

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFERENCE-TIME SCALING OF DIFFUSION LANGUAGE MODELS WITH PARTICLE GIBBS SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

Discrete diffusion models have recently emerged as strong alternatives to autoregressive language models, matching their performance through large-scale training. However, inference-time control remains relatively underexplored. In this work, we study how to steer generation toward desired rewards without retraining the models. Prior methods typically resample or filter *within a single denoising trajectory*, optimizing rewards step-by-step without trajectory-level refinement. We introduce particle Gibbs sampling for diffusion language models (PG-DLM), a novel inference-time algorithm enabling *trajectory-level refinement* while preserving generation perplexity under reward optimization. PG-DLM constructs a Markov chain over full denoising trajectories and applies a conditional sequential Monte Carlo kernel to resample them. We derive theoretical guarantees for convergence, including asymptotic consistency and variance bounds. Within this framework, we further analyze trade-offs across four key axes for inference-time scaling under fixed budgets: iterations, samples, denoising steps, and reward estimation. Our analysis shows scaling iterations achieves the best reward-perplexity trade-off. Empirically, PG-DLM consistently outperforms prior methods using MDLM and LLaDA-8B as base models across a wide range of compute budgets for reward-guided generation tasks including toxicity and sentiment control as well as linguistic acceptability.

1 INTRODUCTION

Recent advances in discrete diffusion models have established them as strong alternatives to autoregressive language models for text generation (Austin et al., 2021; Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Zheng et al., 2025; Nie et al., 2025a). By scaling model size and training data, diffusion language models (DLMs) now match or surpass autoregressive large language models (LLMs) on tasks like code generation and mathematical reasoning, as demonstrated by models such as LLaDA-8B (Nie et al., 2025b) and Dream-7B (Ye et al., 2025).

While this progress has focused primarily on *training-time scaling*, which quickly becomes computationally expensive, a complementary and more efficient strategy remains underexplored: steering DLMs at *inference time* toward desired attributes without modifying the underlying model. Examples include generating texts toward high fluency, specific sentiments, or controlled toxicity (Dathathri et al., 2020; Keskar et al., 2019). This is typically formalized as sampling from a reward-weighted posterior: $p^*(\mathbf{x}_0 | \mathbf{c}) \propto p_\theta(\mathbf{x}_0 | \mathbf{c}) \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$, where $p_\theta(\mathbf{x}_0 | \mathbf{c})$ is the pre-trained DLM, $r(\mathbf{c}, \mathbf{x}_0)$ is a reward function scoring the output \mathbf{x}_0 given prompt \mathbf{c} , and $\beta > 0$ controls reward strength (Rafailov et al., 2024; Korbak et al., 2022).

To sample from the reward-weighted posterior at inference time, prior work has explored search-based strategies (Ma et al., 2025) and particle-based methods like best-of- n and sequential Monte Carlo (SMC), including FK Steering (Singhal et al., 2025), which scale by increasing the number of samples. Another line uses predictor-corrector and remasking strategies (Wang et al., 2025; Lezama et al., 2022), scaling via more denoising steps. **chg:** These methods maintain multiple parallel samples, each following a single denoising trajectory $\mathbf{x}_T, \dots, \mathbf{x}_0$, sampled step-by-step from $t = T$ to $t = 0$, with resampling at intermediate timesteps. They do not perform *trajectory-level refinement*, i.e., iteratively updating entire generations $\mathbf{x}_{0:T}$ across multiple passes. **chg:** More recent search-based methods (Zhang et al., 2025a; Jain et al., 2025) achieves trajectory-level refinement

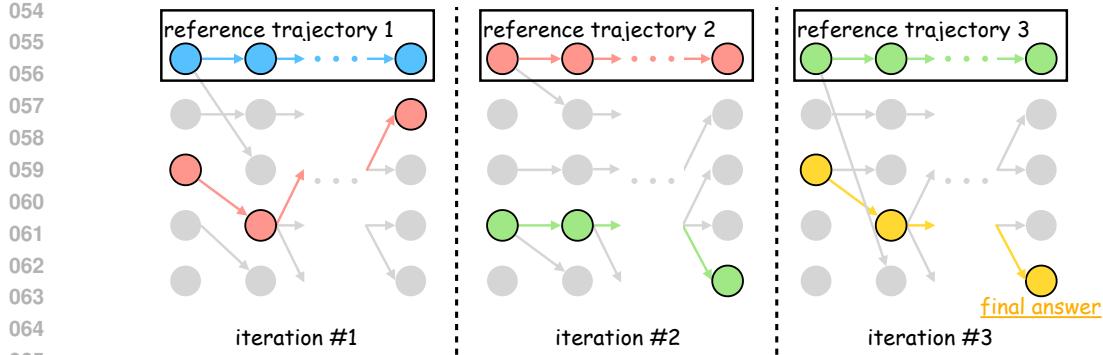


Figure 1: Illustration of PG-DLM. At each iteration, a reference trajectory is fixed (top row), new trajectories are generated and resampled (gray). The highest-reward one becomes the next reference (colored), enabling iterative refinement. The final outputs are selected after multiple iterations.

by revisiting full generations via backtracking in a search tree. In contrast, we introduce the first *particle-based* framework that performs trajectory-level refinement through iterative resampling of complete trajectories within an SMC algorithm, which enables probabilistic inference and adaptive compute allocation.

In this paper, we introduce **particle Gibbs sampling for diffusion language models (PG-DLM)**, a novel inference-time algorithm for reward-guided text generation. Unlike prior chg: **particle-based** methods that operate step-by-step within a single denoising trajectory, PG-DLM enables *trajectory-level refinement* by iteratively improving full generations. Concretely, PG-DLM runs multiple full generation passes (trajectories) over a sequence of iterations. In each iteration, it generates a batch of trajectories: one trajectory from the previous iteration is fixed as the *reference trajectory*, while the rest are resampled via a conditional sequential Monte Carlo (SMC) kernel, which reweights and resamples at each denoising step based on estimated rewards. The highest-reward trajectory from the current batch then becomes the new reference trajectory for the next iteration.

We further investigate efficient allocation of inference-time compute within PG-DLM. In particular, we analyze trade-offs across four axes: particle Gibbs iterations, samples per iteration, denoising steps, and reward estimation cost. Our analysis shows that scaling samples is most effective in low-compute regimes, but iterations become superior once samples saturate, yielding a better reward-likelihood trade-off by optimizing rewards while preserving generation quality (e.g., perplexity).

Our contributions are threefold: (1) we introduce particle Gibbs for diffusion language models (PG-DLM), the first trajectory-level inference-time sampler for discrete DLMs, with formal convergence and variance guarantees (Section 3); (2) we develop a unified framework for analyzing inference-time scaling across four axes: iterations, samples, denoising steps, and reward estimation (Section 4); and (3) we demonstrate that PG-DLM empirically outperforms baselines like SMC across tasks and budgets (Section 5).

2 BACKGROUND

2.1 DISCRETE DIFFUSION LANGUAGE MODELS

Discrete diffusion language models (DLMs) (Austin et al., 2021; Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024) have emerged as a powerful alternative to autoregressive models, matching their performance through large-scale training (Nie et al., 2025b; Ye et al., 2025). Unlike continuous diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019), DLMs operate on discrete token spaces, reversing a masking corruption process to iteratively denoise sequences.

Let $\mathbf{x}_0 = (x_1, \dots, x_L)$ denote a clean sequence of L tokens, where each token $x_i \in \mathcal{X}$ is a one-hot vector; \mathbf{x}_t the corrupted state at time $t \in [0, T]$; and \mathbf{m} the [MASK] token. The forward process q gradually corrupts \mathbf{x}_0 by replacing tokens with \mathbf{m} :

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \text{Cat}(\mathbf{x}_t; \alpha_t \mathbf{x}_0 + (1 - \alpha_t) \mathbf{m}), \quad (1)$$

108 where $\text{Cat}(\cdot)$ denotes the categorical distribution over the vocabulary, and the noise schedule α_t
 109 decreases monotonically from $\alpha_0 = 1$ to $\alpha_T = 0$. This enables a closed-form posterior:
 110

$$111 \quad q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \begin{cases} \text{Cat}(\mathbf{x}_{t-1}; \mathbf{x}_t), & \mathbf{x}_t \neq \mathbf{m} \\ \text{Cat}\left(\mathbf{x}_{t-1}; \frac{\alpha_{t-1} - \alpha_t}{1 - \alpha_t} \mathbf{x}_0 + \frac{1 - \alpha_{t-1}}{1 - \alpha_t} \mathbf{m}\right), & \mathbf{x}_t = \mathbf{m} \end{cases} \quad (2)$$

114 To approximate this posterior, DLMs train a denoising model $\mathbf{x}_\theta(\mathbf{x}_t) \in \Delta^{|\mathcal{X}|}$ to predict \mathbf{x}_0 from \mathbf{x}_t .
 115 The resulting backward transition is $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_\theta(\mathbf{x}_t))$. The model is trained by
 116 minimizing the negative evidence lower bound (NELBO) to maximize data likelihood:
 117

$$118 \quad -\log p_\theta(\mathbf{x}_0) \leq \mathcal{L}_{\text{NELBO}} = \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} \left[\frac{\alpha_{t-1} - \alpha_t}{1 - \alpha_t} \log (\mathbf{x}_\theta(\mathbf{x}_t)^\top \mathbf{x}_0) \right]. \quad (3)$$

120 2.2 REWARD-WEIGHTED GENERATION OF DIFFUSION LANGUAGE MODELS

123 In this work, we align diffusion language models $p_\theta(\mathbf{x}_0 \mid \mathbf{c})$ with task-specific rewards $r(\mathbf{c}, \mathbf{x}_0)$,
 124 where \mathbf{c} is a prompting prefix and \mathbf{x}_0 the generated sequence. Examples include generating high-
 125 quality text or sentiment control (Dathathri et al., 2020; Keskar et al., 2019). Following Jaques et al.
 126 (2017); Ouyang et al. (2022), this can be formalized as a KL-regularized reinforcement learning
 127 objective, where we maximize expected reward while remaining close to the base model p_θ :

$$128 \quad p^*(\mathbf{x}_0 \mid \mathbf{c}) = \arg \max_p \mathbb{E}_{\mathbf{x}_0 \sim p} [r(\mathbf{c}, \mathbf{x}_0)] - \beta \text{KL}(p(\mathbf{x}_0 \mid \mathbf{c}) \parallel p_\theta(\mathbf{x}_0 \mid \mathbf{c})), \quad (4)$$

130 where hyperparameter $\beta > 0$ controls the trade-off between reward maximization and divergence
 131 from the base model. This objective has a closed-form solution (Rafailov et al., 2024)

$$132 \quad p^*(\mathbf{x}_0 \mid \mathbf{c}) \propto p_\theta(\mathbf{x}_0 \mid \mathbf{c}) \cdot \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta), \quad (5)$$

134 which reweights the base model distribution toward higher-reward generations. While fine-tuning
 135 methods can align base models p_θ to the target p^* (Clark et al., 2023; Black et al., 2024; Fan et al.,
 136 2024; Wallace et al., 2024), we instead pursue *inference-time* approximation via sampling.
 137

