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ABSTRACT

We consider offline reinforcement learning (RL) with preference feedback in which
the implicit reward is a linear function of an unknown parameter. Given an offline
dataset, our objective consists in ascertaining the optimal action for each state,
with the ultimate goal of minimizing the simple regret. We propose an algorithm,
RL with Locally Optimal Weights or RL-LOW, which yields a simple regret
of exp(−Ω(n/H)) where n is the number of data samples and H denotes an
instance-dependent hardness quantity that depends explicitly on the suboptimality
gap of each action. Furthermore, we derive a first-of-its-kind instance-dependent
lower bound in offline RL with preference feedback. Interestingly, we observe
that the lower and upper bounds on the simple regret match order-wise in the
exponent, demonstrating order-wise optimality of RL-LOW. In view of privacy
considerations in practical applications, we also extend RL-LOW to the setting
of (ε, δ)-differential privacy and show, somewhat surprisingly, that the hardness
parameter H is unchanged in the asymptotic regime as n tends to infinity; this un-
derscores the inherent efficiency of RL-LOW in terms of preserving the privacy of
the observed rewards. Given our focus on establishing instance-dependent bounds,
our work stands in stark contrast to previous works that focus on establishing
worst-case regrets for offline RL with preference feedback.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 2018) has been widely recognized for its capacity
to facilitate agents in learning a sequence of optimal actions through iterative interactions with their
environments. However, RL encounters significant hurdles in environments that are characterized
by uncertainty or lacking explicit reward signals. To address these shortcomings, the concept of
RL with human feedback (or RLHF) has emerged as a prominent paradigm. Preference-based RL
(PbRL) (Christiano et al., 2017; Chen et al., 2022; Ibarz et al., 2018; Palan et al., 2019) has stood
out as one of the most widely used frameworks for RLHF. In this regard, preference-based RL has
achieved remarkable performances in practical applications, with particular importance lying in its
ability to align large language models (LLMs) with human intent, thereby mitigating the output of
toxic and dishonest information (Ouyang et al., 2022; Ziegler et al., 2019; Glaese et al., 2022; Bai
et al., 2022; Liu et al., 2023), and improving the quality of applying to the specific tasks (Stiennon
et al., 2020; Wu et al., 2021; Nakano et al., 2021).

In this work, we tackle the problem of offline RL with preference feedback, wherein the learning
mechanism operates solely on pre-existing (or offline) data without dynamically engaging with
the environment. Given the high cost associated with human interaction, offline RL has assumed
particular importance in the context of incorporating human feedback. The significance of this
offline framework has been justified by many previous prominent works (Shin et al., 2023; Ouyang
et al., 2022; Zhu et al., 2023; Kim et al., 2023). For instance, within the learning process of
InstructGPT (Ouyang et al., 2022) or the training procedure of Ahmadian et al. (2024), a pivotal
procedure involves the training of a reward model utilizing pre-trained LLM feature vectors, coupled
with the utilization of pre-collected human preference feedback as the training dataset. Conceptually,
this procedure can be construed as treating the current prompt context as a state within a certain
Markov Decision Process (MDP), while the responses generated by the LLM serve as actions within
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this process. Empirical findings presented by Ouyang et al. (2022) demonstrate the efficacy of this
offline framework in effectively aligning human intent with the outputs of LLMs.

However, the literature concerning theoretical analyses within the domain of offline PbRL remains
rather scant. Previous theoretical analyses (Zhu et al., 2023; Zhan et al., 2024) of offline PbRL
predominantly focused on the worst-case (or minimax) regret, often resulting in the derivation of
regret upper bounds for their algorithms of the form Õ(n−1/2), where n is the size of the offline
dataset. In this work, we adopt a different approach that is centered on instance-dependent guarantees.
In other words, we wish to derive performance guarantees that are functions of the specific problem
instance, thus elucidating the role of fundamental hardness parameters. This yields complementary
insights to the existing worst-case analyses. To this end, we design and analyze RL-LOW, a
preference-based RL algorithm. Our analysis of the performance RL-LOW unveils an instance-
dependent simple regret bound of exp(−Ω(n/H)), where H is a hardness parameter. This reveals
that the simple regret decays exponentially fast in the size of the dataset n and the exponential rate
of convergence has also been identified. Complementarily, by proving an instance-dependent lower
bound, we show that any algorithm will suffer from a simple regret of at least exp(−O(n/H)).
Thus, the dependence of the problem on H is fundamental and cannot be improved upon, thereby
demonstrating the efficacy of RL-LOW and the tightness of our analyses.

1.1 RELATED WORKS

Preference-based RL: From the empirical viewpoint, Christiano et al. (2017) initially demonstrated
that RL systems can effectively address complex tasks like Atari games and simulated robot locomo-
tion by learning from human preferences between trajectory segments. Later, numerous researchers
started to employ human preference feedback to enhance the performance of LLMs, e.g., aligning the
LLMs’ behavior with human intent (Ouyang et al., 2022; Ziegler et al., 2019; Glaese et al., 2022; Bai
et al., 2022; Liu et al., 2023), and enhancing the efficacy of application to specific tasks (Stiennon
et al., 2020; Wu et al., 2021; Nakano et al., 2021).

From the theoretical perspective, the existing literature remains sparse in offline RL with preference
feedback. Zhu et al. (2023) elucidated the failure of the maximum likelihood estimation (MLE)
procedure in some scenarios. Motivated by this, they theoretically prove the (near) minimax optimality
of the PESSIMISTIC MLE approach with a high probability guarantee. In addition, Zhan et al.
(2024) introduced a novel paradigm for general reward functions, and they introduce ε-bracket
approximations for reward models, accompanied by a rigorous theoretical analysis delineating sample
complexity in terms of approximation error ε and the high-probability parameter δ.

We observe that the above theoretical investigations, while invaluable, are not instance-dependent.
Typically, the above minimax or worst-case guarantees yield upper bounds in the form of Õ(n−1/2)
and do not depend on any problem-specific factors (such as suboptimality gaps). Our research
stands out as a pioneering attempt in offering an instance-dependent examination for offline RL with
preference feedback, thereby bridging a critical gap in the existing literature.

Label-Differential Privacy: In our study, we also consider the notion of label privacy, acknowledging
that the labels in our offline dataset originate from users, thus highlighting the imperative to protect
user privacy. Chaudhuri and Hsu (2011) were among the pioneers in exploring the concept of label
privacy within the context of supervised learning for binary classification. Their foundational work
posits that the sensitive information primarily resides in the labels, while considering the unlabeled
attributes as non-sensitive. Later, the concept of label privacy has been investigated across various
machine learning paradigms, including but not limited to PAC learning (Beimel et al., 2013) and deep
learning frameworks (Ghazi et al., 2021). This broadened examination underscores the significance
and relevance of label privacy considerations across diverse areas of machine learning research and
applications.

More recently, Chowdhury et al. (2024) investigated the use of label differential privacy to protect
the privacy of human labelers in the process of estimating rewards from preference-based feedback.
Chowdhury et al. (2024) derive an upper bound for their proposed algorithm on the estimation error.
They show that it also decays as O(n−1/2) and the implied constant here depends on (ε, δ), the
parameters that define differential privacy. This bound only applies in the scenario of estimating the
reward value and is not applicable if we want to understand how it depends on the simple regret of a
specific instance. In our work, we consider the effect of (ε, δ)-DP on the simple regret.
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1.2 OUR CONTRIBUTIONS

We summarize our main contributions as follows:

1. We establish the first-of-its-kind instance-dependent lower bound characterized by suboptimality
gaps for a given problem instance. Our analysis reveals that this lower bound takes the form
exp(−O(n/H)), where H is a hardness parameter that is an explicit function of the suboptimality
gaps. This finding furnishes a novel, and possibly generalizable, analytical approach for assessing
algorithmic performance within the realm of preference-based RL.
2. We design a simple algorithm RL-LOW based on the novel concept of locally optimal weights.
Our analysis demonstrates that its expected simple regret matches the aforementioned instance-
dependent lower bound (in the exponential decay rate of the simple regret), thus revealing our
algorithm’s achievement of instance-dependent optimality.
3. We extend RL-LOW to be applicable to the (ε, δ)-differential privacy with labels by combining
the Gaussian mechanism with the aforementioned locally optimal weights. Our analysis demonstrates
that, for large datasets, this combination enables our algorithm to achieve differential privacy without
weakening the bound on the simple regret, underscoring the superiority of the design and analysis of
RL-LOW.
4. As a by-product of our analyses, we show that RL-LOW achieves a worst-case bound of the
form O(n−1/2). If we translate the high-probability upper bound in Zhu et al. (2023) to the same
worst-case setting, we obtain a bound of the form O(

√
n−1 log n). Thus, our work provides a

noticeable (albeit small) improvement over the state-of-the-art theoretical result in Zhu et al. (2023).

2 PRELIMINARIES AND PROBLEM SETUP

Let S = {1, . . . , S} denote the state space, and A = {1, . . . , A} denote the action set. We assume
that there is an unknown non-degenerate distribution ρ = (ρ1, . . . , ρS) over the states, i.e., ρk > 0
for all k ∈ S. The i-th action of state k is associated with the feature vector ϕ(k, i) ∈ Rd, and its
associated (unknown) reward is

rk,i = ⟨ϕ(k, i), θ⟩, (1)

where θ ∈ Rd is an unknown parameter vector. The collection of all feature vectors is denoted
as ϕ = {ϕ(k, i)}k∈S,i∈A. For all k ∈ S, we denote the suboptimaliy gap of action i ∈ A as
∆k,i = maxj∈A rk,j − rk,i. Let (a(0), a(1)) ∈ A2 be a pair of comparisons and let s ∈ S be a state.
Then, we define a stochastic label σ ∈ {0, 1}, following the Bradley–Terry–Luce (BTL) model as

P
(
σ = 1 | a(0), a(1), s

)
=

exp
(
rs,a(1)

)
exp

(
rs,a(0)

)
+ exp

(
rs,a(1)

) . (2)

Given this model, we assume throughout that we have access to an offline dataset, which we denote
as D = {(si, a(0)i , a

(1)
i , σi)}ni=1. Note that this dataset consists of n tupies of states, pairs of actions

for comparison, and stochastic labels. Without loss of generality, we assume that the comparisons are
arranged such that a(0)i < a

(1)
i for all i = 1, . . . , n, and a

(0)
i < a

(0)
j (or a(1)i ≤ a

(1)
j if a(0)i = a

(0)
j )

for all i < j. For simplicity, we assume that the feature vectors satisfy ϕ(k, i) ̸= ϕ(k, j) for all
states k ∈ S and all actions i ̸= j. In addition, we assume that for each state k, the best action
i∗k = argmaxj∈A rk,j is unique. Broadly speaking, our objective is to use the offline dataset D to
estimate the best action i∗k for each state k ∈ S. Following Zhu et al. (2023), we aim to design a
(possibly randomised) algorithm Π that uses the dataset D to output a set of actions {̂ik}k∈S that
minimizes the simple regret1, defined as

Rn = Ek∼ρ
[
rk,i∗k − rk,̂ik

]
. (3)

We also consider a generalized version of the regret that is amenable to the MDP setting in Section 6.
Let N ∈ RS×A×A be a tensor that collects the proportions of each comparison in the dataset D. In
particular, Nk,i,j :=

1
n

∑n
ι=1 1{sι = k, a

(1)
ι = i, a

(2)
ι = j} is the proportion of the number of times

actions i and j have been compared under state k. A problem instance, denoted as v, is completely
1The term “simple regret” is referred to as “performance gap” in some existing works (e.g., Zhu et al. (2023)).
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characterised by the tuple (ρ,S,A, ϕ,N, θ). In the following, we index instance-specific parameters
with the instance v to indicate their dependence on v; this will be omitted when the instance is clear
from the context. In addition, we write PΠ

v (resp. EΠ
v ) to denote the probability measure (reps. the

expectation) induced under algorithm Π and under the instance v. Given an instance v, we assume
nNk,i,j ∈ N is an integer 2. Other assumptions are as follows.
Assumption 2.1. (Bounded reward) There exists a finite and known constant L such that for any
k ∈ S and i ∈ A, it holds that |⟨ϕ(k, i), θ⟩| ≤ L.

