
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFERENCE-TIME SCALING OF DIFFUSION LANGUAGE
MODELS WITH PARTICLE GIBBS SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Discrete diffusion models have recently emerged as strong alternatives to autore-
gressive language models, matching their performance through large-scale train-
ing. However, inference-time control remains relatively underexplored. In this
work, we study how to steer generation toward desired rewards without retraining
the models. Prior methods typically resample or filter within a single denoising
trajectory, optimizing rewards step-by-step without trajectory-level refinement.
We introduce particle Gibbs sampling for diffusion language models (PG-DLM),
a novel inference-time algorithm enabling trajectory-level refinement while pre-
serving generation perplexity under reward optimization. PG-DLM constructs a
Markov chain over full denoising trajectories and applies a conditional sequen-
tial Monte Carlo kernel to resample them. We derive theoretical guarantees for
convergence, including asymptotic consistency and variance bounds. Within this
framework, we further analyze trade-offs across four key axes for inference-time
scaling under fixed budgets: iterations, samples, denoising steps, and reward esti-
mation. Our analysis shows scaling iterations achieves the best reward-perplexity
trade-off. Empirically, PG-DLM consistently outperforms prior methods using
MDLM and LLaDA-8B as base models across a wide range of compute budgets
for reward-guided generation tasks including toxicity and sentiment control as
well as linguistic acceptability.

1 INTRODUCTION

Recent advances in discrete diffusion models have established them as strong alternatives to autore-
gressive language models for text generation (Austin et al., 2021; Lou et al., 2023; Sahoo et al.,
2024; Shi et al., 2024; Zheng et al., 2025; Nie et al., 2025a). By scaling model size and training
data, diffusion language models (DLMs) now match or surpass autoregressive large language mod-
els (LLMs) on tasks like code generation and mathematical reasoning, as demonstrated by models
such as LLaDA-8B (Nie et al., 2025b) and Dream-7B (Ye et al., 2025).

While this progress has focused primarily on training-time scaling, which quickly becomes compu-
tationally expensive, a complementary and more efficient strategy remains underexplored: steer-
ing DLMs at inference time toward desired attributes without modifying the underlying model.
Examples include generating texts toward high fluency, specific sentiments, or controlled toxic-
ity (Dathathri et al., 2020; Keskar et al., 2019). This is typically formalized as sampling from a
reward-weighted posterior: p∗(x0 | c) ∝ pθ(x0 | c) exp (r(c,x0)/β) , where pθ(x0 | c) is the pre-
trained DLM, r(c,x0) is a reward function scoring the output x0 given prompt c, and β > 0 controls
reward strength (Rafailov et al., 2024; Korbak et al., 2022).

To sample from the reward-weighted posterior at inference time, prior work has explored search-
based strategies (Ma et al., 2025) and particle-based methods like best-of-n and sequential Monte
Carlo (SMC), including FK Steering (Singhal et al., 2025), which scale by increasing the number of
samples. Another line uses predictor-corrector and remasking strategies (Wang et al., 2025; Lezama
et al., 2022), scaling via more denoising steps. chg: These methods maintain multiple parallel sam-
ples, each following a single denoising trajectory xT , · · · ,x0, sampled step-by-step from t = T
to t = 0, with resampling at intermediate timesteps. They do not perform trajectory-level refine-
ment, i.e., iteratively updating entire generations x0:T across multiple passes. chg: More recent
search-based methods (Zhang et al., 2025a; Jain et al., 2025) achieves trajectory-level refinement

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reference trajectory 2

final answer

reference trajectory 1 reference trajectory 3

iteration #1 iteration #2 iteration #3

Figure 1: Illustration of PG-DLM. At each iteration, a reference trajectory is fixed (top row), new
trajectories are generated and resampled (gray). The highest-reward one becomes the next reference
(colored), enabling iterative refinement. The final outputs are selected after multiple iterations.

by revisiting full generations via backtracking in a search tree. In contrast, we introduce the first
particle-based framework that performs trajectory-level refinement through iterative resampling of
complete trajectories within an SMC algorithm, which enables probabilistic inference and adaptive
compute allocation.

In this paper, we introduce particle Gibbs sampling for diffusion language models (PG-DLM), a
novel inference-time algorithm for reward-guided text generation. Unlike prior chg: particle-based
methods that operate step-by-step within a single denoising trajectory, PG-DLM enables trajectory-
level refinement by iteratively improving full generations. Concretely, PG-DLM runs multiple full
generation passes (trajectories) over a sequence of iterations. In each iteration, it generates a batch
of trajectories: one trajectory from the previous iteration is fixed as the reference trajectory, while
the rest are resampled via a conditional sequential Monte Carlo (SMC) kernel, which reweights and
resamples at each denoising step based on estimated rewards. The highest-reward trajectory from
the current batch then becomes the new reference trajectory for the next iteration.

We further investigate efficient allocation of inference-time compute within PG-DLM. In particular,
we analyze trade-offs across four axes: particle Gibbs iterations, samples per iteration, denoising
steps, and reward estimation cost. Our analysis shows that scaling samples is most effective in low-
compute regimes, but iterations become superior once samples saturate, yielding a better reward-
likelihood trade-off by optimizing rewards while preserving generation quality (e.g., perplexity).

Our contributions are threefold: (1) we introduce particle Gibbs for diffusion language models (PG-
DLM), the first trajectory-level inference-time sampler for discrete DLMs, with formal convergence
and variance guarantees (Section 3); (2) we develop a unified framework for analyzing inference-
time scaling across four axes: iterations, samples, denoising steps, and reward estimation (Sec-
tion 4); and (3) we demonstrate that PG-DLM empirically outperforms baselines like SMC across
tasks and budgets (Section 5).

2 BACKGROUND

2.1 DISCRETE DIFFUSION LANGUAGE MODELS

Discrete diffusion language models (DLMs) (Austin et al., 2021; Lou et al., 2023; Shi et al., 2024;
Sahoo et al., 2024) have emerged as a powerful alternative to autoregressive models, matching their
performance through large-scale training (Nie et al., 2025b; Ye et al., 2025). Unlike continuous
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019), DLMs operate
on discrete token spaces, reversing a masking corruption process to iteratively denoise sequences.

Let x0 = (x1, . . . , xL) denote a clean sequence of L tokens, where each token xi ∈ X is a one-hot
vector; xt the corrupted state at time t ∈ [0, T]; and m the [MASK] token. The forward process q
gradually corrupts x0 by replacing tokens with m:

q(xt | x0) = Cat(xt;αtx0 + (1− αt)m), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where Cat(·) denotes the categorical distribution over the vocabulary, and the noise schedule αt

decreases monotonically from α0 = 1 to αT = 0. This enables a closed-form posterior:

q(xt−1 | xt,x0) =

{
Cat(xt−1;xt), xt ̸= m

Cat
(
xt−1;

αt−1−αt

1−αt
x0 +

1−αt−1

1−αt
m
)
, xt = m

(2)

To approximate this posterior, DLMs train a denoising model xθ(xt) ∈ ∆|X | to predict x0 from xt.
The resulting backward transition is pθ(xt−1 | xt) = q(xt−1 | xt,xθ(xt)). The model is trained by
minimizing the negative evidence lower bound (NELBO) to maximize data likelihood:

− log pθ(x0) ≤ LNELBO = Eq(xt|x0)

[
αt−1 − αt

1− αt
log

(
xθ(xt)

⊤x0

)]
. (3)

2.2 REWARD-WEIGHTED GENERATION OF DIFFUSION LANGUAGE MODELS

In this work, we align diffusion language models pθ(x0 | c) with task-specific rewards r(c,x0),
where c is a prompting prefix and x0 the generated sequence. Examples include generating high-
quality text or sentiment control (Dathathri et al., 2020; Keskar et al., 2019). Following Jaques et al.
(2017); Ouyang et al. (2022), this can be formalized as a KL-regularized reinforcement learning
objective, where we maximize expected reward while remaining close to the base model pθ:

p∗ (x0 | c) = argmax
p

Ex0∼p [r(c,x0)]− βKL (p(x0 | c) ∥ pθ(x0 | c)) , (4)

where hyperparameter β > 0 controls the trade-off between reward maximization and divergence
from the base model. This objective has a closed-form solution (Rafailov et al., 2024)

p∗(x0 | c) ∝ pθ(x0 | c) · exp (r(c,x0)/β) , (5)

which reweights the base model distribution toward higher-reward generations. While fine-tuning
methods can align base models pθ to the target p∗ (Clark et al., 2023; Black et al., 2024; Fan et al.,
2024; Wallace et al., 2024), we instead pursue inference-time approximation via sampling.

