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ABSTRACT

We present OneFlow, the first non-autoregressive multimodal model that enables
variable-length and concurrent mixed-modal generation. Unlike autoregressive
models that enforce rigid causal ordering between text and image generation, One-
Flow combines an insertion-based Edit Flow for discrete text tokens with Flow
Matching for image latents. OneFlow enables concurrent text-image synthesis
with hierarchical sampling that prioritizes content over grammar. Through con-
trolled experiments across model sizes from 1B to 8B, we demonstrate that One-
Flow outperforms autoregressive baselines on both generation and understanding
tasks while using up to 50% fewer training FLOPs. OneFlow surpasses both au-
toregressive and diffusion-based approaches while unlocking new capabilities for
concurrent generation, iterative refinement, and natural reasoning-like generation.

1 INTRODUCTION

Native Multimodal Models — models capable of handling both multimodal understanding and gen-
eration within a single backbone — have advanced considerably in visual understanding and genera-
tion. These models typically employ a unified transformer architecture with next-token prediction to
handle both discrete and continuous generation (Team, 2024; Wu et al., 2025; Ma et al., 2025; Deng
et al., 2025; Zhou et al., 2025). Recent work like Transfusion (Zhou et al., 2025) and Show-O (Xie
et al., 2024) demonstrates that leveraging modality-specific training objectives within shared archi-
tectures can significantly improve performance, particularly on continuous modalities such as vision.

However, both autoregressive (AR) and diffusion-based multimodal approaches face fundamental
architectural constraints. Autoregressive models can handle interleaved data but require strict
sequential generation — each image must be fully completed before text generation can continue,
preventing simultaneous cross-modal refinement. Conversely, diffusion-based multimodal models
such as MMaDA (Yang et al., 2025), FUDOKI (Wang et al., 2025), and Unidisc (Swerdlow et al.,
2025) enable simultaneous mixed-modal generation but only for predetermined single text-image
pairs where modality assignments must be known a priori and rely on independent time schedules
for each modality. Neither paradigm supports the simultaneous generation of variable-length
interleaved sequences.

We present OneFlow, the first model to achieve simultaneous generation of interleaved data. Un-
like autoregressive models that enforce sequential completion of each modality, and unlike diffusion
models restricted to fixed length generation, OneFlow combines an insertion-based discrete text gen-
eration using Edit Flows with Flow Matching for image generation. This enables concurrent refine-
ment of both text and images with per-image time schedules, using a novel interleaved time schedule.

Through controlled experiments across various model sizes and compute regimes, we demonstrate
that OneFlow outperforms both autoregressive (AR) and diffusion baselines on generation and un-
derstanding tasks while requiring 50% fewer training FLOPs. Moreover, we find that concurrent
mixed modal pretraining yields 4% relative improvement on VQA and 1.5% on image generation
over sequential pretraining. We summarize our contributions below.
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Figure 1: OneFlow is a variable-length non-autoregressive model that can concurrently generate
interleaved text and variable number of images using insertions as a primitive operation.

Contributions:
1. We introduce OneFlow, a non-autoregressive multimodal model that unifies image and

text generation under a simultanous Edit Flow and Flow Matching framework.
2. OneFlow enables new capabilities such as concurrent mixed-modal generation, which

helps boost performance over uni-modal generation on a wide range of benchmarks.
3. Through controlled experiences from 1B to 8B, we find that OneFlow scales better than

autoregressive multimodal models, more so with mixed-modal training.
4. OneFlow outperforms or is competitive with existing AR and diffusion-based models, on

a diverse range of image generation and image understanding benchmarks.

2 ONEFLOW: MIXED-MODAL GENERATION THROUGH FLOW MATCHING

OneFlow handles multiple modalities through a sequence model, where elements in the sequence
can be discrete tokens or continuous embeddings, e.g., of images. Concretely, let T denote the
space of a single element of the sequence, which can take either a discrete value, up to some fixed
vocabulary size M , or a continuous value, i.e., T = [M ] ∪R. Then our state space is defined as the
set of all possible sequences up to some maximum length N , i.e., X =

⋃N
n=0 T n.

During generation, our model transforms noisy sequences into clean sequences. We do this by
combining discrete-valued and continuous-valued generative processes. Specifically, we make use
of the Edit Flows (Havasi et al., 2025) framework which enables variable-length sequence generation
through the use of edit operations. It starts with a noisy sequence and iteratively applies edits until
it is denoised into a generation. We focus on the insertion capabilities of Edit Flows, which is
conceptually simple yet extremely powerful, as it allows inserting arbitrary number of tokens—and
images—into the generated sequence. When images are inserted, we initialize them with noise and
then use Flow Matching (Lipman et al., 2024) to generate the image. Since the same model predicts
both the text edits and the image denoising, OneFlow achieves variable-length, non-autoregressive
joint image and text generation. In the following, we state equations with only intuitive justifications
and explanations. Full mathematical details and derivations can be found in Appendix B.

2.1 DISCRETE TEXT GENERATION VIA EDIT FLOWS

Edit Flows uses a continuous-time Markov chain (CTMC) to iteratively refine variable-length dis-
crete sequences. We start with an empty sequence X0 = ∅ at time t = 0, and transform the sequence
through insertion operations. Let ins(x, i, a), x ∈ X , i ∈ {1, . . . , n}, a ∈ T , be the sequence result-
ing from inserting the token value a to the right of position i of the sequence x, resulting in

ins(x, i, a) = (x1, . . . , xi, a, xi+1, . . . , xn). (1)

This forms the primitive operation that we use during generation.

2
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During training, we take a data sequence X1 and randomly delete tokens with equal probability to
obtain Xt. This defines the process X[0,1] that we will fit to. The probability of each token being
deleted is set by a monotonic scheduler κt with κ0 = 0, κ1 = 1.

P(xi in Xt) = κt, for each xi ∈ X1. (2)
In preliminary experiments, we tested different κt but found that the linear schedule κt = t works
most consistently across our diverse benchmarks. Deleted tokens are removed from the sequence.
Noting that on average we retain Et[κt] fraction of the original tokens, with the linear schedule we
retain 50% of the data sequence. This can lead to significant FLOPs savings during training, and
tuning the scheduler can save even more if desired.

Parameterization. The parameterization of an Edit Flow model for insertions naturally decomposes
into two predictions: (i) how many tokens are missing at the right of position i, and (ii) which tokens
are missing. Thus, at each position i of the sequence, our model outputs two quantities

• λi : X → R+ is a scalar that predicts the number of missing tokens between i and i+ 1.
• Qi : X → [M ] is a normalized distribution that predicts what tokens are missing.

These two predictions form the CTMC rate and gives the transitions (up to o(h) error),

P (Xt+h = ins(Xt, i, a) | Xt) = h κ̇t

1−κt
λi(Xt)Q

i(a|Xt). (3)

The ratio κ̇t

1−κt
dictates the distribution of insertion times according to the schedule κt imposed dur-

ing training (2), where κ̇t =
dκt

dt . Note that unlike prior work (Havasi et al., 2025), we factor out this
ratio κ̇t

1−κt
from the rate predictions and use a simplified model that is independent of t. Practically,

we do not feed time values into the network for predicting insertions. While not theoretically justi-
fied, we found this t-independence assumption to work better in practice, likely because Xt already
contains sufficient information for predicting the insertions.

Insertion prediction (λi). The main component that determines whether insertions occur is the
prediction head λi, which is trained by regressing onto the number of missing tokens. Each position
i of the noisy sequence Xt has a corresponding number of missing tokens ki, which is the number
of deleted tokens between Xi

t and Xi+1
t . The original Edit Flows loss was constructed through a

choice of Bregman divergence (Holderrieth et al., 2024) which results in
ℓPoisson(λ

i) =
∑

i λ
i(Xt)− ki log λi(Xt). (4)

Alternatively, (4) can be interpreted as the negative log-likelihood of a Poisson distribution, so λi is
trained to fit a Poisson distribution to model missing token counts ki. However, the distribution of
k has a very high concentration around zero missing count. Furthermore, during sampling, the key
prediction is whether the missing token count is zero or nonzero. As such, we explicitly model the
probability of inserting zero tokens.