138 3 METHOD

140 In this section, we first derive the reward-weighted generation objective from an RL perspective
 141 and present sequential Monte Carlo (SMC) as a baseline sampler. We then introduce particle Gibbs
 142 sampling for diffusion language models (PG-DLM), a trajectory-level refinement method that over-
 143 comes SMC’s limitations, and demonstrate its generality while proving convergence guarantees.
 144

145 3.1 PROBLEM SETUP AND SEQUENTIAL MONTE CARLO FOR DLMs

147 In the backward process of a DLM $p_\theta(\mathbf{x}_0 \mid \mathbf{c})$, generation begins with a fully masked sequence
 148 $\mathbf{x}_T = \mathbf{m}$ and iteratively unmasks tokens via the denoising model $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t)$, yielding a full
 149 *denoising trajectory* $\mathbf{x}_{T:0} = \mathbf{x}_T, \dots, \mathbf{x}_0$. However, to sample from the reward-weighted target
 150 distribution $p^*(\mathbf{x}_0 \mid \mathbf{c})$ as in Equation 5, one must use the corresponding conditional distributions
 151 $p^*(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t)$ at each timestep. Building on prior works in the continuous setting (Uehara et al.,
 152 2024a;b), we derive the tractable formulation for these conditionals in the discrete setting:

$$153 \quad p^*(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t) \propto p_\theta(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t) \cdot \exp(r(\mathbf{c}, \mathbf{x}_{t-1}) - r(\mathbf{c}, \mathbf{x}_t)), \\ 154 \quad \text{where } r(\mathbf{c}, \mathbf{x}_t) = \log \mathbb{E}_{p_\theta(\mathbf{x}_0 \mid \mathbf{c}, \mathbf{x}_t)} [\exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)]. \quad (6)$$

156 Here, $r(\mathbf{c}, \mathbf{x}_t)$ defines a *partial reward function* for the noisy intermediate state \mathbf{x}_t , representing the
 157 expected future reward at timestep t under the pretrained model p_θ . This formulation shows that
 158 the conditional $p^*(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t)$ is a reward-weighted posterior, with weights given by the difference
 159 in partial rewards. It mirrors the reward-weighted objective in Equation 5 through timestep-wise
 160 decomposition, incorporating the reward difference at each step. **chg:** While we formally derive the
 161 reward-difference structure from an RL perspective, where the difference in rewards across timesteps
 $r(\mathbf{c}, \mathbf{x}_{t-1}) - r(\mathbf{c}, \mathbf{x}_t)$ is used to guide generation, similar formulations have been used as sampling

162 **Algorithm 1:** Particle Gibbs for Diffusion Language Models

163 **Input** : iterations m , sample count k , timesteps T , partial reward samples ϕ , reward model $r(\mathbf{c}, \mathbf{x}_0)$,

164 diffusion model $p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$, hyperparameter β

165 **Output:** sample from $p^*(\mathbf{x}_0 | \mathbf{c}) \propto p_\theta(\mathbf{x}_0 | \mathbf{c}) \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$

166 **1 Function** PG-DLM ($p_\theta, r, m, k, T, \phi, \beta$) :

167 2 Sample initial reference trajectory $\mathbf{x}'_{T:0} \sim p_\theta(\mathbf{x}_0 | \mathbf{c})$ via backward process

168 3 **for** $iter = 1$ **to** m **do**

169 4 Initialize k samples $\mathbf{x}_T^{(i)} = \mathbf{m}$ for $i = 1, \dots, k$, all masked including the reference $\mathbf{x}_T^{(k)}$

170 5 **for** $t = T$ **to** 1 **do**

171 6 Fix reference $\bar{\mathbf{x}}_{t-1}^{(k)} = \mathbf{x}'_{t-1}$

172 7 Propose $\bar{\mathbf{x}}_{t-1}^{(i)} \sim p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t^{(i)})$ for $i = 1, \dots, k-1$

173 8 Estimate partial reward $\hat{r}(\mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)}) = \log \left(\frac{1}{\phi} \sum_{j=1}^{\phi} \exp(r(\mathbf{c}, \mathbf{x}_0^{(j)})/\beta) \right)$ where

174 9 $\mathbf{x}_0^{(j)} \sim p_\theta(\mathbf{x}_0 | \mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)})$ for all $j = 1, \dots, \phi$ and $i = 1, \dots, k$

175 10 Compute importance weights $\bar{w}_{t-1}^{(i)} = \exp(\hat{r}(\mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)}) - \hat{r}(\mathbf{c}, \mathbf{x}_t^{(i)}))$ for $i = 1, \dots, k$

176 11 Normalize $w_{t-1}^{(i)} = \bar{w}_{t-1}^{(i)} / \sum_{j=1}^k \bar{w}_{t-1}^{(j)}$ for $i = 1, \dots, k$

177 12 Sample with replacement $\mathbf{x}_{t-1}^{(i)} \sim \{\bar{\mathbf{x}}_{t-1}^{(j)}, w_{t-1}^{(j)}\}_{j=1}^k$ for $i = 1, \dots, k-1$

178 13 Fix $\mathbf{x}_{t-1}^{(k)} = \mathbf{x}'_{t-1}$

179 14 **end**

180 15 Compute unnormalized final weights $\bar{w}_0^{(i)} = \exp(r(\mathbf{c}, \mathbf{x}_0^{(i)})/\beta)$ for $i = 1, \dots, k$

181 16 Normalize $w_0^{(i)} = \bar{w}_0^{(i)} / \sum_{j=1}^k \bar{w}_0^{(j)}$ for $i = 1, \dots, k$

182 17 Update reference $\mathbf{x}'_{T:0} \leftarrow \mathbf{x}_{T:0}^{(i^*)}$ where $i^* = \arg \max_i w_0^{(i)}$

183 **end**

184 **return** reference sample \mathbf{x}'_0 or weighted samples $\{\mathbf{x}_0^{(i)}, w_0^{(i)}\}_{i=1}^k$

185
186
187
188
189 heuristics in prior works (Singhal et al., 2025; Wu et al., 2023) without establishing explicit
190 connections to RL objectives. This grounding not only justifies the partial-reward weighting but also
191 enables extensions to other KL-regularized tasks.

192 Given the reward-weighted conditional distribution $p^*(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$ as in Equation 6, one intuitive
193 way to generate samples from this target is to first draw samples from the base model $p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$
194 and then resample them based on their reward weights. This backward process, iterated from $t = T$
195 down to $t = 0$, is known as *sequential Monte Carlo (SMC)* or *particle filtering*, where p_θ is the
196 *proposal distribution* and p^* the *target distribution* (Naesseth et al., 2019; Doucet et al., 2001).

197 Concretely, the SMC sampling algorithm proceeds as follows: At timestep T , we initialize k samples
198 as masked sequences $\mathbf{x}_T^i = \mathbf{m}$ for $i = 1, \dots, k$. Then, for each subsequent timestep t , the process
199 involves: (1) **proposing** $\bar{\mathbf{x}}_{t-1}$ samples from the proposal distribution $p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$ for each \mathbf{x}_t ;
200 (2) **reweighting** by computing the importance weights $w_{t-1} = \exp(r(\mathbf{c}, \bar{\mathbf{x}}_{t-1}) - r(\mathbf{c}, \mathbf{x}_t))$ as in
201 Equation 6; and (3) **resampling** with replacement from $\bar{\mathbf{x}}_{t-1}$ according to the normalized weights
202 w_{t-1} to form \mathbf{x}_{t-1} . This method has also been referred to as Feynman-Kac Steering (Singhal et al.,
203 2025) in the context of reward-weighted generation for diffusion models.

204 3.2 A PARTICLE GIBBS SAMPLER

205
206
207 While SMC provides a simple way to scale inference-time compute by increasing the number of
208 samples, it has several limitations that hinder effective reward alignment in DLMs. **chg: Samples**
209 **evolve as parallel trajectories interacting only via reweighting and resampling, limiting inter-sample**
210 **correlations between them.** Moreover, it performs a “one-shot” approximation in a single backward
211 pass from $t = T$ to $t = 0$ without iterative *trajectory-level refinement*. Finally, SMC is prone to
212 weight degeneracy and high variance in importance weights under skewed reward landscapes (Naes-
213 seth et al., 2019).

214 To address these limitations, we propose an iterative trajectory-level sampling framework called
215 **particle Gibbs for diffusion language models (PG-DLM)**. Intuitively, as shown in Figure 1, PG-
216 DLM refines high-reward trajectories across multiple sequential denoising processes: we begin by

216 generating a batch of candidate trajectories $\mathbf{x}_{0:T}$, select the highest-reward one as a “reference trajectory”, and then resample new trajectories guided by this reference, exploring variations around it. This process is repeated iteratively, correlating samples across multiple denoising passes and leveraging the full capacity of p_θ . As shown later, this yields better reward optimization while maintaining generation likelihoods.

217 Formally, PG-DLM is a particle Gibbs sampler (Andrieu et al., 2010), a Markov Chain Monte Carlo
 218 (MCMC) algorithm that iteratively refines complete trajectories $\mathbf{x}_{0:T}$. It uses a *conditional sequential*
 219 *Monte Carlo (SMC)* transition kernel to update the trajectories. Here, we refer to “iteration” as a
 220 *trajectory-level update* (m iterations) and “timestep” as the denoising steps within a single trajectory
 221 ($t = T, \dots, 0$). As detailed in Algorithm 1, PG-DLM begins by generating one sample from the
 222 base model as an initial reference trajectory (line 2), then performs m iterations of conditional SMC
 223 updates (lines 3–18). In each iteration, the conditional SMC update proceeds backward through
 224 each timestep t by: (1) **fixing** the reference trajectory deterministically as the k -th sample (line 7);
 225 (2) **proposing** $k - 1$ new samples from the base model (line 8); (3) **reweighting** all k samples,
 226 including the fixed k -th one (lines 9–11); and (4) **resampling** the first $k - 1$ candidates with replace-
 227 ment, proportional to their normalized weights, while keeping the k -th sample fixed (lines 12–13).
 228 After each iteration, the new reference trajectory is updated to the highest-weighted one from the
 229 current batch (lines 15–17). This iterative process allows the final trajectory to closely approximate
 230 the target distribution $p^*(\mathbf{x}_0 | \mathbf{c})$.

235 3.3 COMPATIBILITY WITH VARIOUS DIFFUSION PROCESSES

236 The PG-DLM framework is broadly compatible with arbitrary backward transitions $p(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$
 237 in discrete diffusion models. Examples include the standard unmasking in MDLM (Sahoo et al.,
 238 2024) (Equation 2), greedy low-entropy unmasking in LLaDA (Nie et al., 2025b), and correction/re-
 239 masking mechanisms (Wang et al., 2025; Lezama et al., 2022).

242 3.4 THEORETICAL ANALYSIS

243 For PG-DLM, convergence depends on accurately computing the importance weights. As shown in
 244 Algorithm 1, we approximate the partial reward using ϕ Monte Carlo samples $\mathbf{x}_0 \sim p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$.