3 METHOD

In this section, we first derive the reward-weighted generation objective from an RL perspective
and present sequential Monte Carlo (SMC) as a baseline sampler. We then introduce particle Gibbs
sampling for diffusion language models (PG-DLM), a trajectory-level refinement method that over-
comes SMC’s limitations, and demonstrate its generality while proving convergence guarantees.

3.1 PROBLEM SETUP AND SEQUENTIAL MONTE CARLO FOR DLMS

In the backward process of a DLM pθ(x0 | c), generation begins with a fully masked sequence
xT = m and iteratively unmasks tokens via the denoising model pθ(xt−1 | c,xt), yielding a full
denoising trajectory xT :0 = xT , . . . ,x0. However, to sample from the reward-weighted target
distribution p∗(x0 | c) as in Equation 5, one must use the corresponding conditional distributions
p∗(xt−1 | c,xt) at each timestep. Building on prior works in the continuous setting (Uehara et al.,
2024a;b), we derive the tractable formulation for these conditionals in the discrete setting:

p∗(xt−1 | c,xt) ∝ pθ(xt−1 | c,xt) · exp (r(c,xt−1)− r(c,xt)) ,

where r(c,xt) = logEpθ(x0 | c,xt) [exp (r(c,x0)/β)] . (6)

Here, r(c,xt) defines a partial reward function for the noisy intermediate state xt, representing the
expected future reward at timestep t under the pretrained model pθ. This formulation shows that
the conditional p∗(xt−1 | c,xt) is a reward-weighted posterior, with weights given by the difference
in partial rewards. It mirrors the reward-weighted objective in Equation 5 through timestep-wise
decomposition, incorporating the reward difference at each step. chg: While we formally derive the
reward-difference structure from an RL perspective, where the difference in rewards across timesteps
r(c,xt−1) − r(c,xt) is used to guide generation, similar formulations have been used as sampling

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: Particle Gibbs for Diffusion Language Models
Input : iterations m, sample count k, timesteps T , partial reward samples ϕ, reward model r(c,x0),

diffusion model pθ(xt−1 | c,xt), hyperparameter β
Output: sample from p∗(x0 | c) ∝ pθ(x0 | c) exp (r(c,x0)/β)

1 Function PG-DLM(pθ, r,m, k, T, ϕ, β):
2 Sample initial reference trajectory x′

T :0 ∼ pθ(x0 | c) via backward process
3 for iter = 1 to m do
4 Initialize k samples x(i)

T = m for i = 1, . . . , k, all masked including the reference x
(k)
T

5 for t = T to 1 do
6 Fix reference x̄

(k)
t−1 = x′

t−1

7 Propose x̄
(i)
t−1 ∼ pθ(xt−1 | c,x(i)

t) for i = 1, . . . , k − 1

8 Estimate partial reward r̂(c, x̄
(i)
t−1) = log

(
1
ϕ

∑ϕ
j=1 exp

(
r(c,x

(j)
0)/β

))
where

x
(j)
0 ∼ pθ(x0 | c, x̄(i)

t−1) for all j = 1, . . . , ϕ and i = 1, . . . , k

9 Compute importance weights w̄(i)
t−1 = exp

(
r̂(c, x̄

(i)
t−1)− r̂(c,x

(i)
t)

)
for i = 1, . . . , k

10 Normalize w
(i)
t−1 = w̄

(i)
t−1/

∑k
j=1 w̄

(j)
t−1 for i = 1, . . . , k

11 Sample with replacement x(i)
t−1 ∼ {x̄

(j)
t−1, w

(j)
t−1}kj=1 for i = 1, . . . , k − 1

12 Fix x
(k)
t−1 = x′

t−1

13 end
14 Compute unnormalized final weights w̄(i)

0 = exp
(
r(c,x

(i)
0)/β

)
for i = 1, . . . , k

15 Normalize w
(i)
0 = w̄

(i)
0 /

∑k
j=1 w̄

(j)
0 for i = 1, . . . , k

16 Update reference x′
T :0 ← x

(i∗)
T :0 where i∗ = argmaxi w

(i)
0

17 end
18 return reference sample x′

0 or weighted samples {x(i)
0 , w

(i)
0 }ki=1

heuristics in prior works (Singhal et al., 2025; Wu et al., 2023) without establishing explicit con-
nections to RL objectives. This grounding not only justifies the partial-reward weighting but also
enables extensions to other KL-regularized tasks.

Given the reward-weighted conditional distribution p∗(xt−1 | c,xt) as in Equation 6, one intuitive
way to generate samples from this target is to first draw samples from the base model pθ(xt−1 |c,xt)
and then resample them based on their reward weights. This backward process, iterated from t = T
down to t = 0, is known as sequential Monte Carlo (SMC) or particle filtering, where pθ is the
proposal distribution and p∗ the target distribution (Naesseth et al., 2019; Doucet et al., 2001).

Concretely, the SMC sampling algorithm proceeds as follows: At timestep T , we initialize k samples
as masked sequences xi

T = m for i = 1, . . . , k. Then, for each subsequent timestep t, the process
involves: (1) proposing x̄t−1 samples from the proposal distribution pθ(xt−1 | c,xt) for each xt;
(2) reweighting by computing the importance weights wt−1 = exp (r(c, x̄t−1)− r(c,xt)) as in
Equation 6; and (3) resampling with replacement from x̄t−1 according to the normalized weights
wt−1 to form xt−1. This method has also been referred to as Feynman-Kac Steering (Singhal et al.,
2025) in the context of reward-weighted generation for diffusion models.

3.2 A PARTICLE GIBBS SAMPLER

While SMC provides a simple way to scale inference-time compute by increasing the number of
samples, it has several limitations that hinder effective reward alignment in DLMs. chg: Samples
evolve as parallel trajectories interacting only via reweighting and resampling, limiting inter-sample
correlations between them. Moreover, it performs a “one-shot” approximation in a single backward
pass from t = T to t = 0 without iterative trajectory-level refinement. Finally, SMC is prone to
weight degeneracy and high variance in importance weights under skewed reward landscapes (Naes-
seth et al., 2019).

To address these limitations, we propose an iterative trajectory-level sampling framework called
particle Gibbs for diffusion language models (PG-DLM). Intuitively, as shown in Figure 1, PG-
DLM refines high-reward trajectories across multiple sequential denoising processes: we begin by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generating a batch of candidate trajectories x0:T , select the highest-reward one as a “reference tra-
jectory”, and then resample new trajectories guided by this reference, exploring variations around
it. This process is repeated iteratively, correlating samples across multiple denoising passes and
leveraging the full capacity of pθ. As shown later, this yields better reward optimization while
maintaining generation likelihoods.

Formally, PG-DLM is a particle Gibbs sampler (Andrieu et al., 2010), a Markov Chain Monte Carlo
(MCMC) algorithm that iteratively refines complete trajectories x0:T . It uses a conditional sequen-
tial Monte Carlo (SMC) transition kernel to update the trajectories. Here, we refer to “iteration” as a
trajectory-level update (m iterations) and “timestep” as the denoising steps within a single trajectory
(t = T, . . . , 0). As detailed in Algorithm 1, PG-DLM begins by generating one sample from the
base model as an initial reference trajectory (line 2), then performs m iterations of conditional SMC
updates (lines 3–18). In each iteration, the conditional SMC update proceeds backward through
each timestep t by: (1) fixing the reference trajectory deterministically as the k-th sample (line 7);
(2) proposing k − 1 new samples from the base model (line 8); (3) reweighting all k samples,
including the fixed k-th one (lines 9-11); and (4) resampling the first k− 1 candidates with replace-
ment, proportional to their normalized weights, while keeping the k-th sample fixed (lines 12-13).
After each iteration, the new reference trajectory is updated to the highest-weighted one from the
current batch (lines 15-17). This iterative process allows the final trajectory to closely approximate
the target distribution p∗(x0 | c).

3.3 COMPATIBILITY WITH VARIOUS DIFFUSION PROCESSES

The PG-DLM framework is broadly compatible with arbitrary backward transitions p(xt−1 | c,xt)
in discrete diffusion models. Examples include the standard unmasking in MDLM (Sahoo et al.,
2024) (Equation 2), greedy low-entropy unmasking in LLaDA (Nie et al., 2025b), and correction/re-
masking mechanisms (Wang et al., 2025; Lezama et al., 2022).

