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ABSTRACT

Vision Transformers (ViTs) have achieved remarkable performance across vari-
ous computer vision tasks, yet their high computational cost remains a significant
limitation in many real-world scenarios. As noted in prior studies, decreasing the
number of tokens processed by the attention layers of a ViT directly reduces the
required operations. Building on this idea, and drawing inspiration from signal
processing, we reinterpret the token embeddings of a ViT layer as a signal, which
allows us to apply the Discrete Wavelet Transform (DWT) to separate low- and
high-frequency components. Guided by this insight, we present Token REduction
via WAvelet decomposition (TREWA), a token-pruning strategy built upon DWT.
For each image in a batch, TREWA selects a pruning level by comparing that im-
age’s attention entropy with the batch one. It then applies the DWT to the token
embeddings and forwards only the low-frequency coefficients (i.e., those captur-
ing the image’s main semantic structure) to the next attention layer, discarding
50–75% of the tokens. We evaluate TREWA on four benchmark datasets in both
pre-trained and training from scratch settings, comparing it against state-of-the-
art pruning methods. Our results show a superior trade-off between accuracy and
computational efficiency, validating the effectiveness of our frequency-domain to-
ken pruning strategy for accelerating ViTs.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have rapidly gained popularity in computer
vision due to their ability to learn effective global representations through self-attention. Unlike
convolutional models, which operate locally, ViTs transform images into sequences of tokenized
patches, similar to Natural Language Processing (NLP) (Raghu et al., 2021), achieving competitive
or superior performance in classification, detection, and segmentation tasks (Hassija et al., 2025).
However, this representational power comes at a high computational cost (Keles et al., 2023) because
each patch becomes a token that traverses the entire depth of the model, with quadratic complex-
ity with respect to the number of tokens. This can be inefficient, as many tokens are redundant or
uninformative (Nauen et al., 2025). In fact, not all tokens contribute equally to the semantics of
the image (Haurum et al., 2023), and at greater depths, only those most relevant to the task tend
to be useful (Diko et al., 2024). This observation has stimulated growing interest in token pruning
or merging techniques, which aim to reduce the number of tokens processed by the model while
preserving its performance (Marchetti et al., 2025). However, existing methods address this chal-
lenge primarily through additional learnable modules or adaptive attention mechanisms that estimate
the importance of tokens in each layer (Rao et al., 2021; Fayyaz et al., 2022). Although effective,
these solutions increase model complexity and often introduce computational overhead or require
an additional training phase, complicating their integration into inference pipelines.

In this work, we propose an approach called Token REduction via WAvelet decomposition
(TREWA), an alternative approach to token pruning different from traditional mechanisms. The
key idea of TREWA is to treat the token embedding sequence in an attention layer as a multidimen-
sional signal, which allows us to use frequency domain analysis tools, such as the Discrete Wavelet
Transform (DWT) (Alessio, 2015), to efficiently reduce the number of tokens propagated through
the ViT (Zhang, 2019; Fuad, 2017). In particular, for each input image in an attention layer, we
first compute the entropy of the [CLS] token’s attention distribution over patch tokens. This mea-
sure reflects the degree of concentration or dispersion of attention and serves as a proxy for the
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model’s confidence in its internal representation. Based on the entropy value, we assign a pruning
level: images with low entropy (i.e., more focused attention) undergo stronger pruning, while those
with high entropy are left unchanged. We then apply the DWT to the token embeddings, treating
them as multidimensional signals. This decomposition separates high-frequency components, which
are typically associated with noise or less relevant local details, from low-frequency components,
which, in ViTs, are typically associated with the main semantic structure and information of the
image (Wang et al., 2025). Depending on the assigned pruning level, we retain only the appropri-
ate low-frequency components (Chowdhury & Khatun, 2012; Tian et al., 2023). This selection is
performed in an unsupervised manner, without introducing any learnable parameters. To evaluate
TREWA, we conduct extensive experiments on four benchmark datasets and two ViT architectures,
considering both pre-trained and from-scratch settings, and demonstrate that TREWA achieves a
superior accuracy-efficiency trade-off compared to state-of-the-art pruning and merging methods.

The main contributions of this work are:

• We propose TREWA, a novel token pruning strategy for ViTs based on the DWT, which
retains only the low-frequency components of tokens, preserving the core semantic infor-
mation.

• The pruning is applied progressively across the depth of the network and is dynamically
adjusted per image using the entropy of the [CLS] token’s attention distribution, enabling
more aggressive pruning when attention is highly concentrated.

• TREWA is deterministic and parameter-free because it does not introduce additional learn-
able components, nor does it require architectural modifications or retraining.

2 RELATED WORK

The computational cost of ViTs grows linearly with depth and quadratically with the number of
tokens (Keles et al., 2023), prompting the development of various pruning and merging strategies to
reduce tokens while maintaining accuracy (Haurum et al., 2023). Several pruning techniques address
the problem in different ways. Among these, TopK (Haurum et al., 2023) selects tokens based on the
attention of the [CLS] token. Similarly, DynamicViT (Rao et al., 2021) predicts importance using a
binary mask, while ATS (Fayyaz et al., 2022) samples tokens based on their relevance. In contrast,
TRAM (Marchetti et al., 2025) discards tokens using attention graphs, whereas EvolutionViT (Liu
et al., 2025) eliminates redundant patches through an evolutionary algorithm. Finally, MADTP (Cao
et al., 2024) integrates multimodal guidance with dynamic pruning.