245 **Lemma 1** *chg: Let $p^*(\mathbf{x}_0 | \mathbf{c}) \propto p_\theta(\mathbf{x}_0 | \mathbf{c}) \cdot \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$ be the target distribution, where*
 246 *$p_\theta(\mathbf{x}_0 | \mathbf{c})$ is a discrete diffusion model with T denoising steps.¹ By the law of large number, the*
 247 *partial reward estimator $\hat{r}(\mathbf{c}, \mathbf{x}_t) = \log \frac{1}{\phi} \sum_{j=1}^{\phi} [\exp(r(\mathbf{c}, \mathbf{x}_0^{(j)})/\beta)]$ (cf. Equation 6) converges*
 248 *to the true value as $\phi \rightarrow \infty$, when $\mathbf{x}_0^{(j)} \sim p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$ are sampled via t denoising process.*

249 The reference trajectory in PG-DLM ensures that the conditional SMC updates leave the target
 250 distribution *invariant* and *ergodic* for $k \geq 2$ (Andrieu et al., 2010). Under standard assumptions
 251 for particle Gibbs, and combined with Lemma 1, *chg: this directly yields Theorem 1 on asymptotic*
 252 *consistency (adapted from Andrieu et al. (2010)) and Theorem 2 on variance bounds (adapted*
 253 *from Andrieu et al. (2010); Chatterjee & Diaconis (2018)).*

254 **Theorem 1 (Asymptotic Consistency)** *Given Lemma 1, the empirical distribution produced by*
 255 *PG-DLM converges almost surely to the target $p^*(\mathbf{x}_0 | \mathbf{c})$ as $m \rightarrow \infty, \phi \rightarrow \infty$, given $k \geq 2$.*

256 **Theorem 2 (Variance Bound)** *Given Lemma 1, let the unnormalized target be $\tilde{p}(\mathbf{x}_{0:T} | \mathbf{c}) =$*
 257 *$\gamma(\mathbf{c}, \mathbf{x}_0) \cdot p_\theta(\mathbf{x}_{0:T} | \mathbf{c})$, where $\gamma(\mathbf{c}, \mathbf{x}_0) = \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$. Its normalizing constant is $Z =$*
 258 *$\sum_{\mathbf{x}_{0:T}} \tilde{p}(\mathbf{x}_{0:T} | \mathbf{c})$. For the estimator \hat{Z} from PG-DLM with k samples and m iterations, the variance*

$$259 \text{Var}(\hat{Z}) \leq \frac{\text{Var}_{p_\theta(\mathbf{x}_0 | \mathbf{c})} [\gamma(\mathbf{c}, \mathbf{x}_0)]}{mk},$$

260 where $\text{Var}_{p_\theta(\mathbf{x}_0 | \mathbf{c})} [\gamma(\mathbf{c}, \mathbf{x}_0)] = \mathbb{E}_{p_\theta(\mathbf{x}_0 | \mathbf{c})} [\gamma(\mathbf{c}, \mathbf{x}_0)^2] - Z^2$.

261 ¹chg: For discrete diffusion models defined via continuous-time Markov chains (CTMC), $p_\theta(\mathbf{x}_0 | \mathbf{c})$ has
 262 no discretization error as $T \rightarrow \infty$.

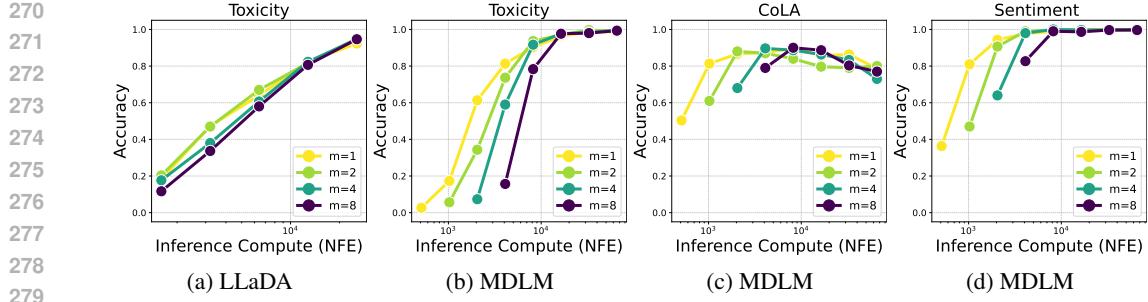


Figure 2: Trade-off between particle Gibbs iterations m and sample counts k across compute budgets (NFEs). The x-axis shows NFEs controlled by varying k , and the legend shows m . Increasing k (with $m=1$) performs best in low-NFE regimes. However, as samples saturate, additional iterations ($m=2, 4$) become more effective.

Toxicity		
m	k	Accuracy
1	32	90.3
2	16	93.6
4	8	91.7
1	64	96.3
2	32	97.0
4	16	97.6

Table 1: Accuracy at high NFE.

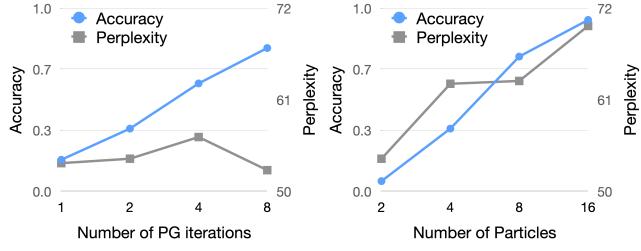


Figure 3: Toxicity accuracy (blue) and perplexity (gray) as compute budgets increase, by varying iterations m (left) and samples k (right)

This variance bound shows that PG-DLM’s variance is determined by that of the reweighting function $\gamma(\mathbf{c}, \mathbf{x}_0) = \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$ under the proposal $p_\theta(\mathbf{x}_0 | \mathbf{c})$. For example, if $r(\mathbf{c}, \mathbf{x}_0)$ is constant, the proposal matches the target and $\text{Var}(\widehat{Z}) = 0$; if $r(\mathbf{c}, \mathbf{x}_0)$ is highly peaked, $\gamma(\mathbf{c}, \mathbf{x}_0)$ has large variance, as the proposal fails to cover high-reward regions effectively, leading to inefficient sampling. **chg:** Lemma 1 holds for discrete diffusion models such as MDLM and LLaDA. However, in practice, we approximate partial rewards using a small number of ϕ samples, each generated with only one denoising step. While this deviates from the asymptotic setting, the convergence and variance bounds still provide valuable insight into how PG-DLM’s performance scales with different factors, such as m, k, T, ϕ , which we study empirically in Section 4.

4 INFERENCE-TIME SCALING FOR PG-DLM

In the PG-DLM framework (Algorithm 1), we can scale inference-time compute along four axes: the number of particle Gibbs iterations m , samples per iteration k , denoising steps T , and reward estimation samples ϕ . This flexibility allows effective allocation under fixed budgets, measured in *number of function evaluations (NFEs)* - the total calls to the denoiser and reward model. Assuming the reward model incurs a similar computational cost to the denoiser (as is typical (Singhal et al., 2025; Ma et al., 2025; Puri et al., 2025)), the total NFE is:

$$\text{NFE} = m \cdot k \cdot T \cdot (1 + \phi). \quad (7)$$

If the reward model is lightweight relative to the base model, we can omit the ϕ cost, yielding $\text{NFE} = m k T$ (as applied in the LLaDA experiments in Section 5). Given a fixed NFE budget, a key question arises: how to effectively allocate compute across these axes? In this section, we explore this question empirically.

Particle Gibbs Iterations vs. Sample Count. We start by examining the trade-off between the number of particle Gibbs iterations m and the number of samples k per iteration. Figure 2 shows that increasing k (with $m=1$) improves accuracies in low-compute regimes. However, once gains from additional samples saturate, scaling iterations ($m=2, 4$) proves more effective, especially at moderate-to-high budgets (e.g., $\text{NFE} \approx 10^4$). See Table 1 for representative results and full details in Appendix C. Although increasing both m and k can boost performance, Figure 3 shows that higher

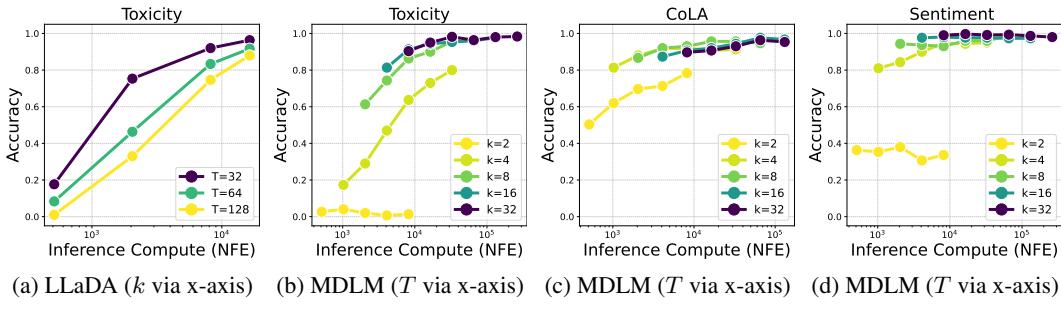


Figure 4: Trade-offs between sample counts k and denoising steps T across compute budgets (NFEs). For (a) LLaDA, the x-axis shows NFEs controlled by varying k , with T in the legend; for (b-d) MDLM, the x-axis shows NFEs controlled by varying T , with k in the legend. Scaling k (and decreasing T accordingly) generally yields better performance under the same NFEs.

k degrades likelihoods (e.g., perplexity) significantly, indicating reward hacking; while higher m keeps likelihoods roughly unchanged. Therefore, scaling m yields a superior reward–perplexity trade-off by enabling iterative trajectory-level refinement without penalizing generation quality.

Denoising Steps vs. Sample Count. In masked diffusion models, setting the number of denoising steps T equal to the sequence length L (where at most one token is unmasked per step) is typically sufficient for generation quality, with little benefit from increasing T beyond L (Sahoo et al., 2024). However, this intuition does not hold for PG-DLM. The algorithm performs reward computation and resampling at every timestep, even if no new token is unmasked (Algorithm 1, line 12). Thus, additional steps help concentrate samples closer to the reward-weighted posterior, improving generation quality. This raises the question: Should we prioritize increasing T or the number of samples k ? To investigate, we first examine compute allocation for LLaDA (Nie et al., 2025b), where T cannot exceed L . We fix $L = 128$ and decrease T (from 128 to 64, 32) while increasing k to maintain constant NFEs. We further conduct experiments on standard masked models, generating sequences of length 128 (varying T from 128 to 2048 and k from 2 to 32 accordingly). As shown in Figure 4, increasing k generally provides greater benefits in most cases, **chg: though in some cases, e.g., when the performance saturates as in Figure (4c), smaller k can be better.** This trend holds across other particle-based methods, including best-of- n and vanilla SMC (Appendix C).

Partial Rewards Estimation. To estimate partial rewards $r(\mathbf{c}, \mathbf{x}_t)$ for prompt \mathbf{c} and noisy state \mathbf{x}_t , in order to compute importance weights (line 10 in Algorithm 1), we approximate the expectation $\mathbb{E}_{p_\theta(\mathbf{x}_0|\mathbf{c}, \mathbf{x}_t)} [\exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)]$ as in Equation 6 using ϕ samples $\mathbf{x}_0 \sim p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$ **chg: by unrolling τ diffusion steps per sample.** In practice, we set $\tau = 1$ for efficiency following prior works. However, studying the scaling behavior of τ is an interesting and promising complementary future direction. A common approach is to draw random samples from $p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$, yielding unbiased but high-variance estimates (Singhal et al., 2025; Song et al., 2021; Wu et al., 2023; Li et al., 2024). We instead propose *beam sampling* to approximate $p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$, with ϕ as the beam width, yielding biased but low-variance estimates. For $\phi = 1$, this reduces to greedy decoding. As shown in Figure 5, scaling ϕ improves accuracy but raises compute, leading to suboptimal trade-offs. Beam sampling outperforms random methods in most cases, with $\phi = 1$ offering the best trade-off.