In previous works (Zhu et al., 2023), the authors assume that the norms of the feature vectors ϕ(k, i)
and parameter vector θ are separately bounded. This clearly implies that Assumption 2.1 is satisfied,
but Assumption 2.1 is weaker as it is a bound on the rewards.
Definition 2.2. (Consistent instance) A problem instance v = (ρ,S,A, ϕ,N, θ) is consistent if for
all (k, i, j) ∈ S × A2, it holds that ϕ(k, i) − ϕ(k, j) ∈ Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0}.

We say an instance v is inconsistent if it is not consistent. In the following, we will be only concerned
with those instances that are consistent as the following result shows that it is impossible to design a
algorithm that achieves vanishing simple regret for inconsistent instances.
Proposition 2.3. (Impossibility result) For any inconsistent instance v = (ρ,S,A, ϕ,N, θ), there
exists an instance v′ = (ρ,S,A, ϕ,N, θ′) such that for all algorithms Π

lim inf
n→∞

{
EΠ
v [Rn] + EΠ

v′ [Rn]
}
> 0. (4)

3 THE PROPOSED ALGORITHM: RL-LOW

In this section, we describe our computationally and statistically efficient algorithm for offline RL
with preference feedback based on the novel idea of locally optimal weights for estimating the relative
reward of each pair of actions. This algorithm, called RL-LOW, is simple and is presented formally
in Algorithm 1. Before we describe its components, we introduce some notations.

First, we denote Bk,i,j as the empirical success rate with the comparison of actions i and j, i.e., for
k ∈ S and i, j ∈ A with Nk,i,j > 0

Bk,i,j :=
1

nNk,i,j

n∑
ι=1

σι1{sι = k, a(1)ι = i, a(2)ι = j}, (5)

and Bk,j,i := 1 − Bk,i,j . If Nk,i,j = Nk,j,i = 0, we define Bk,i,j = Bk,j,i = 0. Subsequently,
certain empirical success rates may exhibit magnitudes that are either excessively large or small. We
clip them by means of the following operation:

BCLP
k,i,j = CLIPL(Bk,i,j) where CLIPL(a) =


exp(2L)

1+exp(2L) a > exp(2L)
1+exp(2L)

1
1+exp(2L) a < 1

1+exp(2L)

a otherwise
. (6)

In accordance with Assumption 2.1, the implicit rewards are bounded by L. Consequently, within
our BTL model framework, the success rate of each comparison necessarily falls within the interval[

1
1+exp(2L) ,

exp(2L)
1+exp(2L)

]
. We exploit this in Eqn. (6) to ensure that the implementation of our clip

operation is consistent with the model’s dynamics. We are now ready to introduce the notion of
locally optimal weights, which plays a central role in the estimation of the rewards.
Definition 3.1. (Locally Optimal Weight) For an consistent instance v, let Uk,i,j = {u ∈ RS×A×A :
ϕ(k, i) − ϕ(k, j) =

∑
k′∈S,i′,j′∈A uk′,i′,j′(ϕ(k

′, i′) − ϕ(k′, j′)) and uk′,i′,j′ = 0 if Nk′,i′,j′ = 0}.
We say that w(k,i,j) = (w

(k,i,j)
k′,i′,j′)k′∈S,i′,j′∈A is a set of locally optimal weights for (k, i, j) ∈ S ×A2

with i ̸= j if

w(k,i,j) ∈ argmin
u∈Uk,i,j

{ ∑
k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′

}
. (7)

2For brevity in notation, we assume that nNk,i,j ∈ N is an integer. To be more precise, the sample count for
(k, i, j) should be written as ⌈nNk,i,j⌉.
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Algorithm 1 Reinforcement Learning with Locally Optimal Weights (RL-LOW)

Input: Dataset D = {(si, a(1)i , a
(2)
i , σi)}ni=1 and feature maps ϕ = {ϕ(k, i)}k∈S,i∈A .

Output: The estimated best action îk ∈ A of each state k ∈ S.
1: Compute the sample proportions Nk,i,j ← 1

n

∑n
ι=1 1{sι = k, a

(1)
ι = i, a

(2)
ι = j}.

2: For k ∈ S and i, j ∈ A such that Nk,i,j > 0, compute the success rate of each pair of
comparisons using Eqn. (5).

3: Clip the success rate using the knowledge of L and using Eqn. (6).
4: For each state k ∈ S and distinct actions i, j ∈ A with i < j, compute the locally optimal

weights (w(k,i,j)
k′,i′,j′)k′∈S,i′,j′∈A using Eqn. (7).

5: Compute the empirical relative reward r̂k,i,j for each k ∈ S, i, j ∈ A using Eqn. (8).
6: return for any k ∈ S, let îk ∈ {i ∈ A : r̂k,i,j ≥ 0,∀j ̸= i}; resolve ties uniformly.

The weights in Eqn. (7) are described as “locally optimal” because they are customized to each
(k, i, j) tuple. Hence, w(k,i,j) is local to (k, i, j). This is a novelty in the design of our algorithm.

By the definition of the consistency of an instance (cf. Definition 2.2), there exists a subset β ⊂ S×A2

such that ϕ(k, i) − ϕ(k, j) ∈ Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈ β}. Hence, there exists a
locally optimal weight for every pair of actions given a consistent instance. In addition, w(k,i,j) can
be calculated efficiently by its analytic form (see details in Appendix E).

Equipped with the definition of locally-optimal weights, we now provide an estimate of the relative
reward for state k ∈ S and pair of action (i, j) ∈ A2 with i ̸= j as follows:

r̂k,i,j =
∑

k′∈S,i′∈A,j′∈A

w
(k,i,j)
k′,i′,j′ log

( BCLP
k′,i′,j′

1−BCLP
k′,i′,j′

)
, (8)

and we define r̂k,i,i = 0 for all k ∈ S and i ∈ A. The term (uk′,i′,j′ )
2

Nk′,i′,j′
in Eqn. (7) is a proxy for

the variance introduced by the pair of actions (i′, j′) in state k′ when associated with the coefficient
uk′,i′,j′ in the linear combination of the definition of Uk,i,j . Our objective is to minimize the
cumulative variance proxy for (k, i, j), thus enhancing the precision of the estimate of the relative
reward for (k, i, j) for the purposes of establishing the tightest possible concentration result for
subGaussian random variables (see Appendix G).

Finally, for any k ∈ S, let îk ∈ Îk := {i ∈ A : r̂k,i,j ≥ 0,∀ j ̸= i} be any estimate of the best
action under state k. It is natural to wonder whether îk exists, i.e., whether the set Îk is empty. The
following proposition answers this in the affirmative.
Proposition 3.2. For any consistent instance v and using estimate of the best action îk under each
state k as prescribed by RL-LOW, we have |Îk| ≥ 1 and

argmax
i∈A

r̂k,i,j1 = argmax
i∈A

r̂k,i,j2 = Îk for any j1, j2 ∈ A. (9)

Discussion of Computational Complexity: Proposition 3.2 obviates the need to compute all values
of r̂k,i,j for each (k, i, j) ∈ S ×A2. We demonstrate that the RL-LOW algorithm can be efficiently
implemented with a computational complexity ofO(SAd+nd2 + d3), as the term SAd corresponds
to the natural process of scanning the feature vectors for all state-action pairs. The terms nd2 + d3

are typical in scenarios involving a linear reward structure, such as in linear regression. It is worth
noting that the term SAd can be removed if we do not need to output îk for each k ∈ S , but rather a
parametric function î(k;ϑ) is to be learned; see details in Appendix E.2.1.

3.1 UPPER BOUND OF RL-LOW
In this section, we provide an instance-dependent upper bound of the simple regret for Rl-LOW. In
addition, we also provide a worst-case upper bound as a by-product. First, we define an instance-
dependent hardness parameter H(v). Let

H(v) := max
k∈S,i∈A:i̸=i∗k

γk,i
∆2
k,i

where γk,i :=
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

(w
(k,i,i∗k)
k′,i′,j′ )

2

Nk′,i′,j′
. (10)
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The parameter γk,i exhibits a positive correlation with the variance proxy of the relative empirical
reward r̂k,i,i∗k . Consequently, the ratio γk,i

∆2
k,i

in the definition of H(v) serves as a quantitative measure

of the difficulty that the empirical reward of a suboptimal action i surpasses that of i∗k in state k; see
more intuitive explanations in Appendix B.
Theorem 3.3. (Instance-Dependent Upper Bound) For any consistent instance v, under RL-LOW,
we have for all sufficiently large n,

ERL-LOW
v [Rn] ≤ exp

(
− n

Cup ·H(v)

)
, (11)

where Cup is a universal constant.3

From Theorem 3.3, it is evident that the upper bound decays exponentially fast and the exponent is a
function of an instance-dependent hardness term H(v). This is the first instance-dependent analysis
in offline reinforcement learning with preference feedback.

It is natural to wonder why we do not devise an instance-dependent analysis of or modification to
PESSIMISTIC MLE which was developed by Zhu et al. (2023). Note that PESSIMISTIC MLE is
designed to perform well with high probability and not necessarily in expectation. In particular, the
regret bound of PESSIMISTIC MLE holds with probability at least 1− δ. Hence, to ensure the regret
is less than exp(−Ω(n/H(v))), one should set the failure probability δ to be exp(−Θ(n/H(v))),
which is not possible as H(v) is unknown to the algorithm (since θ is also unknown).

We further provide a worst-case upper bound for RL-LOW as follows.
Proposition 3.4. (Worst-Case Upper Bound) For any consistent instance v and for all n ≥ 1,

ERL-LOW
v [Rn]≤

∑
k,i:i ̸=i∗k

ρk(
√
γk,i+γ̃k,i)

Cwup
√
n

where γ̃k,i=
∑

k′,i′,j′:Nk′,i′,j′>0

|w(k,i,i∗k)
k′,i′,j′ |√
Nk′,i′,j′

(12)

and Cwup > 0 is a universal constant.

We note that in Zhu et al. (2023), the high probability upper bound is of the form O
(√

n−1 log(1/δ)
)

for the dependency of n and δ. Hence, if we desire a bound in expectation, we obtain, through the law
of total probability, a bound of the form E[Rn] = O

(√
n−1 log(1/δ) + δ

)
. Minimizing this bound

over δ yields E[Rn] = O
(√

n−1 log n
)
. In terms of the dependence on n, it exhibits a performance

that is slightly inferior to our established upper bound of O(n−1/2).

4 INSTANCE-DEPENDENT LOWER BOUND

In this section, we derive the first-of-its-kind instance-dependent lower bound on offline RL with
preference feedback. Before we present our bound, we present some auxiliary lemmas that are
potentially instrumental in deriving lower bounds on other preference-based RL problems.

Given any instance v, we let P (n)
v denote the joint distribution of the associated labels {σi}ni=1. The

following lemma provides an estimate of the Kullback–Leibler (KL) divergence between instances v
and v′ that share the same parameters except for the latent vector θ that defines the reward in (1).
Lemma 4.1. For any instance v = (ρ,S,A, ϕ,N, θ) and v′ = (ρ,S,A, ϕ,N, θ′), it holds that

2n exp(−4Rmax) ≤
DKL(P

(n)
v ∥P (n)

v′ )

D̃(v, v′)
≤ 2n exp(2Rmax) (13)

where

D̃(v, v′) =
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2, (14)

and where Rmax = maxk∈S,i∈A max{|⟨ϕ(k, i), θ⟩|, |⟨ϕ(k, i), θ′⟩|} is the maximum absolute reward
in these two instances.

