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ABSTRACT

Single-positive multi-label learning (SPMLL) is a weakly supervised multi-label
learning problem, where each training example is annotated with only one positive
label. Existing SPMLL methods typically assign pseudo-labels to unannotated
labels with the assumption that prior probabilities of all classes are identical.
However, the class-prior of each category may differ significantly in real-world
scenarios, which makes the predictive model not perform as well as expected due to
the unrealistic assumption on real-world application. To alleviate this issue, a novel
framework named CRISP, i.e., Class-pRiors Induced Single-Positive multi-label
learning, is proposed. Specifically, a class-priors estimator is introduced, which can
estimate the class-priors that are theoretically guaranteed to converge to the ground-
truth class-priors. In addition, based on the estimated class-priors, an unbiased risk
estimator for classification is derived, and the corresponding risk minimizer can
be guaranteed to approximately converge to the optimal risk minimizer on fully
supervised data. Experimental results on ten MLL benchmark datasets demonstrate
the effectiveness and superiority of our method over existing SPMLL approaches.

1 INTRODUCTION

Multi-label learning (MLL) is a learning paradigm that aims to train a model on examples associated
with multiple labels to accurately predict relevant labels for unknown instances (Zhang & Zhou, 2013;
Liu et al., 2021). Over the past decade, MLL has been successfully applied to various real-world
applications, including image annotation (Wang et al., 2009), text classification (Liu et al., 2017), and
facial expression recognition (Chen et al., 2020).

Compared with multi-class-single-label learning, where each example is associated with a unique
label, MLL involves instances that are assigned multiple labels. As the number of examples or
categories is large, accurately annotating each label of an example becomes exceedingly challenging.
To address the high annotation cost, single-positive multi-label learning (SPMLL) has been proposed
(Cole et al., 2021; Xu et al., 2022), where each training example is annotated with only one positive
label. Moreover, since many examples in multi-class datasets, such as ImageNet (Yun et al., 2021),
contain multiple categories but are annotated with a single label, employing SPMLL allows for the
derivation of multi-label predictors from existing numerous multi-class datasets, thereby expanding
the applicability of MLL.

To address the issue that model tends to predict all labels as positive if trained with only positive labels,
existing SPMLL methods typically assign pseudo-labels to unannotated labels. Cole et al. (2021)
updates the pseudo-labels as learnable parameters with a regularization to constrain the number of
expected positive labels. Xu et al. (2022) recovers latent soft pseudo-labels by employing variational
label enhancement. Zhou et al. (2022) adopts asymmetric-tolerance strategies to update pseudo-labels
cooperating with an entropy-maximization loss. Xie et al. (2022) utilizes contrastive learning to learn
the manifold structure information and updates the pseudo-labels with a threshold.

These approaches rely on a crucial assumption that prior probabilities of all classes are identical.
However, in real-world scenarios, the class-prior of each category may differ significantly. This
unrealistic assumption will introduce severe biases into the pseudo-labels, further impacting the
training of the model supervised by the inaccurate pseudo-labels. As a result, the learned model could
not perform as well as expected.
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Motivated by the above consideration, we propose a novel framework named CRISP, i.e., Class-pRiors
Induced Single-Positive multi-label learning. Specifically, a class-priors estimator is derived, which
determines an optimal threshold by estimating the ratio between the fraction of positive labeled
samples and the total number of samples receiving scores above the threshold. The estimated class-
priors can be theoretically guaranteed to converge to the ground-truth class-priors. In addition, based
on the estimated class-priors, an unbiased risk estimator for classification is derived, which guarantees
the learning consistency (Mohri et al., 2012) and ensures that the obtained risk minimizer would
approximately converge to the optimal risk minimizer on fully supervised data. Our contributions
can be summarized as follows:

• Practically, for the first time, we propose a novel framework for SPMLL named CRISP,
which estimates the class-priors and then an unbiased risk estimator is derived based on the
estimated class-priors, addressing the unrealistic assumption of identical class-priors for all
classes.

• Theoretically, the estimated class-priors can be guaranteed to converge to the ground-truth
class-priors. Additionally, we prove that the risk minimizer corresponding to the proposed
risk estimator can be guaranteed to approximately converge to the optimal risk minimizer
on fully supervised data.

Experiments on four multi-label image classification (MLIC) datasets and six MLL datasets show the
effectiveness of our methods over several existing SPMLL approaches.

2 RELATED WORK

Multi-label learning is a supervised machine learning technique where an instance is associated
with multiple labels simultaneously. The study of label correlations in multi-label learning has been
extensive, and these correlations can be categorized into first-order, second-order, and high-order
correlations. First-order correlations involve adapting binary classification algorithms for multi-label
learning, such as treating each label as an independent binary classification problem (Boutell et al.,
2004; Read et al., 2011). Second-order correlations model pairwise relationships between labels
(Elisseeff & Weston, 2001; Fürnkranz et al., 2008). High-order correlations take into account the
relationships among multiple labels, such as employing graph convolutional neural networks to
extract correlation information among all label nodes (Chen et al., 2019). Furthermore, there has been
an increasing interest in utilizing label-specific features, which are tailored to capture the attributes
of a specific label and enhance the performance of the models (Yu & Zhang, 2022; Hang & Zhang,
2022).

In practice, accurately annotating each label for every instance in multi-label learning is unfeasible
due to the immense scale of the output space. Consequently, multi-label learning with missing
labels (MLML) has been introduced (Sun et al., 2010). MLML methods primarily rely on low-rank,
embedding, and graph-based models. The presence of label correlations implies a low-rank output
space (Liu et al., 2021), which has been extensively employed to fill in the missing entries in a
label matrix (Xu et al., 2013; Yu et al., 2014; Xu et al., 2016). Another widespread approach is
based on embedding techniques that map label vectors to a low-dimensional space, where features
and labels are jointly embedded to exploit the complementarity between the feature and label
spaces (Yeh et al., 2017; Wang, 2019). Additionally, graph-based models are prevalent solutions for
MLML, constructing a label-specific graph for each label from a feature-induced similarity graph
and incorporating manifold regularization into the empirical risk minimization framework (Sun et al.,
2010; Wu et al., 2014).