Alternatively, token merging methods aggregate similar representations by replacing them with
merged tokens. Among these, TokenFusion (Kim et al., 2024) and AdaViT (Meng et al., 2022)
use similarity metrics or learned merging rules; ToMe (Bolya et al., 2023) applies a lightweight al-
gorithm that progressively merges tokens without requiring retraining; PatchMerger (PM) (Renggli
et al., 2022) introduces learnable parameters for “soft” mergers; and LTM (Wang & Yang, 2025)
uses masks to combine tokens into the most informative weights. Hybrid approaches, such as EViT
(Liang et al., 2022), combine pruning and merging by eliminating tokens with low CLS attention and
merging redundant ones, while RanMerFormer (Wang et al., 2024a) combines pruning and merging
via bipartite soft matching on key vectors.

An emerging line of research has begun to explore the integration of wavelet transforms (Alessio,
2015) into Transformers, to improve computational efficiency or enrich the multi-scale representa-
tion of images (Cao & Zhao, 2023; Wang et al., 2024b). For example, wavelet-based tokenizers
have recently been proposed as an efficient alternative to patch embeddings in ViTs (Zhu & Sori-
cut, 2024). Instead, Li et al. (2022) proposes an architecture that integrates the Discrete Wavelet
Transform (DWT) within a sliding window Transformer, exploiting frequency decomposition to re-
cover coherent structures from noisy data. Yang & Seo (2023) integrates DWT into the architectural
components of the Transformer, replacing the traditional token mixer with a multi-level frequency
decomposition. Wave-ViT (Yao et al., 2022) proposes integrating the DWT into ViTs as an invertible
alternative to traditional downsampling on keys and values in attention.

Unlike pruning and merging methods that rely on learnable modules or static rules, TREWA is
deterministic, interpretable, and adaptive: it leverages token attention and DWT-based frequency
decomposition to prune tokens by retaining only low-frequency semantic components. Furthermore,
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different from works that integrate DWT into ViTs for multiscale representations, we use it solely
as a module during training and inference, without altering the ViT or adding parameters.

3 PRELIMINARIES

3.1 VISION TRANSFORMERS

A Vision Transformer (ViT) adapts the Transformer architecture to visual data. Although first in-
troduced for image classification and later applied to many other tasks in computer vision, in this
work, we employ a ViT solely as an image classifier. Let I ∈ RH×W×C be an input image. The ViT
divides I into N non-overlapping square patches of size p × p pixels, each of which is embedded
into a vector space Rd, generating a sequence of embedded tokens X = {x1, . . . , xN}, preceded by
a special token for classification [CLS]. The ViT model, denoted by T , consists of L Transformer
layers, each of which applies self-attention and feed-forward on all tokens. At the end of the L
layers, the [CLS] is used for image classification.

3.2 DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT) decomposes a signal into components that are simultane-
ously localized in space (or time) and frequency. Unlike the Fourier Transform, which supplies only
global frequency information, the DWT employs scaled and shifted wavelets to deliver a multireso-
lution view. Each decomposition stage filters the input with complementary low-pass and high-pass
kernels, downsamples the outputs, and thus generates sub-bands: the low-frequency, or approxi-
mation, coefficients preserve the stable global structure, whereas the high-frequency, or detail, co-
efficients represent sharp changes or edges, and much of the noise (Li et al., 2021). Because this
separation is both invertible and computationally efficient, DWT has become a useful tool for im-
age compression, denoising, and broader multiscale analysis of visual, audio, and textual data. The
DWT is composed of a low-pass filter g and a high-pass filter h, both derived from the same mother
wavelet ψ. After filtering, the signal is downsampled by a factor of two. For a one-dimensional
input signal x, the approximation and detail coefficients are:

cA[i] =
∑
k

x[k] g[2i− k], cD[i] =
∑
k

x[k]h[2i− k]

The approximation coefficients cA contain the low-frequency content that describes the global struc-
ture, whereas the detail coefficients cD isolate the high-frequency content that captures local varia-
tions, fine details, and noise. Recursively applying the transform only to the approximation band cA
generates a depth j decomposition cA(j) in which each successive level retains increasingly abstract
semantic information.

