current
action at and state representation ŝt; (2) a recent context of the last m representations, ŝt−m:t−1, to
capture short-term dynamics; and (3) a long-term memory component to account for long-range
dependencies. The function ψ(·) is a selective retrieval mechanism that fetches past representation
from the historical buffer ŝ0:t−m−1. This retrieved representation is the most relevant to the current
state ŝt, helping the model to resolve ambiguities.

2.2 MODEL COMPONENTS

4D Representation. As formulated in Eq. 1, DeepVerse employs a 4D representation for state
estimation. Specifically, each g is a tensor with dimensions matching the input image, where each
pixel stores a 3D coordinate (Wang et al., 2024b). We decompose 3D coordinates into depth dt
and viewpoint components, which allows depth information to be directly encoded by the pre-
trained Variational Autoencoder (VAE) (Kingma & Welling, 2022; Ke et al., 2024). Moreover, we
parameterize depth values dt as the square root of disparity et =

√
1/dt (Song et al., 2025b). Finally,

we adopt the raymap representation (Team et al., 2025; Chen et al., 2024b) to parameterize viewpoint
c, which geometrically encodes camera orientation and position through ray direction vectors in the
scene coordinate system. We construct ŝ by channel-wise concatenating the three modalities. This
unified structure ensures compatibility with standard image latents, enabling autoregressive future
prediction through iterative generation.

General Control. Unlike previous works (Feng et al., 2024; Valevski et al., 2024) that integrated
controller data as an additional training modality, our DeepVerse framework deliberately departs from
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Figure 3: (a) Inferring 3D environments from a single image results in inherent scale ambiguity,
a latent variable conditioned on the training data. Generating novel views from images alone,
without 3D priors, is significantly more challenging than with explicit 3D structures, often leading to
geometrically inconsistent extrapolations and error propagation in autoregressive predictions. (b)(c)
Text descriptions of perspective changes can be algorithmically derived from camera pose variations.

this practice by relying solely on textual conditions. This strategy is motivated by two objectives: (1)
maximizing the preservation of the pre-trained model’s capabilities, and (2) leveraging the inherent
versatility of textual control. This approach offers significant practical benefits: it allows for direct
text-to-controller mapping in downstream applications and enables efficient fine-tuning for novel
controllers.

Spatial Condition. Since we explicitly model the 4D representation, we maintain a memory pool of
all past states {ŝ0, ŝ1, ..., ŝt−1} to leverage historical context. The 3D coordinates of these states are
aligned to the coordinate system of the initial frame ŝ0, creating a unified global reference. For the
current state ŝt, our spatial selection mechanism ψ retrieves the most relevant historical state based
on geometric proximity. This selection process, consists of two steps:

1. Candidate Selection by Proximity: First, we identify the k historical states whose camera positions
Ti are closest to the current camera position Tt. This forms a candidate set S:

S = arg
(k)

min
i∈{0,...,t−1}

∥Tt − Ti∥2 (3)

2. Final Selection by Viewing Direction: From the candidate set S, we select the state ŝj whose
camera rotation Rj is most aligned with the current rotation Rt, measured by minimizing the
angle between rotation matrices:

j = argmin
i∈S

∠(Rt, Ri) (4)

The selected state ŝj is then encoded into a token sequence that serves as the spatial condition for
processing the current state.

2.3 DATASET CONSTRUCTION

Our data collection process began with approximately 10 million frames of gameplay footage, from
which we systematically removed all UI elements using ReShade (Reshade, 2024). Subsequently,
leveraging an existing automatic camera annotation pipeline (Team et al., 2025), we synthesized
datasets containing precise intrinsic and extrinsic camera parameters, depth maps, and high-fidelity
synthetic images. The acquired camera parameters were first used to filter out potentially erroneous
or low-quality data. To facilitate interactive applications, we implemented a hierarchical annotation
protocol, applying textual labels at the video clip level and more detailed, motion-specific labels to
finer-grained segments of frames.