P(k = 0) = π, and P(k) = (1− π)Pois(k;λnonzero | k > 0) for k > 0 (5)
where π ∈ (0, 1) is the probability of observing zero, and λnonzero > 0 is the rate parameter
but restricted to only modeling the distribution of nonzero counts. We train π by using a bi-
nary cross entropy (BCE) loss to detect if the missing count is zero, and we train λnonzero us-
ing the original loss ((4)) on nonzero counts. For sampling (3), we can use the expectation
λi(Xt) = (1−πi(Xt))λ

i
nonzero(Xt). However, we found that a consistently better sampling strategy

is to first sample whether there are zero insertions using π, then simply use the rate λi
nonzero(Xt) if

there are nonzero insertions.

Bag-of-tokens prediction (Qi). To determine what token to insert at each position, we make use of
the output head Q which is a softmax over the discrete vocabulary [M ]. We use the same Edit Flows
loss, which is a sum of cross-entropy loss. Let Ai denote the set of deleted tokens between Xi

t and
Xi+1

t , then for each position i, the loss is

ℓtokens(Q
i) = −

∑
a∈Ai

logQi(a|Xt). (6)

Combined loss. At each training iteration, we randomly delete tokens from the data sequence, and
learn to predict the set of missing tokens at each position, resulting in the total insertion loss:

Ltext = Et,Xt|X1

[
1

n

n∑
i=1

ℓtokens(Q
i) + ℓPoisson(λ

i
nonzero)1[ki>0] + ℓBCE(π

i)

]
(7)
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where n is the length of the noisy sequence Xt. Note that this differs from the original training
objective in Edit Flows (Havasi et al., 2025) which additionally weights the loss by the factor κ̇t

1−κt
,

not affecting the optimal solution. We found that not using this factor produces better results.

2.2 CONTINUOUS IMAGE GENERATION VIA FLOW MATCHING

Following standard practice, we generate images starting from a Gaussian noise of fixed dimension
Nimg, applying a deterministic generation procedure that follows an ordinary differential equation.
Let Yt ∈ RNimg denote the noisy image, then the generative process is

d
dtYt = v(Yt, t), Y0 ∼ N (0, I), (8)

where v : RNimg × R→ RNimg is a velocity field that determines the direction to transform Yt into a
clean sample by t = 1. During training, we sample a noise Y0 and obtain Yt with a linear schedule
Yt = tY1 + (1− t)Y0. The Flow Matching loss can then be written as

Limage = Et,Y0,Y1
∥v(Yt, t)− (Y1 − Y0)∥2 . (9)

In OneFlow, we use a pretrained autoencoder to map images into latent space. We then design the
velocity network v(·) to use a shared Transformer backbone as text but with additional U-Nets to
downsample and upsample between the backbone and autoencoder embedding spaces, making use
of the same architectural design as Transfusion (Zhou et al., 2025). See illustration in Figure 14.

2.3 CONCURRENT MIXED-MODAL GENERATION

To generate multiple modalities, we simply concatenate them into a single sequence. We now present
two multimodal time schedules, an independent schedule that can be used when the number of
images is known, and an interleaved schedule that needs to be used when the number of images is
arbitrary. OneFlow is designed to work with variable-length text and variable number of images.

Independent mixed-modal generation. We can consider the simple case with a fixed number
of images—typically one. In such case, we can generate both the text and image simultaneously
by using two time values ttext and timg, where ttext determines the state of the insertion generation
process and timg determines the image generation process. Following prior work, we simply set
independent time schedules, one for the text and one for each image. This allows the modalities to
be concurrently generated and be dependent on each other during the generation process. However,
this naı̈ve process does not allow us to insert images.

Interleaved mixed-modal generation. A much more complicated setting arises when the number
of images is variable and images are being inserted as part of the generation process. Similar to the
text-only setting, we start generating from the empty sequence. We then model image insertion as a
special token value <|image|>, which is added to the token prediction output Q. During generation,
when the model predicts an image insertion, we insert noise embeddings of dimension Nimg into the
sequence to represent an inserted image initialized at timg = 0.

ins(x, i,<|image|>) =
(
x1, . . . , xi, x1

img, . . . , x
Nimg
img , xi+1, . . . , xn

)
, xi

img ∼ N (0, I). (10)

Subsequent steps during generation would then simultaneously generate the image embeddings
while also performing more insertions into the sequence. However, since the image is generated
at a later time, this implies there is a delay between the image time and the text time, i.e. timg ≤ ttext,
which needs to be taken into account during training.

During training, we need to ensure that the text and image noise levels are consistent with with the
ones seen during generation. Based on the schedule in (2), the time at which an insertion happens is
a random variable that has κ as its cumulative density function, so the time difference between the
inserted image time timg and the initial text time ttext is given by

timg = ttext − κ−1(u), where u ∼ Unif(0, 1). (11)

We call this the interleaved time schedule, which imposes a distributional dependency between
the time values timg for each image and the text time ttext. In order for the model to learn to fully
generate all images, during training we sample from an extended time interval, τtext from [0, 2], since

4
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Image Generation Captioning

Model Size Tex
t

Im
ag

e
FID↓ CLIP↑ DPG↑ Wise (c.) ↑ CDr↑ RGE↑ BLEU4↑

Unified MLM
MetaMorph (Tong et al., 2024b) 7B AR AR 11.8 26.6 – – – – –
LMFusion (Shi et al., 2024b) 7B AR Diff 14.0 24.4 – – 38.4 – –
Transfusion (Zhou et al., 2025) 7B AR Diff 16.0 26.5 77.8 – 33.7 – –
Janus-Pro (Chen et al., 2025) 1.5B AR AR 15.2† 26.0† 82.0† 0.20 – – –
Janus-Flow (Ma et al., 2025) 1.5B AR FM 12.4† 26.1† 80.1† 0.13 – – –
Bagel (Deng et al., 2025) 7B AR FM 27.7† 26.2† 84.7† 0.44 – – –

Multimodal Diffusion
UniDisc (Swerdlow et al., 2025) 1.4B Mask Mask 23.9 – – – – – –
D-DiT (Li et al., 2025) 2B Mask Diff – – – – 56.2 – –
Muddit (Shi et al., 2025) 1B Mask Mask – – – – 59.7 – –
MMaDA (Yang et al., 2025) 8B Mask Mask 33.2† 25.1† 74.2† 0.67 – – –
FUDOKI (Wang et al., 2025) 1.5B DFM DFM – – 83.6 – – – –

Controlled Comparisons
AR + FM Ablation 1B AR FM 12.2 26.5 73.4 0.61 123.9 57.2 0.39
Mask + FM Ablation 1B Mask FM 11.3 26.5 75.5 0.64 128.4 58.6 0.39
OneFlow 1B EF FM 12.1 26.6 79.1 0.62 138.1 60.8 0.41
OneFlow Mixed 1B EF FM 9.7 26.6 80.3 0.63 139.8 60.9 0.42

OneFlow 8B EF FM 10.7 26.7 79.3 0.65 141.1 61.1 0.42
OneFlow Mixed 8B EF FM 9.5 26.6 80.4 0.68 142.1 61.1 0.43

Table 1: Image generation and captioning benchmarks after multimodal pretraining. OneFlow
excels at captioning and dense prompt alignment tasks. †Evaluated using official open-source model
weights. Highlighting denotes best results across all models.

the <|image|>token can be inserted at τtext = 1.0 at the latest, and fully denoised by τtext = 2.0.
The probability for each token being in Xt is then determined by κ(min{1, τtext}) in place of (2).
We also sample for each image an extended time value τimg = τtext−κ−1(u). Finally, we determine
if an image is deleted from the sequence by checking τimg < 0, and if so, the insertion loss ((7))
will include the <|image|> token which the model would learn to insert. Otherwise if τimg ≥ 0, the
image is in the sequence and we set timg = min{1, τimg}; using the Flow Matching loss (9) to train
the velocity. A detailed derivation and more in-depth explanation can be found in Appendix B.1.

3 EXPERIMENTS

We present our experimental results through five research questions: §3.1 How does OneFlow per-
form compared to AR, and does it scale similarly? §3.2 How does mixed modal pretraining compare
to sequential pretraining? §3.3 Why does OneFlow outperform AR in text generation? §3.4 How
does OneFlow compare against other unified multimodal models? Finally, §3.5 What new capabili-
ties does OneFlow unlock?

Training stages. Our training consists of two main stages: multimodal pretraining and instruction
finetuning. During the pretraining stage, we use a mixture of image understanding and image gen-
eration data to learn representations for both image and text. We trained with a sequence length of
512 and a global batch size of 4096. We can set the mixed generation probability (the likelihood of
concurrently generating clean text and images from a noisy input) to be either 0 or 0.2.

