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Abstract

In the past, normalizing generative flows have emerged as a promising class of generative
models for natural images. This type of model has many modeling advantages: the ability
to efficiently compute log-likelihood of the input data, fast generation, and simple overall
structure. Normalizing flows remained a topic of active research but later fell out of favor,
as visual quality of the samples was not competitive with other model classes, such as
GANs, VQ-VAE-based approaches or diffusion models. In this paper we revisit the design
of coupling-based normalizing flow models by carefully ablating prior design choices and
using computational blocks based on the Vision Transformer architecture, not convolutional
neural networks. As a result, we achieve a much simpler architecture that matches existing
normalizing flow models and improves over them when paired with pretraining. While the
overall visual quality is still behind the current state-of-the-art models, we argue that strong
normalizing flow models can help advancing the research frontier by serving as building
components of more powerful generative models.

1 Introduction

In this paper we explicitly do not attempt to devise the new state-of-the art image modeling approach or
propose a new paradigm. Instead, we revisit the long known but recently neglected class of models for
generative modeling: coupling-based normalizing flows. Normalizing flows have important capabilities that
make them a useful tool for modern generative modeling.

At a high-level, a normalizing flow model learns a bijective (and thus invertible) mapping ¢ from the input
space to the latent space, where the latent space follows a simple distribution, e.g. Gaussian distribution.
A complex bijective transformation g can be constructed by stacking multiple coupling blocks, which are
bijective and invertible in closed form by design and are parametrized by deep neural networks.

Normalizing flow models can be directly trained by computing data log-likelihood in the simple (e.g. Gaus-
sian) latent space after the learnable and differentiable mapping ¢ is applied to transform training examples.
For data generation, the inverse transformation ¢g—! is readily available, which can be used to map easy-to-
sample Gaussian latent space to the samples from the target distribution. The two explicit, differentiable
and lossless mappings g and g~' can be used as building blocks for more complex generative systems. For
example, normalizing flows are used as a critical component of more complex systems: recent examples
include (Chen et all 2016; |[Kingma et al. 2016; [Tschannen et all 2024a)) and (Tschannen et al., 2024b)
that leverage normalizing flows to facilitate image modeling with VAEs and autoregressive transformers
respectively. This motivates us to revisit the normalizing flow model class.

*Equal contribution.
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Figure 1: Overview of the Jet model. The dashed box contains a coupling layer computing an affine transform
from one half of the input dimensions (patches or features) and then applying it to the other half of the
input dimensions. The full model is obtained by stacking N such invertible coupling layers.

In the mid-to-late 2010s normalizing flow models were a topic of active research. NICE (Dinh et al., [2014)
was the early normalizing flow model for images. It introduced the main building block behind normalizing
flow models: an additive coupling layer. RealNVP (Dinh et al., 2017)) improved over NICE by introducing
multiscale architecture and affine coupling layers that additionally perform a scaling transformation. Subse-
quently, in Glow (Kingma & Dhariwal, 2018]), authors introduce two more components: an invertible dense
layer and specialized activation normalization layer. Finally, Flow++ (Ho et al.,|2019) shows improvements
from using dequantization flow trick and generalized variant of the affine coupling block.

In this paper we mainly concentrate on revisiting optimal design for the normalizing flow models. We focus
on both performance and simplicity of the final model. We built on top of the prior literature and put all
components under a careful scrutiny. Our final model has a radically simpler design and only relies on the
plain affine coupling blocks parametrized by the Vision Transformer model. Our key contributions can be
summarized as follows:

e We use Vision Transformer building blocks instead of convolutional neural networks, which leads to
a significant performance improvement.

o We drastically simplify the overall architecture by eliminating many components from prior models:

No multiscale components and early factored-out channels

No invertible dense layers
— No “activation normalization” layers
— No dequantization flow

— No generalized coupling transformation

e We show the proposed architecture matches SOTA results in terms of negative log-likelihood on
common image benchmarks when trained on the same data-limited datasets.

o We demonstrate that pretraining a Jet model on a large corpus of natural images is highly effective
and simple, and that it surpasses prior state-of-the-art results.

