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ABSTRACT

Low-Dimension-to-High-Dimension (LDHD) generalization is a special case of
Out-of-Distribution (OOD) generalization, where the training data are restricted
to a low-dimensional subspace of the high-dimensional testing space. Assuming
that each instance is generated from a latent variable and the dimension of the
latent variable reflects the problem scale, the inherent scaling challenge in length
generalization can be captured by the LDHD generalization in the latent space. We
theoretically demonstrate that LDHD generalization is generally unattainable with-
out exploiting prior knowledge to provide appropriate inductive bias. Specifically,
we explore LDHD generalization in Boolean functions. We verify that different
architectures trained with (S)GD converge to min-degree interpolators w.r.t. dif-
ferent linearly independent sets. LDHD generalization is achievable if and only if
the target function coincides with this inductive bias. Applying the insights from
LDHD generalization to length generalization, we explain the effectiveness of CoT
as changing the structure latent space to enable better LDHD generalization. We
also propose a principle for position embedding design to handle both the inherent
LDHD generalization and the nuisances such as the data format. Following the
principle, we propose a novel position embedding called RPE-Square that remedies
the RPE for dealing with the data format nuisance.

1 INTRODUCTION

The field of learning to reason has gained significant popularity in the machine learning community
due to its impressive performance in reasoning tasks such as natural language processing (OpenAI,
2023a;b), mathematics (Frieder et al., 2023; Jelassi et al., 2023), coding (Zhang et al., 2022a),
symbolic logic (Abbe et al., 2023; Garcez et al., 2022), and planning (Zhao et al., 2023; Valmeekam
et al., 2023). Reasoning problems inherently require generalization beyond the training distribution,
a challenge known as Out-of-Distribution (OOD) generalization (Krueger et al., 2021; Ye et al.,
2021). One of the most significant challenges in OOD generalization is scaling, also known as length
generalization (Anil et al., 2022; Zhang et al., 2022b), where models trained on small-scale instances
must generalize to large-scale instances. Length generalization is crucial because the size of sample
spaces often increases exponentially with the complexity of reasoning problems, leading to intractable
sample complexity and computational costs for models that do not achieve length generalization.

Numerous works have investigated the length generalization problem in various tasks and proposed
various techniques that help scaling in practice, including modifications to model architectures (Shaw
et al., 2018; Jelassi et al., 2023; Kazemnejad et al., 2024), transformations in data formats (Lee et al.,
2023; Zhou et al., 2023), prompt engineering for Large Language Models (LLMs) Wei et al. (2022);
Feng et al. (2024). While some techniques work uniformly well across a wide class of problems,
many are fragile and even ad-hoc, applicable only to specific problems with certain formats (Zhou
et al., 2024). This can be largely attributed to the mismatch between the inherent problem scale and
the formal scale in the input domain (e.g., the length of the input string in language models). We
further elaborate the statement in Example 1.
Example 1. Consider the addition learning problem in the language domain, where the input is a
string. For an N -digit-plus-N -digit (written as N -addition) addition of two numbers x and y, where
x = xN−1 . . . x0, y = yN−1 . . . y0, xi, yi ∈ {0, . . . , 9} (xN−1 > 0 or yN−1 > 0), consider two
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formats of the instance: the Aligned and Reverse Format (ARF), where the instance is represented
as “x0 . . . xn−1 + y0 . . . yn−1 =”; and the Unaligned and Reverse Format (URF), where the instance
is represented as “x0 . . . xnx−1 + y0 . . . yny−1 =”, nc = argmaxi{ci ̸= 0}, c ∈ {x, y}. The formal
scale in the language domain is the length of the string. However, the length of the input strings in
neither format faithfully reflects the inherent problem scale: in ARF, the length of the input strings
is always invariant; in URF, a shorter string may correspond to a larger scale than a longer string
(e.g., s1 =“1 + 1234 =” is 4-addition, s2 =“123 + 123 =” is 3-addition; however, |s1| < |s2|).
Furthermore, we find in experiments that Relative Position Embedding (RPE) improves the length
generalization performance of Transformers for ARF, while it provides little benefit for the length
generalization of Transformers for URF.

To develop robust and transferable methods for scalable models, it requires a formulation that captures
the inherent scaling challenge of length generalization and is invariant to the nuisances such as data
format. To do so, we first notice that in the length generalization of a wide range of problems, the
instances can be seen as generated from some latent space whose dimension reflects the scale.

Example 2 (Addition). Let Σ = {0, . . . , 9} × {0, . . . , 9}. The instance of n-addition xn−1 . . . x0 +
yn−1 . . . y0 can be represented by the state vector hn = [(x0, y0) , . . . , (xn−1, yn−1)]. The k-th
dimension of hn corresponds to the (k − 1)-th digits of the two addenda (i.e., xk−1 and yk−1). The
expansion of the state vector in the dimension corresponds to the increase in the addendum digits.
Therefore, the length generalization from N0-addition to N -addition can be seen as a generalization
from the low-dimensional latent space ΣN0 to the high-dimensional latent space ΣN .

To catch the above intuition, we make the following assumption about the underlying data generation.

Assumption 1 (Data Generation in Length Generalization). The data generation process of an
instance of scale n with the concept c is as follows:

1. A latent variable h is sampled from a subspace Σn of dimension n;

2. The label y is determined by the concept c and the latent variable h, i.e., y = c(h);

3. The hidden variable h is transformed to an input sequence by the data format mapping ϕ.

According to Assumption 1, the inherent scaling challenge can be captured by Low-Dimension-to-
High-Dimension (LDHD) generalization, a special scenario of OOD generalization with structural
distributional shifts. In an LDHD generalization problem, a model is trained with samples from
a low-dimensional subspace while evaluated with samples from a higher-dimensional superspace.
See Figure 2 in Appendix B for an intuitive illustration of LDHD generalization, compared to in-
distribution and typical OOD generalization. To further illustrate, we can consider that the training
samples are from the space ΣN0 and the testing samples are from ΣN , where Σ is a domain and
the numbers N0, N satisfy N0 < N . With slight abuse of notation, we also use Σn to denote the
embedding space of the subspace Σ into a space ΣN̄ for some sufficiently large N̄ ≥ N > N0 (we
use N̄ = N below if there is no special statement).

The main challenge of LDHD generalization is that the testing space has extra dimensions compared
to the training space. As a result, the testing space contains instances with orthogonal components
to the training space. The training samples can reveal no information about how these components
contribute to the results. For instance, in Example 2, learning with N0-addition solely does not tell
how (N0 +1)-th digits to N -th digits contribute to the result unless we have the prior knowledge that
the addition of each digit shares the same process. We formally this challenge as No-Free-Lunch
Theorem of LDHD Generalization in Section 3.

The No-Free-Lunch Theorem (Wolpert & Macready, 1997; Wolpert, 2002) of LDHD Generalization
necessitates the use of prior knowledge in the learning process in order to achieve LDHD generaliza-
tion. In practice, the prior knowledge is usually incorporated via the inductive bias of the learning
algorithms and the models. Abbe et al. (2023) claimed that models with (S)GD converge to min-
degree interpolators. However, the minimal degree-profile bias neither holds uniformly for all model
architectures nor is sufficient for achieving LDHD generalization. To develop LDHD generalizable
models, we investigate different architectures whose inductive bias with (S)GD can potentially go
beyond the min-degree interpolators. While random feature models are shown to be min-degree
interpolators, we prove that random feature models with projections, where inputs are transformed
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by projections before fed to the random feature models, converge to min-degree interpolators under
different linearly independent sets. We further consider Position-Only Linear Attentions with Advice
(PLAA), i.e., linear attentions whose attention scores are determined only by positions, with addi-
tional hints about the scales of the instances. This model can be seen as a simplified abstraction of
decoder-only transformers with a special focus on positional relations that are considered crucial for
length generalization. We demonstrate the failure of PLAA models equipped with Absolute Position
Embeddings (APEs) in general cases and show the PLAA models with Relative Position Embeddings
(RPEs) are min-degree interpolators w.r.t. some linearly independent sets. These results show that
for models biased towards min-degree interpolators w.r.t. some linearly independent sets, LDHD
generalization can be achieved if and only if the target mapping is the min-degree interpolator w.r.t.
the same set.