3.4 THEORETICAL ANALYSIS

For PG-DLM, convergence depends on accurately computing the importance weights. As shown in
Algorithm 1, we approximate the partial reward using ϕ Monte Carlo samples x0 ∼ pθ(x0 | c,xt).

Lemma 1 chg: Let p∗(x0 | c) ∝ pθ(x0 | c) · exp (r(c,x0)/β) be the target distribution, where
pθ(x0 | c) is a discrete diffusion model with T denoising steps.1 By the law of large number, the

partial reward estimator r̂(c,xt) = log 1
ϕ

∑ϕ
j=1

[
exp

(
r(c,x

(j)
0)/β

)]
(cf. Equation 6) converges

to the true value as ϕ → ∞, when x
(j)
0 ∼ pθ(x0 | c,xt) are sampled via t denoising process.

The reference trajectory in PG-DLM ensures that the conditional SMC updates leave the target
distribution invariant and ergodic for k ≥ 2 (Andrieu et al., 2010). Under standard assumptions
for particle Gibbs, and combined with Lemma 1, chg: this directly yields Theorem 1 on asymp-
totic consistency (adapted from Andrieu et al. (2010)) and Theorem 2 on variance bounds (adapted
from Andrieu et al. (2010); Chatterjee & Diaconis (2018)).

Theorem 1 (Asymptotic Consistency) Given Lemma 1, the empirical distribution produced by
PG-DLM converges almost surely to the target p∗(x0 |c) as m→∞, ϕ→∞, given k≥2.

Theorem 2 (Variance Bound) Given Lemma 1, let the unnormalized target be p̃(x0:T | c) =
γ(c,x0) · pθ(x0:T | c), where γ(c,x0) = exp(r(c,x0)/β). Its normalizing constant is Z =∑

x0:T
p̃(x0:T |c). For the estimator Ẑ from PG-DLM with k samples and m iterations, the variance

Var(Ẑ) ≤
Varpθ(x0 | c) [γ(c,x0)]

mk
,

where Varpθ(x0 | c) [γ(c,x0)] = Epθ(x0 | c)[γ(c,x0)
2]− Z2.

1chg: For discrete diffusion models defined via continuous-time Markov chains (CTMC), pθ(x0 | c) has
no discretization error as T →∞.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

m=1
m=2
m=4
m=8

(a) LLaDA

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

m=1
m=2
m=4
m=8

(b) MDLM

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

m=1
m=2
m=4
m=8

(c) MDLM

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

m=1
m=2
m=4
m=8

(d) MDLM

Figure 2: Trade-off between particle Gibbs iterations m and sample counts k across compute budgets (NFEs).
The x-axis shows NFEs controlled by varying k, and the legend shows m. Increasing k (with m=1) performs
best in low-NFE regimes. However, as samples saturate, additional iterations (m=2, 4) become more effective.

m k Toxicity

1 32 90.3
2 16 93.6
4 8 91.7

1 64 96.3
2 32 97.0
4 16 97.6

Table 1: Accuracy at high NFE. Figure 3: Toxicity accuracy (blue) and perplexity (gray) as compute
budgets increase, by varying iterations m (left) and samples k (right)

This variance bound shows that PG-DLM’s variance is determined by that of the reweighting func-
tion γ(c,x0) = exp(r(c,x0)/β) under the proposal pθ(x0 | c). For example, if r(c,x0) is constant,
the proposal matches the target and Var(Ẑ) = 0; if r(c,x0) is highly peaked, γ(c,x0) has large
variance, as the proposal fails to cover high-reward regions effectively, leading to inefficient sam-
pling. chg: Lemma 1 holds for discrete diffusion models such as MDLM and LLaDA. However, in
practice, we approximate partial rewards using a small number of ϕ samples, each generated with
only one denoising step. While this deviates from the asymptotic setting, the convergence and vari-
ance bounds still provide valuable insight into how PG-DLM’s performance scales with different
factors, such as m, k, T, ϕ, which we study empirically in Section 4.

4 INFERENCE-TIME SCALING FOR PG-DLM

In the PG-DLM framework (Algorithm 1), we can scale inference-time compute along four axes:
the number of particle Gibbs iterations m, samples per iteration k, denoising steps T , and reward
estimation samples ϕ. This flexibility allows effective allocation under fixed budgets, measured in
number of function evaluations (NFEs) - the total calls to the denoiser and reward model. Assuming
the reward model incurs a similar computational cost to the denoiser (as is typical (Singhal et al.,
2025; Ma et al., 2025; Puri et al., 2025)), the total NFE is:

NFE = m · k · T · (1 + ϕ). (7)

If the reward model is lightweight relative to the base model, we can omit the ϕ cost, yielding NFE
= mkT (as applied in the LLaDA experiments in Section 5). Given a fixed NFE budget, a key
question arises: how to effectively allocate compute across these axes? In this section, we explore
this question empirically.

Particle Gibbs Iterations vs. Sample Count. We start by examining the trade-off between the
number of particle Gibbs iterations m and the number of samples k per iteration. Figure 2 shows
that increasing k (with m = 1) improves accuracies in low-compute regimes. However, once gains
from additional samples saturate, scaling iterations (m = 2, 4) proves more effective, especially at
moderate-to-high budgets (e.g., NFE ≈ 104). See Table 1 for representative results and full details in
Appendix C. Although increasing both m and k can boost performance, Figure 3 shows that higher

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

T=32
T=64
T=128

(a) LLaDA (k via x-axis)

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

k=2
k=4
k=8
k=16
k=32

(b) MDLM (T via x-axis)

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

k=2
k=4
k=8
k=16
k=32

(c) MDLM (T via x-axis)

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

k=2
k=4
k=8
k=16
k=32

(d) MDLM (T via x-axis)

Figure 4: Trade-offs between sample counts k and denoising steps T across compute budgets (NFEs). For
(a) LLaDA, the x-axis shows NFEs controlled by varying k, with T in the legend; for (b-d) MDLM, the x-axis
shows NFEs controlled by varying T , with k in the legend. Scaling k (and decreasing T accordingly) generally
yields better performance under the same NFEs.

k degrades likelihoods (e.g., perplexity) significantly, indicating reward hacking; while higher m
keeps likelihoods roughly unchanged. Therefore, scaling m yields a superior reward–perplexity
trade-off by enabling iterative trajectory-level refinement without penalizing generation quality.

Denoising Steps vs. Sample Count. In masked diffusion models, setting the number of denoising
steps T equal to the sequence length L (where at most one token is unmasked per step) is typically
sufficient for generation quality, with little benefit from increasing T beyond L (Sahoo et al., 2024).
However, this intuition does not hold for PG-DLM. The algorithm performs reward computation and
resampling at every timestep, even if no new token is unmasked (Algorithm 1, line 12). Thus, addi-
tional steps help concentrate samples closer to the reward-weighted posterior, improving generation
quality. This raises the question: Should we prioritize increasing T or the number of samples k?
To investigate, we first examine compute allocation for LLaDA (Nie et al., 2025b), where T cannot
exceed L. We fix L = 128 and decrease T (from 128 to 64, 32) while increasing k to maintain
constant NFEs. We further conduct experiments on standard masked models, generating sequences
of length 128 (varying T from 128 to 2048 and k from 2 to 32 accordingly). As shown in Figure 4,
increasing k generally provides greater benefits in most cases, chg: though in some cases, e.g., when
the performance saturates as in Figure (4c), smaller k can be better. This trend holds across other
particle-based methods, including best-of-n and vanilla SMC (Appendix C).

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

= 1
= 4
= 16

Beam
Random

Figure 5: Comparison of
Beam and Random sampling
for partial reward estimation
with varying number of x0

samples (ϕ) across NFEs (as
controlled by the number of
samples k). Beam sampling
with ϕ = 1 performs the best.

Partial Rewards Estimation. To estimate partial rewards r(c,xt)
for prompt c and noisy state xt, in order to compute importance
weights (line 10 in Algorithm 1), we approximate the expectation
Epθ(x0|c,xt) [exp (r(c,x0)/β)] as in Equation 6 using ϕ samples
x0 ∼ pθ(x0 | c,xt) chg: by unrolling τ diffusion steps per sam-
ple. In practice, we set τ = 1 for efficiency following prior works.
However, studying the scaling behavior of τ is an interesting and
promising complementary future direction. A common approach is
to draw random samples from pθ(x0 | c,xt), yielding unbiased but
high-variance estimates (Singhal et al., 2025; Song et al., 2021; Wu
et al., 2023; Li et al., 2024). We instead propose beam sampling to
approximate pθ(x0 | c,xt), with ϕ as the beam width, yielding bi-
ased but low-variance estimates. For ϕ = 1, this reduces to greedy
decoding. As shown in Figure 5, scaling ϕ improves accuracy but
raises compute, leading to suboptimal trade-offs. Beam sampling
outperforms random methods in most cases, with ϕ = 1 offering the
best trade-off.