3In this paper, our universal constants depend on L, which is known and fixed throughout.
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This lemma demonstrates that when the rewards are bounded, the weighted sum of squared differences
of the relative rewards can be used to approximate the KL divergence between the distributions of
two instances. The approximation is precisely D̃(v, v′) defined in (14). Furthermore, for any
z ∈ Rd, η ∈ R and consistent instance v = (ρ,S,A, ϕ,N, θ), we let Alt(v, z, η) be the set of
instances that share the same instance parameters except for θ and satisfies ⟨z, θ′ − θ⟩ = η for all
v′ = (ρ,S,A, ϕ,N, θ′) ∈ Alt(v, z, η). The following lemma states a useful property that relates the
Alt set to the “approximate KL divergence” D̃.
Lemma 4.2. Let G be an arbitrary orthonormal basis of Span{ϕ(k′, i′)− ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0}. Also let [w]G denote the column vector that represents w under basis G
(Meyer, 2000, Chapter 4). Define the matrix

V :=
∑

k∈S,i,j∈A

Nk,i,j [ϕ(k, i)− ϕ(k, j)]G [ϕ(k, i)− ϕ(k, j)]⊤G . (15)

Then for any consistent instance v = (ρ,S,A, ϕ,N, θ), η ∈ R, and z ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) :
(k′, i′, j′) ∈ S ×A2 and Nk′,i′,j′ > 0},

min
v′∈Alt(v,z,η)

D̃(v, v′) =
η2

∥[z]G∥2V −1

. (16)

Lemma 4.2 provides an estimate of the KL divergence between instance v and v′ ∈ Alt(v, z, η).
This, in turn, provides a convenient means to apply the ubiquitous change of measure technique to
derive the lower bound.

In addition, let (̄i, k̄) be the state-action pair that attains maximum in the definition of hardness in
Eqn. (10). Define the subset of instances

Q =

{
v consistent :

γk̄,̄i
∆2
k̄,̄i

≥ 4
γk,i
∆2
k,i

∀ (k, i) ̸= (k̄, ī) and i ̸= i∗k

}
. (17)

We are now ready to state our lower bound.
Theorem 4.3. (Instance-Dependent Lower Bound) For any instance v = (ρ,S,A, ϕ,N, θ) ∈ Q,
there exists another instance v′ = (ρ,S,A, ϕ,N, θ′) with H(v) ≤ H(v′) ≤ 8H(v) such that for all
sufficiently large n,

inf
Π

{
EΠ
v [Rn] + EΠ

v′ [Rn]
}
≥ exp

(
− n

Clo ·H(v)

)
,

where Clo > 0 is a universal constant.
The alternative instance v′ that appears in Theorem 4.3 is judiciously chosen to be v′ ∈
Alt(v, ϕ(k̄(v), ī(v))−ϕ(k̄(v), i∗

k̄
(v)), 2∆k̄(v),̄i(v)(v)). In particular, it is designed so that the optimal

action i∗
k̄

under state k of instance v will become suboptimal under instance v′, and its suboptimality
gap is at least ∆k̄(v),̄i(v)(v) under v′.

Theorem 4.3 is an instance-dependent lower bound for all instances in the set Q. The condition that
defines Q in Eqn. (17) ensures that the hardness quantities H(v) and H(v′) have the same order.
Since instances in Q cover all possible hardness values H(v) (i.e., for every hardness values h > 0,
there exists an instance in Q of hardness h), we conclude that for any (small) ϵ ∈ (0, 1), there does
not exist any algorithm Π that achieves

EΠ
v [Rn] = exp

(
− Ω

( n

H(v)1−ϵ

))
for all consistent instance v. (18)

In this sense, the exponential decay rate of the simple regret of RL-LOW presented in Theorem 3.3
is asymptotically tight (or optimal) and the exponential dependence on the hardness parameter H(v)
is necessary, fundamental, and cannot be improved upon.

5 EXTENSION TO (ε, δ)-DIFFERENTIAL PRIVACY (DP)

In this section, we extend our algorithm RL-LOW to be amenable to (ε, δ)-differential privacy with
labels. To formalize our results, we provide the definition of (ε, δ)-DP, following Dwork et al. (2014).
We say that two sets of preference labels, σ := {σi}ni=1 and σ′ := {σ′

i}ni=1 are neighboring if there
exists s ∈ [n] such that σs ̸= σ′

s and σj = σ′
j for all j ̸= s.

7
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Definition 5.1. (Differential Privacy with labels) Fix any label-free dataset {(si, a(1)i , a
(2)
i )}ni=1.

A (randomized) algorithmM : {0, 1}n → AS (that takes as inputs a set of labels and outputs a
set of actions, one for each state) satisfies (ε, δ)-DP if for all neighboring labels σ := {σi}ni=1 and
σ′ := {σ′

i}ni=1,
P(M(σ) ∈ Z) ≤ eε P(M(σ′) ∈ Z) + δ ∀Z ⊂ AS . (19)

Note that Definition 5.1 primarily concerns protecting the privacy of users’ labels. In particular,
the DP mechanism guarantees that any alteration in a user’s label must not substantially affect the
output of our algorithm. Otherwise, there exists a risk that a user’s label might be inferred through
the algorithm’s output. Our definition of differential privacy (DP) aligns with that of Chowdhury et al.
(2024).

We now adapt our RL-LOW to (ε, δ)-DP by using the Gaussian mechanism (Dwork et al., 2014).
Firstly, we introduce the private version of the empirical success rate (analogous to Bk,i,j in (5))
which we denote as

B̃k,i,j :=
1

nNk,i,j

n∑
ι=1

σι1{sι = k, a(1)ι = i, a(2)ι = j}+ξ̃k,i,j ∀ k ∈ S, (i, j) ∈ A2 with Nk,i,j > 0,

where ξ̃k,i,j is an independent (across k, i, and j) Gaussian noise with zero mean and variance
2 log(1.25/δ)
(εnNk,i,j)2

, and we let B̃k,j,i := 1− B̃k,i,j . If Nk,i,j = Nk,j,i = 0, we define B̃k,i,j = B̃k,j,i = 0.

Again, analogously to the operation in (6), we clip B̃k,i,j to form

B̃CLP
k,i,j = CLIPL(B̃k,i,j) (20)

Similarly to Eqn. (8), the perturbed estimated relative rewards are given as follows

r̃k,i,j =
∑

k′∈S,(i′,j′)∈A2

w
(k,i,j)
k′,i′,j′ log

( B̃CLP
k′,i′,j′

1− B̃CLP
k′,i′,j′

)
, (21)

where w(k,i,j) is defined in Definition 3.1. Finally, the empirical best action is îk ∈ Ĩk := {i ∈
A : r̃k,i,j ≥ 0,∀ j ̸= i}. A similar argument as Proposition 3.2 shows that îk exists; see details in
Appendix E for the details. The algorithm described above is a differentialy private version of the
RL-LOW algorithm and hence, it is named DP-RL-LOW.

DP-RL-LOW with the carefully chosen variance of ξk,i,j fulfils the requirement of (ε, δ)-DP.
Proposition 5.2. Given privacy parameters ε, δ ∈ (0, 1), DP-RL-LOW satisfies (ε, δ)-DP.

The proof of Proposition 5.2 follows exactly along the lines of the proof of Dwork et al. (2014,
Theorem A.1) and is omitted. We next upper bound the expected simple regret of DP-RL-LOW.
Theorem 5.3. (Instance-Dependent Upper Bound for DP-RL-LOW) Given any consistent instance
v, for all sufficiently large n,

EDP-RL-LOW
v [Rn] ≤ exp

(
− CDP ·

( n

H(v)
∧
( n

H
(ε,δ)
DP (v)

)2))
, (22)

where CDP > 0 is a universal constant, and

H
(ε,δ)
DP (v)= max

k∈S,i∈A:i̸=i∗k

√
log( 1.25δ )γDP

k,i
√
ε∆k,i

and γDP
k,i =

∑
k′,i′,j′∈A:Nk′,i′,j′>0

(
w

(k,i,i∗k)
k′,i′,j′

Nk′,i′,j′

)2

. (23)

Consequently,

lim sup
n→∞

1

n
logEDP-RL-LOW

v [Rn] ≤ −
CDP

H(v)
. (24)

The limiting statement in (24) implies that DP-RL-LOW has the same order of the exponential
decay rate as its non-differentially privacy counterpart RL-LOW when n is sufficiently large; in
particular, n > (H

(ε,δ)
DP (v))2/H(v) suffices to nullify the effect of the privacy requirement. In other

words, in the sense of the exponent, privacy comes “for free” for sufficiently large offline datasets.
We also compute a worst-case upper bound of DP-RL-LOW in Appendix H.2. It is of the form

O( 1√
n
+

√
log(1.25/δ)

εn ), and resembles that in Qiao and Wang (2024) without preference feedback.

8
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6 EXTENSION TO THE MDP SETTING

Similar to Zhu et al. (2023, Section 1), our definition of simple regret is based on the static state
distribution ρ in the previous sections. In this section, we extend our results to the MDP setting
when the transition probabilities P (k′|k, i) for (k′, k, i) ∈ S2 × A are known (Zhu et al., 2023,
Section 5). Given the transition probabilities P (k′|k, i) and an MDP policy π, we let dπ denote
the state distribution (Sutton and Barto, 2018, Section 9.2) under π. Without loss of generality, we
assume the MDP policies are deterministic, and we denote π(k) ∈ A to be the output action of π
under state k. Let π∗ denote the optimal MDP policy that is assumed to be unique, i.e.,

π∗ = argmax
π

Ek∼dπ
[
rk,π(k)

]
.

Then, we define the simple regret of any MDP policy π as

RMDP(π) = Ek∼dπ∗
[
rk,π∗(k)]− Ek∼dπ

[
rk,π(k)

]
. (25)

We now adapt our RL-LOW to the MDP setting by redefining the output as an MDP policy:

π̂out ∈ argmax
π

Ek∼dπ [r̂k,π(k),j† ],

where j† ∈ A is arbitrarily fixed (e.g., j† = 1). We simply call this adaptation RL-LOW-MDP. The
upper bound on its simple regret is stated as follows.
Theorem 6.1. (Instance-Dependent Upper Bound for RL-LOW-MDP) Given any consistent
instance v, for all sufficiently large n,

ERL-LOW-MDP
v

[
RMDP(π̂out)

]
≤ exp

(
− n

CMDP ·HMDP(v)

)
(26)

where CMDP > 0 is a universal constant,

HMDP(v) := max
π ̸=π∗

γMDP(π)

(Ek∼dπ∗
[
rk,π∗(k)]− Ek∼dπ

[
rk,π(k)

]
)2
,

and

γMDP(π) := max
k:π(k)̸=π∗(k)

∑
k′,i′,j′:Nk′,i′,j′>0

(w
(k,π(k),π∗(k)
k′,i′,j′ )2

Nk′,i′,j′
.

In the presence of the MDP, HMDP(v), which is a generalization of H(v) in Eqn. (10), turns out to
be the instance-dependence hardness parameter of the problem. The proof of Theorem 6.1 is provided
in Appendix G. It is important to observe that there exist MDPs (e.g., P (k|k, i) = 1 or S = 1) such
that Theorem 6.1 particularizes to Theorem 3.3. Moreover, the lower bound in Theorem 4.3 is also
applicable to the present more general MDP setting when the transition probability kernel P (k′|k, i)
is independent of (k, i) and k′ follows the distribution ρ. Admittedly, the complexity of the problem
increases substantially when the transition probabilities are unknown; this aspect warrants further
investigation in future studies. Our findings serve as an initial step in exploring instance-dependent
bounds in the context of offline RLHF.