2 Method

In the section we introduce the Jet model. We first introduce the architecture, then describe training
procedure and important implementation details.
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Figure 2: Effect of different architecture design choices on the validation NLL (in bits per dimension), as
a function of training compute. Figure Results on ImageNet-1k 64 x 64 for CNN vs ViT blocks (the
marker size is proportional to the model parameter count). ViT blocks clearly outperform CNN blocks for
a given training compute budget. Figure 2b} Results on ImageNet-21k 32 x 32 for different ViT depths.
Increasing the block depth leads to improved results up to depth 5.

2.1 Jet model

The Jet model has a very simple high-level structure. First, the input image is split into K flat patches,
flattened into a sequence of vectors, and then we repeatedly apply affine coupling layers (Dinh et al. 2017)).
We illustrate the Jet model architecture in Figure [T}

The input to a coupling layer is € RE*24 where K is the total number of patches and 2d is the number
of dimensions within each patch after flattening. We then apply a dimension splitting transformation,
producing z1, x5 € REX4. The first part, 1, is not modified, yielding ;. The second part, x5 is modified
with element-wise affine transformation y, = (w + b) - s, where s,b € R¥X4, Scaling factor s and bias
b are functions of x;. We use a single Vision Transformer (ViT) backbone, f : RE*Xd — RE*2d " which
maps x; to scale and bias, effectively implementing the functions s(z1) and b(z1). Finally, we merge y; and
y2 by applying the inverse of the splitting transformation that was applied to x, and arrive at the output
y € RKXQd.

To stabilize training we additionally apply a sigmoid transformation, o, that squashes the scale coefficient to
(0,1) range and then multiply it by a fixed constant m to extend the range to (0,m). In practice we always
set m = 2, which allows to amplify or suppress the intermediate activations, while keeping activations in a
reasonable range when stacking many coupling layers.

Overall, a single coupling block can be formalized as follows:

Yy =x
Y2 = (22 + b(z1)) - o(s(w1)) - m

As we show below in Section[2.3] this transformation can be inverted for arbitrary functions b(z1) and s(z1).

2.2 Training and optimization objective.

We now recall the fundamentals of the normalizing flow model training. The key assumption behind the
normalizing flows is that the target density p(z) can be modeled as a simple distribution, pa(z) (e.g.
standard Gaussian) after using a bijective transformation g: x — z to transform the original data. Applying
the “change of variable” identity from the basic probability calculus we obtain a tractable model for the
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probability density function:

9g(@) |

p(z) = pa(g(w)) ‘det T

9g(x)

zT ]
equal to the product of determinant of the derivatives of individual coupling layers. And for each coupling
block the determinant computation is trivial and equal to the product of all scaling factors in the affine
transform. See (Dinh et al., |2017)) for details on the derivation. In practice we maximize data log-likelihood,
so the optimization objective is

We implement function g with the Jet model described above. The determinant of the derivative, is

—% Z [9(2); + log(2m)] + ZZ [log o(sf) +logm] ,
i L i

where we use index i to iterate over all dimensions of an array inside the sum, and upper index ¢ to iterate
over total number of blocks. The first sum term arises from taking the logarithm of the standard Gaussian
density, applied to every output dimension. The second sum term is the log determinant, which is computed
as sum of logarithms of all scale values across all layers, plus logarithm of the fixed m multiplier.

In practice we normalize the above objective by the total number of dimensions and we keep all constant
terms. Even though it does not affect optimization, by doing this we obtain a log-likelihood estimate, which
can be interpreted as “bit-per-dimension” (bpd) (assuming a logarithm base of 2). For example, if the
objective value is 3.1, it means that the average uncertainty per input dimension is 3.1 bits. A uniformly
random image model should yield approximately 8 bpd. This is useful when comparing models across
different modeling classes and for various correctness checks.