4 METHODOLOGY

4.1 OVERVIEW

TREWA introduces a dynamic token pruning strategy for Vision Transformers, applied at selected
layers during inference. For each image, we analyze the distribution of the attention weights from the
classification token ([CLS]) to the other tokens, using Shannon entropy as a measure of dispersion.
For every image in the batch, we first calculate the entropy of the [CLS]-token attention distribution
across all tokens. A high-entropy (more uniform) distribution suggests that information is spread
broadly, so we apply lighter pruning. Conversely, a low-entropy (more peaked) distribution indicates
that attention is concentrated on a few tokens, allowing us to prune more aggressively. Afterwards,
the token embeddings of an image are then decomposed via the DWT, which separates low- and
high-frequency components. Only the low-frequency part, representing semantic information, is
retained and propagated to deeper layers. The pruning intensity is controlled by the number of
recursive DWT applications, which is determined adaptively based on the entropy computed for
each image.
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4.2 PRUNING STRATEGY

For clarity, we present the procedure on a single attention layer of a Vision Transformer, but the
same steps can be applied to any number of layers.
Consider a generic self-attention layer l ∈ L. Let B = {I1, . . . , IB}, with B > 1, be a batch of
input images. Each image Ib is tokenized into N patch tokens and one special classification token
[CLS]:

Xb = { [CLS]b, xb1 , xb2 , . . . , xbN } ∈ R(N+1)×d,

where [CLS]b denotes the classification token of image Ib and d is the embedding dimension. The
remaining N tokens {xb1 , . . . , xbN } are the embeddings of the image patches. From the multi-head
self-attention tensor Ab ∈ RH×(N+1)×(N+1) computed at layer l for image Ib, we first average over
the H attention heads. We then isolate the row corresponding to the [CLS]b token, discard its self-
attention coefficient, and obtain the attention vector ab ∈ RN , which contains the attention weights
assigned by [CLS]b to the N patch tokens only.

4.2.1 ENTROPY-BASED POLICY

To quantify how uniformly this attention is spread over the N patch tokens, we measure its Shannon
entropy:

hb = −
N∑
i=1

ab[i] log ab[i]

where ab[i] is the weight assigned by [CLS] to the i-th patch token of image Ib. A high entropy
indicates that attention is broadly distributed, suggesting semantic complexity, whereas a low en-
tropy reveals a focus on a few tokens and signals that more aggressive pruning may be tolerated
(Zhang et al., 2025; Lee & Kim, 2024).For the current batch, we collect the entropies for each image
H = {h1, . . . , hB}, with |H| > 1, compute their mean µH and standard deviation σH , and define
an adaptive threshold:

τH = µH − σH .

Each image is then assigned a discrete pruning level that controls how many tokens will be removed:
images with hb ≤ τH , whose attention is concentrated and thus easier to summarize, receive a
stronger pruning level, whereas images with hb > τH are preserved more thoroughly. In this way, we
obtain a parameter-free rule that identifies the images that can safely undergo stronger pruning. Since
both µH and σH are recomputed for every batch, the threshold automatically follows variations in
image complexity.

4.2.2 DISCRETE WAVELET TRANSFORM

For every image Ib that requires pruning, we apply the 1D Discrete Wavelet Transform along the
token sequence {xb1, xb2, . . . , xbN}. The intuition is to interpret the embedding sequence as a
multidimensional signal; hence, the transform separates low-frequency content, which conveys the
stable global semantics, from high-frequency content, which mostly carries local variations and
noise. Formally, using a mother wavelet ψ and a depth j defined by the entropy-based policy:

DWT(Xb, ψ, j) =
{
cA

(j)
b , cD

(j)
b

}
where cA

(j)
b holds the low-frequency approximation coefficients and cD

(j)
b collects the high-

frequency detail coefficients. The recursion depth is assigned adaptively:

j =

{
1 if hb > τH

2 if hb ≤ τH

4
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with hb the attention entropy of image Ib and τH the adaptive threshold. Images whose attention
is strongly concentrated (hb ≤ τH) therefore undergo a more severe pruning. For j = 1 we keep
only cA(1)

b ∈ RN
2 ×d. For j = 2 we apply a second transform to cA(1)

b and retain cA(2)
b ∈ RN

4 ×d.
Afterwards, we replace the original token signal Xb for the next attention layer with the pruned one
computed by our approach:

Xnew
b =

{
[CLS]b

}
∪ cA

(j)
b

Therefore, each image in a batch is effectively pruned by the factor 1/2j . Following this reasoning,
our approach yields a batch-level token reduction between 50% and 75%. Since the computational
and memory complexity of self-attention scales quadratically with the sequence length, the subse-
quent attention block works with a significantly reduced cost.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines To evaluate the performance of TREWA, we compare our pruning strategy with six
state-of-the-art methods: TRAM (Marchetti et al., 2025), ATS (Fayyaz et al., 2022), TopK (Haurum
et al., 2023), PM (Renggli et al., 2022), ToMe (Bolya et al., 2023), and EViT (Liang et al., 2022).
These methods include strategies based on pruning, merging, and token reordering, and constitute
a broad spectrum of efficient approaches for ViT (Haurum et al., 2023). For a fair comparison, we
set the pruning rate of all baseline methods to 50%, ensuring a consistent token reduction across
approaches. Furthermore, we use haar as the wavelet ψ in TREWA.

Models The experiments are conducted on two ViT architectures: ViT-Base (ViT-B) and ViT-
Small (ViT-S). ViT-B uses an embedding dimension of 768, 12 attention heads, an MLP dimension
of 3072, and 12 layers, with a 16 × 16 patch size. ViT-S adopts an embedding dimension of 384,
6 heads, an MLP dimension of 1536, and 12 layers, with the same 16 × 16 patch size. In all
approaches, we inserted the pruning modules at layers 5, 7, and 9, following a common configuration
to ensure a fair comparison.