For finetuning, we use a mixture of VQA, text, and interleaved data to give the model the ability
to respond to visual question answering problems. We also fine-tune on image generation data at a
higher resolution of 512×512 to improve the model’s image generation capabilities. We study the
model’s behavior at the 1B scale for our ablations and controlled experiments, and the scaling trend
up to 8B is detailed in Section 3.1.

Datasets. For multimodal pretraining, we use image-text pairs from a filtered version of the Con-
ceptual Captions dataset (CC12M (Sharma et al., 2018)), the YFCC dataset (Thomee et al., 2016),
and licensed data, for a total of 400M examples. During instruction finetuning, we use a filtered
image portion of the PerceptionLM dataset (Cho et al., 2025), interleaving data from Chameleon
(Team, 2024), and Cambrian-7M (Tong et al., 2024a) dataset.

Baselines. To evaluate our model’s performance against existing methods, we compare against two
baselines: (1) an autoregressive (AR) + Flow Matching (FM) multimodal model based on Trans-
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Multimodal LM
Show-O (Xie et al., 2024) 1.3B – – 61.0 1232.9 27.4 – – – – – 84.5
MetaMorph (Tong et al., 2024b) 7B 75.2 – – – 41.8 – – 37.1 60.5 58.3 –
Janus-Flow (Ma et al., 2025) 1.5B 74.9 79.8 60.3 1333.1 29.3 – 64.6 55.5 – – 88.0
Janus-Pro† (Chen et al., 2025) 1.5B 73.4 67.9 59.3 1443.0 33.4 62.8 21.2 35.8 53.9 53.5 84.8
Janus-Pro† (Chen et al., 2025) 7B 76.9 74.1 62.0 1531.0 38.2 68.1 24.3 – 57.2 56.4 85.2

Mask Diffusion
Muddit (Shi et al., 2025) 1B – 67.7 57.1 1104.6 – – – – – – –
D-DiT (Li et al., 2025) 2B – 60.1 59.2 1124.7 – – – – – – 84.0
MMADA (Yang et al., 2025) 8B 68.5 76.7 61.3 – 30.2 – – – – – 86.1

Discrete Flow
FUDOKI (Wang et al., 2025) 1.5B 73.9 – 57.6 1485.4 34.3 – – – – – 86.1

Controlled Comparisons
AR + FM Ablation 1B 60.2 66.0 53.7 1255.9 26.3 45.3 22.7 35.5 48.3 41.4 85.6
Mask + FM Ablation 1B 65.5 59.2 53.7 1348.5 30.6 47.0 16.1 31.9 43.0 49.8 85.2
OneFlow 1B 69.0 67.7 57.8 1497.1 29.8 58.5 23.8 35.0 50.4 50.6 84.0

OneFlow 8B 72.5 73.7 61.9 1542.5 33.1 63.4 37.1 42.1 58.6 54.0 86.3

Table 2: VQA performance comparison. OneFlow outperforms AR and Mask models across all
benchmarks in controlled experiments using identical finetuning data. Highlighting shows best re-
sults in the 1B controlled comparisons. Our results are also competitive with existing autoregressive
and discrete diffusion models. †Evaluated using official open source weights.
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Figure 2: Performance of OneFlow vs. AR baseline models at different model scales, data and
compute. For text-to-image generation, we report DPG-Bench and FID. For image-to-text caption
quality, we report CIDEr and ROUGE. In every benchmark, OneFlow consistently exhibits better
scaling laws than AR.

fusion (Zhou et al., 2025), where text tokens are generated autoregressively and image tokens via
FM, and (2) a masked diffusion model based on LLaDA (Nie et al., 2025). For the masked diffusion
baseline, we tested two sampling variants: low-confidence and random remasking, with random re-
masking performing better across all experiments. Unlike Transfusion, we follow Janus-Flow (Ma
et al., 2025) and adopt a dual-encoder setup. For image encoders, we use a pretrained SigLIP2 ViT-
SO400M-16@512 (Tschannen et al., 2025) for understanding and an SD3 VAE (Esser et al., 2024)
for generation. Following Transfusion, we use U-Net adapters.

Evaluation setup. Following Cambrian (Tong et al., 2024a) and PLM (Cho et al., 2025), we group
VQA tasks into five groups: General, Knowledge, OCR & Chart, Hard Perception, and Hallucina-
tion. We evaluate image generation quality using FID (Heusel et al., 2017) on COCO-2014 (Lin
et al., 2014) validation set. To assess prompt alignment, we report CLIPScore (Hessel et al., 2021)
and DPG-Bench (Hu et al., 2024). Additionally, we include WISE (Niu et al., 2025) cultural to
better understand knowledge-based generation.

3.1 ONEFLOW SCALES BETTER THAN AR

In this experiment, we study the performance of OneFlow and AR in controlled settings at various
model sizes and token counts. To ensure OneFlow has no advantage in data-constrained settings,

6
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we trained both models on 2B image-text pairs over 500k iterations using a batch size of 4096.
Both models were initialized from Llama 3.2 1B (AI@Meta, 2024). For AR, the number of tokens
predicted during training equals the sequence length, whereas for OneFlow, the number of predicted
tokens corresponds to the number of deleted tokens, which on average is 50% of the data sequence.

We find that OneFlow scales better than AR on every benchmark. This scaling advantage is espe-
cially pronounced on DPG Bench, where OneFlow scales significantly better than AR. Conversely,
for image captioning, OneFlow shows a notable performance gap relative to AR. Figure 2 visualizes
the scaling trend, and the final metrics after training are shown in Table 1, along with a comparison
against other state-of-the-art models. We provide qualitative examples of where OneFlow outper-
forms AR in Appendix F.4.

3.2 MIXED MODAL PRE-TRAINING ENABLES BETTER GENERATION AND UNDERSTANDING

48 50 52 54

OneFlow Mixed

OneFlow
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+4.0%

+4.0%

AVG VQA
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Wise

AR+FM OneFlow OneFlow Mixed

Figure 3: Mixed modal vs Sequential pretraining. Mixed modal pretraining vs sequential pretrain-
ing. Mixed pretraining achieves 4% relative improvement on VQA tasks and slight improvements
on image generation as well.

Figure 4: Mixed modal concurrent training.

In this section, we study the impact of mixed modal
pretraining. We investigate whether concurrent
mixed modal pretraining and sequential pretraining
affect downstream understanding tasks. We train
two 1B variants: one using sequential pretraining
(T2I or I2T), and another with the same data but
where 20% of examples use concurrent generation.
Figure 3 indicates that when starting from a concurrent model, downstream image understanding
improves by 5% relatively. These results demonstrate the impact of concurrent mixed modal pre-
training dense prompt alignment. We also finetune the pretrained model from Section 3.1 on a
mixture of interleaving data, filtered PLM data, and text data to evaluate downstream performance.

3.3 HIERARCHICAL GENERATION ENABLES REASONING

Figure 5: OneFlow response to visual ques-
tion. Implicit visual reasoning in hierarchical
generation. OneFlow naturally develops reason-
ing chains without CoT prompting.

In Figure 5, we present OneFlow’s sampling
process when prompted with a visual question.
In response to prompts such as ” {question}
Explain why.”, OneFlow generates a reasoning
chain before arriving at the final answer, with-
out any Chain-of-Thought (CoT) (Wei et al.,
2022) prompting or RL post-training. For ex-
ample, when asked ”Is there a snowboard in
the image? Explain why.”, the model first im-
plicitly performs visual search by examining
the image and searching through likely loca-
tions for the snowboard. Similarly, for the math
puzzle in (Figure 5 bottom), the model first
identifies objects in the image that match the
prompt description—the green sphere and the
large shiny cylinder—before arriving at the fi-
nal answer.
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Input image

[CFG 0.0:] A dog sitting in the driver’s seat of a truck.

[CFG 1.0:] A dog sitting in the driver’s seat of a red and gray truck.

[CFG 2.0:] A red and grey suv truck with a dog sitting in the driver’s seat.

The truck is parked on a grassy field with a tree on the left side and a clear

blue sky in the background.

CFG Scale 0.0 1.0 1.4 2.0 AR

GPT4o Score 5.36 5.61 5.53 5.44 5.60

Figure 6: Edit Flows with classifier-free guidance produces longer and more detailed answers,
improving metrics that involve VLM as a judge (Cheng et al., 2025). Additional examples of
classifier-free guidance effects on text generation are shown in Figure 11.