Filtering Criteria. Excessive camera rotation or rapid view transitions degrade reconstruction
quality after 3D VAE-based encoding-decoding. To mitigate this, we introduce a chunk-wise filtering
criterion: the chunk size equals the VAE’s temporal compression ratio. A video clip is valid only if
the cumulative rotation angle across chunks remains below a threshold δrot. This angle is computed

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

as the angular difference in the forward direction between the last frames of consecutive chunks. We
also exclude clips with insufficient camera or character movement by deriving displacement from
camera extrinsic parameters, discarding those below a threshold δmove.

Caption Annotation. Given the precise positional data obtained, we initially construct textual
descriptions directly from camera movements/rotations as illustrated in Figure 3. Furthermore, we
employ Qwen-VL (Bai et al., 2023) to annotate video clips, generating first-person descriptions
for viewpoint transitions in egocentric videos, while creating third-person narratives for character
actions and movements in exocentric recordings. We employ CLIP (Radford et al., 2021) and T5
(Raffel et al., 2023) to generate caption embeddings, adopting a methodology consistent with that
implemented in SD3 (Esser et al., 2024).

Training Preprocess. For a video clip, global scene scaling based on scene dimensions is imple-
mented to ensure effective compression. To guarantee that the disparity values di can be appropriately
scaled into a constrained space for successful VAE encoding while preserving autoregressive causality,
the entire sequence of di is normalized by dmax × λ, where λ serves as a modulation factor. This
normalization ensures that the d’s range of the initial frame is transformed into (0, λ] ⊆ [0, 1], thereby
reserving value space for subsequent frames where di may exceed dmax. This mechanism effectively
prevents truncation artifacts during the rescaling process to the VAE’s input domain.

2.4 LONG-DURATION INFERENCE

Algorithm 1: Long-Duration Inference
Input :Observation v0
Output :State sequence {ŝt}∞t=1
Initialize memory M← {ŝ0 = (v0,0,0)} ;
Initialize cache C← ∅ ;
for Inference loops i = 1, 2, ... do

Read recent memories C← Recent(M) ;
Scale cache C ;
while Size(C) < CacheMaxSize do

Retrieve ˆsspatial ← ψ( ˆsnow||M) ;
Read action anow ;
ŝnext = fθ(ânow,C, ŝspatial) ;
Cache state C = C ∪ {ŝnext}

Rescale cache C ;
Update memories M = M ∪ C

To enable long-duration reasoning, we employ
a sliding window approach (Song et al., 2025a;
Chen et al., 2024a). Specifically, after gener-
ating the sequence ŝt:t+k, the last m frames
(ŝt+k−m+1:t+k) serve as the conditioning con-
text for the next window. Prior to this pro-
cess, a scaling operation is applied to the tran-
sitional segment: Using ŝt+k−m+1 as the ini-
tial frame of the next window, we compute
dmax from dt+k−m+1 to scale the parameters
d and c within ŝt+k−m+2:t+k. The dmax value is
saved to later rescale the output of the next win-
dow, guaranteeing that the final concatenated se-
quence maintains global consistency. The com-
plete algorithm is detailed in 1.

3 EXPERIMENTS

DeepVerse is an autoregressive diffusion model based on flow matching (Liu et al., 2022; Albergo &
Vanden-Eijnden, 2022; Lipman et al., 2022). To validate our design, we conducted comprehensive
ablation studies. Specifically, as detailed in Section 3.1, we systematically investigated two distinct
MM-DiT-based (Esser et al., 2024) architectures for historical information integration. Furthermore,
to substantiate the necessity of 4D modality introduction in DeepVerse, a comparative analysis was
conducted in Section 3.2, demonstrating the critical advantages of incorporating this novel modality.
Finally, Section 3.3 presents the inference results of DeepVerse and its performance improvement
over the baseline model.

3.1 DIFFERENT MODEL ARCHITECTURES

In the training paradigm of diffusion models, historical and future observations are first encoded into
latent representations, which are subsequently patchified into tokens and input into a transformer-
based (Vaswani et al., 2023) network. As illustrated in figure 4 (a), DeepVerse explores two
approaches for injecting historical information based on the MM-DiT Esser et al. (2024) architecture.
We first adopt GameNGen’s (Valevski et al., 2024) methodology by directly concatenating historical
information through channel-wise concatenation. Subsequently, inspired by existing video generation
methods (Jin et al., 2024), we develop a token-wise concatenation strategy to integrate temporal
information.
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Figure 4: (a) Two MM-DiT-based architectures were designed to inject historical information. (b)
Quantitative evaluation results on VBench (Huang et al., 2024) demonstrate that Model 2 (Token-wise
Concatenation) achieves better performance in nearly all metrics, exhibiting enhanced visual quality
and reduced temporal drift issues compared to alternative architectures.

