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Abstract

The increasing computational demands of machine learning models have driven1

interest in developing unconventional computing hardware to improve speed and2

energy efficiency. In this work, we introduce an integrated photonic chip designed3

to perform convolution operations in deep convolutional neural networks. The4

convolutional kernel is implemented in the optical circuit, which functions as a5

two-port lattice filter, by modifying the optical signal paths through phase shifters.6

Using a simulated model of the optical chip that implements the convolutional7

layers, we evaluate the performance of a deep convolutional network trained on8

the CIFAR-10 dataset. We also examine the impact of hardware limitations, such9

as system noise and quantization, on the model performance.10

1 Introduction11

Convolutional neural networks (CNNs) are fundamental deep learning architectures widely used in12

computer vision tasks such as image classification, object detection, and video analysis [1, 2]. Al-13

though “state-of-the-art” CNN architectures continue to evolve, convolutions remain the primary14

operation executed by these models. As digital computers near their fundamental energy and speed15

limitations, there is a significant need for novel hardware capable of supporting the growing compu-16

tational requirements of deep learning models.17

Integrated photonics is a promising platform for implementing machine learning systems due to18

its potential for high throughput and low power consumption [3]. Neural network inference and19

training have both been demonstrated using photonic integrated chips [4, 5, 6]. Photonic circuits20

for implementing small-scale CNNs have also been proposed and experimentally validated [7, 8].21

Several methods for encoding neural network weights in optical systems have been proposed, in-22

cluding Mach-Zehnder interformeters (MZIs) [9], microring resonators [10], and phase-change ma-23

terials [11].24

In this paper, we design and simulate an integrated photonic circuit capable of executing convolution25

operations for application in deep CNNs. We present a method for implementing 2D multi-channel26

convolutions using the optical circuit and model the performance of the optical hardware. We sim-27

ulate a deep CNN based on the VGG-11 model, with convolutional layers implemented using the28

optical circuit, and train the model on the CIFAR-10 dataset [12, 13]. Finally, we evaluate the impact29

of phase shifter and measurement noise on the model accuracy, as well as the effect of quantization30

due to conversion between the analog and digital domains.31
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Figure 1: Silicon photonic chip for convolution operations. The optical circuit implements an
FIR filter to perform convolution operations. The convolutional kernel is determined by the impulse
response of the system, which can be tuned using thermo-optic phase shifters.

2 Integrated Photonic Circuit32

In this section, we introduce the silicon photonic chip, shown in Fig. 1, designed to perform convo-33

lution operations. The optical circuit implements a finite impulse response (FIR) filter using optical34

delay lines and tunable MZIs [14]. This design enables the convolution of a time-discrete input35

signal with a finite convolutional kernel at each time step, separated by an interval of ∆t:36

zk = g

(
N∑

n=1

hn xk−n

)
. (1)

Here, xk and zk are the input and output signals at the k-th time step, respectively; hn is the n-th ele-37

ment of the convolutional kernel, and g(·) is the measurement function applied by the photodetection38

setup. The input optical signals are coherent, which enables both phase and amplitude modulation.39

The complex-valued kernel elements {h1, . . . , hN} are determined by the impulse response of the40

optical system and can be modified using thermo-optic phase shifters. Depending on the photodetec-41

tion setup, the output measurement can yield either the complex-valued field or the optical intensity.42

At each time step, the next input signal is fed into the optical circuit and the output is measured,43

which is equivalent to shifting the convolutional kernel across the input by one position. This ap-44

proach allows for the reuse of input signals already propagating through the optical circuit. Thus,45

N multiply-accumulate operations are performed at each time step for a convolutional kernel con-46

sisting of N elements.47

The optical circuit is composed of a sequence of convolutional units, each containing a delay line48

and tunable MZI, as illustrated in Fig. 2. The MZI can be modeled as a two-port device containing49

two 3 dB directional couplers connected by two waveguides. The relative phase between the two50

paths can be adjusted using the phase shifter φ, which determines the amount of light directed to the51

top and bottom output ports. The top output port of the MZI is linked to a phase shifter θ, while the52

bottom port is connected to a delay line (a folded waveguide) that introduces a propagation delay53

of ∆t.54

Using an input signal with frequency ω and treating the optical circuit as lossless, the scattering55

matrix of the c-th convolutional unit is56

S(c) =
1

2

(
eiθc 0
0 eiω∆t

)(
1 i
i 1

)(
1 0
0 eiφc

)(
1 i
i 1

)
, (2)

which simplifies to57

S(c) =
1

2

(
eiθc(1− eiφc) ieiθc(1 + eiφc)

ieiω∆t(1 + eiφc) eiω∆t(−1 + eiφc)