The LDHD generalization perspective further provides insights on how Chain-of-Thought (CoT) (Wei
et al., 2022) can help length generalization. We show that CoT can be seen as a change of the hidden
space, where each dimension of the latent space is augmented with an additional middle state. This
transformation could facilitate LDHD generalization in the latent space for some problems. Another
implication is a principle of position embedding design for length generalization with Transformers:
we need to handle both the inherent LDHD generalization and the nuisances such as the data format
in the design of the position embeddings. Following this principle, we propose a novel position
embedding named RPE-Square. The RPE-Square enhances the RPE with the ability to handle certain
data format nuisances, evidently improving the length generalization of the URF addition over the
Transformer with the RPE.

The main contributions of the paper are summarized as follows:

• We propose to study LDHD generalization, which captures the inherent scaling challenge of a wide
range of length generalization problems. LDHD generalization provides a formulation under which
we can perform theoretical analysis for general length generalization problems.

• We study the inductive bias of different model architectures under (S)GD, which can be exploited to
incorporate prior knowledge to achieve LDHD generalization. In the context of Boolean functions,
we show that different architectures under (S)GD can have inductive bias other than min-degree
interpolators, which enables LDHD generalization for a wider class of problems.

Notations. We use [n] to represent the set of numbers {1, . . . , N}. We denote the set of all functions
from the set X to the set Y as FX ,Y . We define Proj(x, V ) as the coordinate of the projection of
x onto the space spanned by V with the basis V = [v1, . . . , vr], i.e., [Proj(x, V )]i = ⟨x, vi⟩ for all
i = 1, . . . , r. We use A∗ to denote the Kleene closure of the set A, i.e., A∗ =

⋃∞
k=0 A

k. We use
deg(p) to denote the degree of the polynomial p. We represent the set of N ×N upper triangular
matrix as UN .

2 RELATED WORK

Length generalization in reasoning problems. Length generalization is a key challenge in learning
to reason, typically interpreted as the ability to learn with small-scale instances of a task and generalize
to unseen large instances of the same task (Anil et al., 2022; Zhou et al., 2023). Various reasoning
tasks are considered to investigate length generalization, including arithmetic (Jelassi et al., 2023;
Feng et al., 2024), Boolean logic (Abbe et al., 2023; d’Ascoli et al., 2023), symbolic reasoning (Zhang
et al., 2022b), etc. Despite the rich literature on length generalization on specific reason tasks, few
works have considered challenges and overconditions of length generalization for general problems.
The existing works that analyze general length generalization mainly focus on the change of the input
sequence length (Xiao & Liu, 2023; Ahuja & Mansouri, 2024), which does not precisely capture the
difficulties of length generalization. Our work proposes to consider LDHD generalization, which
characterizes the inherent challenges of length generalization in many tasks.

Inductive Bias of Model Architectures and Algorithms. In the situation of learning with over-
paratermization or incomplete information, proper inductive bias is essential to select the true model
from the hypothesis (Neyshabur, 2017; Bartlett et al., 2021). One of the most studied scenarios is
the inductive bias of different model architectures under (S)GD. Previous research shows (S)GD
combined with different model architectures lead to different effects of implicit regularization, such as
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different norms of the learnable parameters Gunasekar et al. (2017); Bartlett et al. (2021) and different
complexity characterizations of the models (Razin & Cohen, 2020; Razin et al., 2021; Abbe et al.,
2023). We specially mention Abbe et al. (2023), which proposes that models trained with (S)GD are
biased towards min-degree profile interpolators in the context of Boolean functions, which do not
achieve general LDHD generalization. Our results show that the min-degree profile bias does not hold
for all models. We further show that models with different architecture can converge to min-degree
profile interpolators under different linearly independent sets when trained with (S)GD. This partially
explains how model architectures can affect length generalization in reasoning problems.

3 LOW-DIMENSION-TO-HIGH-DIMENSION GENERALIZATION

Definition 1 (Low-Dimension-to-High-Dimension Generalization). Suppose that X is a sample
space and X1,X2 are two subspaces such that X1 ⊂ X2 ⊂ X and dim(X1) < dim(X2). Consider
a concept class C ⊂ FX ,Y , two distributions D1,D2 where supp(D1) = X1 and supp(D2) = X2,
and a learning algorithm A : (X × Y)

∗ 7→ FX ,Y . We say low-dimension-to-high-dimension
generalization of the concept class C from D1 to D2 is achieved by the algorithm A with m samples
and ϵ error if

EXm∼Dm
1 ,Xm+1∼D2

[
ℓ
(
f̂Xm,c(Xm+1), c(Xm+1)

)]
≤ ϵ, (1)

where f̂Xm,c is the function learned by the algorithm A from the training samples Xm labeled by the
concept c and ℓ : Y × Y 7→ R is the loss function.

Definition 1 extends the Independent Identical Distribution (IID) assumption in PAC learning theory
and considers a special shift between the training data and the testing data. This shift is particularly
challenging because the testing space is of strictly higher dimension than the training space. Generally,
it is impossible to fully capture the structure of the training space from the testing data as the training
data reveal no information on how components in the orthogonal subspace contribute to the output.
Therefore, there is no algorithm that can always guarantee to learn the concept from the training data.
Theorem 1 formally states the nonexistence of universal algorithms for LDHD generalization.
Theorem 1 (No-Free-Lunch Theorem of LDHD Generalization). Suppose that the two sets X
and Y are finite. For some N > N0, consider two subsets XN0 , XN of X such that XN0 ⊊
XN ⊆ X and dim(XN0) = N0 < N = dim(XN ). Let c1, c2 ∈ F(:= FXN ,Y) be two concepts
such that c1(x) = c2(x) for all x ∈ XN0 . For any c ∈ F and X ′ ⊆ X , define F/ (c | X ′) :=
{f ∈ F | f(x) = c(x) for all x ∈ X ′}. Let ℓ : Y ×Y 7→ R be the loss function. For any distribution
D(XN ) such that supp (D(XN )) = XN :∑

f∈F/
(
c1|XN0

)Ex∼D(XN ) [ℓ (c1(x), f(x))] =
∑

f∈F/
(
c2|XN0

)Ex∼D(XN ) [ℓ (c2(x), f(x))] .

Theorem 1 necessitates the consideration of structural assumptions on the concept class such that
a learning algorithm could identify the target concept from the hypothesis with the imperfect in-
formation provided by the low-dimensional training data. For example, the concept class of linear
classifiers with fixed weight vector on X = Rd, i.e., C = {sgn (w⊺

0x+ b) | w0 ∈ Rd, b ∈ R} with
the d′-dimensional training sample space X1 = Rd′ × {0}d−d′

and the d-dimensional testing sample
space where d′ < d. For any concept c ∈ C, a learning algorithm could not identify the true concept c
solely from the training data from X1 and the hypothesis of all linear classifiers. However, if a linear
algorithm exploits the structure of the concept class that the weight vector always equals w0, it can
compute the target bias from the training data in X1 and thus identify the target concept c.

We further investigate how model structures can affect LDHD generalization. We show in Section 4
that different models trained with (S)GD can be seen as min-degree interpolators under different
functional bases in the context of Boolean functions, which is a joint inductive bias of the model
structures and (S)GD. This insight suggests a principle for model design to achieve LDHD general-
ization: ensure the concept class is “low-degree” under the linearly independent set induced by the
model structure.

Many generalization challenges in reasoning problems can be attributed to LDHD generalization
inherently. Length generalization is representative of these challenges and of significance in reasoning
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problems. Intuitively, length generalization means that a model trained with small-scale instances
of a reasoning problem can perform well on large-scale instances of the problem. To formalize the
intuition, we consider a typical instance being generated from a hidden state variable h that represents
the core of the instance and is transformed to the model input by a data format mapping. The hidden
state space is of the form Σ∗ for some domain Σ. The dimension n of the subspace from which the
hidden state variable is sampled, n = argmaxk{h ∈ Σk, h ̸∈ Σk+1} , reflects the increase in the
scale of the problem. Besides, we define the concept class on the hidden space, depicting that the
change of the data format does not change the intrinsic logic of the concepts. Assumption 1 describes
the pipeline of the data generation in length generalization.