Datasets The evaluations were performed on four datasets commonly used for image classifica-
tion: FashionMNIST (FMNIST) (Xiao et al., 2017), a grayscale dataset of 28×28 images of clothing
classes; CIFAR10 (Krizhevsky et al., 2010), consisting of 32×32 color images across 10 object
classes; Imagenette (Howard, 2020), a subset of ImageNet (Deng et al., 2009) with 224x224 color
images from 10 classes; ImageNet-1k (Russakovsky et al., 2015), a subset of ImageNet consisting
of 1.2 million training images of size 224x224 across 1,000 object classes, with a standard validation
set of 50,000 images.

Metrics To compare the different approaches, we consider accuracy as the main measure of clas-
sification performance, Giga FLoating Point Operations (GFLOPs) to estimate computational cost,
Frames Per Seconds (FPS) to capture inference speed. Reported accuracies are the mean ± variance
over 10 runs with different random seeds to capture training stochasticity.

Hardware Configuration All experiments were performed on a machine with an Intel(R)
Xeon(R) W5-3435X 3.10 GHz CPU, 128 GB of RAM, and an NVIDIA RTX A2000 GPU with
12 GB of memory.

5.2 QUANTITATIVE RESULTS

5.2.1 PRE-TRAINED SETTING

In this section, we evaluate the performance of TREWA in a pre-trained setting. For ImageNet-
1k, we used publicly available ViT-B and ViT-S models pre-trained on ImageNet, so no further
adjustments were required. In contrast, FMNIST, CIFAR10, and Imagenette have no official pre-
trained ViT models, so we fine-tuned the ImageNet pre-trained ViT-B and ViT-S weights on these
datasets for 5 epochs, respectively. All input images are rescaled to 224 × 224 pixels, to match the
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input resolution expected by the pre-trained models. The results are reported in Tables 1 and 2, with
the best values in bold and the second-best values underlined.

Table 1: Performance of the evaluated approaches on ViT-B in the pre-trained setting.
Model FPS ↑ GFLOPs ↓ Accuracy ↑

FMNIST CIFAR10 Imagenette ImageNet-1k

ViT-B 341 16.880 93.21±.07 95.72±.11 97.38±.15 80.32±.03

TREWA 538 9.218 92.79±.09 94.33±.08 95.40±.07 79.55±.07
TRAM 500 11.849 93.05±.10 93.68±.09 94.71±.08 79.44±.03
ATS 503 10.236 92.75±.08 92.96±.07 94.35±.10 78.96±.05
PM 528 11.496 91.01±.09 86.44±.13 87.09±.11 -
TopK 490 11.851 92.68±.07 93.19±.06 94.59±.08 77.71±.06
ToMe 493 11.878 92.42±.08 93.21±.09 93.70±.07 78.30±.04
EViT 495 11.932 92.20±.09 92.90±.08 94.26±.06 78.82±.09

Table 1 shows that, considering the ViT-B model, TREWA is the most efficient, outperforming
PM by 1.89% in FPS and having 9.95% fewer GFLOPS than ATS. In terms of accuracy, TREWA
achieves the best performance on the CIFAR10, Imagenette, and ImageNet-1k datasets, and ranks
second on FMNIST after TRAM. We cannot report PM results on ImageNet-1k because PM requires
training its own token-merging parameters, which is incompatible with the pre-trained setting, where
the model is not further trained.

Table 2: Performance of the evaluated approaches on ViT-S in the pre-trained setting.
Model FPS ↑ GFLOPs ↓ Accuracy ↑

FMNIST CIFAR10 Imagenette ImageNet-1k

ViT-S 853 4.257 93.73±.11 96.52±.05 98.12±.07 72.16±.04

TREWA 1,231 2.321 94.02±.10 95.81±.09 96.92±.11 69.62±.06
TRAM 1,018 2.996 93.58±.15 95.60±.13 95.49±.14 69.58±.07
ATS 1,016 2.610 93.39±.09 93.88±.10 95.24±.12 69.50±.08
PM 1,307 2.908 92.91±.08 88.01±.15 87.73±.12 -
TopK 1,186 2.997 93.20±.09 94.24±.08 95.45±.10 69.11±.03
ToMe 1,259 3.012 93.32±.07 95.19±.11 95.08±.13 69.60±.06
EViT 1,228 3.017 92.85±.10 94.97±.10 94.79±.09 69.19±.05

As for ViT-S, Table 2 shows that TREWA represents the best compromise between accuracy and
computational efficiency. Although it is slightly slower than PM, with 5.81% fewer FPS, it is the
most computationally efficient, with 11.07% lower GFLOPs consumption than ATS, which ranks as
the second-best method. Finally, in terms of accuracy, TREWA also achieves the best performance
on all datasets considered.