In SPMLL, a specific case of multi-label learning with incomplete labels, only one of the multiple
positive labels is observed. The initial work treats all unannotated labels as negative and updates
the pseudo-labels as learnable parameters, applying a regularization to constrain the number of
expected positive labels (Cole et al., 2021). A label enhancement process is used to recover latent
soft labels and train the multi-label classifier (Xu et al., 2022). The introduction of an asymmetric
pseudo-label approach utilizes asymmetric-tolerance strategies for pseudo-labels, along with an
entropy-maximization loss (Zhou et al., 2022). Additionally, Xie et al. (2022) proposes a label-aware
global consistency regularization method, leveraging the manifold structure information learned from
contrastive learning to update pseudo-labels.

2



Under review as a conference paper at ICLR 2024

Algorithm 1 CRISP Algorithm

Input: The SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤ n}, the multi-label classifier f , the number
of epoch T , hyperparameters 0 ≤ δ, τ ≤ 1;

1: for t = 1 to T do
2: for j = 1 to c do
3: Extract the positive-labeled samples set SLj = {xi : l

j
i = 1, 1 ≤ i ≤ n}.

4: Estimate q̂j(z) =
1
n

∑n
i=1 1(f

j(xi) ≥ z) and q̂pj (z) =
1
np
j

∑
x∈SLj

1(f j(x) ≥ z) for all

z ∈ [0, 1].
5: Estimate the class-prior of j-th label by π̂j =

q̂j(ẑ)
q̂pj (ẑ)

with the threshold induced by Eq. (2).
6: end for
7: Update the model f by forward computation and back-propagation by Eq. (7) using the

estimated class-priors.
8: end for

Output: The predictive model f .

3 PRELIMINARIES

3.1 MULTI-LABEL LEARNING

Let X = Rq denote the instance space and Y = {0, 1}c denote the label space with c classes. Given
the MLL training set D = {(xi,yi)|1 ≤ i ≤ n} where xi ∈ X is a q-dimensional instance and
yi ∈ Y is its corresponding labels. Here, yi = [y1i , y

2
i , . . . , y

c
i ] where yji = 1 indicates that the

j-th label is a relevant label associated with xi and yji = 0 indicates that the j-th label is irrelevant
to xi. Multi-label learning is intended to produce a multi-label classifier in the hypothesis space
h ∈ H : X 7→ Y that minimizes the following classification risk:

R(h) = E(x,y)∼p(x,y) [L(h(x),y)] , (1)

where L : X × Y 7→ R+ is a multi-label loss function that measures the accuracy of the model in
fitting the data. Note that a method is risk-consistent if the method possesses a classification risk
estimator that is equivalent to R(f) given the same classifier (Mohri et al., 2012).

3.2 SINGLE-POSITIVE MULTI-LABEL LEARNING

For single-positive multi-label learning (SPMLL), each instance is annotated with only one positive
label. Given the SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤ n} where γi ∈ {1, 2, . . . , c} denotes
the only observed single positive label of xi. For each SPMLL training example (xi, γi), we use
the observed single-positive label vector li = [l1i , l

2
i , . . . , l

c
i ]

⊤ ∈ {0, 1}c to represent whether j-th
label is the observed positive label, i.e., lji = 1 if j = γi, otherwise lji = 0. The task of SPMLL is to
induce a multi-label classifier h ∈ H : X 7→ Y from D̃, which can assign the unknown instance with
a set of relevant labels.

4 THE PROPOSED METHOD

4.1 THE CRISP ALGORITHM

In this section, we introduce our novel framework, CRISP, i.e., Class-pRiors Induced Single-Positive
multi-label learning. This framework alternates between estimating class-priors and optimizing an
unbiased risk estimator under the guidance of the estimated class-priors.

Firstly, we introduce the class-priors estimator for SPMLL, leveraging the blackbox classifier f to
estimate the class-prior of each label. The class-priors estimator exploits the classifier f to give each
input a score, indicating the likelihood of it belonging to a positive sample of j-th label. Specifically,
the class-priors estimator determines an optimal threshold by estimating the ratio between the fraction
of the total number of samples and that of positive labeled samples receiving scores above the
threshold, thereby obtaining the class-prior probability of the j-th label.
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For a given probability density function p(x) and a classifier f , define a function qj(z) =
∫
Sz

p(x)dx

where Sz = {x ∈ X : f j(x) ≥ z} for all z ∈ [0, 1]. qj(z) captures the cumulative density of the
feature points which are assigned a value larger than a threshold z by the classifier of the j-th label.
We now define an empirical estimator of qj(z) as q̂j(z) = 1

n

∑n
i=1 1(f

j(xi) ≥ z) where 1(·) is the
indicator function. For each probability density function ppj = p(x|yj = 1), pnj = p(x|yj = 0) and
p = p(x), we define qpj =

∫
Sz

p(x|yj = 1)dx and qnj =
∫
Sz

p(x|yj = 0)dx respectively.

The steps involved in our procedure are as follows: Firstly, for each label, we extract a positive-
labeled samples set SLj

= {xi : lji = 1, 1 ≤ i ≤ n} from the entire dataset. Next, with SLj
,

we estimate the fraction of the total number of samples that receive scores above the threshold
q̂j(z) = 1

n

∑n
i=1 1(f

j(xi) ≥ z) and that of positive labeled samples receiving scores above the
threshold q̂pj (z) =

1
np
j

∑
x∈SLj

1(f j(x) ≥ z) for all z ∈ [0, 1], where np
j = |SLj | is the cardinality

of the positive-labeled samples set of j-th label. Finally, the class-prior of j-th label is estimated by
q̂j(ẑ)
q̂pj (ẑ)

at ẑ that minimizes the upper confidence bound defined in Theorem 4.1.