5 EXPERIMENTS

5.1 SETUP

We evaluate three reward functions for controllable generation: (1) **Linguistic acceptability**, via a classifier trained on the CoLA dataset, which favors grammatically correct sentences (Morris et al.,

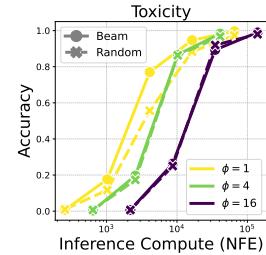


Figure 5: Comparison of Beam and Random sampling for partial reward estimation with varying number of \mathbf{x}_0 samples (ϕ) across NFEs (as controlled by the number of samples k). Beam sampling with $\phi = 1$ performs the best.

378
 379 Table 2: Controlled text generation accuracies across reward functions (CoLA, Toxicity, Sentiment) and base
 380 models (MDLM, LLaDA), comparing PG-DLM against baselines under varying compute budgets (NFEs). **chg:**
 381 **Columns labeled 1–64 correspond to NFEs normalized by the total number of denoising steps T , i.e. NFE/T .**

382 Base	383 Method	384 CoLA \uparrow				385 Toxicity \uparrow				386 Sentiment \uparrow			
		387 1	388 4	389 16	390 64	387 1	388 4	389 16	390 64	387 1	388 4	389 16	390 64
384 MDLM	best-of- n	27.0	71.3	96.9	95.8	0.9	1.9	11.4	33.8	10.0	36.7	79.9	99.6
	FK ($\phi=4$)	-	27.9	73.7	85.0	-	0.8	36.6	85.9	-	10.0	86.2	98.9
	FK ($\phi=1$)	-	48.1	79.0	87.1	-	3.8	39.8	86.1	-	37.4	91.3	99.7
	PG-DLM	-	77.3	97.3	99.1	-	1.4	91.1	98.1	-	23.8	96.2	99.1
388 LLaDA	best-of- n	34.2	74.2	88.8	87.7	0.8	2.4	9.0	29.2	18.6	48.2	85.7	98.1
	FK	-	74.1	87.9	88.2	-	9.0	43.2	80.9	-	69.4	96.0	99.7
	PG-DLM	-	77.8	91.1	90.6	-	8.3	48.3	89.1	-	66.6	96.4	99.7

391
 392
 393
 394 (2020; Warstadt et al., 2019); (2) **Toxicity control**, via a toxicity detector (Logacheva et al., 2022)
 395 that identifies harmful content; and (3) **Sentiment control**, via a TweetEval classifier (Barbieri et al.,
 396 2020) that steers toward target sentiments (e.g., positive).

397 We evaluate PG-DLM on two base models: MDLM (Sahoo et al., 2024) and LLaDA-8B-Base (Nie
 398 et al., 2025b). We compare against inference-time baselines including best-of- n sampling and FK
 399 Steering (FK) (Singhal et al., 2025), whose implementation in prior work is effectively a vanilla
 400 SMC algorithm. Following prior work (Singhal et al., 2025; Han et al., 2023), we generate 20
 401 continuations of length 50 for each of 15 controllable generation prompts and report task accuracies
 402 on CoLA, Toxicity, and Sentiment. **chg:** For MDLM, we use 1024 denoising steps; with best-
 403 of- n and FK, we use the vanilla MDLM backward process and resample every 20 steps, as done
 404 in (Singhal et al., 2025), while for PG-DLM, we use the ReMDM backward process (Wang et al.,
 405 2025) and resample every 5 steps. For LLaDA, we use 50 denoising steps with its native backward
 406 decoding and resample every 5 steps for all methods. In all cases, we set $\beta = 0.1$ and the final
 407 output is selected as the sample with the highest reward $t = 0$. We report mean performance over 3
 408 random seeds in Table 2 and standard deviations in Table 8. Detailed hyperparameters and ablations on
 409 these choices are in Appendix D.

412 5.2 RESULTS

413
 414 Table 2 compares all methods under fixed compute budgets, measured by the number of network
 415 function evaluations ($NFEs = m \cdot k \cdot T \cdot (1 + \phi)$) as in Equation 7, ranging from 1 to 64. Since all
 416 methods use the same number of denoising steps T per base model (as detailed in the Setup), we
 417 omit it for simplicity in the per-method formulas below.

418 For MDLM, we account for partial reward estimation, as the reward functions are on the same scale
 419 as the base model (millions of parameters). Thus, for best-of- n sampling, NFE equals the number of
 420 samples k . For FK Steering, NFE is $k \cdot (1 + \phi)$, where ϕ is the number of x_0 samples used for partial
 421 rewards; we show results for $\phi = 1$ and $\phi = 4$ following (Singhal et al., 2025). Unlike Singhal et al.
 422 (2025) (which holds k fixed across ϕ), we adjust k to ensure fair NFE comparisons. For PG-DLM,
 423 NFE is $m \cdot k \cdot (1 + \phi)$, accounting for samples k , ϕ partial reward samples, and iterations m . We
 424 show results for $m = 1$ and $\phi = 1$ within the current NFE range. Increasing m becomes more
 425 effective when k saturates at high NFEs (Section 4).

426 For LLaDA, we use $\phi = 1$ for partial reward estimation in both PG-DLM and FK Steering, and we
 427 omit its cost from the NFE, as the reward functions are lightweight (millions of parameters) relative
 428 to the base model (8B). Thus, NFE = $m \cdot k$ for PG-DLM (with $m = 1$ in Table 2) and NFE = k for
 429 FK Steering and best-of- n sampling.

430 Table 2 shows that PG-DLM consistently outperforms baselines on both MDLM and LLaDA across
 431 budgets and tasks, highlighting PG-DLM’s efficiency in generating high-reward contents.

432
 433 Table 3: Controlled text generation accuracies (length 512) across reward functions (CoLA, Toxicity, Sen-
 434 timent) on MDLM, comparing PG-DLM against baselines under varying compute budgets. **chg:** Columns
 435 labeled 1–64 correspond to NFEs normalized by the total number of denoising steps T , i.e. NFE/T .

436 Base	437 Method	438 CoLA \uparrow				439 Toxicity \uparrow				440 Sentiment \uparrow			
		441 1	4	16	64	441 1	4	16	64	441 1	4	16	64
443 MDLM	best-of- n	0.0	0.3	0.0	0.3	0.3	1.0	4.3	16.7	6.0	23.0	39.7	56.3
	FK ($\phi=4$)	–	0.0	0.3	5.0	–	0.0	28.0	79.3	–	7.3	65.3	85.0
	FK ($\phi=1$)	–	0.0	2.0	6.3	–	3.0	30.7	73.0	–	26.0	71.0	78.7
	PG-DLM	–	34.0	62.0	58.7	–	1.7	61.0	88.3	–	17.3	80.0	88.7

5.3 ANALYSIS AND ABLATION

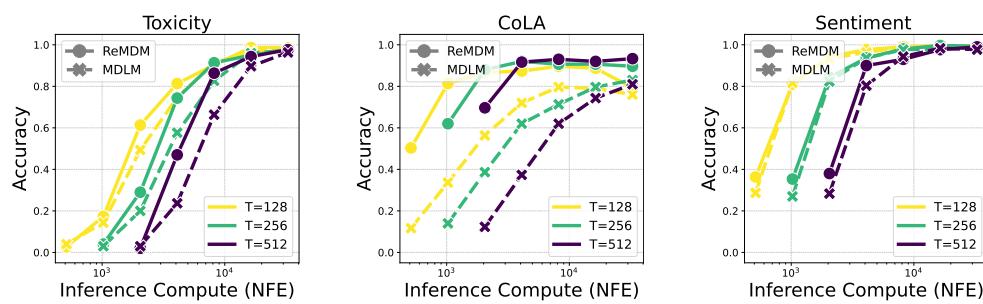
445 Longer Sequence Generation. To assess performance on more challenging inputs, we evaluate
 446 controlled generation for sequences of length 512 using 512 denoising steps, while keeping all other
 447 settings fixed. As reported in Table 3, the best-of- n baseline shows limited ability to optimize
 448 rewards in this regime. In contrast, PG-DLM maintains strong accuracies, with the performance gap
 449 widening as the compute budget (NFE) increases.

450 Effective Sample Size to Measure Convergence. We assess the convergence of PG-DLM using
 451 the *effective sample size (ESS)*, computed from normalized importance weights w_i for $i = 1, \dots, k$
 452 at the final timestep of each iteration: $\text{ESS} = 1/\sum_{i=1}^k w_i^2$. ESS reflects the weight concentration
 453 per iteration and ranges from 1 to k , with higher values indicating more uniform weights and lower
 454 variance. As shown in Table 4, ESS approaches k after a single iteration and continues to increase
 455 with more iterations, demonstrating efficient convergence and reduced weight degeneracy.

456 Table 4: Effective sample size (ESS) for PG-DLM across various number of iterations m and samples per
 457 iteration k , under a fixed compute budget $m \times k = 64$. **chg:** ESS is computed per iteration and ranges from 1
 458 to k . Results are reported as mean \pm std over multiple runs.

460 Setting	461 Iter 1	462 Iter 2	463 Iter 3	464 Iter 4	465 Iter 5	466 Iter 6	467 Iter 7	468 Iter 8
$m=1, k=64$	60.2 ± 5.3	–	–	–	–	–	–	–
$m=2, k=32$	29.0 ± 4.1	30.6 ± 3.1	–	–	–	–	–	–
$m=4, k=16$	13.3 ± 3.0	14.9 ± 2.1	15.2 ± 1.9	15.5 ± 1.2	–	–	–	–
$m=8, k=8$	5.6 ± 1.9	6.8 ± 1.8	7.2 ± 1.5	7.5 ± 1.3	7.6 ± 0.9	7.7 ± 0.8	7.8 ± 0.5	7.8 ± 0.6

469 The Effect of the Backward Process in Diffusion Models. We further examine the effect of
 470 the backward process by comparing vanilla MDLM dynamics with the recently proposed ReMDM
 471 variant (Wang et al., 2025) under different compute budgets. As shown in Figure 6, ReMDM con-
 472 sistently achieves stronger performance, demonstrating our approach’s general applicability across
 473 different backward processes and its ability to leverage advanced variants for further gains.



482 Figure 6: Comparison of ReMDM and vanilla MDLM backward processes under varying compute budgets
 483 (NFEs). The x-axis shows NFEs, controlled by varying the number of samples k , while the legend shows
 484 denoising steps $T \in \{128, 256, 512\}$. ReMDM consistently achieves higher accuracies, demonstrating the
 485 effectiveness of improved backward transition dynamics.