5.2.2 TRAINING FROM SCRATCH SETTING

In this section, we compare TREWA with state-of-the-art pruning and merging methods, training
ViT models from scratch on selected datasets. The goal is to evaluate the effectiveness of pruning
when applied throughout the entire learning process, without pre-trained weights. Specifically, all
models were trained for 50 epochs on the Imagenette dataset and for 10 epochs on the CIFAR10
and FMNIST datasets. In addition, the input images were resized to 160× 160 pixels to standardize
the resolution across different experiments. Due to computational constraints, we do not report
ImageNet-1k results, as training from scratch on millions of images is infeasible in our current
setting. The results are shown in Tables 3 and 4.

Table 3 shows the results obtained by training ViT-B models from scratch. Our method is confirmed
as the most efficient among those analyzed, being the fastest in terms of FPS and the least expensive
in terms of GFLOPs. Compared to TopK, which is the second-best method in terms of speed, we
obtain an increase of 8.22%, while compared to ATS, which is second in terms of computational
efficiency, we reduce GFLOPs by 13.20%. In terms of accuracy, TREWA achieves the best results
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on Imagenette and FMNIST datasets, while on CIFAR10 it is very close to TRAM, which is slightly
superior.

Table 3: Performance of the evaluated approaches on ViT-B in the training-from-scratch setting.
Model FPS ↑ GFLOPs ↓ Accuracy ↑

FMNIST CIFAR10 Imagenette

ViT-B 822 8.650 90.60±.16 68.17±.06 70.37±.11

TREWA 1,132 4.616 90.64±.09 67.14±.08 69.48±.10
TRAM 1,002 6.085 90.49±.08 67.88±.11 69.07±.09
ATS 956 5.318 90.15±.07 66.61±.12 68.03±.10
PM 1,031 5.864 90.41±.10 65.29±.09 65.69±.11
TopK 1,046 6.086 90.53±.12 66.01±.07 68.89±.08
ToMe 1,011 6.185 89.84±.09 65.86±.10 68.35±.13
EViT 989 6.198 89.94±.10 64.96±.15 68.49±.06

Table 4 shows the results obtained when ViT-S models are trained from scratch. Our method stands
out for its high computational efficiency, achieving the lowest GFLOPs value among all the meth-
ods analyzed. Compared to ATS, which is the second most efficient in this respect, we achieve a
reduction of 13.33%. In terms of FPS, TREWA is second only to PM, with a margin of 2.64%. In
terms of accuracy, we achieve the best results on CIFAR10 and Imagenette, while on FMNIST, we
come close to the best result, with a minimal difference compared to TRAM.

Table 4: Performance of the evaluated approaches on ViT-S in the training-from-scratch setting.
Model FPS ↑ GFLOPs ↓ Accuracy ↑

FMNIST CIFAR10 Imagenette

ViT-S 2,012 2.180 90.76±.05 66.76±.14 68.25±.11

TREWA 2,435 1.170 90.65±.07 66.37±.10 67.04±.11
TRAM 2,489 1.538 90.81±.08 66.21±.09 66.73±.10
ATS 1,784 1.350 90.77±.09 66.29±.10 65.14±.12
PM 2,501 1.483 90.46±.08 65.70±.11 62.75±.13
TopK 2,452 1.538 90.01±.07 66.13±.09 66.65±.10
ToMe 2,397 1.558 89.48±.08 64.93±.10 65.39±.09
EViT 2,364 1.573 90.25±.07 62.36±.11 65.53±.10

5.3 ABLATION STUDY

In this section, we analyze the impact of the main design choices of TREWA through an ablation
study. In particular, we evaluate three aspects: the pruning level assignment strategy, the type of
spectral component retained after the DWT transformation, and the choice of the wavelet used in
the decomposition. All experiments are conducted by training the ViT-B model from scratch on the
FMNIST, CIFAR10, and Imagenette datasets, keeping the training conditions constant.

As a first variation, we analyze the method for dynamically choosing the pruning to be performed.
The first approach (τ ) employs our adaptive threshold, defined as the batch-wise mean of the entropy
values minus their standard deviation. The second method (Quantile) partitions the entropy distri-
bution of the images within a batch into four quartiles. Images in the first quartile, which exhibit
low entropy and therefore high confidence, are subjected to the most aggressive pruning (j = 3).
Those in the second quartile undergo moderately strong pruning (j = 2), while images in the third
and fourth quartiles, associated with higher uncertainty, are pruned more conservatively (j = 1), in
accordance with the lower concentration of attention. The third method (Gini) considers the Gini
Index (Farris, 2010) calculated on the attention distribution of the token [CLS]. If the value is less
than 0.5, the DWT has j = 1; otherwise, j = 2 is applied. Unlike the previous methods, this ap-
proach bases the pruning decision on the inequality of attention distribution rather than entropy. The
corresponding results are reported in Table 5.

From the analysis of Table 5, we note that the adaptive threshold τ represents the most effective
choice for assigning the pruning level. While it yields a slightly lower frame rate compared to the
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Table 5: Performance of the evaluated approaches when training ViT-B from scratch with different
pruning thresholds.