4 MAIN RESULTS

We show theoretically how different models succeed or fail to achieve LDHD generalization as the
effect of the inductive bias of the architectures under (S)GD. We focus on Boolean functions. More
specifically, in the context of Boolean functions, we have Σ = {±1}, X = ΣN , Xn = Σn×{1}N−n

for n = 1, . . . , N . The set of all Boolean functions potentially considered is F = FX ,R. We consider
LDHD generalization from N0 to N for some N0 < N . Define I(f) as the minimal set I of indices
that the function f can be represented as a function of xI , i.e., I(f) := argminI⊂[N ] |I| such that
f(x) = f̃(xI) for some function f̃ and all x ∈ X . We say a function f is k-sparse if |I(f)| ≤ k.

Before presenting the theoretical results, we introduce two concepts degree profile w.r.t. linearly
independent set and min-degree interpolator w.r.t. linearly independent set, which extend the concept
degree profile and the concept min-degree interpolator, respectively. We use the two concepts to
characterize the inductive bias of different model architectures under (S)GD.
Definition 2 (Degree Profile w.r.t. Linearly Independent Set B). Suppose that B = {b1, . . . , bR}
is a linearly independent set of functions in F and D = maxb∈B deg(b). Let f ∈ F be a function
in the subspace spanned by B, i.e., f =

∑R
i=1 f̂B(bi)bi for some f̂B(bi) ∈ R, i = 1, . . . , R.

The degree profile of the function w.r.t. B, denoted by DegPB(f), is a (D + 1)-tuple where
Di =

∑
b∈B,deg(b)=D+1−i f̂B(b)

2 for i = 1, . . . , D + 1. The order of degree profiles is identical to
the lexicographic order of the corresponding D-tuples.
Definition 3 (Min-Degree Interpolator w.r.t. Linearly Independent Set B). Suppose that B =
{b1, . . . , bR} is a linearly independent set of functions in F . Let X ′ be a subset of the sample
space X = {±1}N . Denote the set of all interpolators on X ′ for the concept c by GX ′,c, i.e.,
GX ′,c = {g ∈ F | g(x) = c(x) for all x ∈ X ′}. A function g is called the min-degree interpolator
w.r.t. B on X0 for the concept c if g ∈ GX ′,c and DegP(g) ≤ DegP(g′) for all g′ ∈ GX ′,c.

4.1 RANDOM FEATURE MODEL WITH PROJECTION

We first consider the random feature model (RFM) and a class of its variants, i.e., Random Feature
Models with Projection (RFMP; see Definition 4). RFM is widely employed as approximations of
practical neural network models in theoretical studies. By comparing the inductive biases introduced
by RFM and RFMP under various projections, we demonstrate the importance of incorporating prior
knowledge to achieve LDHD generalization and this prior knowledge can be effectively embedded
through model design.
Definition 4 (Random Feature Model with Projection). Suppose that V = [v1, . . . , vr] ∈ RN×r

satisfies V ⊺V = Ir. A random feature model with projection w.r.t. V is

fV,K
RFMP(x; a) =

1√
K

K∑
k=1

akσ (⟨wk,Proj (x, V )⟩+ bk) ,

where K is the number of random features, a = [a1, . . . , aK ]
⊺ is the learnable parameter, wk ∼

N (0, Ir/r), bk ∼ N (0, 1/r) for k = 1, . . . ,K, and σ is the activation function.

The original RFM can be seen as a special instance of RFMP with V = IN . Technically, we follow
the strongly expressive condition (Abbe et al., 2023) for the activation function σ. Abbe et al. (2023)
shows that the RFM converges to the min-degree interpolator when initialized at 0 and trained with
GD. However, this is not the case for all RFMP models. We show in Theorem 2 that an RFMP model
converges to a min-degree interpolator w.r.t. a linearly independent set determined by the set V .
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Theorem 2. Suppose that V = [v1, . . . , vr] ∈ RN×r satisfies V ⊺V = Ir. Define the set B(V ) of
independent functions as

B(V ) =
{
χV
T (x)

}
T⊆[r]

, where χV
T (x) =

∏
t∈T

N∑
n=1

(vt)nxn

Let at be the learnable parameter at the timestep t in the training process where the learnable
parameter a is initialized at a0 = 0 and optimized with gradient descent/gradient flow under ℓ2 loss
on XN0

. Let GN0,c,V be the set of all interpolators on XN0
for the concept c∗(x) = c (Proj(x, V ))

that is ON (1)-sparse. Then we have

fV,K
RFMP(x; at) → arg min

g∈GN0,c,V

DegPB(V )(g), as K → ∞, t → ∞.

When V = IN , the linearly independent set B(V ) is the Fourier basis of the Boolean functions, and
Theorem 2 implies that the RFM converges to the min-degree interpolator. From Theorem 2, we see
that an RFMP model with the projection matrix V can achieve LDHD generalization only if the target
concept coincides with the min-degree interpolator w.r.t. B(V ). Specially, for the RFM, we have:
Corollary 1. For any f ∈ F such that I(f) ̸⊂ [N0], the min-degree interpolator does not achieve
LDHD generalization from XN0 to XN and thus the RFM initialized at 0 and trained with GD does
not achieve LDHD generalization from XN0

to XN .

Corollary 1 shows that the min-degree interpolator and thus the RFM model can only achieve LDHD
generalization for a very restricted set of functions that are only dependent on x[N0]. To achieve
LDHD generalization with RFMP models requires prior knowledge of the concept class to design a
projection to align the concepts with the min-degree interpolator w.r.t. the projected Fourier basis.
Example 3 illustrates how LDHD generalization is possible for the target function with dependence
beyond x[N0] by choosing a proper projection.

Example 3. Consider the target function f(x) = 4x1 + 3x2, N0 = 1, and N = 2. The min-degree
interpolator on XN0 is f1(x) = 4x1, which does not achieve LDHD generalization on XN . In the
RFMP model, if we choose

V =

[
0.8 0.6
0.6 −0.8

]
,

then we have B(V ) = {1, 0.8x1+0.6x2, 0.6x1−0.8x2, (0.8x1+0.6x2)(0.6x1−0.8x2)}. The min-
degree interpolator w.r.t. the linearly independent set B(V ) on XN0 is f2(x) = 4x1 + 3x2 = f(x),
which achieves LDHD generalization on XN .

4.2 POSITION-ONLY LINEAR ATTENTION WITH ADVICE

In this subsection, we investigate Position-Only Linear Attention with Advice (PLAA), which can be
seen as a simplification of decoder-only Transformers (Definition 5), with a special focus position
embeddings that are considered pivot to the length generalization of the Transformers (Shaw et al.,
2018; Jelassi et al., 2023).
Definition 5 (PLAA). Define the advice function n : X 7→ {0, . . . , N} such that n(x) =
argmaxn{xn = −1} if there exists k ∈ [N ] such that xk = −1 and n(x) = 0 otherwise. We
additionally define e0 := 0. A PLAA model is

fPLAA(x;A) = x⊺Aen(x),

where A ∈ UN is the learnable parameter and en denotes the vector with a 1 in the n-th coordinate
and 0’s elsewhere.