Our results align with findings in Physics of LLMs (Ye et al., 2024) and MetaMorph (Tong et al.,
2024b), where the authors suggest that LLMs precompute reasoning graphs before generating to-
kens. However, our findings demonstrate that the model can perform the same reasoning chain
without autoregressive decoding. This suggests that reasoning capabilities can emerge in non-
autoregressive architectures and transfer effectively to OneFlow. We show more example VQA
generations compared to the AR baseline in Figure 19.

3.4 COMPARISON WITH STATE-OF-THE-ART UNIFIED MODELS

We compare OneFlow with other autoregressive and diffusion multimodal models and summarize
the results in Table 2. Since these models were trained on different datasets and with different
base LLMs, a controlled comparison is difficult. This is why we trained our own autoregressive
multimodal model for a fair, apples-to-apples comparison in the previous section.

OneFlow achieves competitive performance on understanding and generation benchmarks, matching
the performance of other state-of-the-art models. For instance, models like MMaDA underwent
extensive post-training and reasoning training, while OneFlow did not. Similarly, FUDOKI was
initialized from a pretrained multimodal model, whereas ours was trained from scratch.

3.5 NEW CAPABILITIES INTRODUCED BY ONEFLOW

Classifier-free guidance improves text detailedness. The use of continuous-time Markov chains
allows us to apply classifier-free guidance (CFG) to our model’s insertion rates. Specifically, given
an unconditional prediction λ(Xt)Q(Xt) and a conditional prediction λ(Xt|c)Q(Xt|c), where c is
the prompt and w is the guidance weight, the modified insertion rate is constructed as:

λcfg(Xt|c) = λ(Xt|c)wλ(Xt)
1−w and Qcfg(Xt|c) ∝ Q(Xt|c)wQ(Xt)

1−w. (12)

As shown in Figures 6 and 11, higher CFG values consistently increase the length and detail of gen-
erated text. We quantitatively evaluated caption quality and hallucination using CapArena (Cheng
et al., 2025) by prompting GPT4-o. Our findings show that increasing CFG leads to more detailed
captions, with OneFlow matching AR’s level of detail at a guidance scale of 1. However, this in-
creased detail comes at the expense of hallucinations at very high CFG values.

Simultaneous generation of interleaved text and images. When autoregressive multi-modal
models insert an image, they append it at the end of the current generation, fully denoise it, then
continue the generation process. However, OneFlow is able to simultaneously denoise images and
the text. When the model deems it necessary, it is able to insert an new image in the existing text
and denoise it along with the text, as proposed in Section 2.3.

To train this model, we took OneFlow 1B Mixed and finetuned it on the interleaved subset of the
Chameleon dataset (Team, 2024) for 20000 steps. This subset contains 17000 examples that inter-
leave both text and image data. Figure 7 shows the generation order of the tokens where two images
were generated as part of the answer, with more detailed examples in Appendix A and animated
versions in the supplementary material.

4 RELATED WORK

Native Multimodal Models. Current approaches for unified multimodal models fall into three main
paradigms: fully autoregressive (Team, 2024; Wang et al., 2024; Wu et al., 2025), hybrid (Zhou
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Generated tokens: t = 0 t = 1

I want to paint flowers but I need a photo for inspiration. Can you show me two pictures of flowers and describe
them? In this first image, a beautiful arrangement of pink flowers is on display, with a total of six flowers spread out
in a visually appealing manner.<|image|>The roses are delicate and have a soft, pink hue, which adds to the overall
charm of the scene. The bouquet seems to be the main focus of the image, with the flowers captured in a close-up shot,
showcasing their intricate details. The display creates an elegant and serene atmosphere, evoking a sense of romance
and appreciation for the beauty of nature. This image features a close-up view of a beautiful pink flower sitting in a
glass vase on a table.<|image|>The flower appears to be a gerbera, with a vibrant pink color and a prominent center,
possibly a bud. The glass vase is positioned at the base of the flower, enhancing the visual appeal of the scene. The table
beneath the vase provides a simple yet elegant backdrop, allowing the flower to be the focal point of the image.

Figure 7: This example color-codes each token (including <|image|>) based on their insertion
time. After the image is inserted, it is progressively denoised along with the text. See Appendix A
for generation traces that include the image denoising. Animated versions of these are also available
in the supplementary material.

et al., 2025; Deng et al., 2025; Xie et al., 2024; Ma et al., 2025), and fully diffusion-based (Yang
et al., 2025; Swerdlow et al., 2025; Li et al., 2025; Wang et al., 2025). While these models are
limited by a fixed generation order or fixed-length output, our approach fundamentally differs by
being able to simultaneously generate interleaved content and a variable number of images. For a
more comprehensive analysis, see Appendix C.

Discrete Diffusion and Discrete Flow Matching. Iterative refinement models, including diffusion
(Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow models (Liu et al., 2022; Albergo et al., 2023;
Lipman et al., 2024), have been adapted for discrete token spaces. Discrete diffusion models typi-
cally learn to reverse a corruption process (Austin et al., 2021; Lou et al., 2024), while discrete flow
models transport between two distributions with an interpolating scheme (Campbell et al., 2024b;
Gat et al., 2024). Although these frameworks offer a large design space (Shaul et al., 2024; Wang
et al., 2025), recent works have predominantly focused on a simplified mask construction (Sahoo
et al., 2024; Shi et al., 2024a; Ou et al., 2024; Zheng et al., 2024). This masking framework, however,
cannot be easily applied to variable-length and especially simultaneous interleaved generation.

Edit-based Non-autoregressive Language Models. Early non-autoregressive models for variable-
length generation (Gu et al., 2019a;b; Stern et al., 2019; Reid et al., 2022) often relied on multiple
models and evaluations to handle edit operations. While later work like Edit Flows (Havasi et al.,
2025) improved on this by using a continuous-time framework and using only a single evaluation per
step. Campbell et al. (2024a) also proposed modeling insertions with a diffusion model for denois-
ing, but did not consider sequential data. In contrast, our approach considers sequential mixed-modal
data, allows for parallel token insertions, and uses a unified backbone architecture.

5 CONCLUSION AND LIMITATIONS

We introduced OneFlow, a novel non-autoregressive multimodal model that overcomes the fixed-
length generation limitations of diffusion models and has better scaling than autoregressive multi-
modal models. We introduced mixed-modal generation approaches, which through extensive con-
trolled experiments, improve on benchmarks for both image understanding and image generation.
We also propose a novel approach to interleaved generation that simultaneously denoises images and
inserts text tokens, with promising qualitative results. Interleaved generation is still in its infancy
and we expect to see more incoming research efforts in constructing large-scale data sets (Awadalla
et al., 2024; Laurençon et al., 2023; Zhu et al., 2023) and designing comprehensive benchmarks.

A limitation of requiring bidirectional attention is the lack of key-value caching, which increases
inference cost. Although we do find that OneFlow can obtain good captioning performance with
very few model evaluations—outperforming AR with only 6 sampling steps (Figure 16)—it is still
slower and more memory-intensive compared to key-value cached autoregressive sampling. Reduc-
ing inference costs, with semi-autoregressive models (Arriola et al., 2025; Gat et al., 2025) or more
sophisticated methods, would be an exciting research direction.
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A ADDITIONAL GENERATION EXAMPLES

Generated Text Generated Images
PROMPT: I want to paint flowers but I need a photo for inspiration. Can
you show me two pictures of flowers and describe them?

t = 0.2: first a pink of out in appealing roses and overall the. seems be the,
appreciation for.
a pink a flower pink with possibly vase is base the flower appeal simple
backdrop the point of the image

No image

t = 0.4: In first, a arrangement pink flowers is, of six flowers out in appeal-
ing manner.<|image|> roses are delicate and pink the overall of the. The
bouquet seems be the captured,oking and appreciation for the nature.
This image a view pink sitting a table flower be ger with a pink with promi-
nent center possibly a. vase is base the flower visual appeal table a simple
backdrop, allowing flower be the point of the image.

t = 0.6: In first, a arrangement of pink flowers is, of six flowers out in
a appealing manner.<|image|> roses are delicate and have a, pink, the
overall of the. The bouquet seems be focus the image captured, showcasing
their The display and atmosphere,oking of and appreciation for the nature.
This image a view of a pink sitting a table.<|image|> flower appears be
ger with a pink with prominent center possibly a bud. vase is the base the
flower, enhancing visual appeal of the. The table vase a simple backdrop,
allowing flower be the point of the image.