Model 1: Channel-wise Concatenation. First, individual frames in a video clip are encoded into la-
tent representations, preserving the original temporal length. The latent states from different timesteps
are then concatenated along the channel dimension. This combined representation is subsequently
patchified into tokens for processing through the model. Finally, these tokens are unpatchified
and decoded into outputs with target channel dimensions. A key advantage of this design is that
it avoids creating additional tokens for conditioning frames. By integrating temporal information
through channel concatenation (fusing noise tokens with historical states), it significantly reduces
the computational overhead, particularly the non-linear FLOPs associated with the transformer’s
attention mechanism.

Model 2: Token-wise Concatenation. In contrast to Model 1, this architecture demonstrates distinct
characteristics in latent processing: After video encoding into latent representations, temporal states
from different timesteps are patchified independently to generate different tokens. This approach
substantially increases token quantity, necessitating the implementation of a 3D VAE framework
to achieve temporal compression in the latent space. The resulting latent representations exhibit
reduced dimensionality along the temporal axis compared to the original video clip’s frame count,
maintaining a fixed temporal compression rate (except for the first frame) to balance information
preservation and computational efficiency.

Implementation Details. Both comparative models maintain identical parameter scales of 2 billion.
To enhance training efficiency, we implemented Fully Sharded Data Parallelism (FSDP) (Zhao et al.,
2023) with ZeRO-2 optimization for both architectures. For Model 1, parameter initialization was
performed using pre-trained weights from the SD3-medium (Esser et al., 2024), whereas Model
2 utilized Pyramid-Flow (Jin et al., 2024) initialization. Our experimental analysis revealed that
excessive concatenation of historical frames in Model 1 failed to yield performance improvements,
prompting adoption of a configuration with 7 historical frames and 1 noise frame. Moreover, we
implement condition augmentation techniques (Ho et al., 2021) on the historical frames. Model 2
adheres to the Pyramid-Flow architecture’s 57 frame protocol while implementing its dedicated 3D
VAE for eightfold temporal compression. All training videos were standardized by first resizing
them to 384p via bicubic interpolation and then center-cropping to a uniform 4 : 3 aspect ratio.
The corresponding camera intrinsic parameters in the metadata were adjusted accordingly. Notably,
Model 1 demonstrates reduced token counts per computational step compared to Model 2, enabling
deployment of larger global batch sizes - specifically 512 for Model 1 versus 256 for Model 2. Both
architectures employed the AdamW optimizer (Loshchilov & Hutter, 2019) with cosine annealing
learning rate scheduling, incorporating linear warm up during the initial 1% of training iterations.

Quantitative Results The evaluation conducted on VBench (Huang et al., 2024) encompassed
six metrics: subject consistency, background consistency, aesthetic quality, imaging quality, motion
smoothness, and dynamic degree. Quantitative assessments were performed on the 32, 64, 96, and
128 generated frames, with comparative results graphically presented in figure 4b. Our findings reveal
that Model 2’s token-wise concatenation mechanism, despite introducing higher computational com-
plexity (quantified as average GFLOPs of 1280.9 versus 1049.4 for Model 1), effectively mitigates
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Figure 5: Ablation studies on depth modality. (a) Quantitative results demonstrate that the
integration of the depth modality yields better performance in FVD and consistency. (b) Qualitatively,
models incorporating depth exhibit enhanced environmental comprehension, achieving improved
visual quality and mitigating temporal drift artifacts compared to the baseline.
autoregressive model drift while achieving better visual performance. Notably, while channel-wise
concatenation demonstrated competitive performance (Valevski et al., 2024; Alonso et al., 2024) in
specific applications such as the DOOM gaming environment, our analysis suggests that temporal
feature aggregation within single tokens exacerbates error accumulation phenomena, particularly
under extended scenarios. This empirical evidence substantiates our architectural preference for
token-wise concatenation, which demonstrates enhanced robustness across temporal dimensions in
large-scale multimodal domains.