Theorem 4.1. Define z⋆ = argminz∈[0,1] q
n
j (z)/q

p
j (z), for every 0 < δ < 1, define ẑ =

argminz∈[0,1]

(
q̂j(z)
q̂pj (z)

+ 1+τ
q̂pj (z)

(√
log(4/δ)

2n +
√

log(4/δ)
2np

j

))
. Assume np

j ≥ 2 log 4/δ
qpj (z

⋆)
, the estimated

class-prior π̂j =
q̂j(ẑ)
q̂pj (ẑ)

satisfies with probability at least 1− δ:

πj −
c1

qpj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

)
≤ π̂j ≤ πj + (1− πj)

qnj (z
⋆)

qpj (z
⋆)

+
c2

qpj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

)
,

where c1, c2 ≥ 0 are constants and τ is a fixed parameter ranging in (0, 1). The proof can be found
in Appendix A.1. Theorem 4.1 provides a principle for finding the optimal threshold. Under the
condition that the threshold ẑ satisfies:

ẑ = arg min
z∈[0,1]

(
q̂j(z)

q̂pj (z)
+

1 + τ

q̂pj (z)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

))
, (2)

the estimated class-prior π̂j of j-th category will converge to the ground-truth class-prior with enough
training samples.

After obtaining an accurate estimate of class-prior for each category, we proceed to utilize these
estimates as a form of supervision to guide the training of our model. Firstly, the classification risk
R(f) on fully supervised information can be written as 1:

R(f) = E(x,y)∼p(x,y) [L(f(x),y)] =
∑
y

p(y)Ex∼p(x|y) [L(f(x),y)] . (3)

In Eq. (3), the loss function L(f(x),y) is calculated for each label separately, which is a commonly
used approach in multi-label learning:

L(f(x),y) =
c∑

j=1

yjℓ(f
j(x), 1) + (1− yj)ℓ(f

j(x), 0). (4)

By substituting Eq. (4) into Eq. (3), the classification risk R(f) can be written as follows 2 with the
absolute loss function:

R(f) =
∑
y

p(y)Ex∼p(x|y)

 c∑
j=1

yjℓ(f
j(x), 1) + (1− yj)ℓ(f

j(x), 0)


=

c∑
j=1

2p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+
(
Ex∼p(x)

[
f j(x)

]
− p(yj = 1)

)
.

(5)

1The datail is provided in Appendix A.2.
2The detail is provided in Appendix A.3.
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The rewritten classification risk comprises two distinct components. The first component computes the
risk solely for the positively labeled samples, and the second component leverages the unlabeled data
to estimate difference between the expected output of the model f and the class-prior πj = p(yj = 1)
to align the expected class-prior outputted by model with the ground-truth class-prior.

During the training process, the prediction of model can be unstable due to insufficiently labeled
data. This instability may cause a large divergence between the expected class-prior E[f j(x)] and
the ground-truth class-prior πj , even leading to a situation where the difference between E[f j(x)]
and πj turns negative (Zhao et al., 2022). To ensure non-negativity of the classification risk and the
alignment of class-priors, absolute function is added to the second term. Then the risk estimator can
be written as:

Rsp(f) =

c∑
j=1

2πjEx∼p(x|yj=1)

[
1− f j(x)

]
+

∣∣∣∣Ex∼p(x)

[
f j(x)

]
− πj

∣∣∣∣. (6)

Therefore, we could express the empirical risk estimator via:

R̂sp(f) =

c∑
j=1

2πj

|SLj
|
∑

x∈SLj

(
1− f j(x)

)
+

∣∣∣∣ 1n ∑
x∈D̃

(
f j(x)− πj

)∣∣∣∣. (7)

The proposed equation enables the decomposition of the risk over the entire dataset into terms that
can be estimated using both labeled positive and unlabeled samples. Additionally, the risk estimator
does not directly utilize pseudo-labels, which helps to avoid the potential negative impact of noisy
labels on the model. By avoiding the use of pseudo-labels, the model is less susceptible to the errors
and uncertainties that can arise from such labels. The algorithmic description of CRISP is shown in
Algorithm 1.

4.2 ESTIMATION ERROR BOUND

In this subsection, an estimation error bound is established for Eq. (7) to demonstrate its learning
consistency. Firstly, we define the function spaces as:

GL
sp =

{
(x, l) 7→

c∑
j=1

2πj lj
(
1− f j(x)

)
|f ∈ F

}
,GU

sp =
{
(x, l) 7→

c∑
j=1

(
f j(x)− πj

)
|f ∈ F

}
,

and denote the expected Rademacher complexity (Mohri et al., 2012) of the function spaces as:

R̃n

(
GL
sp

)
= Ex,y,σ

[
sup
g∈GL

sp

n∑
i=1

σig (xi, yi)

]
, R̃n

(
GU
sp

)
= Ex,y,σ

[
sup
g∈GU

sp

n∑
i=1

σig (xi,yi)

]
,

where σ = {σ1, σ2, · · · , σn} is n Rademacher variables with σi independently uniform variable
taking value in {+1,−1}. Then we have:

Theorem 4.2. Assume the loss function LL
sp =

∑c
j=1 2πj lj

(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =

supx∈X ,f∈F,y∈Y max(LL
sp(f(x),y),LU

sp(f(x),y)), with probability at least 1− δ, we have:

R(f̂sp)−R(f⋆) ≤ 4

C

c∑
j=1

R̃n

(
GL
sp

)
+

M

minj |SLj |

√
log 4

δ

2n
+ 4R̃n

(
GU
sp

)
+M

√
log 4

δ

2n

≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

where C is a constant, f̂sp = minf∈F R̂sp(f), f⋆ = minf∈F R(f) are the empirical risk minimizer
and the true risk minimizer respectively and ρ = maxj 2πj , Hj =

{
h : x 7→ f j(x)|f ∈ F

}
and

Rn (Hj) = Ep(x)Eσ

[
suph∈Hj

1
n

∑n
i=1 h (xi)

]
. The proof can be found in Appendix A.4. Theorem

4.2 shows that f̂sp would converge to f⋆ as n → ∞.
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Table 1: Predictive performance of each comparing method on four MLIC datasets in terms of mean
average precision (mAP) (mean ± std). The best performance is highlighted in bold (the larger the
better).