5 EXPERIMENTS

5.1 SETUP

We evaluate three reward functions for controllable generation: (1) Linguistic acceptability, via a
classifier trained on the CoLA dataset, which favors grammatically correct sentences (Morris et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Controlled text generation accuracies across reward functions (CoLA, Toxicity, Sentiment) and base
models (MDLM, LLaDA), comparing PG-DLM against baselines under varying compute budgets (NFEs). chg:
Columns labeled 1–64 correspond to NFEs normalized by the total number of denoising steps T , i.e. NFE/T .

Base Method CoLA ↑ Toxicity ↑ Sentiment ↑
1 4 16 64 1 4 16 64 1 4 16 64

MDLM

best-of-n 27.0 71.3 96.9 95.8 0.9 1.9 11.4 33.8 10.0 36.7 79.9 99.6
FK (ϕ=4) - 27.9 73.7 85.0 - 0.8 36.6 85.9 - 10.0 86.2 98.9
FK (ϕ=1) - 48.1 79.0 87.1 - 3.8 39.8 86.1 - 37.4 91.3 99.7
PG-DLM - 77.3 97.3 99.1 - 1.4 91.1 98.1 - 23.8 96.2 99.1

LLaDA
best-of-n 34.2 74.2 88.8 87.7 0.8 2.4 9.0 29.2 18.6 48.2 85.7 98.1
FK - 74.1 87.9 88.2 - 9.0 43.2 80.9 - 69.4 96.0 99.7
PG-DLM - 77.8 91.1 90.6 - 8.3 48.3 89.1 - 66.6 96.4 99.7

2020; Warstadt et al., 2019); (2) Toxicity control, via a toxicity detector (Logacheva et al., 2022)
that identifies harmful content; and (3) Sentiment control, via a TweetEval classifier (Barbieri et al.,
2020) that steers toward target sentiments (e.g., positive).

We evaluate PG-DLM on two base models: MDLM (Sahoo et al., 2024) and LLaDA-8B-Base (Nie
et al., 2025b). We compare against inference-time baselines including best-of-n sampling and FK
Steering (FK) (Singhal et al., 2025), whose implementation in prior work is effectively a vanilla
SMC algorithm. Following prior work (Singhal et al., 2025; Han et al., 2023), we generate 20
continuations of length 50 for each of 15 controllable generation prompts and report task accuracies
on CoLA, Toxicity, and Sentiment. chg: For MDLM, we use 1024 denoising stepes; with best-
of-n and FK, we use the vanilla MDLM backward process and resample every 20 steps, as done
in (Singhal et al., 2025), while for PG-DLM, we use the ReMDM backward process (Wang et al.,
2025) and resample every 5 steps. For LLaDA, we use 50 denoising steps with its native backward
decoding and resample every 5 steps for all methods. In all cases, we set β = 0.1 and the final
output is selected as the sample with the highest reward t = 0. We report mean performance over 3
random seeds in Table 2 and standard deviations in Table 8. Detailed hyparameters and ablations on
these choices are in Appendix D.

5.2 RESULTS

Table 2 compares all methods under fixed compute budgets, measured by the number of network
function evaluations (NFEs) = m · k · T · (1 + ϕ) as in Equation 7, ranging from 1 to 64. Since all
methods use the same number of denoising steps T per base model (as detailed in the Setup), we
omit it for simplicity in the per-method formulas below.

For MDLM, we account for partial reward estimation, as the reward functions are on the same scale
as the base model (millions of parameters). Thus, for best-of-n sampling, NFE equals the number of
samples k. For FK Steering, NFE is k · (1+ϕ), where ϕ is the number of x0 samples used for partial
rewards; we show results for ϕ = 1 and ϕ = 4 following (Singhal et al., 2025). Unlike Singhal et al.
(2025) (which holds k fixed across ϕ), we adjust k to ensure fair NFE comparisons. For PG-DLM,
NFE is m · k · (1 + ϕ), accounting for samples k, ϕ partial reward samples, and iterations m. We
show results for m = 1 and ϕ = 1 within the current NFE range. Increasing m becomes more
effective when k saturates at high NFEs (Section 4).

For LLaDA, we use ϕ = 1 for partial reward estimation in both PG-DLM and FK Steering, and we
omit its cost from the NFE, as the reward functions are lightweight (millions of parameters) relative
to the base model (8B). Thus, NFE = m · k for PG-DLM (with m = 1 in Table 2) and NFE = k for
FK Steering and best-of-n sampling.

Table 2 shows that PG-DLM consistently outperforms baselines on both MDLM and LLaDA across
budgets and tasks, highlighting PG-DLM’s efficiency in generating high-reward contents.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Controlled text generation accuracies (length 512) across reward functions (CoLA, Toxicity, Sen-
timent) on MDLM, comparing PG-DLM against baselines under varying compute budgets. chg: Columns
labeled 1–64 correspond to NFEs normalized by the total number of denoising steps T , i.e. NFE/T .

Base Method CoLA ↑ Toxicity ↑ Sentiment ↑
1 4 16 64 1 4 16 64 1 4 16 64

MDLM

best-of-n 0.0 0.3 0.0 0.3 0.3 1.0 4.3 16.7 6.0 23.0 39.7 56.3
FK (ϕ=4) – 0.0 0.3 5.0 – 0.0 28.0 79.3 – 7.3 65.3 85.0
FK (ϕ=1) – 0.0 2.0 6.3 – 3.0 30.7 73.0 – 26.0 71.0 78.7
PG-DLM – 34.0 62.0 58.7 – 1.7 61.0 88.3 – 17.3 80.0 88.7

5.3 ANALYSIS AND ABLATION

Longer Sequence Generation. To assess performance on more challenging inputs, we evaluate
controlled generation for sequences of length 512 using 512 denoising steps, while keeping all other
settings fixed. As reported in Table 3, the best-of-n baseline shows limited ability to optimize
rewards in this regime. In contrast, PG-DLM maintains strong accuracies, with the performance gap
widening as the compute budget (NFE) increases.

Effective Sample Size to Measure Convergence. We assess the convergence of PG-DLM using
the effective sample size (ESS), computed from normalized importance weights wi for i = 1, . . . , k

at the final timestep of each iteration: ESS = 1/
∑k

i=1 w
2
i . ESS reflects the weight concentration

per iteration and ranges from 1 to k, with higher values indicating more uniform weights and lower
variance. As shown in Table 4, ESS approaches k after a single iteration and continues to increase
with more iterations, demonstrating efficient convergence and reduced weight degeneracy.

Table 4: Effective sample size (ESS) for PG-DLM across various number of iterations m and samples per
iteration k, under a fixed compute budget m× k = 64. chg: ESS is computed per iteration and ranges from 1
to k. Results are reported as mean ± std over multiple runs.

Setting Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8

m=1, k=64 60.2 ± 5.3 – – – – – – –
m=2, k=32 29.0 ± 4.1 30.6 ± 3.1 – – – – – –
m=4, k=16 13.3 ± 3.0 14.9 ± 2.1 15.2 ± 1.9 15.5± 1.2 – – – –
m=8, k=8 5.6 ± 1.9 6.8 ± 1.8 7.2 ± 1.5 7.5 ± 1.3 7.6 ± 0.9 7.7 ± 0.8 7.8 ± 0.5 7.8 ± 0.6

The Effect of the Backward Process in Diffusion Models. We further examine the effect of
the backward process by comparing vanilla MDLM dynamics with the recently proposed ReMDM
variant (Wang et al., 2025) under different compute budgets. As shown in Figure 6, ReMDM con-
sistently achieves stronger performance, demonstrating our approach’s general applicability across
different backward processes and its ability to leverage advanced variants for further gains.

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

T=128
T=256
T=512

ReMDM
MDLM

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

T=128
T=256
T=512

ReMDM
MDLM

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

T=128
T=256
T=512

ReMDM
MDLM

Figure 6: Comparison of ReMDM and vanilla MDLM backward processes under varying compute budgets
(NFEs). The x-axis shows NFEs, controlled by varying the number of samples k, while the legend shows
denoising steps T ∈ {128, 256, 512}. ReMDM consistently achieves higher accuracies, demonstrating the
effectiveness of improved backward transition dynamics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.4 CHG: A CASE STUDY ON MATH REASONING TASKS

Figure 7: Comparison of all methods under varying
compute budgets using LLaDA on GSM8K.