We further elaborate on the intuition behind the PLAA models. In the generation process of a
decoder-only (linear) Transformer with position embeddings given input s = s1 . . . sn, the attention
is computed by the query at the position n and the keys at the positions i ≤ n. The position of the
query is special, advising the length of the input and reflecting the scale of the instance ideally. The
PLAA model captures this feature and introduces the notation n(x) to reflect the dimension of the
subspace that x belongs to. To further simplify and focus on the position embeddings, we assume
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that the value of each xi is identical to itself (i.e., we fix the value matrix in the attention to I and thus
WV xi = xi) and the attention is only related to positions. The contribution of the interaction between
the position embeddings is [e1, . . . , en]

⊺
A[n],[n]en = A[n],n for some upper triangle matrix A. When

the input is embedded to length N but the query is still made at the position n, the output of the model
is x⊺Aen(x), i.e., the output of the PLAA model. Therefore, the PLAA model is a simplification of
decoder-only Transformers that enables theoretical analysis of the impact of the position embeddings
on length generalization. For a more detailed elaboration on PLAA, see Appendix C.

In Definition 5, we directly parameterize the PLAA model directly with the attention matrix. In
practice, however, the attention matrix is typically computed by the interaction between the position
embeddings. Therefore, we consider the PLAA models with the Absolute Position Embedding (APE)
and the Relative Position Embedding (RPE), respectively. See Definitions 6 and 7. Note that we
consider Generalized RPE (GPRE) in Definition 7 because the RPE can be seen as a special instance
of the GRPE with U = URPE = {D1, . . . , DN}, where Dk is a k-th upper diagonal matrix such that
(Dk)ij is 1 if j = i+ k − 1 and 0 otherwise. We seek a more general result applicable to all similar
parameterization methods to the RPE.

Definition 6 (PLAA with APE). A PLAA model with APE is

fAPE
PLAA(x;P ) = x⊺ (Mu

N ◦ P ⊺P ) en(x),

where Mu
N ∈ RN×N is the upper triangle mask, i.e., (Mu

N )ij is 1 if i ≤ j and 0 otherwise, and
P ∈ RdP×N is the learnable parameter of the model.

Definition 7 (PLAA with GRPE). For U = {U1, . . . , Ur}, a PLAA moodel with GRPE is

fGRPE,U
PLAA (x; p) = x⊺

(
r∑

i=1

Uipi

)
en(x),

where Ui ∈ UN , i = 1, . . . , r are upper triangle matrices that satisfy ⟨Ui, Ui⟩ = 1 for all i = 1, . . . , r
and (Ui)kl (Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , and p = [p1, . . . , pr]

⊺ ∈ Rr is the learnable
parameter of the model.

Remark 1. The condition (Ui)kl (Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N in Definition 7 means
each element in the position-only attention is characterized by at most one parameter. For example,
in RPE, Ai,j(i ≤ j) is only parameterized by pj−i. This condition naturally generalizes the intuition
of RPE that characterizes some “relative” relations between two positions.

We first consider the vanilla PLAA model, the direct parameterization with the attention matrix.
Theorem 3 shows that the PLAA model converges to the min-degree interpolator w.r.t. the linearly
independent set BPLAA

N that is defined in the theorem.

Theorem 3. Define the set BPLAA
N as

BPLAA
N := {bPLAA

ij (x)}1≤i≤j≤N ,

where

bPLAA
ij (x) =

{
− 1−xj

2

∏N
k=j+1

1+xk

2 , i = j,

xi
1−xj

2

∏N
k=j+1

1+xk

2 , i < j.

Let At be the learnable parameter at the timestep t in the training process where the learnable
parameter A is initialized at A0 = 0 and optimized with gradient descent/gradient flow under ℓ2
loss on XN0

. Let GPLAA
N0,A∗ be the set of all interpolators on XN0

for the concept c(x) = fPLAA(x;A
∗).

Then we have
fPLAA(x;At) → arg min

g∈GPLAA
N0,A∗

DegPBPLAA
N

(g), as t → ∞.

For the PLAA model with APE, Theorem 4 shows that the model converges to the interpolator whose
attention matrix is of the minimal nuclear norm if the minimal-nuclear-norm-solution conjecture
Assumption 2 about the implicit regularization in matrix factorization holds. While the minimal-
nuclear-norm-solution conjecture has not been theoretically justified in general cases, it is proved
correct under some specific conditions and supported by empirical evidence (Gunasekar et al., 2017;
Arora et al., 2019).
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Assumption 2 (Minimal-Nuclear-Norm-Solution Conjecture (Gunasekar et al., 2017)). Consider the
optimization

min
U∈Rn×n

f(U) = ∥A (UU⊺)− y∥22 ,

where A : Rn×n 7→ Rm is a linear operator specified by A(·)i = ⟨Ai, ·⟩ for symmetric linearly
independent Ai ∈ Rn×n, 1 ≤ i ≤ m, and y ∈ Rm. Define X = X(U) := UU⊺. Let Ut be
the parameter reached by gradient flow in the timestep t and Xt be UtU

⊺
t . Define X∞(Xinit) :=

limt→∞ Xt for U0U
⊺
0 = Xinit. For any full rank X0, if X̂ = limα→0 X∞(αX0) exists and A

(
X̂
)
=

y, then X̂ ∈ argminX≻∥X∥∗
s.t. A(X) = y.

Remark 2. Some works (Gidel et al., 2019; Li et al., 2021) propose that rank minimization is more
accurate than nuclear norm minimization under certain technical assumptions. While the nuclear norm
minimization and the rank minimization are not always equivalent, both can explain the failure of APE
in length generalization in certain scenarios. Furthermore, in the literature on low-rank optimization,
the nuclear norm has been shown to serve as an effective surrogate for rank minimization under
particular assumptions (Recht et al., 2008; Candès & Tao, 2010; Candes & Recht, 2012), making it a
widely used regularization technique in practical applications. In this work, we focus on the length
generalization problem and assume Assumption 2 for simplicity.

Theorem 4. Suppose that Assumption 2 holds and dP = N . Let Pt be the learnable parameter
at the timestep t in the training process where the learnable parameter P is initialized at P0 such
that (P0)ij ∼ N (0, α) for (i, j) ∈ [dP ]× [N ] and α sufficiently small, and optimized with gradient
descent/gradient flow under ℓ2 loss on XN0 . Let GAPE

N0,P∗ be the set of all PLAA interpolators on XN0

for the concept c(x) = fAPE
PLAA(x;P

∗). Then we have

fAPE
PLAA(x;Pt) → arg min

g∈GAPE
N0,P∗

∥Ag∥∗, as t → ∞,

where Ag is the attention matrix in the PLAA model g.

Theorem 4 shows that APE leads to a low-rank attention matrix in the PLAA model. Therefore, when
the training data is restricted to XN0 , the rank of the attention matrix learned by the model with APE
is no higher than N0. This leads to length generalization failure when the target concept requires
higher-rank attention to be represented. We have the following direct corollary of Theorem 4 that
partially explains the limitation of APE for length generalization.

Corollary 2. The PLAA with APE fails to achieve LDHD generalization for the concept c(x) =
fPLAA(x;A

∗) if rank(A∗) > N0.

Theorem 5 characterizes that the PLAA converges to the interpolator that minimizes the degree-profile
w.r.t. to the linearly independent set BGRPE,U

PLAA , which can be seen as the projections of U onto BGRPE,U
PLAA .

Theorem 3 is a special case of Theorem 5 for U = {Eij}1≤i≤j≤N , where Eij ∈ RN×N is the
elementary matrix that has a 1 at the (i, j)-th position and 0 everywhere else.

Theorem 5. For the U = {U1, . . . , Ur}, define

BGRPE,U
PLAA :=

 ∑
1≤i≤j≤N

(Uk)ijb
PLAA
ij (x)


1≤k≤r

.

Let pt be the learnable parameter at the timestep t in the training process where the learnable
parameter p is initialized at p0 = 0 and optimized with gradient descent/gradient flow under ℓ2 loss
on XN0

. Let GGRPE,U
N0,p∗ be the set of all interpolators on XN0

for the concept c(x) = fGRPE,U
PLAA (x; p∗).

Then we have
fGRPE,U

PLAA (x; pt) → arg min
g∈GGRPE,U

N0,p∗

DegPBGRPE,U
PLAA

(g), as t → ∞.