Note that to correctly model discrete densities (e.g. images where pixels are discrete-valued) we employ
a standard dequantization procedure described in (Theis et al.| [2015)). In practice, it means that we add
a random [0, 1] uniform noise to input images, which consist of discrete values in the range [0,255]. We
perform this dequantization procedure both during training and evaluation.

2.3 Inverse transformation and image generation

It is easy to obtain the inverse of the above transformation in closed form. Notably, the ViT function that
computes bias and scale terms does not need to be inverted:

1 =Y

_ Y2 ~ by
2= o(s(z1))-m blan)

The computational complexity of computing the inverse is exactly the same as computing the normalizing
flow itself. New images can be sampled by first sampling the target density (i.e. Gaussian noise) and then
applying the inverse transformation.

2.4 Initialization

Careful initialization is essential for training a deep normalizing flow model with a large number of coupling
blocks. We employ a simple yet very effective initialization scheme. The final linear projection of the ViT f
is initialized with zero weights. As a result, predicted bias values, b(x1) are 0. The scale values are equal to
0(0) = 0.5. When we set m = 2, then the all scaling factors become equal to 1.

As a result, the Jet model behaves as identity function at initialization. Empirically, we find this sufficient
to ensure stable optimization at the beginning of training. Consequently, we do not need to add “ActNorm”
layer that is commonly used in the normalizing flow literature to achieve a similar effect.
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2.5 Dimension splitting

We explore various options for channel splitting. One option is to perform channel-wise split, by splitting
the channels of each image patch into the two equal groups (Dinh et al., [2014; |Kingma & Dhariwal, 2018)).
The splitting is random within each coupling layer and is fixed ahead of time (independently for each layer).
This is a simple-to implement-strategy that ensures diverse channel mixing.

We also implement various splitting strategies to facilitate spatial mixing. To this end, we explore 3 strategies
that respect images’ 2D topology: row-wise alternating patch splitting, column-wise alternating patch-
splitting, and the “checkerboard” splitting (Dinh et al., [2017). See Section |[3|for the empirical investigation
of performance for various design choices of splitting operations.

Splitting implementation details. The natural way to perform channel splitting is to use array indexing
operations. However, indexing can be slower than matrix multiplication on modern accelerators. Thus, we
implement channel splitting as matrix multiplication with precomputed 0 and 1 (frozen) weight matrices. A
nice by-product of this approach is that dimension merging (inverse of splitting) can be trivially implemented
as matrix multiplications with the transposed weight matrices.

Numerical precision considerations. Matrix multiplications on modern accelerators often implicitly uses
half-precision for multiplying individual values, while accumulating the result using full float32 precision.
We note that such loss in precision may lead to numerical issues, as, for example, the uniform [0,1] de-
quantization noise loses most of its entropy and leads to overly optimistic log-likelihood estimates. To avoid
this, we enable full precision matrix multiplication mode when splitting/merging the dimensions. Note that
we still use fast default settings when computing the ViT function f inside coupling layers. So the overall
efficiency drop from enabling full precision for splitting/merging is negligible overall.

3 Experiments

Throughout the paper, we keep our experimental setup simple and unified. Additionally, the code is available
in the big_vision codebaseﬂ For the ViT architecture, we follow the original paper |Dosovitskiy et al.
(2021). Our ViT models inside the coupling layers do not have initial patchification or final pooling and
linear projections. Unless stated otherwise, we set the patch size such that the total number of patches is
equal to 256.

For the optimizer we use AdamW (Loshchilov et all [2017)). We set second momentum (3 parameter to 0.95
to stabilize training. We use a cosine learning rate decay schedule.