VOC COCO NUS CUB

AN 85.546±0.294 64.326±0.204 42.494±0.338 18.656±0.090
AN-LS 87.548±0.137 67.074±0.196 43.616±0.342 16.446±0.269
WAN 87.138±0.240 65.552±0.171 45.785±0.192 14.622±1.300
EPR 85.228±0.444 63.604±0.249 45.240±0.338 19.842±0.423

ROLE 88.088±0.167 67.022±0.141 41.949±0.205 14.798±0.613
EM 88.674±0.077 70.636±0.094 47.254±0.297 20.692±0.527

EM-APL 88.860±0.080 70.758±0.215 47.778±0.181 21.202±0.792
SMILE 87.314±0.150 70.431±0.213 47.241±0.172 18.611±0.144
LAGC 88.021±0.121 70.422±0.062 46.211±0.155 21.840±0.237
CRISP 89.820±0.191 74.640±0.219 49.996±0.316 21.650±0.178

Table 2: Predictive performance of each comparing method on MLL datasets in terms of Ranking
loss (mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.432±0.067 0.321±0.113 0.383±0.066 0.140±0.000 0.125±0.002 0.131±0.000
AN-LS 0.378±0.041 0.246±0.064 0.365±0.031 0.186±0.003 0.163±0.006 0.213±0.007
WAN 0.354±0.051 0.216±0.023 0.212±0.021 0.129±0.000 0.121±0.002 0.126±0.000
EPR 0.401±0.053 0.291±0.056 0.208±0.010 0.139±0.000 0.119±0.001 0.126±0.000

ROLE 0.340±0.059 0.174±0.028 0.213±0.017 0.259±0.004 0.182±0.014 0.336±0.007
EM 0.471±0.044 0.322±0.115 0.261±0.030 0.155±0.002 0.134±0.004 0.164±0.001

EM-APL 0.508±0.028 0.420±0.069 0.245±0.026 0.135±0.001 0.138±0.003 0.163±0.003
SMILE 0.260±0.020 0.161±0.045 0.167±0.002 0.125±0.003 0.120±0.002 0.126±0.000

CRISP 0.164±0.027 0.112±0.021 0.164±0.001 0.113±0.001 0.118±0.001 0.122±0.000

5 EXPERIMENTS

5.1 EXPERIMENTAL CONFIGURATIONS

Datasets. In the experimental section, our proposed method is evaluated on four large-scale
multi-label image classification (MLIC) datasets and six widely-used multi-label learning (MLL)
datasets. The four MLIC datasets include PSACAL VOC 2021 (VOC) (Everingham et al.,
2010), MS-COCO 2014 (COCO) (Lin et al., 2014), NUS-WIDE (NUS) (Chua et al., 2009),
and CUB-200 2011 (CUB) (Wah et al., 2011); the MLL datasets cover a wide range of scenarios
with heterogeneous multi-label characteristics. For each MLIC dataset, 20% of the training set is
withheld for validation. Each MLL dataset is partitioned into train/validation/test sets at a ratio
of 80%/10%/10%. One positive label is randomly selected for each training instance, while the
validation and test sets remain fully labeled. Detailed information regarding these datasets can be
found in Appendix A.6. Mean average precision (mAP) is utilized for the four MLIC datasets (Cole
et al., 2021; Xie et al., 2022; Zhou et al., 2022) and five popular multi-label metrics are adopted for
the MLL datasets including Ranking loss, Hamming loss, One-error, Coverage and Average precision
(Xu et al., 2022).

Comparing methods. In this paper, CRISP is compared against nine state-of-the-art SPMLL
approaches including: 1) AN (Cole et al., 2021) assumes that the unannotated labels are negative and
uses binary cross entropy loss for training. 2) AN-LS (Cole et al., 2021) assumes that the unannotated
labels are negative and reduces the impact of the false negative labels by label smoothing. 3) WAN
(Cole et al., 2021) introduces a weight parameter to down-weight losses in relation to negative labels.
4) EPR (Cole et al., 2021) utilizes a regularization to constrain the number of predicted positive
labels. 5) ROLE (Cole et al., 2021) online estimates the unannotated labels as learnable parameters
throughout training based on EPR with the trick of linear initial. 6) EM (Zhou et al., 2022) reduces
the effect of the incorrect labels by the entropy-maximization loss. 7) EM-APL (Zhou et al., 2022)
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Table 3: Predictive performance of each comparing method on MLL datasets in terms of Coverage
(mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.374±0.050 0.279±0.094 0.707±0.045 0.330±0.001 0.342±0.003 0.653±0.001
AN-LS 0.334±0.033 0.217±0.052 0.703±0.012 0.441±0.009 0.433±0.015 0.830±0.016
WAN 0.313±0.040 0.192±0.019 0.512±0.045 0.309±0.001 0.334±0.002 0.632±0.001
EPR 0.352±0.043 0.254±0.046 0.506±0.011 0.328±0.001 0.332±0.002 0.637±0.001

ROLE 0.306±0.049 0.157±0.023 0.519±0.026 0.551±0.007 0.448±0.028 0.887±0.004
EM 0.407±0.036 0.281±0.096 0.575±0.042 0.382±0.005 0.359±0.010 0.753±0.004

EM-APL 0.438±0.022 0.360±0.057 0.556±0.045 0.335±0.005 0.369±0.005 0.765±0.006
SMILE 0.242±0.014 0.146±0.037 0.462±0.003 0.308±0.007 0.328±0.004 0.628±0.003

CRISP 0.164±0.012 0.082±0.018 0.455±0.002 0.276±0.002 0.324±0.001 0.620±0.001

Table 4: Predictive performance of each comparing method on MLL datasets in terms of Average
Precision (mean ± std). The best performance is highlighted in bold (the larger the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.534±0.061 0.580±0.104 0.531±0.079 0.217±0.003 0.615±0.004 0.317±0.002
AN-LS 0.574±0.037 0.631±0.072 0.538±0.044 0.230±0.002 0.587±0.006 0.261±0.006
WAN 0.576±0.041 0.661±0.033 0.698±0.017 0.241±0.002 0.621±0.004 0.315±0.000
EPR 0.539±0.028 0.597±0.062 0.710±0.008 0.214±0.001 0.628±0.003 0.314±0.000