t = 0.8: In this first image, a beautiful arrangement of pink flowers is
on display, with total of six flowers spread out in a appealing man-
ner.<|image|>The roses are delicate and have a soft, pink hue, which
adds the overall charm of the scene. The bouquet seems be the main fo-
cus of the image flowers captured a close shot, showcasing their intricate
details. The display and atmosphere, evoking a sense of romance and ap-
preciation for the beauty nature.
This image a view of a pink flower sitting a glass a table.<|image|>The
flower appears be ger with a pink color with a a prominent center, possibly
a bud. vase is the base of the flower, enhancing visual appeal of the. The
table the vase provides a simple backdrop, allowing flower to be the focal
point of the image.

t = 1.0: In this first image, a beautiful arrangement of pink flowers is on
display, with a total of six flowers spread out in a visually appealing man-
ner.<|image|>The roses are delicate and have a soft, pink hue, which
adds to the overall charm of the scene. The bouquet seems to be the main
focus of the image, with the flowers captured in a close-up shot, show-
casing their intricate details. The display creates an elegant and serene
atmosphere, evoking a sense of romance and appreciation for the beauty of
nature.
This image features a close-up view of a beautiful pink flower sitting in
a glass vase on a table.<|image|>The flower appears to be a gerbera,
with a vibrant pink color, with a vibrant pink color and a prominent center,
possibly a bud. The glass vase is positioned at the base of the flower, en-
hancing the visual appeal of the scene. The table beneath the vase provides
a simple yet elegant backdrop, allowing the flower to be the focal point of
the image.

t = 2.0: In this first image, a beautiful arrangement of pink flowers is on
display, with a total of six flowers spread out in a visually appealing man-
ner.<|image|>The roses are delicate and have a soft, pink hue, which
adds to the overall charm of the scene. The bouquet seems to be the main
focus of the image, with the flowers captured in a close-up shot, show-
casing their intricate details. The display creates an elegant and serene
atmosphere, evoking a sense of romance and appreciation for the beauty of
nature.
This image features a close-up view of a beautiful pink flower sitting in
a glass vase on a table.<|image|>The flower appears to be a gerbera,
with a vibrant pink color, with a vibrant pink color and a prominent center,
possibly a bud. The glass vase is positioned at the base of the flower, en-
hancing the visual appeal of the scene. The table beneath the vase provides
a simple yet elegant backdrop, allowing the flower to be the focal point of
the image.

Figure 8: Example interleaved generation process showing flowers. An animated version is included
in the supplementary material.
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Generated Text Generated Images
PROMPT: I’m looking for a new hobby that’s relaxing and will allow me
to be outdoors to get some fresh air. Offer me a suggestion and show me
an image of the type of place I can do it

t = 0.2: ? It’s that. senseness tranqu promotes. No image

t = 0.4: Why try? It’s a that you a wide of, lake trail. in can create sense-
ness tranqu promotes stress and. No image

t = 0.6: Why not try nature? It’s a that you a wide variety of natural, like
this lake trail,. in can create sense ofness and tranqu promotes stress and. No image

t = 0.8: Why not try nature? It’s a relaxing that allows you to in
a wide variety of natural environments, like this lake trail, for in-
stance.<|image|>Walking in can create sense of calmness and tranqu
that promotes stress and relaxation.

t = 1.0: Why not try nature walking? It’s a relaxing hobby that allows
you to immerse yourself in a wide variety of natural environments, like this
lake trail, for instance.<|image|>Walking in nature can create a sense of
calmness and tranquility that promotes stress reduction and relaxation.

t = 2.0: Why not try nature walking? It’s a relaxing hobby that allows
you to immerse yourself in a wide variety of natural environments, like this
lake trail, for instance.<|image|>Walking in nature can create a sense of
calmness and tranquility that promotes stress reduction and relaxation.

Figure 9: Example interleaved generation process showing outdoor exercise. In this example, the
image is inserted late in the generation process when the text is almost fully denoised. An animated
version is included in the supplementary material.
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Generated Text Generated Images
PROMPT: I am teaching an ESL lesson on home types. Please show me
images of a bungalow, a two-story home and a townhouse that I can show
my students, and briefly explain about each of them.

t = 0.2: good. **B is typically for with a-p simple including suburban
towns. is of a.Two** type residential building levels with the typically
bedrooms on the. example-story. **Town town unit town. They vary typi-
cally than homes image example.<|image|>

t = 0.4: which good show to them about different types1. **Bungalow**
ungalow is of is typically cosy designed for. Bungal are single-story, with
a-p simple can including suburban neighbourhood towns and areas. Be-
low is of a.Two-** A a type residential building levels, with the typically
on bedrooms on the. below example of-story. **Town A town multi resi-
dential unit that town walls. They can vary size are typically smaller than
single homes image is example of.<|image|>

t = 0.6: images which would good to show students to them about different
types:
1. **Bungalow** ungalow is a type of is typically small, cosy and designed
for comfortable. Bungal are often single-story, with a-p simple can found
various locations including suburban neighbourhood towns and areas. Be-
low is an image of a.Two-** A two a type residential building has levels,
with the typically on the first floor and bedrooms and additional on the. im-
age below an example of-story. **Town A town multi-level residential unit
that attached town shared walls. They can vary size, are typically smaller
than single homes. The image is example of of.<|image|>

t = 0.8: are images which would be good to show your ESL students to
them about different types:
1. **Bungalow** A bungalow is a type of that is typically small, cosy
and designed for comfortable living. Bungalows are often single-story,
with a-pitched and a simple floor can be found various locations, including
suburban neighbourhoods, beach towns and areas. Below is an image of
a b2.Two-Story home** A two home a type residential building has lev-
els or floors, with the typically on the first floor and bedrooms and ad-
ditional spaces on the second. image below is an example of a two-story
home.3. **Townhouse** A town a multi-level residential unit that attached
one more other town shared walls. They can vary size, but are typically
smaller than single-family homes. The image below is example of a of-
houses.<|image|>

t = 1.0: Here are three images which would be good to show your ESL
students to teach them about different home types:
1. **Bungalow** A bungalow is a type of house that is typically small,
cosy, and designed for comfortable living. Bungalows are often single-
story homes, with a low-pitched roof and a simple, open floor plan.
They can be found in various locations, including suburban neighbour-
hoods, beach towns, and rural areas. Below is an image of a bunga-
low:<|image|>2. **Two-Story home** A two-story home is a type
of residential building that has two levels or floors, with the main liv-
ing areas typically on the first floor and bedrooms and additional liv-
ing spaces on the second floor. The image below is an example of a
two-story home.<|image|>3. **Townhouse** A townhouse is a multi-
level residential unit that is attached to one or more other townhouses
via shared walls. They can vary in size, but are typically smaller than
single-family homes. The image below is an example of a row of town-
houses.<|image|>

t = 2.0: Here are three images which would be good to show your ESL
students to teach them about different home types:
1. **Bungalow** A bungalow is a type of house that is typically small,
cosy, and designed for comfortable living. Bungalows are often single-
story homes, with a low-pitched roof and a simple, open floor plan.
They can be found in various locations, including suburban neighbour-
hoods, beach towns, and rural areas. Below is an image of a bunga-
low:<|image|>2. **Two-Story home** A two-story home is a type
of residential building that has two levels or floors, with the main liv-
ing areas typically on the first floor and bedrooms and additional liv-
ing spaces on the second floor. The image below is an example of a
two-story home.<|image|>3. **Townhouse** A townhouse is a multi-
level residential unit that is attached to one or more other townhouses
via shared walls. They can vary in size, but are typically smaller than
single-family homes. The image below is an example of a row of town-
houses.<|image|>

Figure 10: Example interleaved generation process showing home types. An animated version is
included in the supplementary material.
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Input image Captions with varying classifier-free guidance weights

[CFG 0.0:] A llama and a horse standing in a field.

[CFG 2.0:] A white llama and a white horse standing in a field.

[CFG 0.0:] A group of toy animals sitting on a table.

[CFG 1.0:] A table topped with a variety of toy animals, including a giraffe , a

cow , and a bird , as well as a toy duck . In the background,

there is a frame attached to the wall.
[CFG 1.5:] A green table topped with toy animals, including a giraffe, a cow, a

yellow bird, and a toy duck, next to a red box . In the background, there is a

photo frame attached to the wall.