Datasets. We perform experiments on three datasets: Imagenet-1k, Imagenet-21k and CIFAR-10, across
two input resolutions: 32 x 32 and 64 x 64 (except for CIFAR-10). To downsample Imagenet-1k images we
follow the standard protocol (Van den Oord et al.,[2016b)) to ensure a correct comparison to the prior art (i.e.
we use the preprocessed data provided by (Van den Oord et al., [2016b]) where available). To downsample
Imagenet-21k images we use TensorFlow resize operation with method set to AREAﬂ For CIFAR-10 we use
the original dataset resolution. Importantly, to make sure our results are comparable to the literature, we
do not perform any data augmentations. For comparison with Denseflow (Grcié¢ et all 2021) which uses a
different protocol see Appendix [A22]

3.1 Main results

We conduct extensive sweep that includes Jet models trained across varying computational capacity, data
size (ImageNet-1k and ImageNet-21k) and resolutions (32 x 32 and 64 x 64). For the model capacity sweep we
explore the following configurations (approximately spanning 2 orders of magnitude in compute intensity):

e number of coupling layers in {16, 32,64} for ImageNet-1k and in {32,64, 128} for ImageNet-21k,
e the depth of ViT used inside the coupling layer in {1,2,3,4,5,6},

Thttps://github.com/google-research/big_vision
%https://www.tensorflow.org/api_docs/python/tf/image/resize
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Figure 3: NLL as a function of training compute obtained when training Jet architectures with a range
of architecture hyper-paramaters, for 4 different data sets. The size of each marker is proportional to the
number of parameters in the model configuration. Overall we observe normalizing flow models benefit from
scale, yet ImageNet-1k models start to overfit. When increasing the amount of data to ImageNet-21k size,
we observe little overfitting and strong scaling trends.

Table 1: Negative log-likelihood of Jet models and the state-of-the-art coupling-based normalizing flow model
Flow++ from the literature. Jet (21k) indicates the result obtained when using a Jet model
pretrained on ImageNet21k. Overall, we observe that all tasks benefit from this pretraining and that Jet
matches or outperforms Flow++.

(a) ImageNet-1k 64 x 64 (b) ImageNet-1k 32 x 32 (c) CIFAR-10 32 x 32
Model Result (NLLJ) Model Result (NLLJ) Model Result (NLLJ)
Flow++ 3.69 Flow++ 3.86 Flow++ 3.08
Jet 3.656 Jet 3.931 Jet (I121k) 3.018
Jet (I121k) 3.580 Jet (I121k) 3.857

e the ViT embedding dimension in {256,512,768} for ImageNet-1k and in {512,768,1024} for
ImageNet-21k. The number of heads is tied to the embedding dimension and equal to {4,8,12}
and {8,12,16} respectively.

We use a fixed standard learning rate of 3e—4, weight decay of 1le—5 and train for 200 epochs for ImageNet-
1k and for 50 epochs for ImageNet-21k. We additionally investigate transfer learning setup and finetune
our best ImageNet-21k models on ImageNet-1k and CIFAR-10. Full sweep results are shown in Figure [3
Additionally, we present key numerical results in Table [I]

Our first observation is that due to the high expressive power of the Jet model parameterized by a ViT
model, it tends to quickly overfit on ImageNet-1k, which has only 1.2M examples in total. However, despite
this, for 64 x 64 Jet attains a state-of-the-art NLL of 3.66 bpd. For 32 x 32 input resolution overfitting for
large models is more severe, however reasonably small models still achieve a competitive result of 3.93 bpd.

It is important to note that unlabeled natural images are abundant. Thus, the best way to tackle overfitting is
to increase the amount of training data, as opposed to constraining or regularizing the model. We, therefore,
use the Imagenet-21k dataset with more than 10x more images than in ImageNet-1k. As expected, overfitting
is tamed, with larger models leading to increasingly better results.