We evaluate PG-DLM on mathematical rea-
soning, using LLaDA-8B-Instruct (Nie et al.,
2025b) as the base model and testing on
GSM8K (Cobbe et al., 2021). We compare
against sampling baselines including best-of-n,
SMC (which we re-implement), and greedy de-
coding, a common baseline in prior work on
math tasks. For all methods, we set the gen-
erated length L = 512, use T = 256 denois-
ing steps, and a block size of 32. For sampling
methods, we randomly choose positions to un-
mask tokens; while for greedy decoding, we de-
terministically choose the highest-probability
position to unmask (Nie et al., 2025a). For
SMC and PG-DLM, we resample at the end of
each block if the effective sample size (ESS)
ratio falls below 0.6. We use Qwen2.5-Math-PRM-7B (Zhang et al., 2025b) as the reward model,
which has the advantage of computing r(c,xt) directly on partial generations whey they are prefixes,
eliminating need to draw samples from pθ(x0 | c,xt).

Additionally, we implement PG-DLM (adapt), a variant that enables adaptive compute allocation
through sequential refinement. Starting from a greedy decoding sequence, we perform additional
particle Gibbs iterations only when the reward on x0 is below 0.99. As shown in Figure 7, PG-
DLM outperforms SMC at higher NFE, and PG-DLM (adapt) achieves the best accuracy under all
compute budget with a significant margin, demonstrating the benefit of trajectory-level refinement.

6 RELATED WORK

Inference-time scaling has been extensively studied in autoregressive LLMs, where boosting com-
pute during generation often proves more efficient than training-time scaling (Snell et al., 2024).
Techniques like beam search, diverse verifier trees (Beeching et al., 2024), and particle filtering (Puri
et al., 2025; Lew et al., 2023) have enhanced mathematical reasoning and constrained generation.
While LLMs benefit from these mature tools, analogous strategies for discrete diffusion models
remain underdeveloped.

A core approach to scaling diffusion inference is increasing denoising steps: Ma et al. (2025) explore
search-based strategies, while Wang et al. (2025) dynamically extend trajectories via re-masking in
masked models. chg: For search-based methods, Zhang et al. (2025a); Jain et al. (2025) incorporate
mechanisms that can revisit full generation via backtracking in the search tree for trajectory-level
refinement, while Guo et al. (2025) performs tree search without explicit refinement of full genera-
tions. In contrast, our method perform trajectory-level refinement with resampling-based methods.
Particle-based methods scale parallel samples to guide toward high-reward regions (Singhal et al.,
2025; Kim et al., 2025), while reinforcement learning optimizes reasoning in diffusion LLMs (Zhao
et al., 2025). Predictor-corrector schemes (Lezama et al., 2022; Zhao et al., 2024; Gat et al., 2024)
and classifier guidance (Schiff et al., 2025) further improve controllability and quality in discrete set-
tings. In continuous diffusion, particles aid inverse problems (Wu et al., 2023; Dou & Song, 2024;
Nazemi et al., 2024) and generation (Kim et al., 2025). Most prior methods apply one-pass sam-
pling within one denoising trajectory, whereas our work performs iterative refinement over multiple
trajectories.

7 CONCLUSION

We propose a particle Gibbs sampling algorithm for discrete diffusion models that enables efficient
inference-time scaling for reward-guided generation. This method iteratively refines full diffusion
trajectories, offering theoretical convergence guarantees and strong empirical performance across
varying compute budgets, outperforming existing baselines in both quality and scaling behavior.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics https://iclr.cc/public/
CodeOfEthics. chg: Controllable generation methods can used to align models with human
preferences. Additionally, we recognize that these methods can be used for automated red-teaming,
which, if misused, could be used to generate harmful or unsafe content. However, we believe pub-
lishing these methods in a transparent and reproducible way enables the research community to
better understand behaviors of generative models and develop stronger safeguards. We believe the
benefits of this understanding will ultimately outweigh potential risks.

REPRODUCIBILITY STATEMENT

We present detail experiment setup in Section 5, Appendix C, and Appendix D.

REFERENCES

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 72(3):269–
342, 2010.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in neural information processing
systems, volume 34, pp. 17981–17993, 2021.

Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves. Tweete-
val: Unified benchmark and comparative evaluation for tweet classification. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 1644–1650, 2020.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models. URL: https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute, 2024.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In International Conference on Learning Representations,
2024.

Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. The Annals
of Applied Probability, 28(2):1099–1135, 2018.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. In International Conference on Learning Representations, 2020.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In International Conference on Learning Representations, 2024.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte carlo
methods. Sequential Monte Carlo methods in practice, pp. 3–14, 2001.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. In Advances in Neural Information Processing Systems,
volume 36, 2024.

11

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. In Advances in Neural Information Processing Systems,
volume 37, 2024.

Yingqing Guo, Yukang Yang, Hui Yuan, and Mengdi Wang. Training-free guidance beyond differ-
entiability: Scalable path steering with tree search in diffusion and flow models, 2025.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
11575–11596, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in neural information processing systems, volume 33, pp. 6840–6851, 2020.

Vineet Jain, Kusha Sareen, Mohammad Pedramfar, and Siamak Ravanbakhsh. Diffusion tree sam-
pling: Scalable inference-time alignment of diffusion models, 2025.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E
Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In International Conference on Machine Learning, pp. 1645–1654, 2017.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Jaihoon Kim, Taehoon Yoon, Jisung Hwang, and Minhyuk Sung. Inference-time scaling for flow
models via stochastic generation and rollover budget forcing. arXiv preprint arXiv:2503.19385,
2025.

Tomasz Korbak, Ethan Perez, and Christopher Buckley. Rl with kl penalties is better viewed as
bayesian inference. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 1083–1091, 2022.

Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential monte carlo
steering of large language models using probabilistic programs. arXiv preprint arXiv:2306.03081,
2023.

Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
predictor-corrector diffusion models for image synthesis. In International Conference on Learn-
ing Representations, 2022.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
calani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
and discrete diffusion models with soft value-based decoding. arXiv preprint arXiv:2408.08252,
2024.

Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale, Irina
Krotova, Nikita Semenov, and Alexander Panchenko. Paradetox: Detoxification with parallel
data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6804–6818, 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In International Conference on Machine Learning, 2023.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in nlp. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 119–126, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Christian A Naesseth, Fredrik Lindsten, Thomas B Schön, et al. Elements of sequential monte carlo.
Foundations and Trends® in Machine Learning, 12(3):307–392, 2019.

Amir Nazemi, Mohammad Hadi Sepanj, Nicholas Pellegrino, Chris Czarnecki, and Paul Fieguth.
Particle-filtering-based latent diffusion for inverse problems. arXiv preprint arXiv:2408.13868,
2024.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongx-
uan Li. Scaling up masked diffusion models on text. In International Conference on Learning
Representations, 2025a.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. In Advances in neural information processing systems,
volume 35, pp. 27730–27744, 2022.

Isha Puri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, and Akash Srivastava. A probabilistic
inference approach to inference-time scaling of llms using particle-based monte carlo methods.
arXiv preprint arXiv:2502.01618, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Ad-
vances in Neural Information Processing Systems, volume 36, 2024.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2.
Springer, 1999.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. In Advances in Neural Information Processing Systems, volume 37, pp. 130136–130184,
2024.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. In International Conference on Learning
Representations, 2025.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. In Advances in neural information processing systems,
volume 37, pp. 103131–103167, 2024.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024a.

Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gokcen Eraslan, Avantika
Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and generative
modeling via conservative fine-tuning of diffusion models. In Advances in Neural Information
Processing Systems, volume 37, pp. 127511–127535, 2024b.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8228–8238, 2024.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
In Transactions of the Association for Computational Linguistics, volume 7, pp. 625–641. MIT
Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2019.