3.2 ABLATIONS

As elaborated in Section 3.1, we have innovatively introduced a novel modality into the DeepVerse
framework. In this section, we train an additional model that aligns with conventional autoregressive
methodologies by excluding the depth modality, retaining solely the raymap-based camera represen-
tation. Notably, the experimental configuration maintains identical training methodologies, datasets,
and initialization parameters for corresponding layers across all compared models. For quantitative
evaluation, we adopt the FVD Unterthiner et al. (2019) and VBench Huang et al. (2024) as principal
assessment criteria.

Introduction of New Modality. We present a comparative visualization of two models in the figure
5, where both models generate predicted state sequences for future timesteps when initialized with
a starting image and subjected to randomized action sequences. The empirical results demonstrate
that the incorporation of depth modality substantially enhances the model’s capacity to achieve
comprehensive scene understanding, thereby enabling more precise estimation of latent world states
that underlie observational inputs. This improved state estimation directly corresponds to enhanced
visual predictive capabilities, as evidenced by our quantitative evaluation of synthesized video quality.
While temporal drift persists as a fundamental challenge in autoregressive generation, our findings
reveal that depth integration effectively alleviates this deterioration phenomenon, with measurable
improvements observed both in quantitative metrics and visual representations.

Spatial Memory. By simultaneously predicting 3D camera poses during the generative process,
we establish and maintain a global coordinate system anchored at the origin point defined by the
initial frame’s position. Our methodology implements a retrieval mechanism that queries the most
recent pose from historical states to serve as spatial conditioning. During training, we strategically
incorporate this spatial condition at controlled intervals as an additional modal constraint alongside
textual inputs. For inference procedures, we adapt the InstructPix2Pix (Brooks et al., 2023) framework

Table 1: Quantitative ablation study on depth modality. Experiments conducted on six VBench
metrics demonstrate that integrating depth modality achieves better results, confirming the critical
influence of 3D information on visual quality within autoregressive video generation frameworks.

frames subject
consistency

background
consistency

aesthetic
quality

imaging
quality

motion
smoothness

dynamic
degree

w/ depth (Ours) 60 0.86939 0.92617 0.53415 0.48844 0.99032 1.00000
120 0.81652 0.91087 0.50028 0.44639 0.99147 1.00000

w/o depth 60 0.83602 0.91899 0.49106 0.43774 0.98975 1.00000
120 0.76812 0.89650 0.44095 0.37975 0.99062 1.00000
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Figure 6: Visualization Results.

for conditional generation. As demonstrated in the figure 7, the integration of spatial conditioning
enables extended temporal coherence in sequence generation that transcends the inherent limitations of
fixed-duration video chunks, thereby achieving long-term spatial memory retention. To quantitatively
validate this, we conducted experiments using identical action sequences, random seeds and initial
frames, to compare the FVD of videos generated with and without spatial conditioning (cyclic
trajectories are not enforced). The results, summarized in the table 7, demonstrate that spatial
conditioning yields improved FVD, with more significant gains on longer inference sequences.

3.3 SIMULATION QUALITY

As illustrated in Figure 6, we demonstrate the capabilities of DeepVerse through comprehensive
evaluations. For each experimental instance, we exclusively employ visual inputs as initial observa-
tions, which include game images, real-world images, and AI-generated images. Benefiting from our
model’s versatile conditioning mechanism, human-guided manipulations from various controllers can
be manually projected into textual conditions for model input, while DeepVerse inherently supports
direct textual condition integration. Our future prediction framework achieves highly consistent 4D
representations while maintaining exceptional visual fidelity, with strict adherence to input condi-
tions. Notably, the DeepVerse world model – grounded in 4D autoregressive video generation –
distinguishes itself from conventional reconstruction-then-rerendering paradigms by simultaneously
preserving viewpoint-object dynamics and predicting environmental interactions.

Furthermore, we compared the capabilities of DeepVerse and the base model (Jin et al., 2024) using
VBench (Huang et al., 2024). Specifically, we selected a set of initial images from the test set and
utilized QwenVL (Bai et al., 2023) to generate text prompts as conditions. As shown in the table 2, it
can be observed that by modeling the 4D distribution, DeepVerse achieves better visual results.