The next important question is whether a model trained on a larger and more class-diverse ImageNet-21k
dataset transfers to ImageNet-1k. We observe that with a very light finetuning (30 epochs, learning rate of
le—5 and 3e—6 for higher resolution) we obtain state-of-the-art results on ImageNet-1k, attaining 3.58 and
3.86 bpd on 32 x 32 and 64 x 64 input resolution, respectively. However, one can argue that ImageNet-1k is
very similar to ImageNet-21k and results are overly optimistic. To address this concern, we also transfer the
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Figure 4: Ablation of coupling types. Negative log-likelihood on ImageNet-1k 64x64 when varying the ratio
of channel-wise to spatial-wise couplings and when using different types of spatial-wise couplings. Results
in table format in Appendix Table

ImageNet-21k model to the CIFAR-10 dataset, which has very different type of images and has a different
downsampling procedure. Again, after finetuning (100 epochs, learning rate of 3e—6) we obtain state-of-the-
art performance of 3.02 bpd.

Overall, our results provide strong evidence that the Jet architecture achieves state-of-the art performance
in the class of coupling-based normalizing flow models, and, at the same time, it is very stable and easy to
train across wide range of scenarios.

3.2 Ablations

In this section we ablate key design choices for the Jet model. Our default ablation setting is moderately-
sized Jet model, trained on ImageNet-1k 64 x 64 for 200 epochs. We set the total depth to 32 coupling
layers, the ViT depth to 2 blocks and width to 512 dimensions. In our scaling study this configuration was
reasonably close to the optimal setup, while being sufficiently fast for the extensive ablations sweeps. We
use negative log-likelihood reported in bpd as the main ablation metric.

3.2.1 Coupling types

As presented in Section 2.5 we consider 4 different ways to split the channels in a coupling block: one
is a channel-wise method (splits the channels into two parts) and three patch-wise methods (alternating
rows, alternating columns or “checkerboard” splitting). Inspired by the prior literature, where channel-wise
couplings were more prominent, we explore the following design space: M repeated channel-wise couplings
followed by 1 spatial coupling. The spatial coupling is either fixed to one of the methods, or alternates
between 3 types. We vary M from 0 to 5. Overall, the above choice space gives rise to 25 configurations.

Figure [4] presents the quantitative results, suggesting the following insights:

e Using interleaved spatial and channel coupling is optimal, where M = 4 is optimal, though M € 2..5
achieves very similar performance.

e Alternating spatial coupling methods are superior over using any single coupling types.

e Spatial coupling alone is the worst configuration, while exclusive channel coupling is competitive.

3.2.2 Coupling layers vs ViT depth

Jet has two depth parameters: number of coupling layers and ViT depth within each coupling layer. The
total compute is roughly proportional to the product of these two depths. We observe a very interesting
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Table 2: Ablation of design choices reporting negative log-likelihood (bpd) on ImageNet-1k 64 x 64. Table
shows the effect of using masking-mode or pairing-mode (best)when splitting the spatial tokens. Table
shows the effect of using invertible dense layers and/or activation norm. Best results obtained when not
using either.

(a) (b)

Couplings ratio Masking Pairing Activation Invertible NLLJ
all spatial 3.844  3.787 Norm Dense
1:1 3.741 3.737 X X 3.720
2:1 3.727 3.725 v X 3.727
3:1 3.723 3.723 X v 3.741
4:1 3.722 3.719 v v 3.733
5:1 3.722 3.720

interplay between these parameters, see Figure 2D] representing ImageNet-21k 32 x 32, which is a detailed
view of Figure [3]

Specifically, we observe that scaling the number of coupling layers, while keeping shallow ViT models (e.g.
depth 1) results in an unfavorable compute-performance trade-off. It appears that ViT depth of at least
4-6 is the necessary condition for the Jet model to stay close to the frontier. For example, a model with 32
coupling layers and ViT depth 4 has roughly the same compute requirements as a model with 128 coupling
layers and ViT depth 1. However, the former performs much better than the latter for fixed compute.