7 NUMERICAL SIMULATIONS

In this section, we present some numerical simulations of our algorithm RL-LOW and and its
differentially private counterpart DP-RL-LOW. We compare them to the state-of-the-art (non-private
algorithm) PESSIMISTIC MLE developed by Zhu et al. (2023). We conduct the experiments on a
synthetic dataset. Specifically, we set the number of states S = 2, the number of actions A = 10,
the dimensionality of the data d = 5, the unknown parameter vector θ = [1, 1, 1, 1, 1]⊤, and the
state distribution ρ = [0.4, 0.6]. The feature vector of each action is generated as follows: For the
i-th action of state k ∈ {1, 2}, we first uniformly generate a d-dimentional vector ϕ′(k, i) with all
non-negative elements and ∥ϕ′(k, i)∥1 = 1. Then, for each state k ∈ {1, 2}, we set the feature
vector of i-th action as ϕ(k, i) = ϕ′(k, i) − 0.01(i − 1)θ. That is, in both state 1 and 2, the best
action is the first action, and the suboptimality gap of the i-th action is 0.05i. In addition, for both
states k ∈ {1, 2} and i < j, we set Nk,i,j =

1
A(A−1) , i.e., the proportions of comparisons for this

9
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Figure 1: Comparison of RL-LOW and DP-RL-LOW to PESSIMISTIC MLE on average simple
regret and standard deviation (shaded area). In the left figure, we set δ = 0.2 and ε = 0.9 for
DP-RL-LOW. In the right figure, we set n = 400 for all policies.

instance are uniform. In the simulation, we use ⌈Nk,i,jn⌉ as the number of samples involved in the
comparison between actions i and j under state k.

As for the hyperparameters of PESSIMISTIC MLE, we follow the default setting of Zhu et al. (2023,
Section 3). In addition, PESSIMISTIC MLE only works under the assumption that ⟨1, θ⟩ = 0 (Zhu
et al., 2023, Assumption 2.1). Therefore, when running the experiments of PESSIMISTIC MLE,
we further set d = 6, θ = [1, 1, 1, 1, 1,−5] and the 6-th element of each feature vector is set to 0.
Then, this new instance is mathematically equivalent to the original instance and additionally satisfies
Assumption 2.1 of Zhu et al. (2023) which is needed for PESSIMISTIC MLE.

The simulation results are shown in Figure 1. We run each experiment 200 times, and report the
average and standard deviation. From Figure 1 (left), we observe that RL-LOW is inferior to
PESSIMISTIC MLE for small n. However, since RL-LOW is instance-dependent optimal in the expo-
nential decay rate and in its dependence on the hardness parameter H(v), the experimental findings
depicted in Figure 1 (left) corroborate the empirical superiority of our proposed RL-LOW algorithm
over PESSIMISTIC MLE for n sufficiently large (n > 150 suffices). This observation underscores
the efficacy of our novel algorithmic design based on locally optimal weights. Furthermore, from
Figure 1 (left), we also observe that as the sample size n increases, the performance of DP-RL-LOW
converges to that of RL-LOW, consistent with our theoretical findings in Theorem 5.3.

Lastly, as shown in Figure 1 (right) and the curve of DP-RL-LOW of 1 (left), it is evident that achiev-
ing comparable performance between RL-LOW and DP-RL-LOW may necessitate substantially
larger sample sizes n when considering small privacy parameters of ε and δ. This observation is
again consistent with our theoretical findings in Theorem 5.3.

8 CONCLUDING REMARKS

This paper addresses the problem of offline RL with preference feedback, aiming to determine
the optimal action for each state to minimize the simple regret. We introduced a novel algorithm,
RL-LOW, which achieves a simple regret of exp(−Ω(n/H(v)), where n represents the number
of data samples and H(v) characterizes an instance-dependent hardness parameter related to the
suboptimality gaps of each action. Additionally, we established a first-of-its-kind instance-dependent
lower bound for offline RL with preference feedback, demonstrating the order-wise optimality of RL-
LOW (in the exponential decay rate) through the matching of lower and upper bounds on the simple
regret. To address privacy concerns, we extended RL-LOW to be amenable to (ε, δ)-differential
privacy, revealing that the hardness parameter H(v) remains unchanged in the asymptotic regime as n
tends to infinity. This underscores RL-LOW’s effectiveness and robustness in preserving the privacy
of observed rewards. Our focus on establishing instance-dependent bounds sets this work apart from
previous research that focuses primarily on worst-case regret analyses in offline RL with preference
feedback. Some interesting directions for future research include extending our work to incorporate
general reward functions (Zhan et al., 2024). In particular, a natural question concerns whether or not
there exist an algorithm that is instance-dependent and order-optimal for general reward functions?

10
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Supplementary Material for
“Order-Optimal Instance-Dependent Bounds for Offline

Reinforcement Learning with Preference Feedback”

A ADDITIONAL DETAILS OF INTRODUCTION

A.1 MORE RELATED WORKS BEYOND PBRL

Offline RL without preference feedback The domain of offline RL has been extensively researched
over an extended period. Here, We focus on the recent works. Chen and Jiang (2019) revisits and
provides theoretical insights into the essential but underexplored assumptions of mild distribution
shift and strong representation conditions in value-function approximations, advancing their necessity
and applicability. Xie et al. (2021) bridges the gap between online and offline reinforcement learning
by introducing the policy finetuning problem, proposing algorithms that leverage a reference policy
close to the optimal policy to achieve sample-efficient learning in episodic MDPs. Yin et al. (2022)
investigates the statistical limits of offline reinforcement learning using linear models, introducing
the variance-aware pessimistic value iteration method to improve learning bounds with offline data.
More recently, Wang et al. (2022) enhances the understanding of gap-dependent sample complexity
in offline reinforcement learning, demonstrating improved rates under specific policy coverage
conditions and providing algorithms nearly matching lower bounds. Similarly, Nguyen-Tang et al.
(2023) investigated gap-dependent analysis for offline RL, and they achieved fast rates and zero
sub-optimality under specific conditions, and providing both gap-dependent upper and lower bounds
for performance with linear function approximation.

Overall, our study identifies a significant oversight in previous research: the absence of preference
feedback consideration. Consequently, our work represents the inaugural investigation into instance-
dependent bounds within the context of offline reinforcement learning incorporating preference
feedback.

Dueling Bandits The Dueling Bandits problem was first introduced by Yue and Joachims (2009),
sparking a substantial body of subsequent research on the topic. In this section, we highlight some
relevant works. Inspired by the classical contextual bandits problem, (Dudík et al., 2015) extend
the framework of duel bandits into a contextual setting, and they propose a new concept of von
Neumann winner, a game-theoretic solution concept that addresses limitations of the Condorcet
winner, along with three efficient algorithms for its online learning and approximation from data.
In contrast, (Saha, 2021) explore a distinct aspect of contextual dueling bandits through their
proposed Subsetwise-Preference Feedback Model, and the author presents two algorithms for pairwise
preferences, achieving near-optimal regret bounds, and extending the analysis to general subsetwise
preferences, demonstrating that the fundamental performance limits remain consistent regardless
of the subset size. However, this study mainly focuses on the worst-case analysis. More recently,
(Di et al., 2024) addressed the contextual dueling bandits with adversarial feedback, proposing a
robust algorithm using uncertainty-weighted maximum likelihood estimation. Nonetheless, this work
focuses on the adversarial setting, whereas our work examines the stochastic setting.

A.2 A MOTIVATIONAL EXAMPLE OF LABEL-DP

In the development of question-answering (QA) systems, a common approach for improving response
quality involves engaging users in a labeling process where they are asked to provide preference
labels. Specifically, users evaluate pairs of system-generated responses to a given question and
indicate which response they prefer. This method, often referred to as pairwise preference labeling,
is integral to training RLHF algorithms that aim to optimize the relevance and utility of answers
provided by QA systems.

Given our understanding of the nature of this process, our research emphasizes the importance of
protecting the confidentiality of user-submitted preference labels. Without any concerted attempt to
protect privacy, these labels, which directly reflect individual opinions or biases toward specific types
of responses, can potentially reveal sensitive information, e.g., their preferences for some specific
political parties. Therefore, we augment our RL-LOW with a label-DP protection mechanism to
mitigate the risk of privacy breaches from the labels..

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPLANATION FOR THE HARDNESS PARAMETER H(v)

The hardness parameter H(v) is inversely proportional to the square of the suboptimality gaps across
various states and actions. Specifically, a smaller suboptimality gap implies an increased hardness
parameter, indicating that the instance is more challenging to learn. This relationship underscores the
significance of the suboptimality gap as a critical measure in evaluating the complexity and learning
difficulty of each instance.

For example, let’s suppose S = 1, A = 2, r1,1 = 0 and r1,2 = 1. Given offline data with of size n (i.e.,
these are n history records for "action 1 wins action 2" or "action 2 wins action 1"), if the learner picks
the action with the most winning records (as it does in our algorithm RL-LOW), then by Hoeffding’s
inequality, it will suffer an upper bound of expected simple regret of exp(−C · n

(r1,2−r1,1)−2 ) for a
constant C that does not depend on r1,2 − r1,1 (in fact this upper bound is also tight in the hardness
parameter according to our lower bound). Notice the exponent is Θ( −n

(r1,2−r1,1)−2 ), and the hardness
parameter H(v) is exactly (r1,2 − r1,1)

−2 under this instance.

C USEFUL FACTS

In this section, we collate some useful facts that will be used in the subsequent proofs.
Definition C.1 (SubGaussian norm). A random variable X is subGassian if it has a finite subGaussian
norm denoted as ∥X∥ψ2 and defined as

∥X∥ψ2 = inf

{
c > 0 : E

[
exp

(
X2

c2

)]
≤ 2

}
< +∞.

Definition C.2 (Variance proxy). The variance proxy of a subGaussian random variable X is denoted
as ∥X∥2vp and defined as

∥X∥2vp := inf
{
s2 > 0 : E [exp((X − E[X])t)] ≤ e

s2t2

2 , ∀ t > 0
}
.

Lemma C.3 (Linear combination of subGaussian random variables). Let X1, . . . , Xn be independent
subGaussian random variables, where the variance proxy of Xi is σ2

i . Then, for any a1, . . . , an ∈ R,
the random variable

∑n
i=1 aiXi is a subGaussian random variable with variance proxy σ2 =∑n

i=1 a
2
iσ

2
i .

Lemma C.4. (Tail bound of subGassian random variables) Suppose X is subGaussian with variance
proxy σ2. Then, for any ϵ > 0, we have

Pr(X − E[X] ≥ ϵ) ≤ exp
(
−ϵ2/

(
2σ2
))

,

and
Pr(X − E[X] ≤ −ϵ) ≤ exp

(
−ϵ2/

(
2σ2
))

,

Lemma C.5. (Adapted from (Vershynin, 2018, Proposition 2.5.2)) For any subGaussian random
variable X ,

∥X∥vp ≤ C∥X∥ψ2
,

where C ≤ 6
√
2e · (3

√
log 2 + 1). If E[X] = 0, then we have

∥X∥ψ2
≤
√
6∥X∥vp.

D PROOF OF PROPOSITION 2.3

Lemma D.1. For any inconsistent instance v = (ρ,S,A, ϕ,N, θ), there exists (k, i) ∈ S ×A with
i ̸= i∗k such that

ϕ(k, i)− ϕ(k, i∗k) /∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk′,i′,j′ > 0, (k′, i′, j′) ∈ S ×A2}.

Proof. We prove this result by contradiction. Fix any inconsistent instance v = (ρ,S,A, ϕ,N, θ).
Assume that for all (k, i) ∈ S ×A with i ̸= i∗k, it holds

ϕ(k, i)− ϕ(k, i∗k) ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk,i,j > 0, (k′, i′, j′) ∈ S ×A2}. (27)
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By the fact that ϕ(k, i)− ϕ(k, j) = (ϕ(k, i)− ϕ(k, i∗k))− (ϕ(k, j)− ϕ(k, i∗k))), Eqn. (27) implies
that for any (k, i, j) ∈ S ×A×A with i ̸= j, it holds

ϕ(k, i)− ϕ(k, j) ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk,i,j > 0, (k′, i′, j′) ∈ S ×A2}, (28)

which is a contradiction to that v is inconsistent. This completes the proof of Lemma D.1.

Proof of Proposition 2.3. Fix any inconsistent instance v = (ρ,S,A, ϕ,N, θ). By Lemma D.1, there
exists (k, i) ∈ S ×A with i ̸= i∗k such that

ϕ(k, i)− ϕ(k, i∗k) /∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk′,i′,j′ > 0, (k′, i′, j′) ∈ S ×A2}.