486 5.4 CHG: A CASE STUDY ON MATH REASONING TASKS
487

488 We evaluate PG-DLM on mathematical re-
489 reasoning, using LLaDA-8B-Instruct (Nie et al.,
490 2025b) as the base model and testing on
491 GSM8K (Cobbe et al., 2021). We compare
492 against sampling baselines including best-of- n ,
493 SMC (which we re-implement), and greedy de-
494 coding, a common baseline in prior work on
495 math tasks. For all methods, we set the gen-
496 erated length $L = 512$, use $T = 256$ denois-
497 ing steps, and a block size of 32. For sampling
498 methods, we randomly choose positions to un-
499 mask tokens; while for greedy decoding, we de-
500 terministically choose the highest-probability
501 position to unmask (Nie et al., 2025a). For
502 SMC and PG-DLM, we resample at the end of
503 each block if the effective sample size (ESS)
504 ratio falls below 0.6. We use Qwen2.5-Math-
505 PRM-7B (Zhang et al., 2025b) as the reward model,
506 which has the advantage of computing $r(\mathbf{c}, \mathbf{x}_t)$ directly on partial genera-
507 tions when they are prefixes, eliminating need to
508 draw samples from $p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)$.

509 Additionally, we implement PG-DLM (adapt), a variant that enables adaptive compute allocation
510 through sequential refinement. Starting from a greedy decoding sequence, we perform additional
511 particle Gibbs iterations only when the reward on \mathbf{x}_0 is below 0.99. As shown in Figure 7, PG-
512 DLM outperforms SMC at higher NFE, and PG-DLM (adapt) achieves the best accuracy under all
513 compute budget with a significant margin, demonstrating the benefit of trajectory-level refinement.

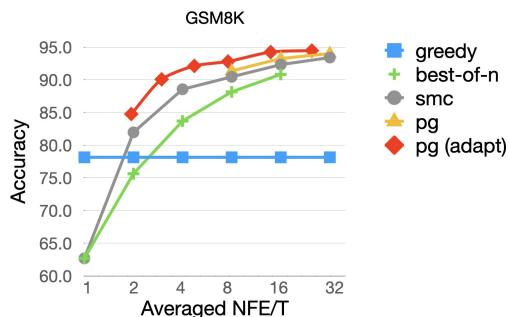
514 6 RELATED WORK
515

516 Inference-time scaling has been extensively studied in autoregressive LLMs, where boosting com-
517 pute during generation often proves more efficient than training-time scaling (Snell et al., 2024).
518 Techniques like beam search, diverse verifier trees (Beeching et al., 2024), and particle filtering (Puri
519 et al., 2025; Lew et al., 2023) have enhanced mathematical reasoning and constrained generation.
520 While LLMs benefit from these mature tools, analogous strategies for discrete diffusion models
521 remain underdeveloped.

522 A core approach to scaling diffusion inference is increasing denoising steps: Ma et al. (2025) explore
523 search-based strategies, while Wang et al. (2025) dynamically extend trajectories via re-masking in
524 masked models. chg: For search-based methods, Zhang et al. (2025a); Jain et al. (2025) incorporate
525 mechanisms that can revisit full generation via backtracking in the search tree for trajectory-level
526 refinement, while Guo et al. (2025) performs tree search without explicit refinement of full genera-
527 tions. In contrast, our method perform trajectory-level refinement with resampling-based methods.
528 Particle-based methods scale parallel samples to guide toward high-reward regions (Singhal et al.,
529 2025; Kim et al., 2025), while reinforcement learning optimizes reasoning in diffusion LLMs (Zhao
530 et al., 2025). Predictor-corrector schemes (Lezama et al., 2022; Zhao et al., 2024; Gat et al., 2024)
531 and classifier guidance (Schiff et al., 2025) further improve controllability and quality in discrete set-
532 tings. In continuous diffusion, particles aid inverse problems (Wu et al., 2023; Dou & Song, 2024;
533 Nazemi et al., 2024) and generation (Kim et al., 2025). Most prior methods apply one-pass sam-
534 pling within one denoising trajectory, whereas our work performs iterative refinement over multiple
535 trajectories.

536 7 CONCLUSION
537

538 We propose a particle Gibbs sampling algorithm for discrete diffusion models that enables efficient
539 inference-time scaling for reward-guided generation. This method iteratively refines full diffusion
540 trajectories, offering theoretical convergence guarantees and strong empirical performance across
541 varying compute budgets, outperforming existing baselines in both quality and scaling behavior.



542 Figure 7: Comparison of all methods under varying
543 compute budgets using LLaDA on GSM8K.

540 ETHICS STATEMENT
541

542 All authors have read and adhere to the ICLR Code of Ethics <https://iclr.cc/public/CodeOfEthics>. chg: Controllable generation methods can be used to align models with human
543 preferences. Additionally, we recognize that these methods can be used for automated red-teaming,
544 which, if misused, could be used to generate harmful or unsafe content. However, we believe pub-
545 lishing these methods in a transparent and reproducible way enables the research community to
546 better understand behaviors of generative models and develop stronger safeguards. We believe the
547 benefits of this understanding will ultimately outweigh potential risks.

549
550 REPRODUCIBILITY STATEMENT
551

552 We present detail experiment setup in Section 5, Appendix C, and Appendix D.

554 REFERENCES
555

556 Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo
557 methods. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 72(3):269–
558 342, 2010.

559 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
560 denoising diffusion models in discrete state-spaces. In *Advances in neural information processing*
561 *systems*, volume 34, pp. 17981–17993, 2021.

563 Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves. Tweete-
564 val: Unified benchmark and comparative evaluation for tweet classification. In *Findings of the*
565 *Association for Computational Linguistics: EMNLP 2020*, pp. 1644–1650, 2020.

566 Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
567 open models. URL: [https://huggingface.co/spaces/HuggingFaceH4/
568 blogpost-scaling-test-time-compute](https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute), 2024.

570 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
571 models with reinforcement learning. In *International Conference on Learning Representations*,
572 2024.

573 Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. *The Annals*
574 *of Applied Probability*, 28(2):1099–1135, 2018.

576 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
577 on differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.

578 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
579 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
580 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
581 2021.

582 Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
583 ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
584 generation. In *International Conference on Learning Representations*, 2020.

586 Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
587 filtering perspective. In *International Conference on Learning Representations*, 2024.

588 Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte carlo
589 methods. *Sequential Monte Carlo methods in practice*, pp. 3–14, 2001.

591 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
592 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
593 tuning text-to-image diffusion models. In *Advances in Neural Information Processing Systems*,
volume 36, 2024.

- 594 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
 595 Yaron Lipman. Discrete flow matching. In *Advances in Neural Information Processing Systems*,
 596 volume 37, 2024.
- 597 Yingqing Guo, Yukang Yang, Hui Yuan, and Mengdi Wang. Training-free guidance beyond differ-
 598 entiability: Scalable path steering with tree search in diffusion and flow models, 2025.
- 600 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
 601 diffusion language model for text generation and modular control. In *Proceedings of the 61st*
 602 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 603 11575–11596, 2023.
- 604 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
 605 *in neural information processing systems*, volume 33, pp. 6840–6851, 2020.
- 607 Vineet Jain, Kusha Sareen, Mohammad Pedramfar, and Siamak Ravanbakhsh. Diffusion tree sam-
 608 pling: Scalable inference-time alignment of diffusion models, 2025.
- 609 Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E
 610 Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
 611 els with kl-control. In *International Conference on Machine Learning*, pp. 1645–1654, 2017.
- 613 Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
 614 Ctrl: A conditional transformer language model for controllable generation. *arXiv preprint*
 615 *arXiv:1909.05858*, 2019.
- 616 Jaihoon Kim, Taehoon Yoon, Jisung Hwang, and Minhyuk Sung. Inference-time scaling for flow
 617 models via stochastic generation and rollover budget forcing. *arXiv preprint arXiv:2503.19385*,
 618 2025.
- 620 Tomasz Korbak, Ethan Perez, and Christopher Buckley. Rl with kl penalties is better viewed as
 621 bayesian inference. In *Findings of the Association for Computational Linguistics: EMNLP 2022*,
 622 pp. 1083–1091, 2022.
- 623 Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential monte carlo
 624 steering of large language models using probabilistic programs. *arXiv preprint arXiv:2306.03081*,
 625 2023.
- 627 Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
 628 predictor-corrector diffusion models for image synthesis. In *International Conference on Learn-
 629 ing Representations*, 2022.
- 630 Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
 631 calani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
 632 and discrete diffusion models with soft value-based decoding. *arXiv preprint arXiv:2408.08252*,
 633 2024.
- 634 Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale, Irina
 635 Krotova, Nikita Semenov, and Alexander Panchenko. Paradetox: Detoxification with parallel
 636 data. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*
 637 (*Volume 1: Long Papers*), pp. 6804–6818, 2022.
- 639 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 640 of the data distribution. In *International Conference on Machine Learning*, 2023.
- 641 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 642 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 643 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.
- 645 John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A frame-
 646 work for adversarial attacks, data augmentation, and adversarial training in nlp. In *Proceedings*
 647 *of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
 strations*, pp. 119–126, 2020.

- 648 Christian A Naesseth, Fredrik Lindsten, Thomas B Schön, et al. Elements of sequential monte carlo.
 649 *Foundations and Trends® in Machine Learning*, 12(3):307–392, 2019.
 650
- 651 Amir Nazemi, Mohammad Hadi Sepanj, Nicholas Pellegrino, Chris Czarnecki, and Paul Fieguth.
 652 Particle-filtering-based latent diffusion for inverse problems. *arXiv preprint arXiv:2408.13868*,
 653 2024.
- 654 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongx-
 655 uan Li. Scaling up masked diffusion models on text. In *International Conference on Learning*
 656 *Representations*, 2025a.
- 657
- 658 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 659 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint*
 660 *arXiv:2502.09992*, 2025b.
- 661
- 662 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 663 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 664 low instructions with human feedback. In *Advances in neural information processing systems*,
 665 volume 35, pp. 27730–27744, 2022.
- 666
- 667 Isha Puri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, and Akash Srivastava. A probabilistic
 668 inference approach to inference-time scaling of llms using particle-based monte carlo methods.
 669 *arXiv preprint arXiv:2502.01618*, 2025.
- 670
- 671 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 672 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 673
- 674 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 675 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Ad-
 676 vances in Neural Information Processing Systems*, volume 36, 2024.
- 677
- 678 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 679 Springer, 1999.
- 680
- 681 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 682 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 683 models. In *Advances in Neural Information Processing Systems*, volume 37, pp. 130136–130184,
 684 2024.
- 685
- 686 Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
 687 Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
 688 guidance mechanisms for discrete diffusion models. In *International Conference on Learning*
 689 *Representations*, 2025.
- 690
- 691 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
 692 ized masked diffusion for discrete data. In *Advances in neural information processing systems*,
 693 volume 37, pp. 103131–103167, 2024.
- 694
- 695 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 696 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 697 models. *arXiv preprint arXiv:2501.06848*, 2025.
- 698
- 699 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 700 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
- 701
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 702 ing*, pp. 2256–2265, 2015.
- 703
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 704 *Advances in neural information processing systems*, 32, 2019.