3.2.3 ViT vs CNNs

To ablate the use a ViT instead of a CNN block, we conduct a similar sweep to our main sweep on ImageNet-
1k 64 x 64 but using a CNN architecture (specifically we use the CNN architecture from (Kolesnikov et al.,
2020)). This time sweeping the following settings for the CNN setup: model depth in {16,32,64}, CNN
block depth in {1,...,8}, block embedding dimension in {256,512, 768,1024, 1536}. Block dimension 1536
was not used for model depth 64 due to significant memory costs. The results in Figure 2a] show that the
CNN-based variant lags significantly behind the ViT-based one.

We anticipate that this gap can be reduced by using multiscale architectures, as commonly done in the
literature (Dinh et al., 2017} |Kingma & Dhariwal, 2018]). However, in this paper we strive to simplify design
and exclude multiscale architectures.

3.2.4 Coupling implementation

We investigate two common approaches for implementing coupling layers: masking or pairing. To be concrete,
let’s assume that we implement a coupling layer that splits the input spatially into two groups of patches.
In one approach, which we name “masking” mode, we feed the K patches to the ViT block but mask with
zeros the ones corresponding to the x5 group. At the output we use only the ones corresponding to the xs
group and ignore the output of the patches corresponding to the z; group. One potential issue with this
method is that it weakens the residual connections as the tokens from which we predict the output are zero
tokens.

Another approach we consider is a “pairing” mode in which we establish a pairing between input and output
patches (or embeddings). For example when using a vertical-stripes pattern, the outputs of the ViT block
for a patch in the z; group will predict the scale and bias for a patch in the zo group (e.g. to the patch
below). This would make the ViT block processes only K /2 patches.

We experiment with these two implementation types while sweeping the M:1 channel:spatial coupling ratios
as in Section [3.2.1] The results presented in Table indicate pairing to be superior, though the impact
becomes smaller as one increases the number of channel couplings which do not depend on this design
decision. We observe that both methods perform very similarly, with the pairing being slightly ahead of
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masking, especially for the scenario when only spatial couplings are used. Thus, for the Jet model, we default
to using pairing mode.

3.2.5 Invertible dense layers and activation normalization

Glow (Kingma & Dhariwal, 2018|) introduces two components to improve the performance of normalizing
flows: (1) a learnable, invertible dense layer which replaces the fixed permutation used to split the channels
for each coupling; (2) an activation normalization layer with a scalar and bias parameters per channel similar
to batch normalization.

We use neither of them in Jet, but ablate whether performance could be improved by introducing those in
Table As a note, we observed that the use of activation normalization alone to be highly unstable, we
sweep additional learning rate and seeds and report the best result found. Overall we found that not using
any of those components leads to the best results.

3.2.6 Uniform dequantization vs dequantization flow

Flow++ (Ho et al.[|2019) introduces a variational dequantization scheme to normalizing flows. Concretely, it
proposes to replace the uniform dequantization noise added to the input with an image-conditional, learned
noise distribution modeled by another normalizing flow. We ablate this component by training a 64 layer
Jet model with 16-layer dequantization flow and compare it with an 80-layer base Jet model. The image
conditioning of the dequantization flow was implemented by adding cross-attention layers to the ViT-blocks
to the input. We observe no significant improvements when using the dequantization flow component.

4 Related work

NICE (Dinh et al. [2014) popularized coupling-based normalizing flows with the introduction of the additive
coupling layer. RealNVP (Dinh et al., [2017) then increased the flow’s expressivity by using affine coupling
layers in combination with a multiscale architecture, and (Kingma & Dhariwal, 2018; [Hoogeboom et al.,
2019; |Sukthanker et al.| 2022)) proposed additional specialized invertible layers for image modeling. Flow++
(Ho et al.,|2019) demonstrated improvements from learning the dequantization noise distribution along with
the flow model.