That is, there exists a vector z ∈ Rd such that

⟨z, ϕ(k, i)− ϕ(k, i∗k)⟩ = −2⟨θ, ϕ(k, i)− ϕ(k, i∗k)⟩

and for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0,

⟨z, ϕ(k′, i′)− ϕ(k′, j′)⟩ = 0.

Finally, we let θ′ = θ + z, and instance v′ = (ρ,S,A, ϕ,N, θ′). By the fact that ⟨θ, ϕ(k′, i′) −
ϕ(k′, j′)⟩ = ⟨θ′, ϕ(k′, i′)− ϕ(k′, j′)⟩ for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0 we get that for
all n ≥ 1

DKL(P
(n)
v , P

(n)
v′ ) = 0.

Therefore, we get that P (n)
v is equal to P

(n)
v′ . In addition, by definition of Rn, we get that

Eπv [Rn] + Eπv′ [Rn]

= Eπv

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ⟩

)]
+ Eπv′

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ

′⟩
)]

(a)
= Eπv

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ

′⟩
)]

(29)

≥ ρkmin
i∈A

[
max
j∈A
⟨ϕ(k, j)− ϕ(k, i), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, i), θ′⟩

]
,

where (a) follows from the fact that P (n)
v is equivalent with P

(n)
v′ .

Further, by the definition of v and v′, we get that

min
i∈A

[
max
j∈A
⟨ϕ(k, j)− ϕ(k, i), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, i), θ′⟩

]
> 0,

and recall that ρk > 0. This completes the proof of Proposition 2.3

E PROOF OF PROPOSITION 3.2 AND MORE DETAILS ON COMPUTATIONAL
COMPLEXITY

E.1 PROOF OF PROPOSITION 3.2

We first provide analytical solutions of w(k,i,j) and γk,i,i∗k .

Lemma E.1. Fix any consistent instance v = (ρ,S,A, ϕ,N, θ). Recall the definitions of w(k,i,j)

and γk,i,i∗k in Eqn. (7) and Eqn. (10), respectively. Then, for any (k, i) ∈ S ×A with i ̸= i∗k,

γk,i,i∗k = ∥[ϕ(k, i∗k − ϕ(k, i)]G∥2V −1 (30)

and for any (k, i, j) ∈ S ×A2 with i ̸= j,

w
(k,i,j)
k′,i′,j′ = Nk′,i′,j′ [ϕ(k

′, i′)− ϕ(k′, j′)]⊤G V
−1[ϕ(k, i)− ϕ(k, j)]G (31)

where V and G are as defined in Lemma 4.2.
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Proof of Lemma E.1. Fix any (k, i, j) ∈ S ×A2 with i ̸= j. By definition, the optimization problem
of Eqn. (7) is equivalent to

min
u∈RS×A×A

∑
k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′
(32)

subject to

[ϕ(k, i)− ϕ(k, j)]G =
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

uk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]G .

The Lagrangian of the above constrained optimization problem is

L(u, λ) =
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′
+ λ⊤

(
[ϕ(k, i)− ϕ(k, j)]G

−
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

uk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]G

)
,

for u ∈ RS×A×A and λ ∈ R|G|. Then, by solving dL
dλ = 0 and dL

duk′,i′,j′
= 0 for all (k′, i′, j′) ∈

S ×A2 with Nk′,i′,j′ > 0, we obtain that the minimum of (32) is

λ = −2V −1[ϕ(k, i)− ϕ(k, j)]G

and
uk′,i′,j′ = Nk′,i′,j′ [ϕ(k

′, i′)− ϕ(k′, j′)]⊤G V
−1[ϕ(k, i)− ϕ(k, j)]G (33)

for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0. That is, for any (k, i) ∈ S ×A with i ̸= i∗k,

γk,i,i∗k = ∥[ϕ(k, i∗k)− ϕ(k, i)]G∥2V −1 (34)

This completes the desired proof.

Then, we are ready to prove Proposition 3.2

Proof of Propostion 3.2. By Lemma E.1, we get that under RL-LOW, for any (k, i, j, j2) ∈ S ×A3,

r̂k,i,j + r̂k,j,j2

=
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, i)− ϕ(k, j)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)

+
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, j)− ϕ(k, j2)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)

=
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, i)− ϕ(k, j2)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)
= r̂k,i,j2 , (35)

which implies that |Îk| ≥ 1 and

argmax
i∈A

r̂k,i,j1 = argmax
i∈A

r̂k,i,j2 = Îk for any j1, j2 ∈ A. (36)

This completes the proof of Proposition 3.2.

Following the same lines as the proof of Propostion 3.2, we get the corollary below.
Corollary E.2. For any consistent instance v and using estimate of the best action under each state
k as prescribed by DP-RL-LOW, we have |Ĩk| ≥ 1 and

argmax
i∈A

r̃k,i,j1 = argmax
i∈A

r̃k,i,j2 = Ĩk for any j1, j2 ∈ A. (37)
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E.2 COMPUTATIONAL COMPLEXITY

E.2.1 COMPUTATIONAL COMPLEXITY OF RL-LOW AND DP-RL-LOW

With Proposition 3.2, it is not necessary to compute all values of r̂k,i,j for each (k, i, j) ∈ S ×A2.
Instead, we only need to compute r̂k,i,j† for each (k, i) ∈ S ×A where j† ∈ A is (arbitrarily) fixed
(e.g., j† = 1), and let îk ∈ argmaxi∈A r̂k,i,j† .

Note that by Lemma E.1, we have

r̂k,i,j† =
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)−ϕ(k′, j′)]⊤G V −1[ϕ(k, i)−ϕ(k, j†)]G log

( BCLP
k′,i′,j′

1−BCLP
k′,i′,j′

)
.

Then, if we pre-calculate a global vector of
∑

(k′,i′,j′)∈S×A2 Nk′,i′,j′ [ϕ(k
′, i′) −

ϕ(k′, j′)]⊤G V
−1 log

(
BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)
, we can compute each r̂k,i,j† for (k, i) ∈ S × A in O(d)

time complexity. Similarly, r̃k,i,j† in DP-RL-LOW can be computed through an analogous
procedure. Hence, the overall computational complexity of RL-LOW and DP-RL-LOW are
O(SAd + nd2 + d3), where the term “SAd” corresponds to the natural process of scanning the
feature vectors for all state-action pairs, and the terms “nd2 + d3” corresponds to compute V −1 in
above.

The computational complexity’s dependence on “SAd ” is inevitable in our current framework, as
the generation of the output îk is required for all k ∈ S. Nonetheless, in an alternative setting in
which the set of best actions to be estimated {̂ik ∈ A}k∈S is replaced by a parametric function
{̂i(k;ϑ) ∈ A} where a parameter ϑ is to be estimated. In this setting, the previously global vector
can be utilized to represent ϑ. Then, in this setting, the overall computational complexity becomes
O(nd2 + d3), which is required to compute the global vector.

E.2.2 COMPUTATIONAL COMPLEXITY OF RL-LOW-MDP

In RL-LOW-MDP, after each r̂k,i,j† for (k, i) ∈ S ×A is computed, the rest process is the standard
RL problem under the condition that the transition and reward functions are known. Hence, the
overall computational complexity of RL-LOW-MDP is O(SAd+ nd2 + d3 + g(S,A)), where the
term g(S,A) corresponds to the above standard problem that can be solved by asynchronous dynamic
programming or linear programming (Sutton and Barto, 2018). Particularly g(S,A) = O(κSA) by
using asynchronous dynamic programming, and κ is a hyperparameter that represents the average
number of iteration steps, which controls the solution precision.

F PROOF OF LOWER BOUND

Before we prove the lower bound, we first give a useful corollary. The following corollary is a direct
result of Pinsker’s inequality.
Corollary F.1. Fix any C ∈ (0, 1

2 ). For any p, q ∈ (0, 1) with min(p, 1−p) ≥ C and min(q, 1−q) ≥
C, we have

2(p− q)2 ≤ dKL(p, q) ≤
2

C
(p− q)2

where dKL(p, q) denotes the KL divergence between the Bernoulli distributions with parameters of p
and q.

Then, we prove Lemma 4.1 that reveals the KL divergence between instances. Recall that given any
instance v, we let P (n)

v denote the distribution of (σi)ni=1. The following lemma gives an estimation
of the KL divergence between instance v and v′ that share the same parameters but θ.
Lemma 4.1. For any instance v = (ρ,S,A, ϕ,N, θ) and v′ = (ρ,S,A, ϕ,N, θ′), it holds that

2n exp(−4Rmax) ≤
DKL(P

(n)
v ∥P (n)

v′ )

D̃(v, v′)
≤ 2n exp(2Rmax) (38)
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where

D̃(v, v′) =
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2, (39)

and where Rmax = maxk∈S,i∈A max{|⟨ϕ(k, i), θ⟩|, |⟨ϕ(k, i), θ′⟩|} is the maximum absolute reward
in these two instances.

Proof. Fix any consistent instance v = (ρ,S,A, ϕ,N, θ). By the chain rule of the KL divergence,
we have

DKL(P
(n)
v ∥P

(n)
v′ )

= n
∑

k∈S,i,j∈A

Nk,i,jdKL

(
exp(⟨ϕ(k, i), θ⟩)

exp(⟨ϕ(k, i), θ⟩) + exp(⟨ϕ(k, j), θ⟩)
,

exp(⟨ϕ(k, i), θ′⟩)
exp(⟨ϕ(k, i, θ′⟩) + exp(⟨ϕ(k, j), θ′⟩)

)
= n

∑
k∈S,i,j∈A

Nk,i,jdKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)) (40)

where Sig(·) represents the Sigmoid function. By the fact that −2Rmax ≤ ⟨ϕ(k, i)− ϕ(k, j), θ⟩ ≤
2Rmax and−2Rmax ≤ ⟨ϕ(k, i)−ϕ(k, j), θ′⟩ ≤ 2Rmax and that dSig(x)

dx = exp(−x)
(exp(−x)+1)2 , we further

get that

|Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩)− Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)|
≤ |⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩| (41)

and

|Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩)− Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)|
≥ exp(−2Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|. (42)

Then, by Corollary F.1, we get that Eqn. (41) and Eqn. (42) imply that

dKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩))
≤ 2 exp(2Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|2 (43)

and

dKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩))
≥ 2 exp(−4Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|2. (44)

Finally, combining Eqn. (40), Eqn. (43) and Eqn. (44), we complete the proof of Lemma 4.1.

Then, recall that we denote D̃(·, ·) as the approximation of KL divergence between instance
v and v′ that share the same parameter except θ, i.e., for any v = (ρ,S,A, ϕ,N, θ) and
v = (ρ,S,A, ϕ,N, θ′),

D̃(v, v′) :=
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2.

In addition, recall that for any z ∈ Rd, η ∈ R and consistent instance v = (ρ,S,A, ϕ,N, θ), we
denote Alt(v, z, η) as the set of instances that share the same parameter except θ and satisfy

⟨z, θ′ − θ⟩ = η

for all v′ = (ρ,S,A, ϕ,N, θ′) ∈ Alt(v, z, η).

We are ready to prove Lemma 4.2 that reveals a useful property for Alt(·) and D̃(·)
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Lemma 4.2. Let G be an arbitrary orthonormal basis of Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0}. Also let [w]G denote the column vector that represents w under basis G
(Meyer, 2000, Chapter 4). Define the matrix

V :=
∑

k∈S,i,j∈A

Nk,i,j [ϕ(k, i)− ϕ(k, j)]G [ϕ(k, i)− ϕ(k, j)]⊤G .

Then for any consistent instance v = (ρ,S,A, ϕ,N, θ), η ∈ R, and z ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) :
(k′, i′, j′) ∈ S ×A2 and Nk′,i′,j′ > 0},

min
v′∈Alt(v,z,η)

D̃(v, v′) =
η2

∥[z]G∥2V −1

. (45)

and the minimum of (45) is attained in v′ = (ρ,S,A, ϕ,N, θ′) with

θ′ = θ − η

∥[z]G∥2V −1

V −1z.