Method FPS ↑ GFLOPs ↓ Accuracy ↑
FMNIST CIFAR10 Imagenette

τ 1,132 4.616 90.64±.12 67.14±.08 69.48±.10
Quantile 1,064 4.616 89.11±.14 66.53±.07 68.12±.09
Gini 1,221 4.616 89.72±.09 67.04±.07 68.76±.05

Gini-based method, it consistently achieves the highest accuracy across all datasets evaluated. For
this reason, we adopt τ as the standard criterion in TREWA.

Let us now analyze the effect of the components retained after the wavelet transformation. Table 6
compares three choices: retaining only the approximation coefficients cA, only the detail coefficients
cD, or the sum of them cA + cD. This analysis allows us to understand whether the pruning
performed by TREWA captures the most relevant information for the task.

Table 6: Performance of the evaluated approaches when training ViT-B from scratch with different
frequency-retaining methods.

Component FPS ↑ GFLOPs ↓ Accuracy ↑
FMNIST CIFAR10 Imagenette

cA 1,132 4.616 90.64±.12 67.14±.08 69.48±.10
cD 1,112 4.616 88.75±.10 64.90±.06 66.98±.05
cA+ cD 1,116 4.616 89.22±.13 65.70±.11 67.13±.09

Table 6 shows that retaining only the low-frequency component cA, which represents the approxi-
mate information, allows for the best performance in terms of accuracy and inference. This choice
allows us to remove the noise associated with high-frequency components while preserving the in-
formation most relevant to the task. The combination cA + cD also introduces noisier elements,
resulting in worse metrics than using the cA component alone. For this reason, we adopt cA as the
reference component to be retained in TREWA.

Finally, we analyze the influence of the mother wavelet ψ used in the DWT transformation. Specif-
ically, we compare four families of wavelets commonly used in signal processing (Rashid et al.,
2020): the haar, the simplest and most discontinuous; the Daubechies in two variants, db2 and
db4, the former characterized by a more local filter and the latter by a more global one; and finally
the Symlet sym2, designed to be more symmetrical. The goal of this analysis is to evaluate how
the choice of wavelet influences the quality of the coefficients generated by the decomposition and,
consequently, the effectiveness of pruning. The results obtained are shown in Table 7.

Table 7: Performance of the evaluated approaches when training ViT-B from scratch with different
mother wavelets.

ψ FPS ↑ GFLOPs ↓ Accuracy ↑
FMNIST CIFAR10 Imagenette

haar 1,132 4.616 90.64±.12 67.14±.08 69.48±.10
db2 1,101 4.710 89.77±.07 66.63±.09 69.41±.11
db4 1,049 4.859 90.11±.16 67.84±.08 69.53±.10
sym2 1,121 4.710 90.45±.09 66.25±.10 67.17±.12

As shown in Table 7, the haar wavelet is the most efficient in terms of speed and computational
cost, while maintaining excellent accuracy performance across all datasets. For this reason, we
adopt haar as the reference wavelet ψ in TREWA.
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6 DISCUSSION

The experimental results, conducted on different datasets and architectures, both in pre-trained and
training from scratch settings, show that TREWA is an excellent compromise between accuracy and
computational efficiency, as it allows for a significant reduction in GFLOPs and a significant in-
crease in FPS while maintaining the same accuracy, or even improving it in some cases. Compared
to established methods such as PM, TREWA is completely free of additional parameters, does not
modify the model structure, and can be easily integrated into pre-trained models. This makes it a
highly plug-and-play solution, easily adaptable, and suitable for different contexts. Another signifi-
cant advantage lies in the completely deterministic and interpretable nature of the method: the entire
pruning process is guided by an explicit policy based on understandable measures, such as attention
entropy, and does not require any learning or optimization phase. Furthermore, unlike many pruning
techniques, our strategy is based on selecting only the low-frequency component obtained through
DWT, a continuous and differentiable transformation. This is crucial in the context of deep learning,
as it allows TREWA to be integrated into the end-to-end training process of the model.

However, TREWA also has some limitations. Currently, it can only be applied to ViT models that use
the [CLS] token, as the pruning strategy relies on its attention patterns. Furthermore, the hierarchical
nature of DWT only allows reductions in powers of two, limiting the granularity with which the
number of tokens retained can be controlled and reducing flexibility in scenarios that require finer-
grained adjustment of the computational budget. A further limitation concerns the adaptive threshold
based on entropy. When calculating the mean and standard deviation of the values in a batch,
TREWA requires batches with at least two samples. With batches of size one, the standard deviation
is undefined, and the pruning rule cannot be applied correctly.

7 CONCLUSION

In this paper, we present a new token pruning approach for ViTs based on Discrete Wavelet De-
composition. The basic idea is to treat the sequence of tokens input to a Transformer layer as
a multidimensional signal, to which the wavelet transform is applied to efficiently separate low-
frequency components, which convey stable, long-term semantic information, from high-frequency
components, often associated with local details or noise. Starting from the entropy of the [CLS]
token attention distribution, we adopt an adaptive strategy that adjusts the pruning level based on
the concentration of information in the tokens. In this way, simpler images or those with more fo-
cused attention undergo more aggressive pruning, while those with more dispersed attention retain
a richer representation. Across FMNIST, CIFAR10, Imagenette, and ImageNet-1k, our approach
removes 50–75% of the tokens forwarded to subsequent attention layers, reducing computational
load yet preserving the model performance. Because the procedure is deterministic and introduces
no additional parameters, it can be integrated into any ViT that uses the classification token, whether
pre-trained or trained from scratch, providing an effective way to reduce computational cost. Look-
ing ahead, we plan to explore pruning thresholds based on signal strength, extend the framework to
natural language Transformers, and apply it to multimodal models, adapting pruning to the specific
characteristics of each modality.