ROLE 0.606±0.041 0.700±0.040 0.711±0.013 0.203±0.003 0.516±0.027 0.130±0.003
EM 0.486±0.031 0.549±0.103 0.642±0.029 0.294±0.002 0.614±0.003 0.293±0.001

EM-APL 0.467±0.026 0.448±0.049 0.654±0.040 0.275±0.003 0.589±0.007 0.311±0.001
SMILE 0.670±0.021 0.722±0.071 0.751±0.004 0.295±0.004 0.629±0.003 0.318±0.001

CRISP 0.749±0.037 0.795±0.031 0.758±0.002 0.304±0.003 0.628±0.003 0.319±0.001

adopts asymmetric-tolerance pseudo-label strategies cooperating with entropy-maximization loss
and then more precise supervision can be provided. 8) LAGC (Xie et al., 2022) designs a label-aware
global consistency regularization to recover the pseudo-labels leveraging the manifold structure
information learned by contrastive learning with data augmentation techniques. 9) SMILE (Xu et al.,
2022) recovers the latent soft labels in a label enhancement process to train the multi-label classifier
with binary cross entropy loss. The implementation details are provided in Appendix A.5.

5.2 EXPERIMENTAL RESULTS

Table 1 presents the comparison results of CRISP compared with other methods on VOC, COCO, NUS,
and CUB. The proposed method achieves the best performance on VOC, COCO, and NUS. Although it
does not surpass the top-performing method on CUB, the performance remains competitive. Tables
2, 3 and 4 record the results of our method and other comparing methods on the MLL datasets in
terms of Ranking loss, Coverage, and Average precision respectively. Similar results for other metrics
can be found in Appendix A.7. Note that due to the inability to compute the loss function of LAGC
without data augmentation, we do not report the results of LAGC on MLL datasets because data
augmentation techniques are not suitable for the MLL datasets. The results demonstrate that our
proposed method consistently achieves desirable performance in almost all cases (except the result of
Mirflickr on the metric Average Precision, where our method attains a comparable performance
against SMILE). Table 10 in Appendix A.9 reports the p-values of the wilcoxon signed-ranks test
(Demšar, 2006) for the corresponding tests and the statistical test results at 0.05 significance level,
which reveals that CRISP consistently outperforms other comparing algorithms (35 out of 40 test cases
score win). These experimental results validate the effectiveness of CRISP in addressing SPMLL
problems.
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Figure 1: Predicted class-prior of AN(Cole et al., 2021), AN-LS(Cole et al., 2021), WAN(Cole et al.,
2021), EPR(Cole et al., 2021), ROLE(Cole et al., 2021), EM(Cole et al., 2021), EM-APL(Zhou et al.,
2022), SMILE(Xu et al., 2022) and CRISP on the 3-rd (left), 10-th (middle), and 12-th labels (right)
of the dataset Yeast.
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(c) Ablation results

Figure 2: (a) Parameter sensitivity analysis of δ (parameter τ is fixed as 0.01); (b) Parameter sensitivity
analysis of τ (parameter δ is fixed as 0.01); (c) The initial data point represents the performance of
the proposed CRISP (with class-priors estimator). The others are the performance with a fixed value
for all class-priors gradually increasing from 0.001 to 0.3.

5.3 FURTHER ANALYSIS

5.3.1 CLASS-PRIOR PREDICTION

Figure 1 illustrates the comparison results of the predicted class-priors of CRISP with other methods
on the 3-rd (left), 10-th (middle), and 12-th labels (right) of the dataset Yeast. Compared with
other approaches, whose predicted class-priors p(ŷj = 1), which represents the expected value of
the predicted, significantly deviate from the true class-priors, CRISP achieves consistent predicted
class-priors with the ground-truth class-priors (black dashed lines). Without the constraint of the
class-priors, the predicted class-prior probability diverges from the true class-prior as epochs increase,
significantly impacting the model’s performance. In this experiment, the true class-priors are derived
by calculating the statistical information for each dataset. More experimental results about the
convergence analyses of estimated class-priors of all classes on MLIC datasets are recorded in
Appendix A.8. These results demonstrate the necessity of incorporating class-priors in the training of
the SPMLL model.

5.3.2 SENSITIVITY ANALYSIS

The performance sensitivity of the proposed CRISP approach with respect to its parameters δ and
τ during the class-priors estimation phase is analyzed in this section. Figures 2a and 2b illustrate
the performance of the proposed method on VOC and COCO under various parameter settings, where
δ and τ are incremented from 0.001 to 0.1. The performance of the proposed method remains
consistently stable across a wide range of parameter values. This characteristic is highly desirable as
it allows for the robust application of the proposed method without the need for meticulous parameter
fine-tuning, ensuring reliable classification results.

5.3.3 ABLATION STUDY
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Figure 3: Visualization of attention maps on VOC (left) and COCO (right).

Table 5: Predictive performance comparing
CRISP with the approach of estimating pri-
ors from the validation set (CRISP-VAL).

CRISP CRISP-VAL

VOC 89.820±0.191 89.585±0.318
COCO 74.640±0.219 74.435±0.148
NUS 49.996±0.316 49.230±0.113
CUB 21.650±0.178 19.600±1.400

Figure 2c depicts the results of the ablation study to in-
vestigate the impact of the class-priors estimator by
comparing it with a fixed value for all class-priors.
The initial data point represents the performance of
the proposed CRISP (with class-priors estimator). Sub-
sequently, we maintain a fixed identical class-priors,
gradually increasing it from 0.001 to 0.3. As expected,
our method exhibits superior performance when utiliz-
ing the class-priors estimator, compared with employ-
ing a fixed class-prior proportion. The ablation results
demonstrate the significant enhancement in CRISP per-
formance achieved through the proposed class-priors
estimator. Furthermore, we conduct experiments comparing the performance of CRISP with the
approach that estimating the class-priors with the full labels of validation set (CRISP-VAL). Table
5 shows that the performance of CRISP is superior to CRISP-VAL. It is indeed feasible to estimate
the class-priors using the validation set. However, the size of validation set in many datasets is often
quite small, which can lead to unstable estimation of the class-priors, thus leading to a suboptimal
performance. Similar results are observed in Table 11 of Appendix A.10 for the MLL datasets.