[CFG 0.0:] A bathroom with a large tub and a sink.

[CFG 1.0:] A bathroom with a claw foot tub and three windows .

[CFG 2.5:] A brown bathroom or master bathroom with a classic claw foot tub
and three windows.

[CFG 0.0:] A cat sitting on a wooden deck looking up.

[CFG 1.0:] A cat sitting on a wooden deck looking at its reflection in a window.

[CFG 2.5:] Two fluffy ginger and white cats sit and gaze at their reflection in

a glass window on a green wooden deck in Japan .

[CFG 0.0:] A white plate topped with a cake and a spoon.

[CFG 1.0:] A plate with a dessert and two spoons on it.

[CFG 2.0:] A white plate topped with ice cream , accompanied by two spoons, a
bottle , a glass , and a tissue paper on the table .

Through the glass window in the background, we can see the water and the sky.

[CFG 0.0:] A glass bowl filled with colorful paper cranes.

[CFG 1.0:] Colorful origami cranes in a glass bowl shaped like a heart .

[CFG 2.0:] A table with a heart-shaped bowl filled with colorful origami cranes
in various colors . The background is slightly blurred , giving the focus to the

vibrant colors of the cranes.

Figure 11: Text generation examples from OneFlow, which allows the use of classifier-free guidance
(CFG). We observe that CFG produces longer and more detailed captions and also increased chance
of hallucinations . Highlighted text show increased levels of detail when using higher CFG weights.
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B FULL DERIVATIONS

We provide the derivations of the model here. We briefly summarize the Edit Flow (Havasi et al.,
2025) formulation and derivation, and then derive the interleaved time schedule when insertions and
image denoising are performed simultaneously.

Setup. We make use of a blank token ε to denote empty spaces within a sequence. This token is
only used for tracking token deletions during training and is not part of the vocabulary. Let Z =⋃N

n=0(T ∪{ε})n be an extended space of aligned sequences. Furthermore, define frm-blanks : Z → X
as the function that removes all blank tokens from the sequence. Lastly, we define the delta function
over sequences δz1(z2) =

∏
i δzi

1
(zi2) which is one if all tokens are the same otherwise zero (i.e.

Kronecker’s delta function).

Continuous-time Markov chain (CTMC). A CTMC is a continuous-time discrete-space process
which iteratively jumps between discrete values, with transitions

P(Xt+h|Xt) = δXt
(Xt+h) + hut(x|Xt) + o(h), (13)

where ut can be interpreted as a first-order characterization of the transition kernel. Since with in-
sertions, the sequence lengths of Xt can change over time. To simplify notation, Havasi et al. (2025)
used an augmented space of (Xt, Zt), where it is basically always enforced that Xt = frm-blanks(Zt).
The role of Zt is only for training, to keep track of which tokens are deleted and to compute the loss,
and it is neither seen by the model nor used during sampling.

To briefly summarize the construction below, the Flow Matching recipe makes use of a prescribed
conditional CTMC that generates single data sequences, which is then marginalized over the data
distribution. The resulting marginal CTMC will then sample from the data distribution.

Conditional probability path. Given a data sequence X1 ∼ pdata, we prescribe a conditional
probability path over Zt of the same sequence length which interpolates between the empty sequence
and this data sequence. We then obtain Xt by applying the frm-blanks function. Concretely, we can
express the conditional probability path as

pt(Xt, Zt|X1) = pt(Xt|Zt, X1) · pt(Zt|X1) (14)
= pt(Xt|Zt) · pt(Zt|Z1) (15)

= δfrm-blanks(Zt)(Xt) ·

(
n∏

i=1

(1− κt)δε(Z
i
t) + κtδXi

1
(Zi

t)

)
, (16)

where κt is a scheduler where κ0 = 0, κ1 = 1, and n is the sequence length of X1. In English,
(16) is a mixture distribution where each token Zi

t can either be equal to ε with probability 1 − κt

or equal to data value Xi
1 with probability κt.

Conditional CTMC rate. As discussed in Havasi et al. (2025), a conditional CTMC that samples
from this conditional probability path can be constructed as

ut(x, z|Xt, Zt, X1) =

(
n∑

i=1

κ̇t

1− κt
(δXi

1
(zi)− δZi

t
(zi))

)
δfrm-blanks(z)(x),

where x = ins(Xt, i, a) for some i ∈ [n] and a ∈ [M ]

(17)

which denotes the infinitesimal change in probability of going from the state (Xt, Zt) → (x, z),
constrained to next sequences x that are one token insertion difference from Xt. In English, (17)
assigns a rate of κ̇t

1−κt
if Zi

t is not yet equal to Xi
1; otherwise, it is zero. This ensures that a sample

starting with all blanks Z0 = [ε, ...ε] at t = 0 will eventually turn into X1 at t = 1. This ratio κ̇t

1−κt

is the infinitesimal rate that each token changes its value, matching the distribution imposed by the
scheduler κt, and conditioned on that it is still the ε token at time t.
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token

blank token

X1

Zt

Xt

A3

Xt = frm-blanks(Zt)

replace with blank tokens

A4 A5targets

Figure 12: During training we construct Zt by replacing tokens with the blank token (ε), with the
original tokens used to construct the target bag-of-tokens Ai.

Training loss. In order to train a model thats transport sequences via insertions,

uθ
t (x|Xt), where x = ins(Xt, i, a) for some i and a (18)

we would need to marginalize out the auxiliary process Zt and the data X1. Havasi et al. (2025)
showed this can be done by using a loss based on any Bregman divergence while summing up over
all possible sequences z such that x = frm-blanks(z). Concretely, given a convex function ϕ that
defines a Bregman divergence Dϕ(a, b) = ϕ(a)− ϕ(b)− ⟨a− b, d

dbϕ(b)⟩, we can use the loss

EXt,Zt∼pt(Xt,Zt|X1),X1∼pdataDϕ

(∑
z ut(·, z|Xt, Zt, X1), u

θ
t (·|Xt)

)
. (19)

Plugging in the entropy ϕ(u) = ⟨u, log u⟩, this results in the Edit Flow loss

Et,pt(Xt,Zt|X1),X1∼pdata

∑
x ̸=Xt

uθ
t (x|Xt)−

n∑
i=1

1[Zi
t=ε]

κ̇t

1− κt
log uθ

t (ins(Xt, j,X
i
1)|Xt)

 , (20)

where j is the position in Xt that corresponds to the first non-ε token on the left of Zi
t . This ensures

that inserting at the i-th position corresponds to changing the value of Zi
t from ε to Xi

1.

Loss simplification. We deviate from Havasi et al. (2025) and use a t-independent parameteriza-
tion. In particular, for sequences x that are one token insertion of Xt, i.e., x = ins(Xt, i, a), we use

uθ
t

(
ins(Xt, i, a)|Xt

)
=

κ̇t

1− κt
λi(Xt)Q

i(a|Xt), (21)

where the neural network parameterizes λ and Q. Using this parameterization, letting Aj be the set
of missing tokens to the right of position j of Xt, the training loss (20) can be decomposed into

E(... )

(
κ̇t

1− κt

)( n(Xt)∑
j=1

λj(Xt)−
n(Xt)∑
j=1

∑
a∈Aj

log
(
λj(Xt)Q

j(a|Xt)
))

(22)

=E(... )

(
κ̇t

1− κt

) n(Xt)∑
j=1

(
λj(Xt)− |Ai| log λj(Xt)︸ ︷︷ ︸

(4)

+
∑
a∈Aj

logQj(a|Xt)︸ ︷︷ ︸
(6)

)
+ const. (23)

which recovers the losses for λ and Q in (4) and (6) respectively, after removing the coefficient
κ̇t

1−κt
. While keeping this coefficient relates the loss the to an evidence lower bound (Havasi et al.,

2025), we found that removing this coefficient in the loss gave better results in practice.
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B.1 INTERLEAVED TIME SCHEDULE

In order to model image insertions, we would make a choice. We can either (i) fully denoise images
at the time of insertion, or (ii) insert only noise and denoise later. We choose the latter approach,
as this allows simultaneous generation across images and text, and provides the best parallelism as
only a single model forward at each step is needed for both modalities. Without loss of generality,
assume there is only a single image.

Generation starts by advancing the sequence time, denoted ttext = 0. When the image is inserted,
we associate the image with its own time timg.