With the inductive bias of the PLAA with GRPE, Corollary 3 states that LDHD generalization can be
achieved if and only if the target concept can be represented by the elements in BGRPE,U

PLAA that have
dependence on XN0 .
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Corollary 3. Consider the concept c(x) = fGRPE,U
PLAA (x; p∗) =

∑r
k=1 ck

∑
1≤i≤j≤N (Uk)ijb

PLAA
ij (x).

Under the conditions of Theorem 5, the PLAA with GRPE achieves LDHD generalization from XN0

to XN if and only if {
k | (Uk)[N0],[N0] = 0

}
⊆ {k | ck = 0} .

Remark 3. While the projection in the RFM and the position embeddings in the PLAA may introduce
a stronger inductive bias that benefits LDHD generalization, they can also reduce the expressiveness
of the models. The critical point is to align the models with the concept class in such a way that
we can incorporate a strong inductive bias for LDHD generalization while maintaining sufficient
expressiveness for the concept class.

5 FURTHER IMPLICATIONS FOR LENGTH GENERALIZATION

We discuss further implications of the LDHD generalization perspective for length generalization.

5.1 CHAIN-OF-THOUGHT FOR LENGTH GENERALIZATION

While the Chain-of-Thought (CoT) can lead to more variety in the length of testing samples,
it is widely used as an effective technique to improve the length generalization in various rea-
soning tasks. This seems contradictory if considered in the original space of the input se-
quence. However, when considering the abstraction of the data generating process from the
hidden space, we can see that CoT intrinsically changes the underlying hidden space by extend-
ing each dimension with a “middle” variable and does not lead to the dimensional increase in
the hidden space. For example, consider the n-addition without CoT and the n-addition with
CoT. In the case without CoT, the instance xn−1 . . . x0 + yn−1 . . . y0 = zn . . . z0 corresponds
to the latent state hn = [(x0, y0) , . . . , (xn−1, yn−1)] ∈ Σn for Σ = {0, . . . , 9} × {0, . . . , 9}.
In the case with CoT, one step of predicting zt in solving the instance corresponds to the la-
tent state hn = [(x0, y0, z0) , . . . , (xt−1, yt−1, zt−1) , (xt, yt, ∗) . . . , (xn−1, yn−1, ∗)] ∈ Σ̄n for
Σ̄ = Σ× {∗, 0, . . . , 9}, where ∗ is a special element indicating undetermined values. CoT does not
cause the LDHD generalization challenge but extends the domain Σ, which could potentially lead to
a more easily learnable target concept under the model architecture.

5.2 POSITION EMBEDDINGS FOR LENGTH GENERALIZATION

Position embeddings are considered closely related to the length generalization in Transformers Our
analysis suggests a principle to consider both the inherent LDHD generalization and the nuisances
such as the data format in the design of the position embeddings. To further elaborate, consider the
length generalization of the URF addition with CoT. While RPE can capture the recursive structure
of the addition problem and could lead to LDHD generalization in the latent space, it fails to work for
the URF addition with CoT. The failure of RPE is attributed to the nuisance of the URF.

Following the principle, we design a novel position embedding called RPE-Square to handle the
nuisance of the URF. On the one hand, we keep the RPE structure for the inherent LDHD generaliza-
tion. On the other hand, we deal with the unalignment by considering the distances to several special
tokens (i.e., [BOS], +, and =). These considerations lead to the RPE-Square, in which we compute
the relative values between the distances to the special tokens. More concretely, the RPE-Squarei,j
for the query at j and the key at i is∑
1≤k≤j,1≤l≤i

exp ((WQxj)
⊺(WKxl))∑

1≤l′≤j exp ((WQxj)⊺(WKxl′))

exp ((WQxi)
⊺(WKxk))∑

1≤k′≤i exp ((WQxi)⊺(WKxk′))
R(j−l)−(i−k),

where WQ and WK are the weight matrices for the query and the key, respectively. We replace
RPEj−i with RPE-Squarei,j in the Transformer. The experiment shows that RPE-Square effectively
improves the length generalization in the URF addition with CoT. The design of RPE-Square
illustrates how the principle can lead to position embeddings for better length generalization. More
details of the RPE-Square and the experiments can be found in Appendix E.

6 CONCLUSION AND DISCUSSION

We propose considering LDHD generalization, which captures the inherent scaling challenge of length
generalization in various reasoning tasks. We introduce the No-Free-Lunch Theorem for LDHD
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Figure 1: Length generalization of Transformer with RPE and RPE-Square in the URF addition.
The training data are from the URF 4-addition and the testing data are from the URF 5-addition.
(a) Both the models are trained for 20000 steps. The comparison result shows that the RPE fails
while the RPE-Square succeeds in achieving length generalization in the URF addition, (b) The
RPE-Square model is trained for 200000 steps, which shows the RPE-Square model converges to
a solution achieving nearly perfect accuracy. The “k-th” line represents the digitwise accuracy to
predict the k-th digit, i.e. zk.

generalization, demonstrating the necessity of inductive bias for achieving length generalization.
We further investigate the inductive biases of different model architectures trained with (S)GD in
the context of Boolean functions. LDHD generalization can only be achieved if the inductive bias
aligns with the structure of the target concept. As implications for length generalization in practical
problems, our perspective on LDHD generalization elucidates the role of CoT in extending the latent
space and leads to the principle that both inherent LDHD generalization and nuisances must be
addressed to achieve length generalization.

For future work, while our theory is established with simplified models, it is crucial to further
investigate inductive bias in more practical and complex models. Additionally, developing a paradigm
for position embedding design based on the proposed principles is a valuable avenue for exploration.
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A BACKGROUND ON BOOLEAN ANALYSIS

In this section, we include a brief background on Boolean analysis essential to this work. We refer to
O’Donnell (2014) for further details and comprehensive coverage of Boolean analysis.

Fourier Expansion. A Boolean function f : {−1, 1}n 7→ R can always be represented by

f(x) =
∑

T⊂[n]

f̂(T )χT (x), (2)

where χT (x) = πi∈[T ]xi. The polynomial in (2) is called the Fourier expansion of the Boolean
function f . The number f̂(T ) is the Fourier coefficient of f on T . The set {χT (x)}T⊂[n] forms a
basis, named Fourier basis, for the product space w.r.t the inner product defined by

⟨f, g⟩ = Ex∼U({−1,1}n) [f(x)g(x)] .

Degree and Degree Profile. The degree of a Boolean function f is the degree of its Fourier expansion,
which is a polynomial. The degree profile of f , denoted by DegP(f), is a (n + 1)-tuple where
DegPi(f) =

∑
T⊂[n],|T |=n+1−i f̂

2(T ). The order between two degree profiles is lexicographic.
The degree profile can be roughly seen as the distribution of the degrees of the monomials in the
polynomial. Intuitively, the degree profile reflects the “complexity” of the Boolean function. A
lower-degree-profile Boolean function uses fewer variables or combines them more simply than a
higher-degree-profile one.
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B INTUITIVE ILLUSTRATION OF LDHD GENERALIZATION

LDHD generalization is a special scenario of OOD generalization with structural distributional shifts.
The unique structure captures the inherent scaling challenge in length generalization. Figure 2 is an
intuitive comparison of in-distribution, (typical) OOD generalization, and LDHD generalization.
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(a) In-Distribution Generalization.
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(b) (Typical) OOD Generalization.
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(c) LDHD Generalization.

Figure 2: Illustrative comparison between in-distribution generalization, typical out-of-distribution
generalization (with distributional shift), and LDHD generalization. (a) For in-distribution gener-
alization, the training distribution and the testing distribution are identical. (b) For typical OOD
generalization, there is a shift between the training distribution and the testing distribution. The two
distributions are somewhat "close" (e.g., sharing the same support set or having a small distributional
distance). (c) For LDHD generalization, the training distribution and the testing distribution can be
very different. While LDHD generalization can be seen as a type of OOD generalization, the shift
has a special structure from a low-dimension subspace to a higher-dimension space. This makes
LDHD generalization particularly challenging because the training data reveal no information about
how the extra dimension contributes to the label. For example, suppose that we are learning a linear
decision boundary from the low-dimension training data. We need to know the slope of the decision
boundary as a prior; otherwise we will fail to achieve LDHD generalization. While all the three solid
lines in (c) perfectly separate the training data, only the true decision boundary can achieve LDHD
generalization.