5.3.4 ATTENTION MAP VISUALIZATION

Figure 3 is utilized to visually represent attention maps on VOC and COCO, elucidating the underlying
mechanism responsible for the efficacy of CRISP in discerning potential positive labels. Specifically,
for each original image in the first (or fourth) column, attention maps corresponding to the single
observed positive label and identified positive labels are displayed in the subsequent three columns.
As evidenced by the figures, given the context of a single positive label, the proposed method
demonstrates the ability to identify additional object labels within the image, even for relatively small
objects such as the bottle in the first row, the fork in the second row, and the person in the final row.
These observations indicate that the proposed method can accurately detect small objects with the aid
of class-priors. This insight further suggests that the proposed method substantially enhances the
model’s capacity to pinpoint potential positive labels.

6 CONCLUSION

In conclusion, this paper presents a novel approach to address the single-positive multi-label learning
(SPMLL) problem by considering the impact of class-priors on the model. We propose a theoretically
guaranteed class-priors estimation method that ensures the convergence of estimated class-prior to
ground-truth class-priors during the training process. Furthermore, we introduce an unbiased risk
estimator based on the estimated class-priors and derive a generalization error bound to guarantee
that the obtained risk minimizer would approximately converge to the optimal risk minimizer of
fully supervised learning. Experimental results on ten MLL benchmark datasets demonstrate the
effectiveness and superiority of our method over existing SPMLL approaches.
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A SUPPLEMENTARY MATERIAL

A.1 PROOF OF THEOREM 4.1

Proof. Firstly, we have:∣∣∣ q̂j(z)
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where z is an arbitrary constant in [0, 1]. Using DKW inequality, we have with probability 1 − δ:
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Furthermore, the upper confidence bound at z is lower bounded by:
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Moreover from Eq. (14) and using definition of ẑ, we have:
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+

1 + τ

q̂pj (ẑ)
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and hence ẑ ≤ z′.

We now establish an upper and lower bound on ẑ. By definition of ẑ, we have:
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From Eq. (9) at ẑ, we have:

qj(ẑ)
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Using this in Eq. (22), we have:

π⋆
j ≤ q̂j(ẑ)

q̂pj (ẑ)
+

1

q̂pj (ẑ)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
. (24)

Since ẑ ≤ z′, we have q̂pj (ẑ) ≥ q̂pj (z
′) = τ

2+τ q̂
p
j (z

⋆). Therefore, we have:

π⋆
j − 2 + τ

τ q̂pj (z
⋆)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
≤ q̂j(ẑ)

q̂pj (ẑ)
= π̂j . (25)

With the assumption that np
j ≥ 2 log 4/δ

qpj
2(z⋆)

, we have q̂pj (z
⋆) ≥ qpj (z

⋆)/2, which implies:

π⋆
j − 4 + 2τ

τqpj (z
⋆)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
≤ π̂j . (26)

Note that since πj ≤ π⋆
j , the lower bound remains the same as in Theorem 4.1. For the upper bound,

with qj(z
⋆) = πjq

p
j (z

⋆) + (1− πj)q
n
j (z

⋆), we have π⋆
j = πj + (1− πj)

qnj (z⋆)

qpj (z
⋆)

. Then the proof is
completed.

A.2 DETAILS OF EQ. (3)

R(f) = E(x,y)∼p(x,y) [L(f(x),y)]

=

∫
x

∑
y

L(f(x),y)p(x|y)p(y)dx

=
∑
y

p(y)

∫
x

L(f(x),y)p(x|y)dx

=
∑
y

p(y)Ex∼p(x|y) [L(f(x),y)] .

(27)
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A.3 DETAILS OF EQ. (5)

R(f) =
∑
y

p(y)Ex∼p(x|y)

 c∑
j=1

yjℓ(f
j(x), 1) + (1− yj)ℓ(f

j(x), 0)


=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
ℓ(f j(x), 1)

]
+ p(yj = 0)Ex∼p(x|yj=0)

[
ℓ(f j(x), 0)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ (1− p(yj = 1))Ex∼p(x|yj=0)

[
f j(x)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1)Ex∼p(x|yj=1)

[
f j(x)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1)Ex∼p(x|yj=1)

[
f j(x)− 1 + 1

]
=

c∑
j=1

2p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1).

(28)

A.4 PROOF OF THEOREM 4.2

In this subsection, an estimation error bound is established for Eq. (7) to demonstrate its learning
consistency. Specifically, The derivation of the estimation error bound involves two main parts, each
corresponding to one of the loss terms in Eq. (7). The empirical risk estimator according to Eq. (7)
can be written as:

R̂sp(f) =

c∑
j=1

2πj

|SLj
|
∑

x∈SLj

(
1− f j(x)

)
+

1

n

∑
x∈D̃

(
f j(x)− πj

)
= R̂L

sp(f) + R̂U
sp(f),

(29)

Firstly, we define the function spaces as:

GL
sp =

{
(x, l) 7→

c∑
j=1

2πj lj
(
1− f j(x)

)
|f ∈ F

}
,GU

sp =
{
(x, l) 7→

c∑
j=1

(
f j(x)− πj

)
|f ∈ F

}
,

and denote the expected Rademacher complexity (Mohri et al., 2012) of the function spaces as:

R̃n

(
GL
sp

)
= Ex,l,σ

[
sup
g∈GL

sp

n∑
i=1

σig (xi, li)

]
,

R̃n

(
GU
sp

)
= Ex,l,σ

[
sup
g∈GU

sp

n∑
i=1

σig (xi, li)

]
,

where σ = {σ1, σ2, · · · , σn} is n Rademacher variables with σi independently uniform variable
taking value in {+1,−1}. Then we have:

Lemma A.1. We suppose that the loss function LL
sp =

∑c
j=1 2πj lj

(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =

supx∈X ,f∈F,l∈Y max(LL
sp(f(x), l),LU

sp(f(x), l)), and for any δ > 0, with probability at
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least 1− δ, we have:

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤
2

C
R̃n

(
GL
sp

)
+

M

2minj |SLj |

√
log 2

δ

2n
,

sup
f∈F

|RU
sp(f)− R̂U

sp(f)| ≤ 2R̃n

(
GU
sp

)
+

M

2

√
log 2

δ

2n
,

where RL
sp(f) =

∑c
j=1 2πjEx∼p(x|yj=1)

[
1− f j(x)

]
, RU

sp(f) = Ex∼p(x)

∑c
j=1

[
f j(x)

]
−πj and

C = minj ED̃

[∑n
i=1 l

j
i

]
is a constant.