Table 2: Quantitative comparison with PyramidFlow.

average
score

subject
consistency

background
consistency

aesthetic
quality

imaging
quality

motion
smoothness

dynamic
degree

DeepVerse (Ours) 0.848 0.899 0.946 0.578 0.726 0.990 1.000
PyramidFlow 0.762 0.897 0.944 0.552 0.733 0.994 0.500
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Figure 7: The visualization of the spatial condition’s effect.

4 RELATED WORKS

Neural World Simulation. Neural world simulation employs generative models for dynamic,
interactive environments, simulating real-world physics, a common limitation in standard video
generation. UniSim Yang et al. (2024b) tackles this by training an action-conditioned video model
with multi-dimensional datasets, creating an interactive universal simulator. UniPi Du et al. (2023)
reframes sequential decision-making as text-conditioned video generation, extracting control policies
from generated future frames for cross-environment generalizability. Aether Team et al. (2025) argues
videos are 2D projections and incorporates 3D structural information to better represent the underlying
physical reality. Cosmos NVIDIA et al. (2025) shows that pre-training on physically-grounded video
datasets, followed by fine-tuning, significantly enhances performance on physics-oriented AI tasks.

Interactive Video Generation. Interactive video generation merges interactivity with high-fidelity
synthesis using neural networks. Methods like GameNGen Valevski et al. (2024), Oasis Decart et al.
(2024), DIAMOND Alonso et al. (2024), and GameFactory Yu et al. (2025) achieve controllability
by incorporating control labels into training datasets. Genie Bruce et al. (2024) introduces a Latent
Action Model (LAM) to learn generalized actions from videos. GameGen-X Che et al. (2024) first
pretrains on text-video pairs and then adapts to other control modalities. WorldMem Xiao et al.
(2025) leverages 3D pose representations for memory retrieval to improve long-term consistency.

3D/4D Representations. The integration of 3D and 4D representations Mildenhall et al. (2021);
Zhu (2023); Kerbl et al. (2023); Wu et al. (2024); Zhu et al. (2023); Yang et al. (2024a); Wang
et al. (2024b); Zhang et al. (2024b); He et al. (2025; 2024) is proving transformative across multiple
AI domains. In video generation, these approaches are crucial for synthesizing dynamic scenes
with enhanced spatial and temporal consistency Miao et al. (2025); Yu et al. (2024); Lin et al.
(2025); Jiang et al. (2025); Zhang et al. (2024a). World models benefit significantly from 3D/4D
representations Zhen et al. (2025); Team et al. (2025), enabling a deeper understanding and prediction
of environmental dynamics and underlying physics. For embodied AI, 3D and 4D awareness is
fundamental Zhu et al. (2024b;a), improving agent capabilities in navigation Szot et al. (2021) and
manipulation Zhu et al. (2024b;a); Lu et al. (2025); Xue et al. (2025); Ze et al. (2024); Fang et al.
(2023); Wang et al. (2024a); Yang et al. (2025); Jia et al. (2024). To the best of our knowledge,
DeepVerse is the first to incorporate 4D representations into auto-regressive world models.

5 CONCLUSION

In this paper, we present DeepVerse, the first interactive world model based on 4D autoregressive
video generation. We innovatively introduce 4D representation as our temporal observation to approx-
imate the world’s environment. Our experimental results demonstrate the architectural effectiveness
of the proposed model and quantitatively confirm the enhancements in visual quality and spatial
capabilities achieved through the novel integration of 4D representation. Building upon this, we are
capable of achieving long-duration inference and sustaining long-term memory capabilities.
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A TRAINING DETAILS

A.1 FINAL ARCHITECTURE

MM-DiT Block

Noised Latent

Patchify

Unpatchify

History

Patchify

Model 2: Token-wise Concatenation
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Text Encoder

Timestep

Output

Figure 8: Final architecture.