C DETAILED EXPLANATION OF PLAA

In this section, we illustrate how PLAA and its variants abstract the effect of position embedding on
the LDHD generalization of decoder-only Transformers.

C.1 CONSTRUCTION OF PLAA

A typical linear attention at query n can be expressed as

fLA (x;WQ,WK ,WV , B) =
∑
i≤n

[(WQxn)
⊺
(WKxi) +Bi,n]WV xi, (3)

where WQ,WK ,WV are the query, key, value matrices, respectively, and B ∈ RN×N is the position
bias. To focus on the impact of the position embeddings, we fix WV = I and consider position-only
attention score. Then we have

fPLA (x;B) =
∑
i≤n

Bi,nxi =
∑
i≤n

e⊺i Benxi.

Rewriting B as A and restricting A to an upper triangular matrix, we have

fPLA (x;A) =

n∑
i=1

e⊺i Aenxi = x⊺Aen, where A ∈ UN .
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In the computation of attention, the query position is asymmetric to other positions and can re-
flect the scale of the instance. To formalize the intuition, we introduce the notation n(x) :=
argmaxi∈[N ]{xi = −1}, which represents the last dimension where xi = −1. In the LDHD gener-
alization framework, n(x) can be interpreted as the lowest dimension of the subspaces containing
x, reflecting the dimension of x. We take n(x) as the query position of x. Specifically, when x is
all-ones, it is treated as an "empty" sequence. In this case, we fix its output to align with the definition
of PLAA. By the above derivation, we obtain Definition 5.

C.2 CONSTRUCTION OF PLAA WITH APE

The expression of the linear attention with APE is slightly different from (3). In practice, APE is
commonly added to the token embeddings. Therefore, we omit the position bias and add APE to
each xi when computing the attention score (we slightly abuse the notation of xi to denote the token
embedding), i.e.,

fAPE
LA

(
x;WQ,WK ,WV , {pi}i∈[N ]

)
=
∑
i≤n

[WQ (xn + pn)]
⊺
[WK (xi + pi)]WV xi,

where pi is the position embedding for the position i.

Similar to the derivation in Appendix C.1, we have

fAPE
PLAA (x;WQ,WK) =

∑
i≤n(x)

p⊺n(x)W
⊺
QWKpixi =

∑
i≤n(x)

e⊺n(x)P
⊺W ⊺

QWKPeixi,

where P is the learnable position embedding matrix such that pi = Pei for all i ∈ [N ]. Without loss
of generality, we absorb the learnable parameters WQ,WK into P , obtaining

fAPE
PLAA (x;P ) =

∑
i≤n

x⊺
i e

⊺
i P

⊺Pen(x) = x⊺ (Mu
N ◦ P ⊺P ) en(x).

C.3 CONSTRUCTION OF PLAA WITH GRPE

RPE can be seen as a reparameterization of the position bias matrix such that the entries on the same
diagonals share learnable parameters, i.e.,

B =

N∑
i=1

Dipi,

where Dk is the k-th upper diagonal matrix and pi is the learnable parameter for all 1 ≤ k ≤ N .

We generalize RPE so that our model can cover more general position biases. A natural extension
is to choose general upper triangular matrices, denoted by UGRPE = {U1, . . . , Ur}, instead of
URPE = {D1, . . . , DN}. To normalize, we suppose ⟨Ui, Ui⟩ = 1 for all i = 1, . . . , r. (This condition
does not hold for URPE. We can slightly modify the matrices by replacing Dk with 1

N+1−kDk to
satisfy the condition.) We further require (Ui)kl(Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , i.e., each
Bi,j is characterized by at most one learnable parameter. Using the reparameterization

B =

r∑
i=1

Uipi

in the derivation of PLAA, we obtain PLAA with GRPE in Definition 7.

14
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D PROOFS

D.1 PROOF FOR THEOREM 1

Let D1 := D (XN | x ∈ XN0
) be the conditional distribution given that x ∈ XN0

and D2 :=
D (XN | x ̸∈ XN0) be the conditional distribution given that x ̸∈ XN0∑

f∈F/
(
c1|XN0

)Ex∼D(XN ) [ℓ (c1(x), f(x))]

=PD(XN )(x ∈ XN0)
∑

f∈F/
(
c1|XN0

)Ex∼D1 [ℓ (c1(x), f(x))]

+ PD(XN )(x ̸∈ XN0
)

∑
f∈F/

(
c1|XN0

)Ex∼D2
[ℓ (c1(x), f(x))]

=PD(XN )(x ∈ XN0)V1(c1) + PD(XN )(x ̸∈ XN0)V2(c1),

where

V1(c) :=
∑

f∈F/
(
c|XN0

)Ex∼D1 [ℓ (c(x), f(x))] ,

V2(c) :=
∑

f∈F/
(
c|XN0

)Ex∼D2
[ℓ (c(x), f(x))] .

Similarly, we have∑
f∈F/

(
c2|XN0

)Ex∼D(XN ) [ℓ (c2(x), f(x))] = PD(XN )(x ∈ XN0
)V1(c2)+PD(XN )(x ̸∈ XN0

)V2(c2).

To prove the theorem, it remains to show that V1(c1) = V1(c2) and V2(c1) = V2(c2).

By the definition of F/
(
c|XN0

)
, we have

V1(c1) =
∑

f∈F/
(
c1|XN0

)Ex∼D1
[ℓ (c1(x), f(x))]

=
∑

f∈F/
(
c1|XN0

)Ex∼D1
[ℓ (c1(x), c1(x))]

(a)
=

∑
f∈F/

(
c2|XN0

)Ex∼D1 [ℓ (c2(x), c2(x))]

=
∑

f∈F/
(
c2|XN0

)Ex∼D1
[ℓ (c2(x), f(x))] = V1(c2),

where the equality (a) is due to that c1(x) = c2(x) for all x ∈ XN0
.

By the no-free-lunch theorem (Wolpert & Macready, 1997; Wolpert, 2002) for XN \ XN0
, Y , and

FXN\XN0
,Y , we have∑
f∈FXN\XN0

,Y

Ex∼D2
[ℓ (c1(x), f(x))] =

∑
f∈FXN\XN0

,Y

Ex∼D2
[ℓ (c2(x), f(x))] .
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Then we have

V2(c1) =
∑

f∈F/
(
c1|XN0

)Ex∼D2
[ℓ (c1(x), f(x))]

=
∑

f∈FXN\XN0
,Y

Ex∼D2
[ℓ (c1(x), f(x))]

=
∑

f∈FXN\XN0
,Y

Ex∼D2 [ℓ (c2(x), f(x))]

=
∑

f∈F/
(
c2|XN0

)Ex∼D2
[ℓ (c2(x), f(x))] = V2(c2).

D.2 PROOF FOR THEOREM 2

Let z = z(x) = Proj(x, V ) and ZN0
= {Proj(x, V ) | x ∈ XN0

}. Let G′
N0,c

be the set of all RFM
interpolators on ZN0 for the concept c(z), i.e.,

G′
N0,c = {fRFM(z; a) | fRFM(z; a) = c(z) for all z ∈ ZN0

},

where

fRFM(z; a) =
1√
K

K∑
k=1

akσ(⟨wk, z⟩+ bk).

According to the proof of Theorem 3.8 in Abbe et al. (2023), the RFM model fRFM(z; a) converges
to the min-degree interpolator (w.r.t. the variable z) in G′

N0,c
, i.e.,

fRFM(z; at) → argmin
g′∈G′

N0,c

DegPB′(g′), as K → ∞, t → ∞,

where B′ = {χT (z)}T⊆[r].

By the definition of z = z(x) = Proj(x, V ), we have

fV,K
RFMP(x; at) = fRFM(z; at) → argmin

g′∈G′
N0,c

DegPB′(g′) = arg min
g∈GN0,c,V

DegPB(V )(g),

as K → ∞, t → ∞.