- 702 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 703 Poole. Score-based generative modeling through stochastic differential equations. In *International
 704 Conference on Learning Representations*, 2021.
- 705
- 706 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 707 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
 708 time diffusion models as entropy-regularized control. *arXiv preprint arXiv:2402.15194*, 2024a.
- 709
- 710 Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gokcen Eraslan, Avantika
 711 Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and generative
 712 modeling via conservative fine-tuning of diffusion models. In *Advances in Neural Information
 Processing Systems*, volume 37, pp. 127511–127535, 2024b.
- 713
- 714 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 715 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 716 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition*, pp. 8228–8238, 2024.
- 717
- 718 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
 719 diffusion models with inference-time scaling. *arXiv preprint arXiv:2503.00307*, 2025.
- 720
- 721 Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
 722 In *Transactions of the Association for Computational Linguistics*, volume 7, pp. 625–641. MIT
 723 Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info …, 2019.
- 724
- 725 Luhuan Wu, Brian L. Trippe, Christian A Naesseth, John Patrick Cunningham, and David Blei.
 726 Practical and asymptotically exact conditional sampling in diffusion models. In *Advances in
 727 Neural Information Processing Systems*, 2023.
- 728
- 729 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025.
- 730
- 731 Xiangcheng Zhang, Haowei Lin, Haotian Ye, James Zou, Jianzhu Ma, Yitao Liang, and Yilun Du.
 732 Inference-time scaling of diffusion models through classical search, 2025a.
- 733
- 734 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 735 reasoning. *arXiv preprint arXiv:2501.07301*, 2025b.
- 736
- 737 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
 738 large language models via reinforcement learning. *arXiv preprint arXiv:2504.12216*, 2025.
- 739
- 740 Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. In-
 741 formed correctors for discrete diffusion models. *arXiv preprint arXiv:2407.21243*, 2024.
- 742
- 743 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 744 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 745 sampling. In *International Conference on Learning Representations*, 2025.
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 A SEQUENTIAL MONTE CARLO (SMC)
757758 A.1 BACKGROUND
759760 **Importance Sampling (IS).** To estimate expectations under a target $f(\mathbf{x})$ (hard to sample from)
761 using a proposal $g(\mathbf{x})$ (easy to sample):
762

763
$$\mathbb{E}_f[h(\mathbf{x})] = \mathbb{E}_g \left[h(\mathbf{x}) \frac{f(\mathbf{x})}{g(\mathbf{x})} \right] \approx \sum_{i=1}^N w_i h(\mathbf{x}^{(i)}), \quad \text{where } w_i = \frac{f(\mathbf{x}^{(i)})}{g(\mathbf{x}^{(i)})}, \{\mathbf{x}^{(i)}\}_{i=1}^N \sim g.$$

764
765

766 Resample with replacement via normalized $\{w_i\}$ for approximate samples from f .
767768 **Sequential Importance Sampling (SIS).** For sequential targets $f(\mathbf{x}) = \prod_t f(x_t \mid \mathbf{x}_{t-1})$ and
769 proposals $g(\mathbf{x}) = \prod_t g(x_t \mid \mathbf{x}_{t-1})$, where the full variable is $\mathbf{x} = (x_1, \dots, x_d)$ and partial prefix
770 $\mathbf{x}_t = (x_1, \dots, x_t)$ (with \mathbf{x}_0 empty), weights factorize recursively:
771

772
$$w_t(\mathbf{x}_t) = w_{t-1}(\mathbf{x}_{t-1}) \cdot \frac{f(x_t \mid \mathbf{x}_{t-1})}{g(x_t \mid \mathbf{x}_{t-1})}, \quad w_0 = 1.$$

773
774

775 Propagate $x_t^{(i)} \sim g(\cdot \mid \mathbf{x}_{t-1}^{(i)})$, update $w_t^{(i)}$.
776777 **Sequential Monte Carlo (SMC).** SMC adds resampling to SIS to counter degeneracy. For N
778 particles $\{\mathbf{x}_t^{(i)}, w_t^{(i)}\}_{i=1}^N$:
779

- 780 1. Initialize
- $w_0^{(i)} = 1$
- .
-
- 781 2. For
- $t = 1, \dots, d$
- :
-
- 782 (a) Propagate:
- $x_t^{(i)} \sim g(\cdot \mid \mathbf{x}_{t-1}^{(i)})$
- .
-
- 783 (b) Weight:
- $\tilde{w}_t^{(i)} = w_{t-1}^{(i)} \cdot \frac{f(x_t^{(i)} \mid \mathbf{x}_{t-1}^{(i)})}{g(x_t^{(i)} \mid \mathbf{x}_{t-1}^{(i)})}$
- .
-
- 784 (c) Resample
- N
- indices
- \propto
- normalized
- $\{\tilde{w}_t^{(i)}\}$
- ; reset to equal weights.
-
- 785

786 A.2 SMC FOR DIFFUSION LANGUAGE MODELS
787788 Here we provide pseudocode for vanilla SMC applied to reward-weighted sampling in DLMs, using
789 the conditional $p^*(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t)$ from Equation 6 as the target and p_θ as the proposal.
790791 **Algorithm 2:** Sequential Monte Carlo for Diffusion Language Models
792793 **Input** : sample count k , timesteps T , partial reward samples ϕ , reward model $r(\mathbf{c}, \mathbf{x}_0)$, diffusion model
794 $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t)$, hyperparameter β 795 **Output:** sample from $p^*(\mathbf{x}_0 \mid \mathbf{c}) \propto p_\theta(\mathbf{x}_0 \mid \mathbf{c}) \exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)$ 796 **1 Function** SMC-DLM($p_\theta, r, k, T, \phi, \beta$):

- 797 2 Initialize
- k
- samples
- $\mathbf{x}_T^{(i)} = \mathbf{m}$
- , all operations on
- i
- are over
- k
- samples
- $i = 1, \dots, k$
-
- 798 3
- for**
- $t = T$
- to**
- 1
- do**
-
- 799 4 Propose
- $\bar{\mathbf{x}}_{t-1}^{(i)} \sim p_\theta(\mathbf{x}_{t-1} \mid \mathbf{c}, \mathbf{x}_t^{(i)})$
-
- 800 5 Estimate partial reward
- $\hat{r}(\mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)}) = \log \left(\frac{1}{\phi} \sum_{j=1}^\phi \exp(r(\mathbf{c}, \mathbf{x}_0^{(j)})/\beta) \right)$
- where
-
- 801
- $\mathbf{x}_0^{(j)} \sim p_\theta(\mathbf{x}_0 \mid \mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)})$
- for all
- $j = 1, \dots, \phi$
-
- 802 6 Compute importance weights
- $\bar{w}_{t-1}^{(i)} = \exp(\hat{r}(\mathbf{c}, \bar{\mathbf{x}}_{t-1}^{(i)}) - \hat{r}(\mathbf{c}, \mathbf{x}_t^{(i)}))$
- and normalize
-
- 803
- $w_{t-1}^{(i)} = \bar{w}_{t-1}^{(i)} / \sum_{j=1}^k \bar{w}_{t-1}^{(j)}$
-
- 804 7 Sample with replacement
- $\mathbf{x}_{t-1}^{(i)} \sim \{\bar{\mathbf{x}}_{t-1}^{(j)}, w_{t-1}^{(j)}\}_{j=1}^k$
-
- 805 8
- end**
-
- 806 9 Compute final weights
- $\bar{w}_0^{(i)} = \exp(r(\mathbf{c}, \mathbf{x}_0^{(i)})/\beta)$
- and normalize
- $w_0^{(i)} = \bar{w}_0^{(i)} / \sum_{j=1}^k \bar{w}_0^{(j)}$
-
- 807 10
- return**
- argmax sample
- $\mathbf{x}_0^{(i)}$
- where
- $i^* = \arg \max_i w_0^{(i)}$
- or weighted samples
- $\{\mathbf{x}_0^{(i)}, w_0^{(i)}\}_{i=1}^k$
-
- 808

810 **B PROOF**

812 **B.1 OPTIMAL DENOISING DISTRIBUTION (EQUATION 6)**

814 Following [Uehara et al. \(2024b;a\)](#), we derive the reward-weighted conditional $p^*(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)$ from
815 a per-step KL-regularized RL objective. Define the partial reward $r(\mathbf{c}, \mathbf{x}_t)$ as the expected future
816 reward at timestep t :

$$817 \quad r(\mathbf{c}, \mathbf{x}_t) = \beta \log \mathbb{E}_{\mathbf{x}_0 \sim p_\theta(\mathbf{x}_0 | \mathbf{c}, \mathbf{x}_t)} [\exp(r(\mathbf{c}, \mathbf{x}_0)/\beta)]. \quad (8)$$

818 The optimal conditional maximizes expected partial reward while staying close to the base denoiser:

$$819 \quad p^*(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) = \arg \max_p \mathbb{E}_p [r(\mathbf{c}, \mathbf{x}_{t-1})] - \beta D_{\text{KL}} [p(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \| p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t)]. \quad (9)$$

821 The solution is tractable:

$$822 \quad p^*(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \propto p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \exp(r(\mathbf{c}, \mathbf{x}_{t-1})/\beta). \quad (10)$$

823 Normalizing yields:

$$824 \quad p^*(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) = \frac{p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \exp(r(\mathbf{c}, \mathbf{x}_{t-1})/\beta)}{\sum_{\mathbf{x}'_{t-1}} p_\theta(\mathbf{x}'_{t-1} | \mathbf{c}, \mathbf{x}_t) \exp(r(\mathbf{c}, \mathbf{x}'_{t-1})/\beta)} \quad (11)$$

$$827 \quad = p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \exp\left(\frac{r(\mathbf{c}, \mathbf{x}_{t-1}) - r(\mathbf{c}, \mathbf{x}_t)}{\beta}\right), \quad (12)$$

829 where the denominator from Equation 11 equals $\exp(r(\mathbf{c}, \mathbf{x}_t)/\beta)$ by the soft Bellman equation
830 (Theorem 1 of [Uehara et al. \(2024b\)](#)):

$$831 \quad r(\mathbf{c}, \mathbf{x}_t) = \beta \log \sum_{\mathbf{x}_{t-1}} p_\theta(\mathbf{x}_{t-1} | \mathbf{c}, \mathbf{x}_t) \exp(r(\mathbf{c}, \mathbf{x}_{t-1})/\beta).$$

833 This yields Equation 6, parallelizing the global RL objective (Equation 4) across timesteps.

835 **B.2 PROOF OF THE VARIANCE BOUND (THEOREM 2)**

837 Assume the diffusion process incurs no discretization error as $T \rightarrow \infty$ and partial reward estimation
838 is accurate as $\phi \rightarrow \infty$. Abusing notation, we suppress the fixed conditioning prompt \mathbf{c} (e.g.,
839 $p_\theta(\mathbf{x}_0) \equiv p_\theta(\mathbf{x}_0 | \mathbf{c})$). Let the proposal be the base model $p_\theta(\mathbf{x}_{0:T}) = p_\theta(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$,
840 and define the reweighting function $\gamma(\mathbf{x}_0) = \exp(r(\mathbf{x}_0)/\beta)$.

841 The unnormalized target is then

$$843 \quad \tilde{p}(\mathbf{x}_{0:T}) = \gamma(\mathbf{x}_0) p_\theta(\mathbf{x}_{0:T}),$$

844 with normalizing constant

$$845 \quad Z = \sum_{\mathbf{x}_{0:T}} \tilde{p}(\mathbf{x}_{0:T}) = \sum_{\mathbf{x}_{0:T}} \gamma(\mathbf{x}_0) p_\theta(\mathbf{x}_{0:T}) = \mathbb{E}_{p_\theta(\mathbf{x}_0)} [\gamma(\mathbf{x}_0)].$$

847 The normalized target is $\pi(\mathbf{x}_{0:T}) = \tilde{p}(\mathbf{x}_{0:T})/Z = \gamma(\mathbf{x}_0) p_\theta(\mathbf{x}_{0:T})/Z$, which is essentially $p^*(\mathbf{x}_{0:T})$.