Our final architecture employs a token-wise concatenation method. As illustrated in figure 8, the
noised latent and recent history undergo identical patchify operations to be encoded into tokens,
which are subsequently concatenated along the token sequence dimension. Additionally, the spatial
condition is independently processed through a patchify operation for token encoding. In alignment
with SD3 Esser et al. (2024), our text encoder integrates both T5 Raffel et al. (2023) and CLIP
Radford et al. (2021) frameworks, with the obtained embeddings and pooled embeddings being
injected into the model through token-wise concatenation and AdaLN mechanisms respectively.
To ensure training stability, the MM-DiT Esser et al. (2024) architecture incorporates RMSNorm
Zhang & Sennrich (2019) for QK Normalization Henry et al. (2020). The final model outputs are
transformed via a linear projection layer to reconstruct tensors matching the shape of the original
noise latent. We present the parameters of our model in table 3.

Table 3: Architecture parameters.

layers 24
model dimension 1536
attention heads 24
head dimension 64

spatial position embedding sincos
temporal position embedding RoPE Su et al. (2023)

patch size 2× 2

A.2 RAYMAP

The raymap serves as an over-parameterized encoding mechanism for 3D viewing, generated through
a ray-casting process where each pixel in the image plane emits a directional ray originating from the
camera’s optical center. This representation maintains spatial correspondence with the original image
dimensions while containing 6 channels of geometric information: 3 channels encode the ray origin
coordinates (equivalent to the camera position in 3D space), and the remaining 3 channels specify the
unit direction vectors of each cast ray. Notably, this parametrization preserves sufficient geometric
constraints to enable camera parameter recovery through the reconstruction algorithm 2.

A.3 COMPACT 4D REPRESENTATION
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Algorithm 2: Raymap to camera parameters conversion.
Input :Raymap c
Output :Camera Parameters intrinsic, extrinsic
Estimate camera position T ← Ray_o(Raymap)
Estimate ray directions Ray_d← Ray_d(Raymap)
Calculate intrinsic from Ray_d
Calculate camera rotation R from Ray_d
extrinsic← R, T
return intrinsic, extrinsic

The final 3D VAE architecture
adopted in DeepVerse achieves a tem-
poral compression ratio of 8 along
the sequence dimension, enabling
the prediction of consecutive future
observations spanning 8 time steps.
While both image and depth modal-
ities are encoded with 16 latent chan-
nels through the 3D VAE, the raymap
modality resists effective compression
via this architecture. To address this, raymap data undergoes spatial downsampling through average
pooling to match the latent dimensions of the image modality, followed by temporal concatenation.
This configuration results in a combined channel count of 80 (16 + 16 + 6× 8), with the majority
allocated to raymap representation. However, considering the primary learning challenges reside
in the image and depth modalities, we implement a keyframe optimization strategy: Only the final
observation in each 8-step sequence is retained as the keyframe, with its complete raymap concate-
nated (6 channels), while intermediate frames’ raymaps are generated through linear interpolation of
adjacent keyframes. This approach reduces the input dimensionality to 38 channels (16 + 16 + 6)
while maintaining temporal coherence. The methodological validity stems from two key observations:
1) Construction of globally consistent 4D representations requires only keyframe inclusion rather than
full-sequence encoding, and 2) This selective encoding significantly reduces both global memory
requirements and model input complexity, particularly beneficial for maintaining computational
efficiency in long-term sequence modeling.

A.4 DATA BATCH

Through data annotation and filtering protocols, we partition all video content into approximately
30,000 non-overlapping video splits, with each split constrained to a maximum of 400 frames. Under
our training configuration, we sample b consecutive 57-frame video clips as a single batch. The
system pre-specifies the potential quantity of video clips contained within each split. Notably, while
video splits maintain non-overlapping boundaries, individual clips within the same split may exhibit
temporal overlap. This methodology ultimately yields a curated dataset of 1.5 million video clips. For
enhanced stability during autoregressive training, we implement a GPU partitioning strategy where
devices are grouped into clusters of size 8 – this configuration precisely corresponds to the temporal
dimension length of latent representations generated by 3D-VAE processing of 57-frame sequences.
Within each group, GPUs are assigned identical input batches but process distinct temporal target
segments.