Proof. By definition, we equivalently write down the optimization problem of Eqn. (45) as follows.

min
x∈Rd

∑
k∈S,i,j∈A

Nk,i,j(⟨[ϕ(k, i)− ϕ(k, j)]G , [x]G⟩)2 (46)

subject to
⟨x, z⟩ = η.

The Lagrangian of the above constrained optimization problem is,

L(x, λ) =
∑

k∈S,i,j∈A

Nk,i,j(⟨[ϕ(k, i)− ϕ(k, j)]G , [x]G⟩)2 + λ(⟨x, z⟩ − η).

By solving dL
dλ = 0 and dL

dxi
= 0 for all i ∈ [d], we attain the minimum of Eqn. (46) atλ = 2η

∥[z]G∥2
V −1

x = − η
∥[z]G∥2

V −1
V −1z+ g,

where g is any vector that is orthogonal with vector space Span{ϕ(k′, i′)− ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0}, which implies

L(z, λ) =
η2

∥[z]G∥2V −1

.

This completes the desired proof.

Lemma F.2. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q. Let

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

Then, it holds{
⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v))

|⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩| ≤ 1
2∆k,i(v) ∀i ̸= i∗k(v) and (k, i) ̸= (k̄(v), ī(v))

(47)

Consequently, 
i∗k(v) = i∗k(v

′) ∀k ̸= k̄(v)

k̄(v) = k̄(v′)

i∗
k̄(v′)

(v′) = ī(v)

(48)
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Proof. Fix any v and v′ as in Lemma F.2. By the definition of v′, we can immediately obtain the first
inequality of Eqn. (47), i.e.,

⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v)). (49)

Then, we will use proof by contradiction to prove the second inequality of Eqn. (47).

Assume that there exists (k̃, ĩ) ∈ S ×A with for all ĩ ̸= i∗
k̃

and (k̃, ĩ) ̸= (k̄(v), ī(v)) such that

|⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩| >

∆k̃,̃i(v)

2
(50)

Then, we let v′′ = (ρ,S,A, ϕ,N, θ′′), where

θ′′ = θ +
(θ − θ′)2∆k̃,̃i(v)

⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩

,

which implies that v′′ ∈ Alt(v, ϕ(k̃, ĩ)− ϕ(k̃, ĩ∗k), 2∆k̃,̃i(v)). Note that from Lemma 4.2, we have

D̃(v, v′) =
4∆k̄(v),̄i(v)(v)

2

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗
k̄(v)

)]G∥2V −1

, (51)

where V and G are as defined in Lemma 4.2. In addition, by definition, we also can get that

D̃(v, v′′) =

(
2∆k̃,̃i(v)

⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩

)2

· D̃(v, v′)

(a)
< 16D̃(v, v′)

(b)
<

16∆k̄(v),̄i(v)(v)
2

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗
k̄(v)

)]G∥2V −1

(c)
<

64

γk̄(v),̄i(v)(v)
(52)

where (a) follows from Eqn. (50) and (b) follows from Eqn. (51), and (c) follows from Lemma E.1.

Similarly, from Lemma 4.2, we get that

min
u∈Alt(v,ϕ(k̃,̃i)−ϕ(k̃,i∗

k̃
),2∆k̃,̃i(v))

D̃(v, u) =
4∆k̃,̃i(v)

2

∥[ϕ(k̃, ĩ)− ϕ(k̃, i∗
k̃
)]G∥2V −1

=
4

γk̃,̃i(v)
(53)

By the fact that v′′ ∈ Alt(v, ϕ(k̃, ĩ) − ϕ(k̃, i∗
k̃
)) as well as Eqn. (27) and Eqn. (28), we further get

that
4

γk̃,̃i(v)
<

64

γk̄(v),̄i(v)(v)
.

That is, 16γk̃,̃i(v) > γk̄(v),̄i(v)(v), which contradicts the fact that v ∈ Q.

Hence, for all (k, i) ∈ S ×A with ∀ĩ ̸= i∗
k̃

and (k, i) ̸= (k̄(v), ī(v)), we have

|⟨ϕ(k, i∗k(v))− ϕ(k̄(v), ī(v)), θ − θ′⟩| ≥ 2∆k,i(v)

Consequently, we have 
i∗k(v) = i∗k(v

′) ∀k ̸= k̄(v)

k̄(v) = k̄(v′)

i∗
k̄(v′)

(v′) = ī(v)

This completes the proof of Lemma F.2.
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Lemma F.3. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q. Let

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

Then, it holds
H(v) ≤ H(v′) ≤ 8H(v).

Proof. Fix any v and v′ as in Lemma F.2. Note that from Lemma F.2, we get that instance v and
instance v′ share the same optimal action for the state k ̸= k̄ and the optimal action of state k̄(v)
is ī(v) under the instance v′, i.e., i∗

k̄(v′)
(v′) = ī(v) and i∗k(v) = i∗k(v

′) for all k ̸= k̄(v). Then, by
definition, the hardness of instance v′ is

H(v′) = max
k∈S,i∈A:i ̸=i∗k(v′)

γk,i(v
′)

∆2
k,i(v

′)

(a)
= max

{
max

k∈S,i∈A:i ̸=i∗k(v′),k ̸=k̄(v)

γk,i(v)

∆2
k,i(v

′)
, max
i∈A:i ̸=ī(v),k=k̄(v)

γk,i(v
′)

∆2
k,i(v

′)

}
where (a) follows the fact that i∗k(v) = i∗k(v

′) for all k ̸= k̄(v) and both instances v and v′ share the
same parameters of ϕ and N , which implies γk,i(v) = γk,i(v

′) for all k ̸= k̄(v).

Then, by the fact that |⟨ϕ(k, i∗k(v)) − ϕ(k, i), θ − θ′⟩| ≤ 1
2∆k,i(v) for all i ̸= i∗k(v) and (k, i) ̸=

(k̄(v), ī(v)) from Lemma F.2, we get that

max
k∈S,i∈A:i ̸=i∗k(v′),k ̸=k̄(v)

γk,i(v)

∆2
k,i(v

′)
≤ max
k∈S,i∈A:i̸=i∗k(v

′),k ̸=k̄(v)

4γk,i(v)

∆2
k,i(v)

≤ 4H(v) (54)

Further, by the fact that ⟨ϕ(k, i∗k(v)) − ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v))
Lemma F.2, we get that

max
i∈A:i ̸=ī(v),k=k̄(v)

γk,i(v
′)

∆2
k,i(v

′)

= max

{
γk̄(v),̄i(v)(v)

∆2
k̄(v),̄i(v)

(v)
, max
i∈A:i ̸=ī(v),i̸=i∗

k̄(v)
(v)

γk̄(v),i(v
′)

∆2
k̄(v),i

(v′)

}

= max

{
H(v), max

i∈A:i ̸=ī(v),i̸=i∗
k̄(v)

(v)

γk̄(v),i(v
′)

∆2
k̄(v),i

(v′)

}
(a)
= max

{
H(v), max

i∈A:i̸=ī(v),i̸=i∗
k̄(v)

(v)

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

∆2
k̄(v),i

(v′)

}
(55)

where (a) follows from Lemma E.1, V and G are as defined in Lemma 4.2. Similarly, by the fact
that |⟨ϕ(k, i∗k(v)) − ϕ(k, i), θ − θ′⟩| ≤ 1

2∆k,i(v) ∀i ̸= i∗k(v) and (k, i) ̸= (k̄(v), ī(v)), we obtain
for i ∈ A with i ̸= ī(v), i ̸= i∗

k̄(v)
(v)

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

∆2
k̄(v),i

(v′)
≤

4∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2

=
4∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗

k̄(v)
(v)) + ϕ(k̄(v), i∗

k̄(v)
(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2

≤
4(∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗

k̄(v)
(v))]G∥2V −1 + ∥[ϕ(k̄(v), i∗k̄(v)(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2

≤ 8H(v). (56)

Finally, combining Eqn. (54), Eqn. (55) and Eqn. (56), we complete the proof of Lemma F.3.
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With the ingredients of the above lemmas, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q and

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

By Lemma F.3, we get that H(v′) ≤ H(v) ≤ 8H(v′). By Lemma 4.2, we get that

D̃(v, v′) =
∥[ϕ(k̄(v), i∗

k̄
(v))− ϕ(k̄(v), ī(v))]G∥2V −1

4∆2
k̄(v),̄i(v)

(v)

=
1

4H(v)
,

where G and V are as defined in Lemma 4.2. Further, by Lemma 4.1 and Lemma F.2, we get that for
any n > 0

DKL(P
(n)
v ∥P

(n)
v′ ) ≤ 2 exp(2L) · nD̃(v, v′)

=
n

2 exp(−2L)H(v)
. (57)

Then, we let ∆̄ be the minimum suboptimality of state k̄(v) in both instances v and v′, i.e.,

∆̄ = min
i∈A

[
max
j∈A
⟨ϕ(k̄(v), j)− ϕ(k̄(v), i), θ⟩+max

j∈A
⟨ϕ(k̄(v), j)− ϕ(k̄(v), i), θ′⟩

]
By the definitions of v and v′, we can obtain that ∆̄ > 0. Then, we get that for any algorithm Π

EΠ
v [Rn] + EΠ

v′ [Rn] ≥ ρk̄(v)∆̄(1−DTV(P
(n)
v , P

(n)
v′ )) (58)

(a)

≥ 1

2
ρk̄(v)∆̄ exp(−DKL(P

(n)
v ∥P

(n)
v′ ))

(b)

≥ 1

2
ρk̄(v)∆̄ exp

(
− n

2 exp(−2L)H(v)

)
,

where DTV(·, ·) denotes the total variance distance, and (a) follows from Bretagnolle–Huber inequal-
ity (Tsybakov, 2009, Lemma 2.6) and (c) follows from Eqn. (57). Finally, for all sufficiently large n,
we have

EΠ
v [Rn] + EΠ

v′ [Rn] ≥ exp

(
− n

Clo ·H(v)

)
,

which completes the proof of Theorem 4.3.

G PROOF OF UPPER BOUNDS

Lemma G.1. Let Yn be a random variable sampled from the Binomial distribution with n trials and
probability of success p ∈ [1− β, β] for β ∈ ( 12 , 1). Then,

|E(f(Xn))− f(E(Xn))| ≤
3

(1− β)4
√
n

where Xn = Yn

n and

f(x) =


log( x

1−x ) if x ∈ (1− β, β)

log( β
1−β ) if x ≥ β

log( 1−ββ ) if x ≤ 1− β.

(59)
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Proof of Lemma G.1. For simplicity of notation, we let x0 := E(Xn), which implies x0 = p ∈
[1− β, β]. Then, by the smoothness of f(·) on [1− β, β], we obtain the equivalent expression of f(·)
from the Taylor expansion of f(·) on [1− β, β],

f(x) =


f(x0) + f ′(x0) · (x− x0) +

1
2f

′′(ξx) · (x− x0)
2 if x ∈ [1− β, β]

f(x0) + f ′(x0) · (β − x0) +
1
2f

′′(ξβ) · (β − x0)
2 if x > β

f(x0) + f ′(x0) · (1− β − x0) +
1
2f

′′(ξβ) · (1− β − x0)
2 if x < 1− β,

(60)

where ξx ∈ (min(x, x0),max(x, x0)) only depends on x and x0 in the Talor expansion.