)
. (3)

The impulse response of the system depends on the scattering matrix of each convolutional unit.58

Specifically, the n-th element of the convolutional kernel, hn, is determined by the superposition59
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Figure 2: Optical circuit schematic. The optical circuit (bottom), modeled as a two-port lattice
filter, consists of a sequence of N convolutional units, followed by the measurement function g(·).
Each convolutional unit (top) includes a delay line and tunable MZI with phase shifters φ and θ.

of optical paths with a total propagation delay of n∆t resulting from the delay lines. For a circuit60

composed of N convolutional units, this is given by61

hn =
∑

p∈Pn∆t

(
N∏
c=1

S
(c)
ip,jp

)
, (4)

where p represents a path from the set of all optical paths Pn∆t with total propagation delay n∆t,62

and S
(c)
ip,jp

is the (ip, jp) entry of the scattering matrix defined in Eq. (3).63

For example, the convolutional kernel elements for a circuit consisting of three convolutional units64

are defined as65

h1 = S
(3)
2,1 · S(2)

1,1 · S(1)
1,2 ,

h2 = S
(3)
2,2 · S(2)

2,1 · S(1)
1,2 + S

(3)
2,1 · S(2)

1,2 · S(1)
2,2 ,

h3 = S
(3)
2,2 · S(2)

2,2 · S(1)
2,2 .

(5)

An illustration of the optical path required to implement a simple kernel is shown in Fig. 3.66

2D Multi-Channel Convolutions The previously described approach can be generalized to per-67

form 2D multi-channel convolution operations using the optical circuit. In this method, each row68

of an M × N filter is treated as an independent 1D filter applied sequentially across the image in69

a series of 1D convolutions. Convolutions across several input channels are executed by processing70

each channel individually and then summing the outputs at each spatial pixel.71

In 2D multi-channel convolutions, the kernel is represented as a 4D tensor H, where Hi,l,j,k is the72

kernel element corresponding to the i-th output channel, l-th input channel, j-th spatial row, and73

k-th spatial column. The 3D input and output tensors are denoted as X and Z, respectively, where Z74

is the output from convolving H across X:75

Zi,j,k =

L∑
l=1

M∑
m=1

g

(
N∑

n=1

Hi,l,m,n Xl,j−m,k−n

)
, (6)

over all valid tensor index values of i, j, and k [15]. As in Eq. (1), g(·) denotes the measurement76

function applied by the photodetection setup. Similar to the 1D case, the values for H are determined77

by the impulse response of the optical circuit.78
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Figure 3: Optical path for a specified convolutional kernel. The optical path, illustrated in red,
required to implement the simple kernel h1 = 1, h2 = 0, and h3 = 0 in a circuit consisting of three
convolutional units. In this case, the signal is only delayed by one time step by routing through the
final delay line in the third convolutional unit.

3 Results79

Optical Convolutional Layer We simulated a 2D convolutional layer using PyTorch that models80

the optical chip using Eqs. (4) and (6) [16]. During training, instead of optimizing the convolutional81

kernel H of each layer directly, we treat the set of phase shifters {φ1, . . . , φN , θ1, . . . , θN} as learn-82

able parameters. This approach accurately models the optical circuit and accounts for constraints83

imposed by the hardware.84

Our model accounts for imperfections in the optical system by injecting noise and quantizing values85

where necessary. We implement the following features in our simulation:86

• Phase shifter noise: Gaussian noise with standard deviation σφ,θ is added to the phase87

shifter values during each forward pass.88

• Measurement Noise and Quantization: We use a coherent detection setup to measure89

the real-part of the complex-valued output signal. The measurement function g(·) includes90