The main difficulty is that we can not simply set timg and ttext independently during training, as evi-
dently we always have ttext ≥ timg. In fact, an independent scheduler induces the wrong distribution
for our insertion prediction, and it will not insert the correct distribution at generation time. Instead,
we need to ensure that training and generation see the same distribution of time values. To achieve
this, we first note that the image exists in the sequence according to the scheduler κt, which means
that the insertion times are distributed according to

p(tinsert) = κ̇t, (24)

where tinsert is the time at which an image is inserted, i.e., κt is the cumulative distribution function
(CDF) of the insertion times. Equivalently, to sample the insertion time, we can apply the inverse
CDF sampling,

tinsert = κ−1(u), u ∼ Unif(0, 1). (25)
If we set timg = 0 when an image is inserted, then the difference between ttext and timg is distributed
according to the insertion time. This gives us the relation

ttext − timg = tinsert (26)

when 0 ≤ ttext, timg, tinsert ≤ 1. Since ttext will reach 1 before timg, and we want to train for the entire
process until timg = 1, we can construct an extended time interval

τtext ∈ [0, 2], ttext = clip(τtext), (27)

where clip(τ) = min{1,max{0, τ}} clips the time values back into the interval [0, 1].

During training, we first sample τtext, then sample

τimg = τtext − κ−1(u), u ∼ Unif(0, 1). (28)

This will sample an extended time for the image in the internal [-1, 2]. If τimg < 0, then it has not
yet been inserted, hence it is deleted from the sequence. Otherwise, it is clip,

timg = clip(τimg), (29)

and we proceed to use the Flow Matching loss (9) to train the image denoising.
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C FRAMEWORK COMPARISON

Method
Text AR AR Masked Diff Discrete FM Edit Flow
Image AR Diff / FM Masked Diff Discrete FM FM

Training
Attention Mask Casual Block Casual Bidrectional Bidrectional Bidrectional
# Tokens per iter. Seq Len up to 2x seq Len Seq Len Seq Len ≈50% Seq Len

Capabilities
Image understanding ✓ ✓ ✓ ✓ ✓
Single image generation ✓ ✓ ✓ ✓ ✓
Variable length generation ✓ ✓ × × ✓
Interleaved generation × ✓ × × ✓

Models Chameleon, JanusPro Transfusion, Bagel MMaDA FUDOKI OneFlow

Table 3: High-level comparison of different frameworks for combining text and image generation.

Text Generation

inputs

targets

1x sequence length

Autoregressive

1x sequence length

Mask diffusion

0.5x sequence length≈

Edit Flow

token

mask token

blank token

Interleaved Text and Image Generation

inputs

targets

up to 2x sequence length (clean & noisy)

Transfusion (autoreg. + diffusion)

0.5x sequence length≈

im
age

OneFlow

clean image

noisy image

im
age insert-image token

Figure 13: Illustration of the model input and targets during training for (top) text generation and
(bottom) interleaved generation. To train autoregressive with diffusion denoising, the images are
typically duplicated so that both the clean and the noisy images are in the sequence. On the other
hand, OneFlow deletes tokens and images during training which reduces the sequence length.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ONEFLOW ARCHITECTURE

Text 
embeddings

Bidirectional Transformer
Text 

embeddings

x8 x9 x10

Text 
embeddings

p1 p2 p3

a4 a5 a6

λ4 λ5 λ6

Ltext = EF loss

Insertion Rates 

Insertion Logits 

λ3

a3 a8 a9 a1
0

λ8 λ9 λ10

Ltext = EF loss

Insertion Rates 

Insertion Logits 

λ7

a7

x4 x5 x6

Limage = FM loss

Generation 
Upsampler

  FM velocity

Understanding 
Encoder

Understanding 
Downsampler

Generation
 Downsampler

Generation
Encoder

+noise

Figure 14: Architecture. With a multimodal prompt, OneFlow can produce variable length genera-
tions with interleaved text & images in a unified non-autoregressive sequence model, simultaneously
generating all modalities with an interleaved time schedule for each generated image and text.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E ALGORITHMS

Algorithm 1 OneFlow interleaved text–image generation.
1: function ONEFLOWGENERATION(step size ∆t, schedule κ)
2: X ← empty sequence ▷ Text tokens (initially empty set)
3: I ← ∅ ▷ Set of image latents with per-image times
4: ttext ← 0
5: while ttext < 1 or ∃Y ∈ I : timg(Y ) < 1 do
6: X, I, ttext, timg ← ONEFLOWSTEP(X, I, ttext, timg,∆t, κ)
7: end while
8: return X and {VAEDec(Y ) : Y ∈ I} ▷ Decode VAE latents into image space
9: end function

Algorithm 2 OneFlow step function.
X is the token sequence, I is the set of image latents each with time timg(Y ).

1: function ONEFLOWSTEP(X, I, ttext, timg,∆t, κ)
2: ({π, λnonzero, Q}, {v(Y, ·)}Y ∈I)← OneFlowModel(X, I, timg)

3: for all Y ∈ I with timg(Y ) < 1 do ▷ Image: Flow matching step on images
4: ∆timg ← min{1− timg(Y ),∆t}
5: Y ← Y +∆timg · v(Y, timg(Y ))
6: timg(Y )← timg(Y ) + ∆timg
7: end for

8: ∆ttext ← min{1− ttext,∆t}
9: if ∆ttext > 0 then

10: for all positions i ∈ {1, . . . , n(X)} do ▷ Text: parallel insertions
11: pπi ← 1− πi ▷ If using (4) without π, then skip this step
12: pλi ← ∆ttext · κ̇(ttext)

1−κ(ttext)
· λi

nonzero

13: do-insert← Bernoulli(pπi ) and Bernoulli(pλi )
14: if do-insert then
15: a ∼ Qi(· | X)
16: X ← ins(X, i, a)
17: if a = <|image|> then
18: Y ∼ N (0, I), timg(Y )← 0, I ← I ∪ {Y }
19: end if
20: end if
21: end for
22: end if

23: ttext ← ttext +∆ttext
24: return X, I, ttext, timg
25: end function
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Algorithm 3 OneFlow training loss with interleaved schedule
1: function ONEFLOWTRAININGSTEP(data sequence X , image latents I, schedule κ)
2: τtext ∼ Unif[0, 2]
3: ttext ← min{1, τtext}
4: j ← 0
5: Xt ← []
6: for all Xi ∈ X do ▷ Keep each ground-truth token with prob κ(ttext) to get noisy Xt

7: if r < κ(ttext) where r ∼ Unif(0, 1) then
8: Xt ← Xt + [Xi]
9: j ← j + 1

10: Aj ← {}
11: else
12: Aj ← Aj ∪ {Xi} ▷ Record the deleted tokens at each position in Aj

13: end if
14: end for
15: It ← {}
16: for all images Y ∈ I do
17: Y1 ← VAEEnc(img)
18: u ∼ Unif(0, 1)
19: τimg(Y )← τtext − κ−1(u)
20: if τimg < 0 then
21: insert <|image|>in the appropriate Ai ▷ Image is “deleted” at this snapshot
22: else
23: timg(Y )← min{1, τimg(Y )}
24: Y0 ∼ N (0, I)
25: Yt ← timg(Y )Y1 + (1− timg(Y ))Y0

26: It ← It ∪ {Yt}
27: end if
28: end for

▷ Forward pass
29: {π, λnz, Q} ← OneFlowModel(Xt, It)

▷ Compute OneFlow losses

30: Ltokens ←
1

n(Xt)

∑
i

[
−
∑
a∈Ai

logQi(a | Xt)
]

▷ n(Xt) is the length of the sequence

31: Lcount ←
1

n(Xt)

∑
i

(
λi(Xt)− |Ai| log λi(Xt)

)
32: Limg ←

∑
Y ∈It

1[τimg(Y ) ≥ 0] ·
∥∥v(Yt, timg(Y ))− (Y1 − Y0)

∥∥2
2

33: L ← Ltokens + Lcount + Limg

34: Θ← optimizer step(∇L; Θ) ▷ Compute gradients and update model
35: end function
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F ADDITIONAL EXPERIMENT RESULTS

F.1 PERFORMANCE BETWEEN AR AND ONEFLOW DURING PRETRAINING
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Figure 15: Training curve for OneFlow vs. AR for multimodal pretraining. OneFlow initially
starts out lower than AR however it quickly catches up and exceeds AR, most notably on DPG and
CIDEr.