USE OF LLM

We employed large language models solely to assist with language refinement after the scientific
content and experimental results had been fully developed by the authors. No part of the conceptual
design, methodology, or data analysis relied on LLM output.

REFERENCES

S. M. Alessio. Discrete wavelet transform (DWT). In Digital signal processing and spectral analysis
for scientists: concepts and applications, pp. 645–714. 2015. Springer.

D. Bolya, C. Y. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman. Token Merging: Your ViT
But Faster. In Proc. of the Conference on Learning Representations, (ICLR’23), Kigali, Rwanda,
2023. OpenReview.net.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

J. Cao, P. Ye, S. Li, C. Yu, Y. Tang, J. Lu, and T. Chen. Madtp: Multimodal alignment-guided
dynamic token pruning for accelerating vision-language transformer. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR’24), pp. 15710–15719, Seattle,
WA, USA, 2024.

Y. Cao and X. Zhao. Dwtformer: Wavelet decomposition Transformer with 2D Variation for Long-
Term Series Forecasting. In Proc. of the IEEE Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC’23), volume 6, pp. 1548–1558, 2023. IEEE.

M. M. H. Chowdhury and A. Khatun. Image compression using discrete wavelet transform. Inter-
national Journal of Computer Science Issues, 9(4):327, 2012.

J. Deng, W. Dong, R. Socher, L.J. Li, L. Kai, and F.F. Li. ImageNet: A large-scale hierarchical
image database. In Proc. of the International IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’09), pp. 248–255, Miami, FL, USA, 2009. IEEE.

A. Diko, D. Avola, Marco M. Cascio, and Luigi Cinque. ReViT: Enhancing vision transformers
feature diversity with attention residual connections. Pattern Recognition, 156:110853, 2024.
Elsevier.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In Proc. of the International Conference
on Learning Representations (ICLR’21), Virtual event, 2021. OpenReview.net.

F.A. Farris. The Gini index and measures of inequality. The American Mathematical Monthly, 117
(10):851–864, 2010.

M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze, E. Sommerlade, H. Pir-
siavash, and J. Gall. Adaptive token sampling for efficient vision transformers. In Proc. of
the European Conference on Computer Vision (ECCV’22), pp. 396–414, Tel Aviv, Israel, 2022.
Springer.

M. M. Muhammad Fuad. Aggressive pruning strategy for time series retrieval using a multi-
resolution representation based on vector quantization coupled with discrete wavelet transform.
Expert Systems, 34(1):e12171, 2017. Wiley Online Library.

V. Hassija, B. Palanisamy, A. Chatterjee, A. Mandal, D. Chakraborty, A. Pandey, G. S. S. Chalapathi,
and D. Kumar. Transformers for Vision: A Survey on Innovative Methods for Computer Vision.
IEEE Access, 2025. IEEE.

J. B. Haurum, S. Escalera, G. W. Taylor, and T. B. Moeslund. Which tokens to use? investigating
token reduction in vision transformers. In Proc. of the IEEE/CVF International Conference on
Computer Vision (ICCV’23), pp. 773–783, Paris, France, 2023.

J. Howard. Imagenette. https://github.com/fastai/imagenette, 2020.

F. D. Keles, P. M. Wijewardena, and C. Hegde. On the computational complexity of self-attention.
In Proc. of the International Conference on Algorithmic Learning Theory (ALT’23), pp. 597–619,
Singapore, 2023. PMLR.

M. Kim, S. Gao, Y. C. Hsu, Y. Shen, and H. Jin. Token fusion: Bridging the gap between token
pruning and token merging. In Proc. of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WCAV’24), pp. 1383–1392, Waikoloa, HI, USA, 2024.

A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for Advanced Research).
https://www.cs.toronto.edu/˜kriz/cifar.html, 2010.

S. Lee and B. Kim. Entropy-Guided Head Importance for Token Pruning in Vision Transformers.
In Proc. of the International Conference on Consumer Electronics-Asia (ICCE-Asia’24), pp. 1–3,
Da Nang, Vietnam, 2024. IEEE.

10

https://github.com/fastai/imagenette
https://www.cs.toronto.edu/~kriz/cifar.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

H. Li, Z. Yang, X. Hong, Z. Zhao, J. Chen, Y. Shi, and J. Pan. DnSwin: Toward real-world denoising
via a continuous Wavelet Sliding Transformer. Knowledge-Based Systems, 255:109815, 2022.
Elsevier.