By using the fact that f ′(x0)·(β−x0) = f ′(x0)·(β−x)+f ′(x0)·(x−x0) and f ′(x0)·(1−β−x0) =
f ′(x0) · (1− β − x) + f ′(x0) · (x− x0), we obtain from Eqn. (60) that

|E(f(Xn))− f(E(Xn))|
≤ sup
x∈(1−β,β)

|f ′′(x)| ·Var(Xn) + |f ′(x0)| · E([Xn − β]+) + |f ′(x0)| · E([1− β −Xn]+) (61)

where Var(·) represents the variance of the random variable · and [x]+ = max{x, 0}.
In addition, we note that

E([Xn − β]+) ≤
∫ 1

β

(x− β)P(Xn ≥ x) dx

(a)

≤
∫ 1

β

(x− β) exp(−2n(x− x0)
2) dx

(b)

≤
∫ 1

β

(x− β) exp(−n(x− β)2) dx

≤
∫ 1

β

1√
n
dx

=
1− β√

n
, (62)

where (a) follows from the fact Xn is a subGaussian random variable with variance proxy 1
4n , and (b)

follows from the fact that (x− β) exp(−n(x− β)2) ≤ 1√
n

. Similarly, we also can get that

E([1− β −Xn]+) ≤
1− β√

n
. (63)

Finally,

|E(f(Xn))− f(E(Xn))|
(a)

≤ sup
x∈(1−β,β)

|f ′′(x)| ·Var(Xn) + |f ′(x0)| · E([Xn − β]+) + |f ′(x0)| · E([1− β −Xn]+)

(b)

≤ 1

(1− β)4
·Var(Xn) + f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(c)

≤ 1

(1− β)4
· 1
n
+ f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(d)

≤ 1

(1− β)4
· 1
n
+

1

(1− β)2
· E([Xn − β]+) +

1

(1− β)2
· E([1− β −Xn]+)

(e)

≤ 1

(1− β)4
· 1
n
+

1

(1− β)2
· 2√

n

≤ 3

(1− β)4
√
n
, (64)

where (a) follows from Eqn. (61), (b) follows from Var(Xn) ≤ 1
n , (c) follows from f ′′(x) =

2x−1
(x−1)2x2 for x ∈ (β, 1 − β), (d) follows from f ′(x) = 1

x−x2 for x ∈ (β, 1 − β), and (e) follows
from Eqn. (62) and Eqn. (63).
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Lemma G.2. Let Yn be a random variable sampled from the binomial distribution with parameters
n > 0 and p ∈ [1− β, β] for β ∈ ( 12 , 1). Let Xn = Yn

n . Then, f(Xn) is subGaussian with

∥f(Xn)∥2vp ≤
C

n
,

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and f(·) is defined in Eqn. (59).

Proof. By the definition of Xn, we get that

∥Xn − p∥2vp ≤
1

4n
.

Then, by Lemma C.5, we get that

∥Xn − p∥2ϕ2
≤ 3

2n
.

By the fact that |f ′(x)| ≤ 1
(1−β)2 for x ∈ (1− β, β) and f ′(x) = 0 for x ∈ (0, 1− β)

⋃
(β, 1) , we

get that

∥f(Xn)− f(p)∥2ϕ2
≤ 3

2n(1− β)4
. (65)

Similarly, from Lemma C.5, we further get that

∥f(Xn)− f(p)∥2vp ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2n(1− β)4
. (66)

Note that by definition, we have ∥f(Xn) − f(p)∥2vp = ∥f(Xn)∥2vp, which completes the proof of
Lemma G.2.

With the ingredients of the above lemmas, we are ready to prove the upper bound of our algorithms

Proof of Theorem 3.3. Fix any consistent instance v under RL-LOW. By Lemma G.2 and Lemma C.3,
we get that r̂k,i∗k,i is subGaussian with variance proxy as

∥r̂k,i∗k,i∥
2
vp ≤

Cγk,i
n

, (67)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and β = exp(2L)
1+exp(2L) .

In addition, by Lemma G.1, we get that for any (k′, i′, j′) ∈ S ×A×A with Nk′,i′,j′ > 0,

|ERL-LOW
v [f(Bk′,i′,j′)]− f(ERL-LOW

v [Bk′,i′,j′ ])| ≤
3

(1− β)4
√
n ·Nk′,i′,j′

,

which implies for any (k, i) ∈ S ×A with i ̸= i∗k,∣∣∣∣∣∣
∑

k′∈S,i′∈A,j′∈A

w
(k,i∗k,i)
k′,i′,j′ E

RL-LOW
v [f(Bk′,i′,j′)]− f(ERL-LOW

v

[
r̂k,i∗k,i

]
)

∣∣∣∣∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i∗k,i)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

. (68)

That is,

∣∣ERL-LOW
v

[
r̂k,i∗k,i

]
− rk,i∗k,i

∣∣ ≤ ∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i∗k,i)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

(69)

=
3γ̃k,i

(1− β)4
√
n
, (70)
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where we denote rk,i,j := rk,i − rk,j .

Note that by the definition of Rn we have

Rn ≤
∑

(k,i)∈S×A:i̸=i∗k

1{r̂k,i∗
k
,i≤0} · ρk∆k,i (71)

≤
∑

(k,i)∈S×A:i̸=i∗k

[(
1{r̂k,i∗

k
,i≤ERL-LOW

v

[
r̂k,i,i∗

k

]
−∆k,i/2}

∨ 1{|ERL-LOW
v

[
r̂k,i∗

k
,i

]
−∆k,i|≥∆k,i/2}

)
· ρk∆k,i

]
(72)

By Lemma C.4 and Eqn. (67), we get that for any (k, i) ∈ S ×A with i ̸= i∗k,

PRL−LOW
v

(
r̂k,i∗k,i ≤ ERL-LOW

v

[
r̂k,i∗k,i

]
−∆k,i/2

)
≤ exp

(
−
2n∆2

k,i

Cγk,i

)
, (73)

and by Eqn. (70) we get that

|ERL-LOW
v

[
r̂k,i∗k,i

]
− rk,i∗k,i| ≤ ∆k,i/2

for all n >
18γ̃2

k,i

(1−β)8∆k,i
. That is, for all sufficiently large n, we have

ERL-LOW
v [Rn] ≤

∑
k∈S,i∈A:i ̸=i∗k

ρk∆k,i exp

(
−
2n∆2

k,i

Cγk,i

)
,

which further implies that for all sufficiently large n, we have

ERL-LOW
v [Rn] ≤ exp

(
− n

Cup ·H(v)

)
.

This completes the proof of Theorem 3.3.

In addition, we present the proof of Proposition 3.4 as follows.

Proof of Proposition 3.4. Note that by the definition of Rn we have

Rn ≤
∑

(k,i)∈S×A:i ̸=i∗k

1{r̂k,i∗
k
,i≤0} · ρk∆k,i

(a)

≤
∑

(k,i)∈S×A:i̸=i∗k

ρk

[
1
{∆k,i<

6γ̃k,i

(1−β)4
√

n
}
· 6γ̃k,i
(1− β)4

√
n

+ 1{|ERL-LOW
v

[
r̂k,i,i∗

k

]
−rk,i,i∗

k
|≤∆k,i/2}

·∆k,i

]
where β = exp(2L)

1+exp(2L) , and (a) follows from Eqn. (70).

Hence, by Eqn. (73), we have

ERL-LOW
v [Rn]≤

∑
(k,i)∈S×A:i̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
√
n
+ exp

(
−
2n∆2

k,i

Cγk,i

)
∆k,i

]
(74)

≤
∑

(k,i)∈S×A:i ̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
√
n
+

√
Cγk,i
2n

]
(75)

=
1√
n

∑
(k,i)∈S×A:i̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
+

√
Cγk,i
2

]
(76)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 .

This completes the desired proof.
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Proof of Theorem 6.1. Fix any consistent instance v under RL-LOW-MDP. By Lemma G.2 and
Lemma C.3, we get that r̂k,i,j is subGaussian with variance proxy as

∥r̂k,i,j∥2vp ≤
Cγk,i,j

n
, (77)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and β = exp(2L)
1+exp(2L) , and γk,i,j is defined as

γk,i,j :=
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

(w
(k,i,j)
k′,i′,j′)

2

Nk′,i′,j′

In addition, by Lemma G.1, we get that for any (k′, i′, j′) ∈ S ×A×A with Nk′,i′,j′ > 0,

|ERL-LOW-MDP
v [f(Bk′,i′,j′)]− f(ERL-LOW-MDP

v [Bk′,i′,j′ ])| ≤
3

(1− β)4
√
n ·Nk′,i′,j′

,

which implies for any (k, i, j) ∈ S ×A2 with i ̸= j,∣∣∣∣∣∣
∑

k′∈S,i′∈A,j′∈A

w
(k,i,j)
k′,i′,j′E

RL-LOW-MDP
v [f(Bk′,i′,j′)]− f(ERL-LOW-MDP

v [r̂k,i,j ])

∣∣∣∣∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i,j)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

. (78)

That is,

∣∣ERL-LOW-MDP
v [r̂k,i,j ]− rk,i,j

∣∣ ≤ ∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i,j)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

(79)

=
3γ̃k,i,j

(1− β)4
√
n
, (80)

where we denote

γ̃k,i,j :=
∑

k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

|w(k,i,j)
k′,i′,j′ |√
Nk′,i′,j′

and recall that rk,i,j := rk,i − rk,j . In addition, we denote r(π) := Ek∼dπ [rk,π(k)] for any MDP
policy π.

Note that by the definition of π̂out under RL-LOW-MDP, we have

RMDP(π̂out) ≤
∑

π ̸=π̂out

1{r(π̂out)<r(π)} ·R
MDP(π)

≤
∑
π ̸=π∗

RMDP(π) · 1{
⋃

k∈S{r̂k,π(k),π∗(k))−rk,π(k),π∗(k)≥RMDP(π)}} (81)

By Lemma C.4 and Eqn. (77), we get that for any π ̸= π∗ and k ∈ S with π(k) ̸= π∗(k),

PRL−LOW−MDP
v

(
r̂k,π(k),π∗(k) ≥ ERL-LOW-MDP

v

[
r̂k,π(k),π∗(k)

]
+RMDP(π)/2

)
≤ exp

(
−2n(RMDP(π))2

Cγk,π(k),π∗(k)

)
, (82)

and by Eqn. (80) we get that∣∣ERL-LOW-MDP
v [r̂k,i,j ]− rk,i,j

∣∣ ≤ RMDP(π)/2

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

for all n >
18γ̃2

k,i,j

(1−β)8RMDP(π)/2 . That is, for all sufficiently large n, we have

ERL-LOW-MDP
v

[
RMDP(π̂out)

]
≤
∑
π ̸=π∗

RMDP(π)
∑

k∈S:π(k) ̸=π∗(k)

exp

(
−2n(RMDP(π))2

Cγk,π(k),π∗(k)

)
which further implies that for all sufficiently large n, we have

ERL-LOW-MDP
v

[
RMDP(π̂out)

]
≤ exp

(
− n

CMDP ·HMDP(v)

)
.

This completes the proof of Theorem 6.1.

H THEORETICAL ANALYSIS OF DP-RL-LOW

H.1 INSTANCE-DEPENDENT UPPER BOUND

Lemma H.1. Fix any ε > 0 and δ > 0. Let Yn be a random variable sampled from the binomial
distribution with number of trials n ∈ N and probability of success p ∈ [1 − β, β] for β ∈ ( 12 , 1).
Then,

|E(f(X̃n))− f(E(X̃n))| ≤
3

(1− β)4
√
2n

+
4
√

log(1.25/δ)

(1− β)4(εn)
,

where X̃n = Yn

n + ξ̃n, and ξ̃n is an independent Gaussian noise with zero mean and variance of
2 log(1.25/δ)

(εn)2 , and f(·) is defined in (59).

Proof of Lemma H.1. For simplicity of notation, we let x0 := E(X̃n), which implies x0 = p ∈
[1− β, β]. Again, by the smoothness of f(·) on [1− β, β], we get the Taylor expansion of f(·) on
[1− β, β],

f(x) =


f(x0) + f ′(x0) · (x− x0) +

1
2f

′′(ξx) · (x− x0)
2 if x ∈ [1− β, β]

f(x0) + f ′(x0) · (β − x0) +
1
2f

′′(ξβ) · (β − x0)
2 if x > β

f(x0) + f ′(x0) · (1− β − x0) +
1
2f

′′(ξβ) · (1− β − x0)
2 if x < 1− β,

(83)

where ξx ∈ (min(x, x0),max(x, x0)) that only depends on x and x0 in the Talor expansion.