D.3 PROOF FOR COROLLARY 1

Lemma 1. For any f ∈ F , the min-degree interpolator f∗ on XN0
satisfies I(f∗) ⊂ [N0].

Proof for Lemma 1. Assume that there exist some f ∈ F such that the min-degreee interpolator f̂ of
f on XN0

does not satisfy I(f̂) ⊂ [N0].

Let f̃(x) be the function constructed by fixing all xi, i ̸∈ [N0] to 1 in f̂(x). By the construction, we
have f̃(x) = f̂(x) for all x ∈ XN0 and thus f̃(x) is also an interpolator of f on XN0 .

Since I(f̂) ̸⊂ [N0], we have DegP(f̃) < DegP(f̂). This contradicts the assumption that f̂ is the
min-degree interpolator.

By Lemma 1, for any f ∈ F such that I(f) ̸⊂ [N0], the min-degreee interpolator f̂ is not identical to
f on XN and thus does not achieves LDHD generalization from XN0 to XN .
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D.4 PROOF FOR THEOREM 5

Since Theorem 3 is a special case of Theorem 5 for U = {Eij}1≤i≤j≤N , we only need to prove
Theorem 5.

Note that

fGRPE,U
PLAA (x; p) = x⊺

(
r∑

k=1

pkUk

)
en(x) =

〈
xe⊺n(x),

r∑
k=1

pkUk

〉
.

Let DN0
be the size of the training set in XN0

. Then the loss can be represented as

L(p) =
1

2DN0

∑
x∈XN0

(〈
xe⊺n(x),

r∑
k=1

pkUk

〉
− c∗(x)

)2

.

Without loss of generality, we use the notation of gradient flow in this proof. Then we have

Ȧ = − 1

DN0

∑
x∈XN

(〈
xe⊺n(x), A

〉
− c∗(x)

) r∑
k=1

〈
xe⊺n(x), Uk

〉
Uk.

Since p(0) = 0, we have A(0) = 0 and thus A(t) ∈ span
{∑r

k=1

〈
xe⊺n(x), Uk

〉
Uk

}
x∈XN0

. Then

the convergence point Â can be represented as Â =
∑

x∈XN0
â(x)

∑r
k=1

〈
xe⊺n(x), Uk

〉
Uk. The

convergence function f̂ is

f̂(x) =
∑

x′∈XN0

â(x′)

r∑
k=1

〈
x′e⊺n(x′), Uk

〉〈
xe⊺n(x), Uk

〉

=

r∑
k=1

∑
x′∈XN0

â(x′)
〈
x′e⊺n(x′), Uk

〉〈
xe⊺n(x), Uk

〉
Lemma 2. For any upper triangle matrix U ∈ RN×N , we have

⟨xe⊺n(x), U⟩ =
∑

1≤i≤j≤N

Uijb
PLAA
ij (x).

Proof for Lemma 2. We first prove that ⟨xe⊺n(x), Emn⟩ = bPLAA
ij (x) for any 1 ≤ i ≤ j ≤ N . Notice

that

⟨xe⊺n(x), Eij⟩ =
{
xi xj = −1 ∧ xj+1 = 1 ∧ · · · ∧ xN = 1,

0 otherwise.

Therefore, we have

⟨xe⊺n(x), Eij⟩ = xi ·
1− xj

2
· 1 + xj+1

2
· · · · · 1 + xN

2

=

{
− 1−xj

2

∏N
k=j+1

1+xk

2 , i = j,

xi
1−xj

2

∏N
k=j+1

1+xk

2 , i < j.

= bPLAA
ij (x).

For any upper triangle matrix U =
∑

1≤i≤j≤N UijEij , we have

⟨xe⊺n(x), U⟩ = ⟨xe⊺n(x),
∑

1≤i≤j≤N

UijEij⟩ =
∑

1≤i≤j≤N

Uij⟨xe⊺n(x), Eij⟩ =
∑

1≤i≤j≤N

Uijb
PLAA
ij (x).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Define bk(x) := ⟨xe⊺n(x), Uk⟩. By Lemma 2, we have bk(x) =
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x). Then

the convergence function f̂ can be represented as

f̂(x) =

r∑
k=1

∑
x′∈XN0

â(x′)bk(x
′)bk(x) =

r∑
k=1

p̂kbk(x),

where p̂k =
∑

x′∈XN0
â(x′)bk(x

′).

For any interpolator g(x) =
∑r

k=1 pkbk(x) on XN0
:

• If bk(x) = 0 for all x ∈ X0, we have p̂k = 0 and p2k ≥ 0 = p̂2k;
• If bk(x) ̸= 0 for some x ∈ X0, we have p̂k = pk and thus p̂2k = p2k. To show this, without loss of

generality, we suppose that for 1 ≤ k ≤ m, there exists some x ∈ XN0
such that bk(x) ̸= 0, and

for m+ 1 ≤ k ≤ r, bk(x) = 0 for all x ∈ XN0 . It suffices to show that the following equation has
a unique solution:  b1(x1) . . . bm(x1)

...
...

...
b1(xM ) . . . bm(xM )


 p1...
pm

 =

 c∗(x1)
...

c∗(xM )

 ,

where M = |XN0
| and XN0

= {x1, . . . , xM}. Since p1 = p̂1, . . . , pm = p̂m is a solution, it
remains to prove the uniqueness. Let

Bm =

 b1(x1) . . . bm(x1)
...

...
...

b1(xM ) . . . bm(xM )

 .

It suffices to show rank(Bm) = m. Note that (B⊺
mBm)ii =

∑
x∈XN0

bi(x)
2 > 0 and

(B⊺
mBm)ij =

∑
x∈XN0

bi(x)bj(x) = 0. We have rank(B⊺
mBm) = m and thus rank(Bm) = m.

Hence, for any interpolator g on XN0
, we have

DegPBGRPE,U
PLAA

(f̂) ≤ DegPBGRPE,U
PLAA

(g),

or equivalently,

fGRPE,U
PLAA (x; pt) → arg min

g∈GGRPE,U
N0,p∗

DegPBGRPE,U
PLAA

(g), as t → ∞.

D.5 PROOF FOR COROLLARY 3

By Theorem 5, the PLAA with GRPE achieves LHDH generalization from XN0
to XN if and only

if the target concept c(x) is the min-degree interpolator w.r.t. the linearly independent set BGRPE,U
PLAA .

Therefore, it is equivalent to prove the target concept c(x) is the min-degree interpolator w.r.t. the
linearly independent set BGRPE,U

PLAA if and only if{
k | (Uk)[N0],[N0] = 0

}
⊆ {k | ck = 0} .

We denote
{
k | (Uk)[N0],[N0] = 0

}
by K1 and {k | ck = 0} by K2 in this proof.

We first show the sufficiency. Assume that c(x) is not the min-degree interpolator w.r.t. the
linearly independent set BGRPE,U

PLAA on XN0
. In other words, there exists an interpolator c̃(x) =∑r

k=1 c̃k
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x) on XN0 such that

DegPBGRPE,U
PLAA

(c̃) < DegPBGRPE,U
PLAA

(c).

Since both c(x) and c̃(x) are interpolators on XN0
, we have

r∑
k=1

ck(Uk)[N0],[N0] =

r∑
k=1

c̃k(Uk)[N0],[N0],

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

or equivalently, ∑
k ̸∈K1

ck(Uk)[N0],[N0] =
∑
k ̸∈K1

c̃k(Uk)[N0],[N0].

Since (Ui)kl(Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , we have
{
(Uk)[N0],[N0]

}
k ̸∈K are linearly

independent. This implies ck = c̃k for all k ̸∈ K1.

Since K1 ⊆ K2, we have ck = 0 and thus c2k ≤ c̃2k for all k ∈ K1. Hence, we have

DegPBGRPE,U
PLAA

(c) ≤ DegPBGRPE,U
PLAA

(c̃),

which contradicts the assumption.