P. Li, Y. Li, H. Wang, and D. Lin. Research and Analysis of One-dimensional Discrete Wavelet
Transform. In Proc. of the International Conference on Advanced Electronic Materials, Comput-
ers and Software Engineering (AEMCSE’21), pp. 1071–1075, Changsha, China, 2021. IEEE.

Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie. EViT: Expediting Vision Transformers via
Token Reorganizations. In Proc. of the International Conference on Learning Representations
(ICLR’22), Virtual event, 2022. OpenReview.net.

L. Liu, G. G. Yen, and Z. He. EvolutionViT: Multi-objective evolutionary vision transformer pruning
under resource constraints. Information Sciences, 689:121406, 2025. Elsevier.

M. Marchetti, D. Traini, D. Ursino, and L. Virgili. Efficient Token Pruning in Vision Transformers
Using an Attention-Based Multilayer Network. Expert Systems With Applications, 279(127449),
2025. Elsevier.

L. Meng, H. Li, B.C. Chen, S. Lan, Z. Wu, and Y.G. Jiang e S.N. Lim. Adavit: Adaptive vision trans-
formers for efficient image recognition. In Proc. of the International Conference on Computer
Vision and Pattern Recognition (CVPR’22), pp. 12309–12318, New Orleans, LA, USA, 2022.

T. C. Nauen, S. Palacio, F. Raue, and A. Dengel. Which Transformer to Favor: A Comparative
Analysis of Efficiency in Vision Transformers. In Proc. of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 6955–6966, Tucson, AZ, USA, 2025. IEEE.

M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy. Do vision transformers see
like convolutional neural networks? Advances in Neural Information Processing Systems, 34:
12116–12128, 2021.

Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.J. Hsieh. Dynamicvit: Efficient vision transform-
ers with dynamic token sparsification. Advances in Neural Information Processing Systems, 34:
13937–13949, 2021.

O. Rashid, A. Amin, and M. R. Lone. Performance analysis of DWT families. In Proc. of the Inter-
national Conference on Intelligent Sustainable Systems (ICISS’20), pp. 1457–1463, Cambridge,
United Kingdom, 2020. IEEE.

C. Renggli, A. Susano Pinto, N. Houlsby, B. Mustafa, J. Puigcerver, and C. Riquelme. Learning to
merge tokens in vision transformers. arXiv preprint arXiv:2202.12015, 2022.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A.C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115:211–252, 2015. Springer.

C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, and D. Zhang. Multi-stage image denoising with
the wavelet transform. Pattern Recognition, 134:109050, 2023. Elsevier.

J. Wang, S. Y. Lu, S. H. Wang, and Y.D. Zhang. RanMerFormer: Randomized vision transformer
with token merging for brain tumor classification. Neurocomputing, 573:127216, 2024a. Elsevier.

Y. Wang and Y. Yang. Efficient visual transformer by learnable token merging. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2025. IEEE.

Z. Wang, J. Yang, and J. Liu. Transformers Fusing Wavelet with High-Frequency Enhancement for
SAR Ship Detection. In Proc. of the Pacific Rim International Conference on Artificial Intelli-
gence (PRICAI’24), pp. 118–131, Kyoto, Japan, 2024b. Springer.

Z. Wang, X. Xie, H. Luo, T. Huang, W. Dong, K. Xiong, Y. Liu, X. Li, F. Wang, and G. Shi.
Compressing Vision Transformer from the View of Model Property in Frequency Domain. Inter-
national Journal of Computer Vision, pp. 1–19, 2025. Springer.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

D. Yang and S. W. Seo. Discrete wavelet transform meets transformer: Unleashing the full potential
of the transformer for visual recognition. IEEE Access, 11:102430–102443, 2023. IEEE.

T. Yao, Y. Pan, Y. Li, C. W. Ngo, and T. Mei. Wave-vit: Unifying wavelet and transformers for visual
representation learning. In Proc. of the European Conference on Computer Vision (ECCV’22’),
pp. 328–345, Tel Aviv, Israel, 2022. Springer.

D. Zhang. Wavelet transform. In Fundamentals of image data mining: Analysis, Features, Classifi-
cation and Retrieval, pp. 35–44. 2019. Springer.

Z. Zhang, Y. Wang, X. Huang, T. Fang, H. Zhang, C. Deng, S. Li, and D. Yu. Attention Entropy is a
Key Factor: An Analysis of Parallel Context Encoding with Full-attention-based Pre-trained Lan-
guage Models. In Proc. of the Annual Meeting of the Association for Computational Linguistics
(ACL’25), pp. 9840–9855, Vienna, Austria, 2025. Association for Computational Linguistics.

Z. Zhu and R. Soricut. Wavelet-based image tokenizer for vision transformers. arXiv preprint
arXiv:2405.18616, 2024.

12


	Introduction
	Related Work
	Preliminaries
	Vision Transformers
	Discrete Wavelet Transform

	Methodology
	Overview
	Pruning strategy
	Entropy-based policy
	Discrete Wavelet Transform


	Experiments
	Experimental Setup
	Quantitative Results
	Pre-trained Setting
	Training from scratch setting

	Ablation study

	Discussion
	Conclusion