A.5 TRAINING TARGET

(a) Model Architectures

(�1, �1)(�0, �) (�2, �2)(�0, g0) (�3, �3)

(�0, �0)
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Figure 9: Attention mask during training.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

DeepVerse can predict future 4D representations at various subsequent timesteps utilizing only a
single input image v0. Since the input image does not constitute a complete 4D representation, we
first complete the 4D representation for that timestep. As illustrated in figure 9, we initially predict
the complete 4D representation (v0, g0) corresponding to the input image, then employ this complete
representation to replace the previously incomplete 4D representation. This procedure aligns with
and maintains consistency with the inference phase.

Classifier-Free Guidance Ho & Salimans (2022). Our framework comprises two distinct condition
components: textual condition and spatial condition. During the training phase, we employ stochastic
conditioning dropout by masking textual condition cT with a 10% probability and spatial condition
cS with a 50% probability. For inference, we implement the multimodal conditioning strategy with
classifier-free guidance as proposed in InstructPix2Pix Brooks et al. (2023), which coordinates the
conditional fusion through learned guidance scales for each modality:

eθ(zt, cT , cS) =eθ
(
zt, )

+ sT ×
(
eθ(zt, cT , )− eθ(zt, , )

)
+ sS ×

(
eθ(zt, cT , cS)− eθ(zt, cT , )

)
.

(5)

During the inference phase, we employ modality-specific guidance scales of 4 and 5 for textual and
spatial condition respectively.

A.6 TRAINING RESOURCE

To enhance training efficiency, we precomputed and stored text embeddings generated by T5 Raffel
et al. (2023) and CLIP Radford et al. (2021) models, thereby eliminating the need to reload these text
encoders or reprocess textual inputs during training. The entire training procedure spanned 2 epochs,
with our final model requiring approximately 23, 000 A100 GPU hours for completion.

B EXPERIMENTS DETAILS

B.1 METRICS

Fréchet Video Distance (FVD) Unterthiner et al. (2019). The FVD is a metric used to evaluate the
quality of generated videos by measuring the similarity between the distribution of real videos and
synthesized videos. It leverages deep features extracted from pre-trained video models to compute
the distance between real and generated video distributions in a high-dimensional feature space:

FVD = ∥µr − µg∥2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2) (6)

where µr, µg are the mean vectors, and Σr,Σg are the covariance matrices of real and generated
video features. In this paper, we employ I3D networks Carreira & Zisserman (2018) pre-trained
on the RGB frame data from the Kinetics-400 dataset Kay et al. (2017) as our feature extraction
framework.

VBench Huang et al. (2024). VBench serves as a comprehensive evaluation benchmark suite for
video generation models, designed to perform systematic assessments. This framework leverages
a hierarchical evaluation structure that decomposes the multifaceted concept of "video generation
quality" into well-defined constituent dimensions. In this paper, we adopt the six evaluation criteria:
subject consistency, background consistency, aesthetic quality, imaging quality, motion smoothness,
and dynamic degree, as our primary performance metrics.

B.2 LONG-DURATION INFERENCE

During the training phase, we have modeled the distribution:

P (ŝt+1:t+k | at, ŝt, ŝt−m:t−1, ψ (ŝ0:t−m−1)) . (7)
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(a) Model Architectures
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Figure 10: Long-duration inference.

To achieve long-duration inference, when the number of cached observations reaches the predefined
CacheMaxSize (set as the maximum video clip length during training), we first rescale all cached
observations using the preserved dmax parameters. These rescaled observations are then aligned
to the global coordinate system through predicted camera parameters and stored in the memory.
Subsequently, the most recent m observations are directly adopted as the recent history, as shown in
figure 10. The first observation’s dmax value within this m-length sequence is utilized to scale these
m observations, followed by cache updating and subsequent predictions. This methodology ensures
global consistency while enabling effective long-duration inference.

C LIMITATIONS

Notwithstanding the promising results achieved by DeepVerse, its current framework is trained
exclusively on synthetic data, which inherently limits its generalization capability when applied to
real-world scenarios. This design choice was made intentionally to isolate the impact of data quality
and ensure a controlled experimental setting, thereby allowing a clearer evaluation of the model’s
intrinsic architecture. However, the domain gap between synthetic training data and real-world testing
environments remains a significant constraint. Future work will focus on enhancing the model’s
robustness and adaptability by incorporating real-world data during training, as well as exploring
domain adaptation and generalization techniques to bridge this performance gap.
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