F.2 PRETRAINING FROM SCRATCH VS LLAMA INIT

Image Generation VQA

Model Initialization DPG↑ FID↓ CLIP↑ CIDEr↑ Avg VQA↑
OneFlow Random 73.17 7.96 25.7 139.4 51.2
OneFlow LLaMA 75.41 (+2.24) 7.79 (−0.17) 26.0 (+0.3) 138.2 (−1.2) 52.2 (+1.0)

OneFlow Mixed Random 74.86 7.69 25.8 140.0 51.6
OneFlow Mixed LLaMA 75.08 (+0.22) 7.44 (−0.25) 25.8 (+0.0) 139.1 (−0.9) 52.8 (+1.2)

AR + FM Random 71.9 7.83 25.8 122.9 46.6
AR + FM LLaMA 73.4 (+1.50) 7.91 (−0.08) 25.7 (−0.1) 123.9 (+1.0) 49.0 (+2.4)

Table 4: Ablation study comparing LLaMA initialization vs. random initialization. Except for
CIDEr, using LLaMA as initialization generally offers benefits, especially for dense prompt image
generation (DPG) and for VQA performance. Image generation metrics use CFG=3, and VQA
results are averaged across benchmarks.

F.3 SAMPLING STEPS ON CAPTION PERFORMANCE
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Figure 16: Performance vs. sampling steps compared to AR. OneFlow achieves parity with the
AR model using only 6 sampling steps.
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F.4 QUALITATIVE COMPARISON ON IMAGE GENERATION
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A polar bear balancing on a
blue barrel.

A table with some oranges
and some cups.

A very cute cat sitting on a
piece of luggage.

A building with a door sitting
behind a sign.

Figure 17: Qualitative comparison of OneFlow and SOTA models. We notice that OneFlow
gets the details of the prompt correctly, for instance the polar bear is ‘balancing on a blue barrel’.
The visual details of our generation are also better compared to MMaDA possibly due to using
continuous image tokens rather than discrete. In the last column, the figure shows OneFlow handles
common semantic challenges more effectively, as it was able to generate a building with ‘a door
sitting behind a sign’.

Prompt AR+FM OneFlow OneFlow Mixed

An expansive field, blanketed by the soft light of
morning, cradles a collection of eight cabbages,
their green heads round and plump. These vegetables
are nestled among rows of rich soil, dotted with
glistening droplets of dew that cling to their crinkled
leaves. As wisps of mist begin to lift, the cabbages lie
poised, ready for the day’s impending harvest.

An elegant and modern bathroom featuring a sleek,
white rectangular bathtub filled with a froth of soap
bubbles. The bathtub rests upon a floor of gray,
matte tiles that complement the room’s minimalistic
design. Against the room’s far wall stands a large
window that frames the warm, amber hues of a
sunset, casting a tranquil glow throughout the space.

The image captures a whimsical scene with a brown
tabby cat, its fur patterned in shades of dark brown,
black, and light taupe. The cat, situated as if in the
throes of space, is portrayed with a transparent,
gleaming bubble encasing its head like an
astronaut’s helmet. Around it, an assortment of
smaller bubbles float serenely in the imagined
cosmos, with a creatively interpreted Saturn adorned
with rings in the backdrop, providing an aura of
interstellar exploration.

Figure 18: OneFlow vs. AR on DPG Bench. OneFlow outperforms AR significantly on DPG
Bench. Through our inspection, we notice that OneFlow gets the subtle details correctly. We high-
light the subtle details that the OneFlow model gets correctly in red whereas the AR misses. For
the first row, the OneFlow model generates the ‘field of cabbages in the soft morning light’. The
second row, OneFlow model generates ‘a window with the amber hue’ whereas AR did not. Lastly,
the ‘brown cat has shades of brown, black and light taupe’ in the OneFlow generations.
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F.5 QUALITATIVE COMPARISON ON IMAGE UNDERSTANDING

Question: Subtract all large rubber spheres. Subtract
all big shiny cylinders. How many objects are left?
Explain your answer:

In the image, there is one object that matches the
description of the large sphere: the green sphere,
and the only large shiny cylinder, which is the
yellow cylinder. Therefore, the total number of
objects left in the image is four.

There are five objects left in the image. To find
their count, we look at the positions of the
spheres relative to the cylinders and the cube.
From left to right, the first sphere is the green, the
second is the purple, the third is the blue, and the
fourth is the brown. The fifth object, which is the
yellow cylinder, is not counted since it is not listed
in the options. Therefore, the total count of
objects that are left with the categories (green,
purple, blue, brown) is three.

Counting

Ground Truth: 4

OneFlowAR

(a) OneFlow compared to AR model on counting task. OneFlow first lo-
cates the object in the prompt before performing the calculation.

Question: In which direction is the front wheel of
the car on the right side facing? You must explain
your answer. Explain your answer:

The front wheel of the car on the right side is facing
towards the camera's perspective. This is determined
by the direction of the road, the orientation of the
vehicles, and the position of the wheels and
headlights. If facing the right side, the direction of
the camera is towards the front of the image, then
the front wheel of the car is forward, facing the right
side of the image. Conversely, if we consider the
front of the car to the left side of the image, which is
the perspective of the camera, the front of the car is
facing to the left. Therefore, from the perspective of
the camera, and considering the orientation of the
front of the car, the front wheel of the car is facing
towards the right side of the image.

In the image provided, the front wheel of the car on the right side is
aimed towards the left. The wheel is partially visible and appears to be in
the process of turning, as indicated by the position of the car and the
blurred scenery. Given the context of the street and the position of the
car, it is likely that the front wheel is facing towards the direction the car
is turning. However, due to the tire's orientation and the tire's angle, it's
not possible to determine the steering direction with absolute certainty.
The most probable action, based on the visible evidence, is that the front
wheel is turned to the left.

RealWorld Perception

Ground Truth: Right

AR OneFlow

(b) OneFlow compared to AR on hard perception task. AR commits to the
answer at the start of the sequence.

Question: In which direction is the front wheel of
the car on the right side facing? You must explain
your answer. Explain your answer:

The plastic stool in the image is located on the
right side of the canal, near the side of the canal.
It is blue and stands out against the natural
colors of the scene, contrasting with the red
colors of the buildings and the canal.

There is no plastic stool visible in the image. The scene includes a canal,
boats, trees, and traditional buildings, but none of these items appear to
be present within the frame. The stool in question may be part of the
rustic outdoor setting or an unrelated object not in the frame.

OneFlow

Visual Search

Ground Truth: Right

AR

(c) OneFlow compared to AR on visual search task. OneFlow first lo-
cates the target object (stool), then analyzes its color contrast against the
background to determine the answer. Red arrow added for visual clarity (not
present in original image).

Figure 19: Comparison of VQA generation between AR and OneFlow.
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G LLM DISCLOSURE

We used LLMs to create latex code for the figures, generate code, and to improve writing.
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Template prompt of VLM-as-a-Judge

Please act as an impartial judge and evaluate the quality of the following caption provided
by an AI assistant for a given image.
Begin your evaluation by providing a short explanation. Be as objective as possible. After
providing your explanation, please rate the response on a scale of 1 to 10 by strictly fol-
lowing this format: “[[rating]]”, for example: “Rating: [[5]]”.

Below are some guidelines for your reference:

1. Precision: The caption should accurately correspond to the content of the im-
age, providing precise information about it. Common examples of imprecision
include errors in color, quantity, spatial relationships, or the posture of people.

2. Informativeness: Salient information in the image should be reflected in the cap-
tion. Since it is impossible to include every detail, you will need to subjectively
judge which aspects of the image are important. For instance, describing an otter
as “a small animal” is precise, but it is less informative than specifying “an otter”.

3. Hallucination: Captions that include descriptions of objects or elements that are
clearly absent from the image should be significantly penalized.

4. Attention to detail: Annotators should pay close attention to the details in the
image to distinguish the quality of the descriptions.

5. Assistive description: Imagine a visually impaired person asking you to describe
the image for them. How would you convey the image to them?

6. Reverse thinking: What image does the caption lead us to imagine? Does the
caption effectively lead you to imagine the intended image?

Image: <image> Reference Caption: <reference caption> Caption: <caption text>

Figure 20: Template prompt of VLM-as-a-Judge, taken from CapArena (Cheng et al., 2025)
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