Luhuan Wu, Brian L. Trippe, Christian A Naesseth, John Patrick Cunningham, and David Blei.
Practical and asymptotically exact conditional sampling in diffusion models. In Advances in
Neural Information Processing Systems, 2023.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Xiangcheng Zhang, Haowei Lin, Haotian Ye, James Zou, Jianzhu Ma, Yitao Liang, and Yilun Du.
Inference-time scaling of diffusion models through classical search, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. In-
formed correctors for discrete diffusion models. arXiv preprint arXiv:2407.21243, 2024.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. In International Conference on Learning Representations, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SEQUENTIAL MONTE CARLO (SMC)

A.1 BACKGROUND

Importance Sampling (IS). To estimate expectations under a target f(x) (hard to sample from)
using a proposal g(x) (easy to sample):

Ef [h(x)] = Eg

[
h(x)

f(x)

g(x)

]
≈

N∑
i=1

wih(x
(i)), where wi =

f(x(i))

g(x(i))
, {x(i)}Ni=1 ∼ g.

Resample with replacement via normalized {wi} for approximate samples from f .

Sequential Importance Sampling (SIS). For sequential targets f(x) =
∏

t f(xt | xt−1) and pro-
posals g(x) =

∏
t g(xt | xt−1), where the full variable is x = (x1, . . . , xd) and partial prefix

xt = (x1, . . . , xt) (with x0 empty), weights factorize recursively:

wt(xt) = wt−1(xt−1) ·
f(xt | xt−1)

g(xt | xt−1)
, w0 = 1.

Propagate x
(i)
t ∼ g(· | x(i)

t−1), update w
(i)
t .

Sequential Monte Carlo (SMC). SMC adds resampling to SIS to counter degeneracy. For N

particles {x(i)
t , w

(i)
t }Ni=1:

1. Initialize w
(i)
0 = 1.

2. For t = 1, . . . , d:

(a) Propagate: x(i)
t ∼ g(· | x(i)

t−1).

(b) Weight: w̃(i)
t = w

(i)
t−1 ·

f(x
(i)
t |x(i)

t−1)

g(x
(i)
t |x(i)

t−1)
.

(c) Resample N indices ∝ normalized {w̃(i)
t }; reset to equal weights.

A.2 SMC FOR DIFFUSION LANGUAGE MODELS

Here we provide pseudocode for vanilla SMC applied to reward-weighted sampling in DLMs, using
the conditional p∗(xt−1 | c,xt) from Equation 6 as the target and pθ as the proposal.

Algorithm 2: Sequential Monte Carlo for Diffusion Language Models
Input : sample count k, timesteps T , partial reward samples ϕ, reward model r(c,x0), diffusion model

pθ(xt−1 | c,xt), hyperparameter β
Output: sample from p∗(x0 | c) ∝ pθ(x0 | c) exp (r(c,x0)/β)

1 Function SMC-DLM(pθ, r, k, T, ϕ, β):
2 Initialize k samples x(i)

T = m, all operations on i are over k samples i = 1, . . . , k
3 for t = T to 1 do
4 Propose x̄

(i)
t−1 ∼ pθ(xt−1 | c,x(i)

t)

5 Estimate partial reward r̂(c, x̄
(i)
t−1) = log

(
1
ϕ

∑ϕ
j=1 exp

(
r(c,x

(j)
0)/β

))
where

x
(j)
0 ∼ pθ(x0 | c, x̄(i)

t−1) for all j = 1, . . . , ϕ

6 Compute importance weights w̄(i)
t−1 = exp

(
r̂(c, x̄

(i)
t−1)− r̂(c,x

(i)
t)

)
and normalize

w
(i)
t−1 = w̄

(i)
t−1/

∑k
j=1 w̄

(j)
t−1

7 Sample with replacement x(i)
t−1 ∼ {x̄

(j)
t−1, w

(j)
t−1}kj=1

8 end
9 Compute final weights w̄(i)

0 = exp
(
r(c,x

(i)
0)/β

)
and normalize w

(i)
0 = w̄

(i)
0 /

∑k
j=1 w̄

(j)
0

10 return argmax sample x
(i∗)
0 where i∗ = argmaxi w

(i)
0 or weighted samples {x(i)

0 , w
(i)
0 }ki=1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROOF

B.1 OPTIMAL DENOISING DISTRIBUTION (EQUATION 6)

Following Uehara et al. (2024b;a), we derive the reward-weighted conditional p∗(xt−1 | c,xt) from
a per-step KL-regularized RL objective. Define the partial reward r(c,xt) as the expected future
reward at timestep t:

r(c,xt) = β logEx0∼pθ(x0 | c,xt) [exp (r(c,x0)/β)] . (8)
The optimal conditional maximizes expected partial reward while staying close to the base denoiser:

p∗(xt−1 | c,xt) = argmax
p

Ep [r(c,xt−1)]− βDKL [p(xt−1 | c,xt) ∥ pθ(xt−1 | c,xt)] . (9)

The solution is tractable:
p∗(xt−1 | c,xt) ∝ pθ(xt−1 | c,xt) exp (r(c,xt−1)/β) . (10)

Normalizing yields:

p∗(xt−1 | c,xt) =
pθ(xt−1 | c,xt) exp (r(c,xt−1)/β)∑

x′
t−1

pθ(x′
t−1 | c,xt) exp

(
r(c,x′

t−1)/β
) (11)

= pθ(xt−1 | c,xt) exp

(
r(c,xt−1)− r(c,xt)

β

)
, (12)

where the denominator from Equation 11 equals exp (r(c,xt)/β) by the soft Bellman equation
(Theorem 1 of Uehara et al. (2024b)):

r(c,xt) = β log
∑
xt−1

pθ(xt−1 | c,xt) exp (r(c,xt−1)/β) .

This yields Equation 6, parallelizing the global RL objective (Equation 4) across timesteps.

B.2 PROOF OF THE VARIANCE BOUND (THEOREM 2)

Assume the diffusion process incurs no discretization error as T → ∞ and partial reward estima-
tion is accurate as ϕ → ∞. Abusing notation, we suppress the fixed conditioning prompt c (e.g.,
pθ(x0) ≡ pθ(x0 | c)). Let the proposal be the base model pθ(x0:T) = pθ(xT)

∏T
t=1 pθ(xt−1 | xt),

and define the reweighting function γ(x0) = exp(r(x0)/β).

The unnormalized target is then
p̃(x0:T) = γ(x0)pθ(x0:T),

with normalizing constant

Z =
∑
x0:T

p̃(x0:T) =
∑
x0:T

γ(x0)pθ(x0:T) = Epθ(x0)[γ(x0)].

The normalized target is π(x0:T) = p̃(x0:T)/Z = γ(x0)pθ(x0:T)/Z, which is essentially p∗(x0:T).

From Andrieu et al. (2010), particle Gibbs variance is bounded by that of the underlying SMC.
From Robert et al. (1999); Chatterjee & Diaconis (2018), for the SMC estimator Ẑ with N particles
over trajectories x0:T with proposal pθ(x0:T) and target π(x0:T),

Var(Ẑ) ≤ Z2

N
(exp (DKL(π∥pθ))− 1) ,

where π and pθ are defined over x0:T . Now,

DKL(π∥pθ) = Eπ

[
log

π

pθ

]
= Eπ

[
log

γ(x0)

Z

]
.

By Jensen’s inequality,

DKL(π∥pθ) ≤ log
Eπ [γ(x0)]

Z
= log

Epθ
[γ(x0)

2]

Z2
= log

Epθ(x0)[γ(x0)
2]

Z2
.

Thus,

Var(Ẑ) ≤ Z2

N

(Epθ(x0)[γ(x0)
2]

Z2
− 1

)
=

Epθ(x0)[γ(x0)
2]−

(
Epθ(x0)[γ(x0)]

)2
N

=
Varpθ(x0)(γ(x0))

N
.

For PG-DLM with m iterations and k samples per iteration (N = mk), this yields the stated bound.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ADDITIONAL INFERENCE-TIME SCALING RESULTS FOR SECTION 4

C.1 HYPER-PARAMETERS

Table 5 summarizes hyper-parameter configurations for the scaling experiments in Section 4. Set-
tings are for PG-DLM, FK Steering (FK), and best-of-n across objectives. Fixed parameters: gener-
ated length L = 128 for both MDLM and LLaDA (except L = 50 for LLaDA in Figure 2); β = 0.1;
and resampling every 5 steps. Rows are grouped by paragraph.

Table 5: Hyper-parameter configurations for scaling experiments.