Another class of likelihood-based generative models are autoregressive models which flatten the (sub)pixels of
an image into a sequence. Autoregressive modeling is enabled by using CNNs (Van den Oord et al. [2016bja;
Salimans et al.l 2016 or transformers (Parmar et al.l 2018} |Chen et al., |[2020]). Kolesnikov & Lampert| (2017));
Menick & Kalchbrenner| (2019) improved performance of autoregressive models with hierarchical modeling
(e.g. over color depth or resolution). While obtaining better results than normalizing flows, autoregressive
models are also much slower and do not scale to large resolutions as they require a forward-pass per (sub)pixel.

In the context of normalizing flows, autoregressive dependency patterns between latent variables are a popular
approach to improve modeling capabilities of normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al.} 2018]). [Bhattacharyya et al.|(2020) combined autoregressive modeling with a multiscale
architecture. Concurrently to this work, |Zhai et al.| (2024]) proposed a combination of the transformer-based
autoregressive flow.

5 Conclusion

The Jet model revisits normalizing flows with a focus on simplicity and performance. While eliminating
complex components such as multiscale architectures and invertible layers, Jet matches existing normaliz-
ing flow models. The architecture with its regular attention mechanism showed significant improvements
when paired with transfer learning and establishes new SOTA results, highlighting the need to study these
architectures in data-abundant regime which is common for unsupervised methods.

We see normalizing flows, and Jet in particular, as a useful tool for advancing generative modeling. Due to
its simple structure and lossless guarantees, it can serve as a building block for powerful generative systems.
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One recent example is [Tschannen et al| (2024b)), which leverages a normalizing flow to enable end-to-end
autoregressive modeling of raw high-resolution images. We anticipate more progress in this area and believe
that the Jet model will prove itself a powerful normalizing flow component that can be used out-of-the-box
for a variety of applications.
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A Appendix
A.1 Architecture details

Table 3: Architecture details for models used to obtain the main results in Table

ImageNet-1k ImageNet-21k
32x32 64x64 32x32 64x64
Coupling layers 64 64 64 64
ViT depth 6 5 6 6
ViT width 256 512 768 1024
ViT attention heads 4 8 12 16

A.2 Comparison with other works

The main text of this work reports numbers in the canonical dataset ImageNet-1k 32x 32 and 64 x 64 (Van den
Oord et al., |2016b]) and also used in the main baseline Flow++ (Ho et al., |2019). There are other works
in the literature which deviate from this protocol rendering number comparisons between works hard. Here
we compare our work with Denseflow (Grci¢ et al., [2021) which uses a different downsampled version of
ImageNet (Chrabaszcz et al., [2017) and uses data augmentations.

The results in Table[d]show that as know in the community the newer downsampled ImageNet is significantly
easier with values significantly lower than in Table[I] Additionally it shows once more that ImageNet-1k is a
data constrained setting where data augmentation can play a critical role in better numbers but ultimately
it lags significantly behind to using transfer learning.

Table 4: Comparison of Jet with Denseflow

ImageNet-1k
32 x 32 64 x 64

Using augmentation from |Grcié et al. (2021)

Denseflow 3.63 3.35
Jet 3.638 3.355
No data augmentation

Jet 3.656 3.382
Jet (121k) 3.573 3.300

A.3 Detailed results

Table 5: NLL on ImageNet-1k 32 x 32 when sweeping architecture hyper-parameters.

depth 16 32 64

ViT dim 256 512 768 | 256 512 768 | 256 512 768
ViT depth

1 4.32 422 418 | 418 4.11 4.08 | 4.12 4.06 4.04
2 4.11 4.04 4.03 | 4.03 3.99 4.01|3.99 397 4.02
3 4.05 4.00 4.03 | 3.99 397 4.07| 396 398 4.11
4 4.03 3.99 4.08 | 397 399 4.15|3.94 4.03 4.18
5 4.01 399 4.14 | 3.96 4.01 4.21 | 3.93 4.07 4.28
6 4.00 4.00 4.19 | 3.95 4.04 434|393 412 N/A

12



Published in Transactions on Machine Learning Research (03/2025)

Table 6: NLL on ImageNet-1k 64 x 64 when sweeping architecture hyper-parameters.