Similarly, by the fact that f ′(x0) · (β− x0) = f ′(x0) · (β− x) + f ′(x0) · (x− x0) and f ′(x0) · (1−
β − x0) = f ′(x0) · (1− β − x) + f ′(x0) · (x− x0), we can get from (83),

|E(f(X̃n))− f(E(X̃n))|
≤ sup
x∈(1−β,β)

|f ′′(x)|Var(X̃n) + |f ′(x0)| · E([X̃n − β]+) + |f ′(x0)| · E([1− β − X̃n]+) (84)

where Var(·) represents the variance and [x]+ = max{x, 0}.
In addition, we note that

E([X̃n − β]+) ≤
∫ 1

β

(x− β)P(X̃n ≥ x) dx

(a)

≤
∫ 1

β

(x− β) exp(− (x− x0)
2

2( 1
4n + 2 log(1.25/δ)

(εn)2 )
) dx

≤
∫ 1

β

(x− β) exp

(
−
(
2n(x− x0)

2 ∧ (x− x0)
2(εn)2

4 log(1.25/δ)

))
dx

=

∫ 1

β

(x− β) exp

(
−(x− x0)

2

(
2n ∧ (εn)2

4 log(1.25/δ)

))
dx
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≤
∫ 1

β

(x− β) exp

(
−(x− β)2

(
2n ∧ (εn)2

4 log(1.25/δ)

))
dx

(b)

≤
∫ 1

β

√
1

2n ∧ (εn)2

4 log(1.25/δ)

dx

=
1− β√

2n ∧ (εn)2

4 log(1.25/δ)

, (85)

where (a) follows from the fact that X̃n is subGaussian with variance proxy 1
4n + 2 log(1.25/δ)

(εn)2 , and

(b) follows from the fact that x exp(−x2y) <
√

1
y for any y > 0. Similarly, we also can get that

E([1− β −Xn]+) ≤
1− β√

2n ∧ (εn)2

4 log(1.25/δ)

. (86)

Finally,

|E(f(X̃n))− f(E(X̃n))|
(a)

≤ sup
x∈(1−β,β)

|f ′′(x)|Var(X̃n) + |f ′(x0)| · E([X̃n − β]+) + |f ′(x0)| · E([1− β − X̃n]+)

(b)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+ f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(c)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+ f ′(x0) ·

2√
2n ∧ (εn)2

4 log(1.25/δ)

(d)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+

1

(1− β)2
· 2√

2n ∧ (εn)2

4 log(1.25/δ)

≤ 3

(1− β)4
√
2n

+
4
√
log(1.25/δ)

(1− β)2(εn)
+

2log(1.25/δ)

(1− β)4(εn)2
(87)

≤ 3

(1− β)4
√
2n

+
4

(1− β)4
·

(√
log(1.25/δ)

(εn)
∨ log(1.25/δ)

(εn)2

)
(e)

≤ 3

(1− β)4
√
2n

+
4
√
log(1.25/δ)

(1− β)4(εn)

where (a) follows from Eqn. (84), (b) follows from the fact that Var(X̃n) ≤ 1
n + 2 log(1.25/δ)

(εn)2 and
that f ′′(x) = 2x−1

(x−1)2x2 , (c) follows from Eqn. (85) and Eqn. (86), (d) follows from the fact that

f ′(x) = 1
x−x2 , and (e) follows the fact that |E(f(X̃n))− f(E(X̃n))| ≤ 4

(1−β)4 and that
√
x ≥ x for

any x ∈ (0, 1]

Lemma H.2. Fix any ε > 0 and δ > 0. Let Yn be a random variable sampled from the binomial
distribution with number of trials ∈ N and probability of success p ∈ [1− β, β] for β ∈ ( 12 , 1). Let
X̃n = Yn

n + ξ̃n, and ξ̃n is an independent Gaussian noise with zero mean and variance of 2 log(1.25/δ)
(εn)2 .

Then, f(X̃n) is subGaussian with

∥f(X̃n)∥2vp ≤ C ·
(
1

n
+

8 log(1.25/δ)

(εn)2

)
,

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and f(·) is defined in (59).
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Proof. By the definition of Xn, we get that

∥X̃n − p∥2vp ≤
1

4n
+

2 log(1.25/δ)

(εn)2
.

Then, by Lemma C.5, we get that

∥X̃n − p∥2ϕ2
≤ 3

2n
+

12 log(1.25/δ)

(εn)2
.

By the fact that |f ′(x)| ≤ 1
(1−β)2 , we get that

∥f(X̃n)− f(p)∥2ϕ2
≤
(

3

2n
+

12 log(1.25/δ)

(εn)2

)
· 1

(1− β)4
. (88)

Similarly, from Lemma C.5, we further get that

∥f(X̃n)− f(p)∥2vp ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1− β)4

(
1

n
+

8 log(1.25/δ)

(εn)2

)
. (89)

Note that by definition, we have ∥f(X̃n) − f(p)∥2vp = ∥f(X̃n)∥2vp, which completes the proof of
Lemma G.2.

Proof of Theorem 5.3. Fix any consistent instance v and n > 0 under DP-RL-LOW. By lemma G.2
and lemma C.3, we get that r̃k,i∗k,i is subGaussian with variance proxy to be,

∥r̃k,i∗k,i∥
2
vp ≤ C ·

(
γk,i
n

+
8γDP
k,i log(1.25/δ)

(εn)2

)
, (90)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and β = exp(2L)
1+exp(2L) .

In addition, by Lemma H.1, we get that for any (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0,∣∣∣EDP-RL-LOW
v

[
f(B̃k′,i′,j′)

]
− f

(
EDP-RL-LOW
v

[
B̃k′,i′,j′

])∣∣∣
≤ 3

(1− β)4
√
2nNk′,i′,j′

+
4
√
log(1.25/δ)

(1− β)4(εnNk′,i′,j′)
, (91)

which implies for any (k, i) ∈ S ×A with i ̸= i∗k,∣∣∣∣∣∣
∑

k′∈S,i′∈A,j′∈A

w
(k,i∗k,i)
k′,i′,j′ E

DP-RL-LOW
v [f(Bk′,i′,j′)]− f(EDP-RL-LOW

v [Bk′,i′,j′ ])

∣∣∣∣∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w(k,i∗k,i)
k′,i′,j′ |

(
3

(1− β)4
√
2nNk′,i′,j′

+
4
√

log(1.25/δ)

(1− β)4(εnNk′,i′,j′)

)
. (92)

Recall that we denote rk,i∗k,i = rk,i∗k − rk,i. Then, from Eqn. (92), we get∣∣EDP-RL-LOW
v

[
r̃k,i∗k,i

]
− rk,i∗k,i

∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w(k,i,j)
k′,i′,j′ |

(
3

(1− β)4
√
2nNk′,i′,j′

+
4
√
log(1.25/δ)

(1− β)4(εnNk′,i′,j′)

)
(93)

≤ 3γ̃k,i
(1− β)4

√
n
+

4γ̃DPk,i
√
log(1.25/δ)

(1− β)4(εn)
, (94)

where γ̃DP
k,i :=

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w
(k,i∗k,i)

k′,i′,j′ |
Nk′,i′,j′

Note that by the definition of Rn, under DP-RL-LOW we have

Rn ≤
∑

(k,i)∈S×A:i̸=i∗k

1{r̃k,i∗
k
,i<0} · ρk∆k,i (95)
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≤
∑

(k,i)∈S×A:i̸=i∗k

[(
1{r̃k,i∗

k
,i≤EDP-RL-LOW

v

[
r̃k,i∗

k
,i

]
−∆k,i/2}

∨ 1{|EDP-RL-LOW
v

[
r̃k,i∗

k
,i

]
−rk,i∗

k
,i|≤∆k,i/2}

)
· ρk∆k,i

]
(96)

By Lemma C.4 and (90), we get that for any (k, i) ∈ S ×A with i ̸= i∗k,

PDP−RL−LOW
v

(
r̃k,i∗ki, ≤ EDP-RL-LOW

v

[
r̃k,i∗k,i

]
−∆k,i/2

)
≤ exp

(
−

2∆2
k,i

C · (γk,i/n+ 8γDP
k,i log(1.25/δ)/(εn)

2)

)
, (97)

and by (94) we get that

|EDP-RL-LOW
v

[
r̃k,i∗k,i

]
− rk,i∗k,i| ≤ ∆k,i/2

for all n >
12γ̃2

k,i

(1−β)8∆2
k,i

+
8γ̃DP

k,i

√
log(1.25/δ)

(1−β)4(ε∆k,i)
. That is, for all sufficiently large n, we have

ERL-LOW
v (Rn) ≤

∑
k∈S,i∈A:i̸=i∗k

ρk∆k,i exp

(
−

2∆2
k,i

C(γk,i/n+ 8γDP
k,i log(1.25/δ)/(εn)

2)

)
,

which further implies that for all sufficiently large n, there exists a global constant CDP, we have

ERL-LOW
v (Rn) ≤ exp

−CDP ·

 n

H(v)
∧

(
n

H
(ε,δ))
DP (v)

)2
 .

This completes the proof of Theorem 5.3

H.2 WORST-CASE UPPER BOUND

Proposition H.3. (Worst-Case Upper Bound for DP-RL-LOW) For any consistent instance v and
for all n ≥ 1,

EDP−RL-LOW
v [Rn]≤CWDP·


∑

k,i:i ̸=i∗k
ρk(
√
γk,i+γ̃k,i)

√
n

+

∑
k,i:i ̸=i∗k

ρk(
√

γDP
k,i +γ̃DP

k,i )
√
log(1.25/δ)

ϵn


(98)

where CWDP > 0 is a universal constant.

Proof of Proposition H.3. Note that by the definition of Rn we have

Rn ≤
∑

(k,i)∈S×A:i̸=i∗k

1{r̃k,i∗
k
,i≤0} · ρk∆k,i

(a)

≤
∑

(k,i)∈S×A:i ̸=i∗k

ρk

[
1
{∆k,i<

6γ̃k,i

(1−β)4
√

n
+

48γ̃DP
k,i

√
log(1.25/δ)

(1−β)4(εn)
}
·
( 6γ̃k,i
(1− β)4

√
n
+

8γ̃DPk,i
√

log(1.25/δ)

(1− β)4(εn)

)
+ 1{|EDP−RL-LOW

v

[
r̃k,i,i∗

k

]
−rk,i,i∗

k
|≤∆k,i/2}

·∆k,i

]
(99)

where β = exp(2L)
1+exp(2L) , and (a) follows from Eqn. (94).

Hence, by Eqn. (99) and (97), we have

EDP−RL-LOW
v [Rn]≤

∑
(k,i)∈S×A:i̸=i∗k

ρk

[( 6γ̃k,i
(1− β)4

√
n
+

8γ̃DPk,i
√
log(1.25/δ)

(1− β)4(εn)

)
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+ exp

(
−

2∆2
k,i

C · (γk,i/n+ 8γDP
k,i log(1.25/δ)/(εn)

2)

)
∆k,i

]

≤
∑

(k,i)∈S×A:i̸=i∗k

ρk

[( 6γ̃k,i
(1− β)4

√
n
+

8γ̃DPk,i
√
log(1.25/δ)

(1− β)4(εn)

)

+

√
C · γk,i
2n

+

√
C · 8γDP

k,i log(1.25/δ)

2(εn)2

]
=

∑
(k,i)∈S×A:i̸=i∗k

ρk

[
1√
n
·

(
6γ̃k,i

(1− β)4
+

√
C · γk,i

2

)

+
1

εn
·

8γ̃DP
k,i

√
log(1.25/δ)

(1− β)4
+

√
C · 8γDP

k,i log(1.25/δ)

2

]
(100)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 .

This completes the desired proof.
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