848 From [Andrieu et al. \(2010\)](#), particle Gibbs variance is bounded by that of the underlying SMC.
849 From [Robert et al. \(1999\); Chatterjee & Diaconis \(2018\)](#), for the SMC estimator \widehat{Z} with N particles
850 over trajectories $\mathbf{x}_{0:T}$ with proposal $p_\theta(\mathbf{x}_{0:T})$ and target $\pi(\mathbf{x}_{0:T})$,

$$852 \quad \text{Var}(\widehat{Z}) \leq \frac{Z^2}{N} (\exp(D_{\text{KL}}(\pi \| p_\theta)) - 1),$$

854 where π and p_θ are defined over $\mathbf{x}_{0:T}$. Now,

$$855 \quad D_{\text{KL}}(\pi \| p_\theta) = \mathbb{E}_\pi \left[\log \frac{\pi}{p_\theta} \right] = \mathbb{E}_\pi \left[\log \frac{\gamma(\mathbf{x}_0)}{Z} \right].$$

857 By Jensen's inequality,

$$858 \quad D_{\text{KL}}(\pi \| p_\theta) \leq \log \frac{\mathbb{E}_\pi [\gamma(\mathbf{x}_0)]}{Z} = \log \frac{\mathbb{E}_{p_\theta} [\gamma(\mathbf{x}_0)^2]}{Z^2} = \log \frac{\mathbb{E}_{p_\theta(\mathbf{x}_0)} [\gamma(\mathbf{x}_0)^2]}{Z^2}.$$

860 Thus,

$$862 \quad \text{Var}(\widehat{Z}) \leq \frac{Z^2}{N} \left(\frac{\mathbb{E}_{p_\theta(\mathbf{x}_0)} [\gamma(\mathbf{x}_0)^2]}{Z^2} - 1 \right) = \frac{\mathbb{E}_{p_\theta(\mathbf{x}_0)} [\gamma(\mathbf{x}_0)^2] - (\mathbb{E}_{p_\theta(\mathbf{x}_0)} [\gamma(\mathbf{x}_0)])^2}{N} = \frac{\text{Var}_{p_\theta(\mathbf{x}_0)} (\gamma(\mathbf{x}_0))}{N}.$$

863 For PG-DLM with m iterations and k samples per iteration ($N = mk$), this yields the stated bound.

864 C ADDITIONAL INFERENCE-TIME SCALING RESULTS FOR SECTION 4
865866 C.1 HYPER-PARAMETERS
867868 Table 5 summarizes hyper-parameter configurations for the scaling experiments in Section 4. Set-
869 tings are for PG-DLM, FK Steering (FK), and best-of- n across objectives. Fixed parameters: gen-
870 erated length $L = 128$ for both MDLM and LLaDA (except $L = 50$ for LLaDA in Figure 2); $\beta = 0.1$;
871 and resampling every 5 steps. Rows are grouped by paragraph.872 Table 5: Hyper-parameter configurations for scaling experiments.
873

Figure	Method	Backward	Partial Reward	Hyper-parameters			
				T	m	k	ϕ
Particle Gibbs Iterations vs. Sample Count							
2	PG-DLM	ReMDM	Beam	128	1–8	2–256	1
2	PG-DLM	LLaDA	Beam	128	1–8	2–256	1
3	PG-DLM	ReMDM	Beam	128	1–8	2–16	1
Denoising Steps vs. Sample Count							
4	PG-DLM	ReMDM	Beam	128–4096	1	2–32	1
4	PG-DLM	LLaDA	Beam	32–128	1	2–256	1
8	FK	MDLM	Random	128–4096	–	2–32	1
9	FK	MDLM	Random	128–4096	–	2–32	4
10	best-of- n	MDLM	–	128–4096	–	2–32	–
Partial Reward Estimation							
5, 11	PG	MDLM	Beam, Random	128	1	1–256	1–16

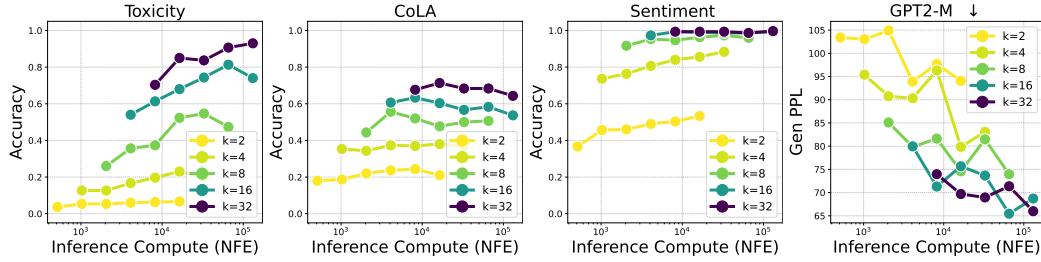
891 C.2 ADDITIONAL RESULTS FOR TABLE 1 AND FIGURE 2
892893 Table 6 shows detailed controlled text performance across reward functions (CoLA, Toxicity, Senti-
894 ment) under varying compute budgets (NFEs), with different particle Gibbs iterations m and sample
895 counts k . Each row fixes NFE while varying m and k ; best per row bolded. At higher NFEs,
896 increasing k yields diminishing returns, while scaling m is more effective.897 Table 6: Controlled text performance across reward functions under varying NFEs, with different m
898 and k . Best per row bolded.
899

Metric	$m = 1$		$m = 2$		$m = 4$		$m = 8$	
	k	Accuracy	k	Accuracy	k	Accuracy	k	Accuracy
CoLA \uparrow	16	87.3	8	87.0	4	89.7	2	79.0
	32	89.7	16	84.0	8	88.7	4	90.0
	64	85.7	32	79.7	16	86.3	8	88.7
	128	86.3	64	79.0	32	83.3	16	80.3
	256	78.7	128	80.0	64	73.0	32	77.0
Toxicity \uparrow	16	81.3	8	73.7	4	59.0	2	15.7
	32	90.3	16	93.7	8	91.7	4	78.3
	64	96.3	32	97.0	16	97.7	8	97.7
	128	98.7	64	99.7	32	98.3	16	98.0
	256	98.7	128	99.0	64	99.7	32	99.3
Sentiment \uparrow	16	97.7	8	99.0	4	98.0	2	82.7
	32	99.0	16	99.7	8	100.0	4	99.0
	64	99.7	32	100.0	16	99.7	8	98.7
	128	100.0	64	99.7	32	99.7	16	99.7
	256	99.3	128	99.7	64	100.0	32	99.7

918 C.3 ADDITIONAL RESULTS FOR FIGURE 4
919

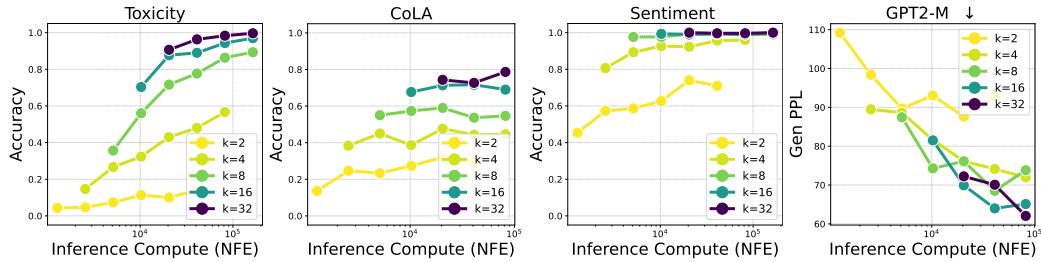
920 Figure 4 illustrates trade-offs between sample counts and denoising steps for PG-DLM. Here we
921 show the same trend holds for baselines: sequential Monte Carlo (SMC) (Singhal et al., 2025) and
922 best-of- n (BON), where scaling samples generally outperforms steps under fixed NFEs. We use
923 MDLM as the base model.

924 1. For SMC with number of x_0 samples $\phi = 1$:



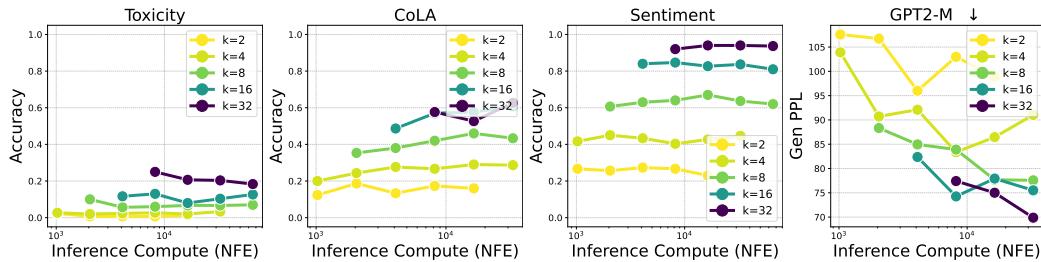
925 Figure 8: Trade-offs between sample counts k and denoising steps T across compute budgets
926 (NFEs) for **SMC** ($\phi = 1$). The x-axis shows NFEs controlled by varying T , with k in the legend.
927 Scaling k (and decreasing T accordingly) generally yields better performance under the same NFEs.
928

929 2. For SMC with number of x_0 samples $\phi = 4$:

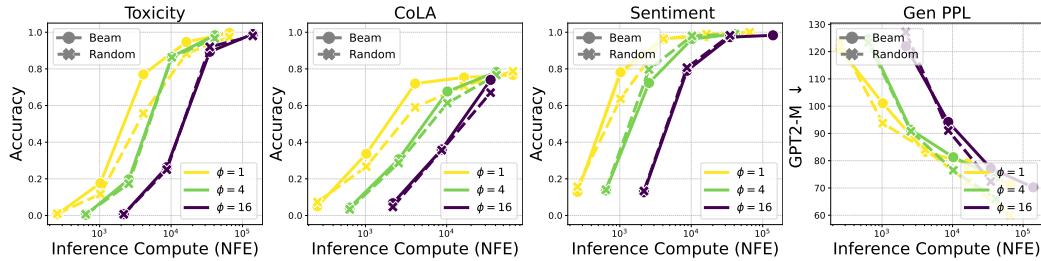


930 Figure 9: Trade-offs between sample counts k and denoising steps T across compute budgets (NFEs)
931 for **SMC** ($\phi = 4$). The x-axis shows NFEs controlled by varying T , with k in the legend.
932 Scaling k (and decreasing T accordingly) generally yields better performance under the same NFEs.
933

934 3. For BON:



935 Figure 10: Trade-offs between sample counts k and denoising steps T across compute budgets
936 (NFEs) for **BON**. The x-axis shows NFEs controlled by varying T , with k in the legend.
937 Scaling k (and decreasing T accordingly) generally yields better performance under the same NFEs.
938

972 C.4 ADDITIONAL RESULTS FOR FIGURE 5
973974 Figure 11 shows full results for partial reward estimation trade-offs, comparing beam vs. random
975 sampling with varying ϕ (samples for x_0 estimation) across NFEs.
976977 Figure 11: Comparison of Beam and Random sampling for partial reward estimation with varying
978 number of x_0 samples (ϕ) across NFEs (as controlled by the number of samples k). Beam sampling
979 with $\phi = 1$ performs the best.
980