Figure Method Backward Partial Reward Hyper-parameters

T m k ϕ

Particle Gibbs Iterations vs. Sample Count
2 PG-DLM ReMDM Beam 128 1–8 2–256 1
2 PG-DLM LLaDA Beam 128 1–8 2–256 1
3 PG-DLM ReMDM Beam 128 1–8 2–16 1

Denoising Steps vs. Sample Count
4 PG-DLM ReMDM Beam 128–4096 1 2–32 1
4 PG-DLM LLaDA Beam 32–128 1 2–256 1
8 FK MDLM Random 128–4096 – 2–32 1
9 FK MDLM Random 128–4096 – 2–32 4

10 best-of-n MDLM – 128–4096 – 2–32 –

Partial Reward Estimation
5, 11 PG MDLM Beam, Random 128 1 1–256 1–16

C.2 ADDITIONAL RESULTS FOR TABLE 1 AND FIGURE 2

Table 6 shows detailed controlled text performance across reward functions (CoLA, Toxicity, Senti-
ment) under varying compute budgets (NFEs), with different particle Gibbs iterations m and sample
counts k. Each row fixes NFE while varying m and k; best per row bolded. At higher NFEs,
increasing k yields diminishing returns, while scaling m is more effective.

Table 6: Controlled text performance across reward functions under varying NFEs, with different m
and k. Best per row bolded.

Metric m = 1 m = 2 m = 4 m = 8

k Accuracy k Accuracy k Accuracy k Accuracy

CoLA ↑

16 87.3 8 87.0 4 89.7 2 79.0
32 89.7 16 84.0 8 88.7 4 90.0
64 85.7 32 79.7 16 86.3 8 88.7
128 86.3 64 79.0 32 83.3 16 80.3
256 78.7 128 80.0 64 73.0 32 77.0

Toxicity ↑

16 81.3 8 73.7 4 59.0 2 15.7
32 90.3 16 93.7 8 91.7 4 78.3
64 96.3 32 97.0 16 97.7 8 97.7
128 98.7 64 99.7 32 98.3 16 98.0
256 98.7 128 99.0 64 99.7 32 99.3

Sentiment ↑

16 97.7 8 99.0 4 98.0 2 82.7
32 99.0 16 99.7 8 100.0 4 99.0
64 99.7 32 100.0 16 99.7 8 98.7
128 100.0 64 99.7 32 99.7 16 99.7
256 99.3 128 99.7 64 100.0 32 99.7

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.3 ADDITIONAL RESULTS FOR FIGURE 4

Figure 4 illustrates trade-offs between sample counts and denoising steps for PG-DLM. Here we
show the same trend holds for baselines: sequential Monte Carlo (SMC) (Singhal et al., 2025) and
best-of-n (BON), where scaling samples generally outperforms steps under fixed NFEs. We use
MDLM as the base model.

1. For SMC with number of x0 samples ϕ = 1:

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

k=2
k=4
k=8
k=16
k=32

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

k=2
k=4
k=8
k=16
k=32

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

k=2
k=4
k=8
k=16
k=32

103 104 105

Inference Compute (NFE)
65

70

75

80

85

90

95

100

105

Ge
n

PP
L

GPT2-M
k=2
k=4
k=8
k=16
k=32

Figure 8: Trade-offs between sample counts k and denoising steps T across compute budgets
(NFEs) for SMC (ϕ = 1). The x-axis shows NFEs controlled by varying T , with k in the legend.
Scaling k (and decreasing T accordingly) generally yields better performance under the same NFEs.

2. For SMC with number of x0 samples ϕ = 4:

104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

k=2
k=4
k=8
k=16
k=32

104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

k=2
k=4
k=8
k=16
k=32

104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

k=2
k=4
k=8
k=16
k=32

104 105

Inference Compute (NFE)
60

70

80

90

100

110

Ge
n

PP
L

GPT2-M
k=2
k=4
k=8
k=16
k=32

Figure 9: Trade-offs between sample counts k and denoising steps T across compute budgets (NFEs)
for SMC (ϕ = 4). The x-axis shows NFEs controlled by varying T , with k in the legend. Scaling k
(and decreasing T accordingly) generally yields better performance under the same NFEs.

3. For BON:

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity
k=2
k=4
k=8
k=16
k=32

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA
k=2
k=4
k=8
k=16
k=32

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

k=2
k=4
k=8
k=16
k=32

103 104

Inference Compute (NFE)

70

75

80

85

90

95

100

105

Ge
n

PP
L

GPT2-M
k=2
k=4
k=8
k=16
k=32

Figure 10: Trade-offs between sample counts k and denoising steps T across compute budgets
(NFEs) for BON. The x-axis shows NFEs controlled by varying T , with k in the legend. Scaling k
(and decreasing T accordingly) generally yields better performance under the same NFEs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4 ADDITIONAL RESULTS FOR FIGURE 5

Figure 11 shows full results for partial reward estimation trade-offs, comparing beam vs. random
sampling with varying ϕ (samples for x0 estimation) across NFEs.

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Toxicity

= 1
= 4
= 16

Beam
Random

103 104

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CoLA

= 1
= 4
= 16

Beam
Random

103 104 105

Inference Compute (NFE)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sentiment

= 1
= 4
= 16

Beam
Random

103 104 105

Inference Compute (NFE)

60

70

80

90

100

110

120

130

GP
T2

-M

Gen PPL

= 1
= 4
= 16

Beam
Random

Figure 11: Comparison of Beam and Random sampling for partial reward estimation with varying
number of x0 samples (ϕ) across NFEs (as controlled by the number of samples k). Beam sampling
with ϕ = 1 performs the best.

D ADDITIONAL EXPERIMENTS RESULTS FOR SECTION 5

D.1 HYPER-PARAMETERS

Table 7 summarizes hyper-parameter configurations for the experiments in Section 5. Settings are
for PG-DLM, FK Steering (FK), and best-of-n across objectives. Hyperparameter include generated
text length (L), total denoising steps (T), particle Gibbs iterations (m), sample counts (k), the
number of x0 examples for partial reward estimation (ϕ), and resample frequency (f). Rows are
grouped by objective.

Table 7: Hyper-parameter configurations for experiments in Section 5

Table Method Base Model Backward Partial Reward Hyper-parameters

L T m k ϕ f

Conditional Text Generation for MDLM and LLaDA
2 best-of-n MDLM MDLM - 50 1024 - {1, 4, 16, 64} - -
2 FK (ϕ = 4) MDLM MDLM Random 50 1024 - {1, 4, 13} 4 20
2 FK (ϕ = 1) MDLM MDLM Random 50 1024 - {2, 8, 32} 1 20
2 PG-DLM MDLM ReMDM Beam 50 1024 1 {2, 8, 32} 1 5
2 best-of-n LLaDA LLaDA - 50 50 - {1, 4, 16, 64} - -
2 FK LLaDA LLaDA Random 50 50 - {1, 4, 16, 64} 1 5
2 PG-DLM LLaDA LLaDA Beam 50 50 1 {1, 4, 16, 64} 1 5

Conditional Text Generation for Longer Sequences
3 best-of-n MDLM MDLM - 512 512 - {1, 4, 16, 64} - -
3 FK (ϕ = 4) MDLM MDLM Random 512 512 - {1, 4, 13} 4 20
3 FK (ϕ = 1) MDLM MDLM Random 512 512 - {2, 8, 32} 1 20
3 PG-DLM MDLM ReMDM Beam 512 512 1 {2, 8, 32} 1 5

FK Steering (Singhal et al., 2025) reports ϕ = 1 and ϕ = 4, but without same-NFE comparisons.
We use ϕ = 1 (k ∈ {2, 8, 32}) and ϕ = 4 (k ∈ {1, 4, 13}, adjusted for same-NFE comparison) to
match NFEs.

D.2 REWARD FUNCTIONS AND BASELINES

We evaluate four reward functions for controllable generation:

1. Linguistic Acceptability: Favors grammatically correct sentences using a RoBERTa
classifier (Morris et al., 2020) trained on CoLA (Warstadt et al., 2019). We measure

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

CoLA classification accuracy. Model: https://huggingface.co/textattack/
roberta-base-CoLA.

2. Controlled Toxicity: Guides toward (or away from) toxic outputs using a RoBERTa
toxicity classifier (Logacheva et al., 2022) for red-teaming. We measure toxicity clas-
sification accuracy. Model: https://huggingface.co/SkolkovoInstitute/
roberta_toxicity_classifier.

3. Controlled Sentiment: Steers toward target sentiments (e.g., positive) using a
RoBERTa classifier (Barbieri et al., 2020) on TweetEval. We measure senti-
ment classification accuracy. Model: https://huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment.

4. Perplexity: Encourages fluency by minimizing perplexity computed by GPT2-Small (Rad-
ford et al., 2019). We evaluate using generative perplexity under GPT2-XL. Model:
https://huggingface.co/openai-community/gpt2.