We then prove the necessity. Assume that K1 ̸⊆ K2. Then there exists some k0 ∈ K1 but k0 ̸∈ K2.
Define ˜̃c(x) =

∑r
k=1

˜̃ck
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x) where

˜̃ck =

{
0, k = k0,

ck, k ̸= k0.

By the definition of K1, ˜̃c(x) = c(x) for all x ∈ XN0 and thus ˜̃c(x) is also an interpolator on X0.
Note that ck0 ̸= 0. By the definition of ˜̃c(x), we have

DegPBGRPE,U
PLAA

(˜̃c) ≤ DegPBGRPE,U
PLAA

(c),

which contradicts that the target concept c(x) is the min-degree interpolator w.r.t. the linearly
independent set BGRPE,U

PLAA on XN0
.

E EXPERIMENTS

E.1 DETAILED EXPLANATION OF RPE-SQUARE

The design of RPE-Square follows the principle: when devising position embeddings for length
generalization, one needs to consider both the LDHD generalization in the latent space and the
nuisance of the data format in the input sequence space. This principle is derived from the LDHD
generalization perspective for length generalization, illustrating the insights of LDHD generalization
for practical models.

To further elaborate, we show how RPE-Square is constructed in the guidance of the proposed
principle to achieve length generalization of the URF addition (with CoT).

• LDHD generalization in the latent space. For the addition, the LDHD generalization in the latent
space can be handled by RPE.

• The data format nuisance of URF. To handle the data format, we need to consider the
mapping between a latent variable and its URF string, i.e., how the latent variable hn =
[(x0, y0, z0), . . . , (xt−1, yt−1, zt−1), (xt, yt, ∗), . . . , (xn−1, yn−1, ∗)] can be recovered from the
corresponding URF string “[BOS]x0 . . . xnx−1 + y0 . . . yny−1 = z0 . . . zt−1” (to predict zt). The
URF mapping can be described as follows: concatenate “[BOS]”, the first elements of the dimen-
sions (up to the “highest” nonzero element), a “+”, the second elements of the dimensions (up to
the “highest” nonzero element), a “=”, and the third elements of the dimensions (up to the “highest”
non-“*” element).
According to the URF mapping, we notice that the “position” of an element in the latent variable
can be identified by its relative distances to “[BOS]”, “+”, and “=”. (Here, the relative distance
from the position i to the position j is i− j.). Denote the tuple of the relative distances from some
token s to “[BOS]”, “+”, “=” by (n1(s), n2(s), n3(s)). Then we have

s =


xn1(s)−1, n1(s) > 0, n2(s) < 0, n3(s) < 0,

yn2(s)−1, n1(s) > 0, n2(s) > 0, n3(s) < 0,

zn3(s)−1, n1(s) > 0, n2(s) > 0, n3(s) > 0.
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Note that zk can be determined by xk−1, xk, yk−1, yk, and zk (we ignore the boundary cases in
this discussion for simplicity). To predict the next token of some s where n1(s) > 0, n2(s) >
0, n3(s) > 0, we need to identify the elements s1, s2, s3, s4, s5 such that

n1(s1) = n3(s)− 1, n2(s1) < 0, n3(s1) < 0,
n1(s2) = n3(s), n2(s2) < 0, n3(s2) < 0,

n2(s3) = n3(s)− 1, n1(s3) > 0, n3(s3) < 0,
n2(s4) = n3(s), n1(s4) > 0, n3(s4) < 0,

n3(s5) = n3(s)− 1, n1(s5) > 0, n2(s5) > 0.

Therefore, to address the URF data format nuisance, the position embedding can consider the
relative distances to some tokens.

RPE-Square is designed to encode the prior knowledge of both the LDHD generalization and the data
format, combining RPE and the approach to deal with the URF data format. The position embedding
for the query j and the key i is determined by the relative distance between the relative distance
of j to the position of some token sl, and the relative distance of i to the position of some token xk,
parameterized by R(j−l)−(i−k). The “relative distance of relative distances” design is where the
name RPE-Square comes from. Furthermore, we want to learn the special tokens automatically rather
than specify them by hand-craft. To achieve this, we adopt a “soft” design. taking a weighted average
over all 1 ≤ l ≤ j, 1 ≤ k ≤ i. The weight of R(j−l)−(i−k) depends on the tokens, which is the
multiplication between the attention score of the query xj and the key xl, and the attention score of
the query xi and the key xk. This design makes RPE-Square more flexible and potentially applicable
to other problems of structures similar to the URF addition. We conduct an addition experiment in
Appendix E.3, showing that RPE-Square can achieve length generalization beyond the URF addition.

E.2 EXPERIMENT DETAILS

For the URF n-addition training data, we first sample the lengths of two addends uniformly from
{1, . . . , n}×{1, . . . , n}. For two addends of lengths (n1, n2), we then samples from [10n1−1, 10n1−
1]×[10n2−1, 10n2−1] (If ni = 0, then the corresponding sample interval is [0, 9]). This is to guarantee
the addends are length-uniform. For the addition xn1−1 . . . x0 + yn2−1 . . . y0 = zn3

zn3−1 . . . z0, the
training instance is

b x0 . . . xn1−1 + y0 . . . yn2−1 = z0 . . . zn3−1 zn3 e.

Here, we add spaces between the characters to ensure each is tokenized separately. We use “b” and
“e” instead of “[BOS]” and “[EOS]” for a simpler implementation with the GPT-2 tokenizer. In our
experiments, we train with 10000 URF 4-addition samples.

We choose GPT-2 with key-only position embeddings as our model. For the RPE and RPE-Square
settings, we augment the GPT-2 model with RPE and RPE-Square, respectively. The implementation
is adapted from HuggingFace (Wolf et al., 2020).

We train the models by AdamW, with the initial learning rate 0.0005, the weight decay 1.0, and the
cosine scheduler. The warmup ratio is 0.05. The gradient accumulation steps is 2. The per-device
training batch size is 128. We train the models for 20000 steps and 200000 steps. The experiments
are run on a server with Ubuntu. The models are trained on two NVIDIA GeForce RTX 3090 GPUs.

E.3 ADDITIONAL EXPERIMENTS

To further validate the LDHD generalization perspective, we additionally consider the (unaligned)
copy. We show that RPE-Square, the position embedding derived according to the LDHD generaliza-
tion perspective, can achieve length generalization in this task, while RPE fails.

Concretely, an instance of the copy task is like

b x0 . . . xn−1 = x0 . . . xn−1 e.

The model is given the input bx0 . . . xn−1 = and expected to output the copy of x0 . . . xn−1.

We sample 2000 n-length instances for each n = 1, . . . , 5 as the training data. In the evaluation,
we examine the learned models on instances of length 1− 10. We train GPT-2 with key-only RPE
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and RPE-Square, respectively. The model is trained by AdamW with the cosine scheduler, where
the initial learning rate is 0.0005, the weight decay is 1.0, the warmup ratio is 0.05, the gradient
accumulation step is 2, and the per-device training batch size is 256. We set the training steps to
10000 but early stop at step 1000 as the model with RPE-Square has achieved nearly perfect length
generalization while the model with RPE shows almost no length generalization then. The result is
presented in Figure 3.

From the perspective of LDHD generalization, the latent variable corresponding to the input
bx0 . . . xn−1 = x0 . . . xk is

[(x0, x0), . . . , (xk, xk), (xk+1, ∗), . . . , (xN , xN )] .

The LDHD generalization in the latent space can be effectively addressed by RPE. The data format
mapping can be handled by considering the relative distance to the tokens “b” and “=”. Therefore,
RPE-Square is expected to work for the length generalization of the unaligned copy. RPE does not
properly deal with the unaligned data format and thus could fail to achieve length generalization in
this scenario.
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(a) RPE.
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(b) RPE-Sqaure.

Figure 3: Length generalization of Transformer with RPE (a) and RPE-Square (b) in the unaligned
copy. The training data are of length ranging from 1 to 5. Both the models are trained for 1000
steps. We evaluate the models on data of length ranging from 1 to 5. While both the models have
good in-distribution generalization performance, only the model with RPE-Square generalizes to the
instances of length 6-10.
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