Gaussian noise from the transimpedance amplifier (which converts current to voltage), fol-91

lowed by bit quantization performed by the analog-to-digital converter. Quantizing to Nb92

bits, the noise has a standard deviation of 2/2Nb .93

• Input Signal Quantization: The input signal is quantized to Nb bits by the digital-to-94

analog converter.95

CIFAR-10 Training We implemented a deep CNN model in PyTorch using the previously dis-96

cussed optical convolutional layers. The model, shown in Fig. 4, is based on the VGG-11 architec-97

ture and contains 18.4 million parameters [13]. The Tanh activation function is used in the model to98

ensure the output values are within a known range. We employed the Adam optimizer with a learn-99

ing rate that followed a cosine decay schedule from 0.01 over 200 epochs. The model was trained100

with an augmented CIFAR-10 dataset, using random cropping and horizontal flipping.101

We trained several CNNs using varying levels of noise added to the phase shifters. This enabled102

evaluation under different hardware conditions, leading to insights regarding the hardware speci-103

fications required to achieve the desired performance. We evaluated the CNNs on the test dataset104

using quantization levels Nb of 8, 6, and 4 bits. The training and validation curves during training105

are shown in Fig. 5, and the test results under different quantization conditions are given in Table 1.106

Table 1: Test accuracy (%) achieved by models trained on CIFAR-10 dataset with quantization to
Nb bits.

σφ,θ/2π Nb = 8 Nb = 6 Nb = 4

2−7 89.14 88.70 73.64
2−6 88.87 88.62 72.89
2−5 87.22 86.99 76.57
2−4 81.90 81.74 74.25
2−3 62.04 61.28 50.70
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Figure 4: Convolutional network model based on VGG-11. The optical convolutional layers,
denoted as “OptConv[kernel size]-[output channels],” are implemented using the simulated optical
circuit. Each convolutional layer is followed by BatchNorm and a Tanh activation function, which
are not shown.
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Figure 5: Model performance during training. Training accuracy (left) and validation accuracy
(right) of models trained on the CIFAR-10 dataset. Models have varying levels of phase shifter noise
defined by σφ,θ.

4 Discussion107

Integrated photonic chips offer several advantages for information processing tasks, including the108

ability for real-time processing of high-speed data [17]. One of the primary advantages of our109

proposed photonic circuit is the ability to reuse the input signal over multiple convolution operations.110

This feature can enhance the system’s overall energy efficiency and throughput speed, as a circuit111

with N convolutional units can perform up to N multiply-accumulate operations at each time step112

while only feeding in a single input value.113

The simulation results demonstrate that the photonic circuit is capable of successfully implementing114

convolutional layers in deep CNNs. As expected, the performance of the model is dependent on the115

amount of noise present in the system, as well as the level of quantization. The model performance116

generally improves with reduced system noise and increased bit precision. The CNN trained with the117

lowest noise (σφ,θ/2π = 2−7) achieved the highest test accuracy of 89.14% using Nb = 8 bits. This118

performance is similar to the accuracy attained by a model we trained using the same architecture119

with standard convolutional layers (i.e., floating-point arithmetic), which achieved a test accuracy of120

89.65% without quantization.121

A crucial consideration for the design of analog neural networks is the impact of noise in the system.122

Several mitigation strategies have been proposed depending on the source of the noise [18]. Addi-123

tionally, the inclusion of noise during the training process has shown to improve system robustness124

and reduce the simulation-to-reality gap [19]. As shown in Table 1, the model accuracy generally125

decreases as the phase shifter noise increases. However, at low precision of Nb = 4 bits, the best126

performance is achieved by the CNN trained with σφ,θ/2π = 2−5. In this case, we believe the127

models trained with less noise (2−6 and 2−7) perform worse during testing because they are less128

resilient to imperfections in the system.129

The current model architecture uses the Tanh activation function, which ensures the values passed to130

succeeding layers are within a finite range. This is necessary for implementation in analog hardware,131

as the minimum and maximum values of the input are required to encode the data onto optical132

signals. Implementing non-linear activation functions without finite bounds, such as the ReLU133
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function, may require normalization techniques during training to transform the range of values134

to a finite scale.135

In future work, we aim to experimentally demonstrate the use of our photonic integrated chip for136

implementing a deep CNN. We will use our simulation to determine the optimized values for the137

phase-shifters, which will be applied to the optical circuit for model evaluation. The simulation138

can be further improved by incorporating experimental data from the photonic hardware during139

the training process. This approach, known as “hardware-in-the-loop training,” has been shown to140

mitigate the impact of hardware imperfections on system performance [20]. The application of in-141

situ training, where the training process is performed directly on the photonic chip rather than using142

a digital computer, can also be explored as a method to improve results.143
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