981 D ADDITIONAL EXPERIMENTS RESULTS FOR SECTION 5

982 D.1 HYPER-PARAMETERS

983 Table 7 summarizes hyper-parameter configurations for the experiments in Section 5. Settings are
984 for PG-DLM, FK Steering (FK), and best-of- n across objectives. Hyperparameter include generated
985 text length (L), total denoising steps (T), particle Gibbs iterations (m), sample counts (k), the
986 number of x_0 examples for partial reward estimation (ϕ), and resample frequency (f). Rows are
987 grouped by objective.
988

1000 Table 7: Hyper-parameter configurations for experiments in Section 5

Table	Method	Base Model	Backward	Partial Reward	Hyper-parameters				
					L	T	m	k	ϕ
Conditional Text Generation for MDLM and LLaDA									
2	best-of- n	MDLM	MDLM	-	50	1024	-	{1, 4, 16, 64}	-
2	FK ($\phi = 4$)	MDLM	MDLM	Random	50	1024	-	{1, 4, 13}	4
2	FK ($\phi = 1$)	MDLM	MDLM	Random	50	1024	-	{2, 8, 32}	1
2	PG-DLM	MDLM	ReMDM	Beam	50	1024	1	{2, 8, 32}	1
2	best-of- n	LLaDA	LLaDA	-	50	50	-	{1, 4, 16, 64}	-
2	FK	LLaDA	LLaDA	Random	50	50	-	{1, 4, 16, 64}	1
2	PG-DLM	LLaDA	LLaDA	Beam	50	50	1	{1, 4, 16, 64}	1
Conditional Text Generation for Longer Sequences									
3	best-of- n	MDLM	MDLM	-	512	512	-	{1, 4, 16, 64}	-
3	FK ($\phi = 4$)	MDLM	MDLM	Random	512	512	-	{1, 4, 13}	4
3	FK ($\phi = 1$)	MDLM	MDLM	Random	512	512	-	{2, 8, 32}	1
3	PG-DLM	MDLM	ReMDM	Beam	512	512	1	{2, 8, 32}	1

1017 FK Steering (Singhal et al., 2025) reports $\phi = 1$ and $\phi = 4$, but without same-NFE comparisons.
1018 We use $\phi = 1$ ($k \in \{2, 8, 32\}$) and $\phi = 4$ ($k \in \{1, 4, 13\}$, adjusted for same-NFE comparison) to
1019 match NFEs.
1020

1021 D.2 REWARD FUNCTIONS AND BASELINES

1022 We evaluate four reward functions for controllable generation:

- 1023 1.
- Linguistic Acceptability:**
- Favors grammatically correct sentences using a RoBERTa
-
- 1024 classifier (Morris et al., 2020) trained on CoLA (Warstadt et al., 2019). We measure

1026 CoLA classification accuracy. Model: <https://huggingface.co/textattack/roberta-base-CoLA>.
 1027
 1028 2. **Controlled Toxicity**: Guides toward (or away from) toxic outputs using a RoBERTa
 1029 toxicity classifier (Logacheva et al., 2022) for red-teaming. We measure toxicity clas-
 1030 sification accuracy. Model: https://huggingface.co/SkolkovoInstitute/roberta_toxicity_classifier.
 1031
 1032 3. **Controlled Sentiment**: Steers toward target sentiments (e.g., positive) using a
 1033 RoBERTa classifier (Barbieri et al., 2020) on TweetEval. We measure senti-
 1034 ment classification accuracy. Model: <https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment>.
 1035
 1036 4. **Perplexity**: Encourages fluency by minimizing perplexity computed by GPT2-Small (Rad-
 1037 ford et al., 2019). We evaluate using generative perplexity under GPT2-XL. Model:
 1038 <https://huggingface.co/openai-community/gpt2>.
 1039

1040 Baseline implementations for FK Steering and best-of- n are adapted from https://github.com/zacharyhorvitz/Fk-Diffusion-Steering/tree/main/discrete_diffusion; we re-ran experiments for consistency.
 1041
 1042

1043 D.3 STANDARD DEVIATION OF TABLE 2

1044 Table 8: Standard deviations (\pm) for controlled text generation metrics in Table 2.
 1045

1046 Base	1047 Method	1048 CoLA \uparrow				1049 Toxicity \uparrow				1050 Sentiment \uparrow			
		1051 1	1052 4	1053 16	1054 64	1055 1	1056 4	1057 16	1058 64	1059 1	1060 4	1061 16	1062 64
1063 MDLM	1064 best-of- n	2.0	1.3	1.6	1.3	0.8	0.4	1.0	2.8	1.0	3.7	1.0	0.2
	1065 FK ($\phi=4$)	-	4.5	4.1	1.2	-	0.2	1.2	1.7	-	1.3	1.7	0.4
	1066 FK ($\phi=1$)	-	1.6	4.3	1.9	-	1.0	3.7	1.1	-	1.2	3.4	0.3
	1067 PG-DLM	-	2.0	0.9	0.5	-	0.7	1.0	1.1	-	2.2	1.3	0.2
1068 LLaDA	1069 BoN	3.1	2.9	2.3	0.9	0.8	0.2	3.8	3.7	2.7	2.9	0.6	1.2
	1070 FK	-	1.3	1.5	2.4	-	1.5	2.7	1.4	-	1.2	1.2	0.3
	1071 PG-DLM	-	2.2	3.1	0.2	-	1.8	1.5	2.3	-	1.0	1.1	0.2

1080 D.4 CHG: ABLATIONS ON HYPER-PARAMETERS FOR TABLE 2
10811082 Table 9: Controlled text generation accuracies across reward functions (CoLA, Toxicity, Sentiment) on the
1083 MDLM base model, comparing PG-DLM against the baseline method FK Steering (FK) under varying compute
1084 budgets (columns) and configuration settings (rows). **Columns** labeled 4 – 64 correspond to NFEs normalized
1085 by the total number of denoising steps T , i.e. NFE/T . **Rows** labeled $(*, *, *)$ indicates, respectively: partial
1086 reward sampling methods (Beam, Random), diffusion backward processes (MDLM, ReMDM), and resample
1087 frequency (20, 5). Fixed parameters: generated length $L = 50$, total denoising timesteps $T = 1024$, $\beta = 0.1$,
1088 number of partial reward samplers $\phi = 1$. For PG-DLM, we use $m = 1$. Thus the compute budget is controlled
1089 by the number of samples k for both FK Steering and PG-DLM.

Method	CoLA \uparrow			Toxicity \uparrow			Sentiment \uparrow		
	4	16	64	4	16	64	4	16	64
FK Steering (FK)									
(Rand, MDLM, 20)	48.1 \pm 1.6	79.0 \pm 4.3	87.1 \pm 1.9	3.8 \pm 1.0	39.8 \pm 3.7	86.1 \pm 1.1	37.4 \pm 1.2	91.3 \pm 3.4	99.7 \pm 0.3
(Rand, MDLM, 5)	48.4 \pm 3.2	76.2 \pm 0.4	83.1 \pm 4.8	3.4 \pm 0.2	34.0 \pm 3.4	76.8 \pm 1.1	33.6 \pm 3.7	89.2 \pm 1.5	98.9 \pm 0.5
(Rand, ReMDM, 5)	87.4 \pm 1.7	93.6 \pm 1.0	92.9 \pm 1.3	16.9 \pm 0.7	89.7 \pm 1.3	97.6 \pm 0.2	67.7 \pm 2.8	97.9 \pm 0.7	99.4 \pm 0.2
(Beam, MDLM, 5)	66.6 \pm 1.7	94.8 \pm 0.2	97.8 \pm 1.0	11.2 \pm 1.1	81.9 \pm 3.0	96.8 \pm 1.0	57.6 \pm 5.9	94.2 \pm 0.8	99.2 \pm 0.2
(Beam, ReMDM, 5)	91.7 \pm 0.9	97.8 \pm 0.7	97.5 \pm 0.2	24.6 \pm 0.7	95.4 \pm 0.7	98.7 \pm 0.3	72.3 \pm 4.3	96.1 \pm 1.1	99.2 \pm 0.2
PG-DLM									
(Random, MDLM, 5)	29.8 \pm 3.1	80.0 \pm 1.2	89.4 \pm 1.1	1.3 \pm 0.0	26.8 \pm 2.7	75.1 \pm 2.7	12.8 \pm 2.0	82.7 \pm 2.1	99.1 \pm 0.5
(Random, ReMDM, 5)	74.8 \pm 3.0	97.4 \pm 0.7	98.7 \pm 0.7	1.6 \pm 0.5	84.8 \pm 0.8	96.4 \pm 1.8	24.7 \pm 1.2	96.0 \pm 0.9	99.6 \pm 0.5
(Beam, MDLM, 5)	37.3 \pm 2.4	88.0 \pm 1.0	96.8 \pm 0.5	1.3 \pm 0.5	78.8 \pm 2.0	97.2 \pm 1.2	21.8 \pm 1.7	94.4 \pm 0.5	99.0 \pm 0.3
(Beam, ReMDM, 5)	77.3 \pm 2.0	97.3 \pm 0.9	99.1 \pm 0.5	1.4 \pm 0.7	91.1 \pm 1.0	98.1 \pm 1.1	23.8 \pm 2.2	96.2 \pm 1.3	99.1 \pm 0.2

1134
1135

D.5 CHG: QUALITATIVE EXAMPLES

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

Method	Generated Output
best-of- n	<ul style="list-style-type: none"> Once upon a time, this was one of my favorite taglines in Indie Match Match :The impossible we overcome Those that we escape The Impossible were our face. The Impossible were our face The chicken is still really amazing after consuming the amount is parox Imagine had orange soup. The soup has very low sugar release. The whole concept of this is that it helps as an antioxidant. It's an antioxidant The lake went up through the fields, the hills cracked, and fell to the sea. Heaven came clean, the wind sang like the mountains: BRAND BLOOD Now black, skin on cold, Ice white
FK	<ul style="list-style-type: none"> Once upon a time, was one of the coolest and most beautiful colors of all time. Nowadays, this color is among my favorite colors of all time. Let me show you guys with some pictures of what my favorite colors look like The chicken was extremely tender and flavorful. There was a nice crunchiness to chicken wings on top. I do prefer to eat chicken wings when they are a little smaller and less crunchy. I also enjoyed keeping the wings in the refrigerator The lake temperature is colder in the spring, which allows you to use the water easier. At a depth above the current lake level, you can find the most beautiful thermal lakes in North America. The lakes are brilliant
PG-DLM	<ul style="list-style-type: none"> Once upon a time, the openmindedness and diversity of the universe was one of the pillars of our success, and continues to be. Today, we welcome the diversity and nature of the universe, and embrace it as a The chicken burger really live up to the deli's spot for the dish. The fried chicken wings really make it an addition of the menu due to their cute goo and I LOVE THEM! The burger isn't the best The lake itself is totally potable and there are plenty of holes in the middle of the lake. It is perfect for any kind of tradition of mountaineering adventure. The lake is also used as a point of contact and

1169

1170

1171

1172

1173

Table 10: Qualitative comparison of generated sequences under a positive sentiment reward

1174

1175

E USE OF LLMs

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187