Couplings 16 32 64

ViT dim 256 512 768 | 256 512 768 | 256 512 768
ViT depth

1 4.02 394 390|392 384 381|385 379 3.77
2 3.86 3.78 3.75|3.78 3.72 3.70 | 3.74 3.69 3.68
3 3.81 373 371|374 3.69 368|370 3.66 3.69
4 3.79 371 3.69 | 372 3.67 3.68|3.69 3.66 3.70
5 3.77 370 3.69 | 3.71 3.66 3.69 | 3.67 3.66 3.73
6 3.76 3.69 3.69 | 370 3.66 3.70 | 3.67 3.66 3.75

Table 7: NLL on ImageNet-1k 64 x 64 when sweeping CNN architecture hyper-parameters.

Couplings 16 32 64

Block dim 256 512 768 1024 1536 | 256 512 768 1024 1536 | 256 512 768 1024
CNN depth

1 417 4.05 4.00 3.96 3.92|4.05 395 391 387 383|397 388 384 N/A
2 409 397 N/A 3.87 383|398 3.8 383 379 376|390 381 3.77 3.75
3 406 394 388 384 380|395 384 379 377 374|387 378 3.7 3.73
4 404 391 385 382 378|393 383 378 37 374|385 376 597 N/A
5 402 390 3.84 3.81 377|391 381 377 375 374|384 376 398 N/A
6 4.00 388 383 3.8 377|390 380 376 3.74 374|383 389 641 3.77
8 398 387 381 378 377|388 379 375 374 375|381 374 387 589

Table 8: NLL on ImageNet-21k 32 x 32 when sweeping architecture hyper-parameters.

Couplings 32 64 128

ViT dim 512 768 1024 | 512 768 1024 | 512 768 1024
ViT depth

1 3.79 376 374|374 372 370|371 369 3.68
2 3.65 3.63 362|363 361 360|361 3.60 3.59
3 3.62 3.59 3.58 | 359 3.57 3.56 | 357 356 N/A
4 3.59 3.57 3.57 | 357 355 N/A |355 N/A N/A
5 3.58 356 3.56|355 354 N/A|354 N/A N/A
6 3.57 355 354|355 353 N/A|355 N/A N/A

Table 9: NLL on ImageNet-21k 64 x 64 when sweeping architecture hyper-parameters.

Couplings 32 64 128

ViT dim 512 768 1024 | 512 768 1024 | 512 768 1024
ViT depth

1 342 339 337|337 334 334333 331 329
2 329 326 324|326 323 324323 320 3.19
3 325 3.22 320322 319 321|319 316 N/A
4 3.23 319 317|319 316 3.15|3.16 3.14 N/A
5 321 318 316|318 315 N/A|315 N/A N/A
6 320 317 315|317 314 313|314 N/A N/A

13



Published in Transactions on Machine Learning Research (03/2025)

Table 10: NLL on ImageNet-1k 64 x 64 when varying the ratio between channel and spatial couplings.

Couplings ratio Type of spatial couplings

(channel : spatial) row-wise column-wise checkerboard mix of all
all spatial 3.877 3.882 3.872 3.787
1:1 3.747 3.742 3.741 3.737
2:1 3.735 3.731 3.731 3.725
3:1 3.732 3.729 3.728 3.723
4:1 3.731 3.726 3.724 3.719
5:1 3.728 3.726 3.723 3.720

all channel 3.742
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SR R
ﬂﬁiﬁ 5.“

) Jet — 32 x 32

) Jet (I21k) — 32 x 32 (d) Jet (I21k) — 64 x 64

(e) Flow++ — 32 x 32 (f) Flow++ — 64 x 64

Figure 5: Random samples for ImageNet-1k at both 32 x 32 and 64 x 64 resolution. We show samples from
Jet when trained from scratch and when finetuning a model pretrained on ImageNet-21k. For comparison

we also show samples from Flow-++ (Ho et al., 2019).
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