Proof. Suppose an example (x, l) is replaced by another arbitrary example (x′, l′), then the change
of supf∈F RL

sp(f)− R̂L
sp(f) is no greater than M

2nminj |SLj
| . By applying McDiarmid’s inequality,

for any δ > 0, with probility at least 1− δ
2 ,

sup
f∈F

RL
sp(f)− R̂L

sp(f) ≤ E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
+

M

2minj |SLj
|

√
log 2

δ

2n
.

By symmetry, we can obtain

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤ E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
+

M

2minj |SLj |

√
log 2

δ

2n
.

Next is to bound the term E
[
supf∈F RL

sp(f)− R̂L
sp(f)

]
:

E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
= ED̃

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]

= ED̃

[
sup
f∈F

ED̃′

[
R̂′L

sp(f)− R̂L
sp(f)

]]

≤ ED̃,D̃′

[
sup
f∈F

[
R̂′L

sp(f)− R̂L
sp(f)

]]

= ED̃,D̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

′j
i

l′
j
i

(
1− f j(x′

i)
)
− 2πj∑n

i=1 l
j
i

lji
(
1− f j(xi)

))
≤ ED̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

′j
i

l′
j
i

(
1− f j(x′

i)
))

+ ED̃,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

j
i

lji
(
1− f j(xi)

))
≤ 1

C
ED̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj l

′j
i

(
1− f j(x′

i)
))

+
1

C
ED̃,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj l

j
i

(
1− f j(xi)

))
=

2

C
R̃n

(
GL
sp

)
,
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where C is a constant that C = minj ED̃

[∑n
i=1 y

j
i

]
. Then we have:

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤
2

C
R̃n

(
GL
sp

)
+

M

2minj |SLj
|

√
log 2

δ

2n
.

Similarly, we can obtain:

sup
f∈F

|RU
sp(f)− R̂U

sp(f)| ≤ 2R̃n

(
GU
sp

)
+

M

2

√
log 2

δ

2n
,

Lemma A.2. Define ρ = maxj 2πj , Hj =
{
h : x 7→ f j(x)|f ∈ F

}
and Rn (Hj) =

Ep(x)Eσ

[
suph∈Hj

1
n

∑n
i=1 h (xi)

]
. Then, we have with Rademacher vector contraction inequality:

R̃n

(
GL
sp

)
≤

√
2ρ

c∑
j=1

Rn(Hj), R̃n

(
GU
sp

)
≤

√
2

c∑
j=1

Rn(Hj),

Based on Lemma A.1 and Lemma A.2, we could obtain the following theorem.
Theorem A.3. Assume the loss function LL

sp =
∑c

j=1 2πj lj
(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =

supx∈X ,f∈F,l∈Y max(LL
sp(f(x), l),LU

sp(f(x),y)), with probability at least 1− δ, we have:

R(f̂sp)−R(f⋆) ≤ 4

C

c∑
j=1

R̃n

(
GL
sp

)
+

M

minj |SLj
|

√
log 4

δ

2n
+ 4R̃n

(
GU
sp

)
+M

√
log 4

δ

2n

≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

Proof.

R(f̂sp)−R(f⋆) = R(f̂sp)− R̂sp(f̂) + R̂sp(f̂)− R̂sp(f
⋆) + R̂sp(f

⋆)−R(f⋆)

≤ R(f̂sp)− R̂sp(f̂) + R̂sp(f
⋆)−R(f⋆)

= RL
sp(f̂sp)− R̂L

sp(f̂) + R̂L
sp(f

⋆)−RL
sp(f

⋆)

+RU
sp(f̂sp)− R̂U

sp(f̂) + R̂U
sp(f

⋆)−RU
sp(f

⋆)

≤ 2 sup
f∈F

|RL
sp(f)− R̂L

sp(f)|+ 2 sup
f∈F

|RU
sp(f)− R̂U

sp(f)|

≤ 4

C

c∑
j=1

R̃n

(
GL
sp

)
+

M

minj |SLj
|

√
log 4

δ

2n
+ 4R̃n

(
GU
sp

)
+M

√
log 4

δ

2n

≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

A.5 IMPLEMENTATION DETAILS

During the implementation, we first initialize the predictive network by performing warm-up training
with AN solution, which could facilitate learning a fine network in the early stages. Furthermore,
after each epoch, the class prior is reestimated via the trained model. The code implementation is
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Table 6: Characteristics of the MLIC datasets.

Dataset #Training #Validation #Testing #Classes

VOC 4574 1143 5823 20
COCO 65665 16416 40137 80
NUS 120000 30000 60260 81
CUB 4795 1199 5794 312

Table 7: Characteristics of the MLL datasets.

Dataset #Examples #Features #Classes #Domain

Image 2000 294 5 Images
Scene 2407 294 6 Images
Yeast 2417 103 14 Biology

Corel5k 5000 499 374 Images
Mirflickr 24581 1000 38 Images
Delicious 16091 500 983 Text

based on PyTorch, and the experiments are conducted on GeForce RTX 3090 GPUs. The batch size
is selected from {8, 16} and the number of epochs is set to 10. The learning rate and weight decay
are selected from {10−2, 10−3, 10−4, 10−5} with a validation set. The hyperparameters δ and τ are
all fixed as 0.01. All the comparing methods run 5 trials on each datasets. For fairness, we employed
ResNet-50 as the backbone for all comparing methods.

A.6 DETAILS OF DATASETS

The details of the four MLIC datasets and the five MLL datasets are provided in Table 6 and Table 7
respectively. The basic statics about the MLIC datasets include the number of training set, validation
set, and testing set (#Training, #Validation, #Testing), and the number of classes (#Classes). The
basic statics about the MLL datasets include the number of examples (#Examples), the dimension of
features (#Features), the number of classes (#Classes), and the domain of the dataset (#Domain).