Baseline implementations for FK Steering and best-of-n are adapted from https:
//github.com/zacharyhorvitz/Fk-Diffusion-Steering/tree/main/
discrete_diffusion; we re-ran experiments for consistency.

D.3 STANDARD DEVIATION OF TABLE 2

Table 8: Standard deviations (±) for controlled text generation metrics in Table 2.

Base Method CoLA ↑ Toxicity ↑ Sentiment ↑
1 4 16 64 1 4 16 64 1 4 16 64

MDLM

best-of-n 2.0 1.3 1.6 1.3 0.8 0.4 1.0 2.8 1.0 3.7 1.0 0.2
FK (ϕ=4) - 4.5 4.1 1.2 - 0.2 1.2 1.7 - 1.3 1.7 0.4
FK (ϕ=1) - 1.6 4.3 1.9 - 1.0 3.7 1.1 - 1.2 3.4 0.3
PG-DLM - 2.0 0.9 0.5 - 0.7 1.0 1.1 - 2.2 1.3 0.2

LLaDA
BoN 3.1 2.9 2.3 0.9 0.8 0.2 3.8 3.7 2.7 2.9 0.6 1.2
FK - 1.3 1.5 2.4 - 1.5 2.7 1.4 - 1.2 1.2 0.3
PG-DLM - 2.2 3.1 0.2 - 1.8 1.5 2.3 - 1.0 1.1 0.2

20

https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/SkolkovoInstitute/roberta_toxicity_classifier
https://huggingface.co/SkolkovoInstitute/roberta_toxicity_classifier
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/openai-community/gpt2
https://github.com/zacharyhorvitz/Fk-Diffusion-Steering/tree/main/discrete_diffusion
https://github.com/zacharyhorvitz/Fk-Diffusion-Steering/tree/main/discrete_diffusion
https://github.com/zacharyhorvitz/Fk-Diffusion-Steering/tree/main/discrete_diffusion

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.4 CHG: ABLATIONS ON HYPER-PARAMETERS FOR TABLE 2

Table 9: Controlled text generation accuracies across reward functions (CoLA, Toxicity, Sentiment) on the
MDLM base model, comparing PG-DLM against the baseline method FK Steering (FK) under varying compute
budgets (columns) and configuration settings (rows). Columns labeled 4 – 64 correspond to NFEs normalized
by the total number of denoising steps T , i.e. NFE/T . Rows labled (*,*,*) indicates, respectively: partial
reward sampling methods (Beam, Random), diffusion backward processes (MDLM, ReMDM), and resample
frequency (20, 5). Fixed parameters: generated length L = 50, total denoising timesteps T = 1024, β = 0.1,
number of partial reward samplers ϕ = 1. For PG-DLM, we use m = 1. Thus the compute budget is controlled
by the number of samples k for both FK Steering and PG-DLM.

Method CoLA ↑ Toxicity ↑ Sentiment ↑

4 16 64 4 16 64 4 16 64

FK Steering (FK)

(Rand, MDLM, 20) 48.1 ± 1.6 79.0 ± 4.3 87.1 ± 1.9 3.8 ± 1.0 39.8 ± 3.7 86.1 ± 1.1 37.4 ± 1.2 91.3±3.4 99.7 ± 0.3
(Rand, MDLM, 5) 48.4 ± 3.2 76.2 ± 0.4 83.1 ± 4.8 3.4 ± 0.2 34.0 ± 3.4 76.8 ± 1.1 33.6 ± 3.7 89.2 ± 1.5 98.9 ± 0.5
(Rand, ReMDM, 5) 87.4 ± 1.7 93.6 ± 1.0 92.9 ± 1.3 16.9 ± 0.7 89.7 ± 1.3 97.6 ± 0.2 67.7 ± 2.8 97.9 ± 0.7 99.4 ± 0.2
(Beam, MDLM, 5) 66.6 ± 1.7 94.8 ± 0.2 97.8 ± 1.0 11.2 ± 1.1 81.9 ± 3.0 96.8 ± 1.0 57.6 ± 5.9 94.2 ± 0.8 99.2 ± 0.2
(Beam, ReMDM, 5) 91.7 ± 0.9 97.8 ± 0.7 97.5 ± 0.2 24.6 ± 0.7 95.4 ± 0.7 98.7 ± 0.3 72.3 ± 4.3 96.1 ± 1.1 99.2 ± 0.2

PG-DLM

(Random, MDLM, 5) 29.8 ± 3.1 80.0 ± 1.2 89.4 ± 1.1 1.3 ± 0.0 26.8 ± 2.7 75.1 ± 2.7 12.8 ± 2.0 82.7 ± 2.1 99.1 ± 0.5
(Random, ReMDM, 5) 74.8 ± 3.0 97.4 ± 0.7 98.7 ± 0.7 1.6 ± 0.5 84.8 ± 0.8 96.4 ± 1.8 24.7 ± 1.2 96.0 ± 0.9 99.6 ± 0.5
(Beam, MDLM, 5) 37.3 ± 2.4 88.0 ± 1.0 96.8 ± 0.5 1.3 ± 0.5 78.8 ± 2.0 97.2 ± 1.2 21.8 ± 1.7 94.4 ± 0.5 99.0 ± 0.3
(Beam, ReMDM, 5) 77.3 ± 2.0 97.3± 0.9 99.1 ± 0.5 1.4 ± 0.7 91.1±1.0 98.1 ± 1.1 23.8 ± 2.2 96.2 ± 1.3 99.1± 0.2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.5 CHG: QUALITATIVE EXAMPLES

Method Generated Output
best-of-n

• Once upon a time, this was one of my favorite taglines in Indie Match Match
:The impossible we overcome Those that we escape The Impossible were
our face. The Impossible were our face

• The chicken is still really amazing after consuming the amount is parox
Imagine had orange soup. The soup has very low sugar release. The whole
concept of this is that it helps as an antioxidant. It’s an antioxidan

• The lake went up through the fields, the hills cracked, and fell to the sea.
Heaven came clean, the wind sang like the mountains: BRAND BLOOD
Now black, skin on cold, Ice white

FK
• Once upon a time,was one of the coolest and most beautiful colors of all

time. Nowadays, this color is among my favorite colors of all time. Let me
show you guys with some pictures of what my favorite colors look like

• The chicken was extremely tender and flavorful. There was a nice crunch-
iness to chicken wings on top. I do prefer to eat chicken wings when they
are a little smaller and less crunchy. I also enjoyed keeping the wings in the
refrigerator

• The lake temperature is colder in the spring, which allows you to use the
water easier. At a depth above the current lake level, you can find the most
beautiful thermal lakes in North America. The lakes are brilliant

PG-DLM
• Once upon a time, the openmindedness and diversity of the universe was one

of the pillars of our success, and continues to be. Today, we welcome the
diversity and nature of the universe, and embrace it as a

• The chicken burger really live up to the deli’s spot for the dish. The fried
chicken wings really make it an addition of the menu due to their cute goo
and I LOVE THEM! The burger isn’t the best

• The lake itself is totally potable and there are plenty of holes in the middle
of the lake. It is perfect for any kind of tradition of mountaineering adven-
ture.The lake is also used as a point of contact and

Table 10: Qualitative comparison of generated sequences under a positive sentiment reward

E USE OF LLMS

We only use Large Language Models for polish writing.

22

	Introduction
	Background
	Discrete Diffusion Language Models
	Reward-Weighted Generation of Diffusion Language Models

	Method
	Problem Setup and Sequential Monte Carlo for DLMs
	A Particle Gibbs Sampler
	Compatibility with Various Diffusion Processes
	Theoretical Analysis

	Inference-Time Scaling for PG-DLM
	Experiments
	Setup
	Results
	Analysis and Ablation
	redchg: A Case Study on Math Reasoning Tasks

	Related Work
	Conclusion
	Sequential Monte Carlo (SMC)
	Background
	SMC for Diffusion Language Models

	Proof
	Optimal Denoising Distribution (Equation 6)
	Proof of the Variance Bound (Theorem 2)

	Additional Inference-Time Scaling Results for Section 4
	Hyper-parameters
	Additional Results for Table 1 and Figure 2
	Additional Results for Figure 4
	Additional Results for Figure 5

	Additional Experiments Results for Section 5
	Hyper-parameters
	Reward Functions and Baselines
	Standard deviation of Table 2
	redchg: Ablations on Hyper-parameters for Table 2
	redchg: Qualitative Examples

	Use of LLMs