A.7 MORE RESULTS OF MLL DATASETS

Table 8 and 9 report the results of our method and other comparing methods on five MLL datasets in
terms of Hamming loss and One Error respectively.

A.8 MORE RESULTS OF MLIC DATASETS

Figure 4 illustrates the discrepancy between the estimated class-prior π̂j and the true class-prior
πj in every epoch on four MLIC datasets. During the initial few epochs, a significant decrease
in the discrepancy between the estimated class-prior and the true class-prior is observed. After
several epochs, the estimated class prior tends to stabilize and converges to the true class-prior. This
result provides evidence that our proposed method effectively estimates the class-prior with the only
observed single positive label.

A.9 p-VALUES OF THE WILCOXON SIGNED-RANKS TEST

Table 10 reports the p-values of the wilcoxon signed-ranks test (Demšar, 2006) for the corresponding
tests and the statistical test results at 0.05 significance level.

A.10 ABLATION RESULTS OF MLL DATASETS

Table 11 reports the predictive performance of CRISP compared with the approach of estimating
priors from the validation set (CRISP-VAL) on the MLL datasets for five metrics. The results show
that CRISP outperforms CRISP-VAL on almost all the five metrics.
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Table 8: Predictive performance of each comparing methods on MLL datasets in terms of Hamming
loss (mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.229±0.000 0.176±0.001 0.306±0.000 0.010±0.000 0.127±0.000 0.019±0.000
AN-LS 0.229±0.000 0.168±0.004 0.306±0.000 0.010±0.000 0.127±0.000 0.019±0.000
WAN 0.411±0.060 0.299±0.035 0.285±0.016 0.156±0.001 0.191±0.006 0.102±0.000
EPR 0.370±0.043 0.220±0.026 0.234±0.007 0.016±0.000 0.136±0.002 0.020±0.000

ROLE 0.256±0.018 0.176±0.017 0.279±0.010 0.010±0.000 0.128±0.000 0.019±0.000
EM 0.770±0.001 0.820±0.003 0.669±0.025 0.589±0.003 0.718±0.010 0.630±0.005

EM-APL 0.707±0.088 0.780±0.082 0.641±0.032 0.648±0.006 0.754±0.017 0.622±0.006
SMILE 0.219±0.009 0.182±0.021 0.208±0.002 0.010±0.000 0.127±0.001 0.081±0.008

CRISP 0.165±0.023 0.140±0.013 0.211±0.001 0.010±0.000 0.121±0.002 0.019±0.000

Table 9: Predictive performance of each comparing methods on MLL datasets in terms of One-error
(mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.708±0.096 0.626±0.123 0.489±0.194 0.758±0.002 0.358±0.005 0.410±0.012
AN-LS 0.643±0.052 0.578±0.111 0.495±0.130 0.736±0.009 0.360±0.015 0.454±0.013
WAN 0.670±0.060 0.543±0.060 0.239±0.002 0.727±0.012 0.352±0.010 0.404±0.002
EPR 0.703±0.046 0.615±0.090 0.240±0.003 0.764±0.000 0.362±0.015 0.441±0.008

ROLE 0.605±0.041 0.507±0.066 0.244±0.005 0.705±0.016 0.525±0.072 0.594±0.006
EM 0.769±0.036 0.681±0.119 0.326±0.079 0.656±0.009 0.365±0.008 0.446±0.009

EM-APL 0.773±0.045 0.812±0.059 0.341±0.109 0.690±0.007 0.434±0.023 0.405±0.006
SMILE 0.533±0.036 0.466±0.117 0.250±0.012 0.650±0.008 0.340±0.010 0.402±0.005
CRISP 0.325±0.026 0.311±0.047 0.227±0.004 0.646±0.006 0.295±0.009 0.402±0.003
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Figure 4: Convergence of π̂ on four MLIC datasets.

Table 10: Summary of the Wilcoxon signed-ranks test for CRISP against other comparing approaches
at 0.05 significance level. The p-values are shown in the brackets.

CRISP against AN AN-LS WAN EPR ROLE EM EM-APL SMILE

Coverage win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313]
One-error win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0431]

Ranking loss win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313]
Hamming loss tie[0.0679] tie[0.0679] win[0.0313] win[0.0313] tie[0.0679] win[0.0313] win[0.0313] tie[0.0796]

Average precision win[0.0313] win[0.0313] win[0.0313] win[0.0431] win[0.0313] win[0.0313] win[0.0313] tie[0.0938]
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Table 11: Predictive performance of CRISP compared with the approach of estimating priors from the
validation set (CRISP-VAL) on the MLL datasets for five metrics.

Metrics Image Scene Yeast Corel5k Mirflickr Delicious

CRISP

Coverage 0.164±0.012 0.082±0.018 0.455±0.002 0.276±0.002 0.324±0.001 0.620±0.001
Ranking Loss 0.164±0.027 0.112±0.021 0.164±0.001 0.113±0.001 0.118±0.001 0.122±0.000

Average Precision 0.749±0.037 0.795±0.031 0.758±0.002 0.304±0.003 0.628±0.003 0.319±0.001
Hamming Loss 0.165±0.023 0.140±0.013 0.211±0.001 0.010±0.000 0.121±0.002 0.019±0.000

OneError 0.325±0.026 0.311±0.047 0.227±0.004 0.646±0.006 0.295±0.009 0.402±0.003

CRISP-VAL

Coverage 0.193±0.009 0.109±0.012 0.456±0.004 0.280±0.002 0.330±0.001 0.623±0.002
Ranking Loss 0.198±0.016 0.116±0.013 0.165±0.001 0.114±0.002 0.120±0.001 0.122±0.000

Average Precision 0.725±0.004 0.790±0.028 0.753±0.006 0.294±0.008 0.622±0.001 0.319±0.001
Hamming Loss 0.180±0.006 0.141±0.014 0.216±0.000 0.010±0.000 0.124±0.001 0.019±0.000

OneError 0.395±0.071 0.359±0.050 0.246±0.021 0.666±0.008 0.314±0.003 0.444±0.001
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