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Abstract

Model-based reinforcement learning aims to improve the sample efficiency of
policy learning by modelling the dynamics of the environment. Recently, the latent
dynamics model has been further developed to enable fast planning in a compact
space. It summarizes the high-dimensional experiences of an agent, which mimics
the memory function of humans. Learning policies via imagination with the latent
model shows great potential for solving complex tasks. However, only considering
memories from the true experiences in the process of imagination could limit its
advantages. Inspired by the memory prosthesis proposed by neuroscientists, we
present a novel model-based reinforcement learning framework called Imagining
with Derived Memory (IDM). It enables the agent to learn policy from enriched
diverse imagination with prediction-reliability weight, thus improving sample
efficiency and policy robustness. Experiments on various high-dimensional visual
control tasks in the DMControl benchmark demonstrate that IDM outperforms
previous state-of-the-art methods in terms of policy robustness and further improves
the sample efficiency of the model-based method.

1 Introduction

Model-based Reinforcement Learning (MBRL) approaches benefit from the knowledge of a model,
allowing them to summarize the agent’s past experiences and foresight the future outcomes in
a compact latent space [1, 2, 3, 4]. Previous approaches can be generally categorized into four
branches, including 1) Dyna-style algorithms, 2) sampling-based methods, 3) value expansion, and
4) backpropagation through paths. First, the Dyna-style algorithms [5] generate virtual interaction
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data (e.g. ME-TRPO [6], MBPO [7]) to improve policy optimization. Second, the sampling-based
methods, such as [8, 9, 10], choose action by planning or shooting (e.g. PlaNet [8], PETS[9]). Third,
the value expansion approaches, such as [11, 12], use model-augmented rollouts to improve the
estimation accuracy of cumulative returns. Finally, the methods of backpropagation through paths
[13, 14] employ the analytic gradient of state value through the dynamic transition to learn the policy.

For the tasks with high-dimensional sensory inputs, backpropagation through paths is more com-
putationally efficient compared with conventional planning algorithms, which generated numerous
rollouts for the best action sequence selection procedure. Dreamer [4], as a landmark of such methods,
achieves state-of-the-art (SOTA) performance on visual control tasks. It summarizes the agent’s
high-dimensional experiences into a compact latent space by the dynamic model, which is analogized
to the way human memories are stored, and benefits behaviours learning by latent imaginations.
However, recent breakthroughs based on such a method focus on optimizing the policy on imaginary
trajectories with only original memory on the agent’s real experiences and leave the diversity of
imagination largely unstudied, resulting in noise-sensitive policy and inefficient learning. Recently,
neuroscientists demonstrated that "memory prosthesis", which transforms the brain’s activity patterns
to the electrode signals to stimulate the human’s hippocampus [15, 16], could facilitate humans mem-
ory augmentation via an external implant. Inspired by such insight, our idea is to improve behaviour
learning by constructing a “memory prosthesis” with externally derived memory [17] that each signal
corresponds to a state transition sequence, which can enrich the diversity of the imagination without
any interaction with the real environments. We propose a novel model-based reinforcement learning
algorithm, called Imagining from Derived Memory (IDM), which aims to improve policy robustness
and sample efficiency by the enriched and reliable imagination. In order to generate diverse derived
memory, transformations are performed on states of the latent trajectories, which are sampled from
the experiences. The agent learns to obtain future rewards by the model-based imagination from
both the derived and the original memories. The optimal policy is optimized by a novel actor-critic
algorithm, where the state values optimize Bellman consistency for imagined rewards, and the policy
maximizes the state values by propagating their analytic gradients back through the dynamics.

In this paper, we aim to improve the diversity of imagination for model-based policy optimization
with the derived memory. Our main contributions are listed below.

• We design an effective memory generator that simultaneously achieves the imagination
diversity as well as the relevancy between the derived memory and the real physical states,
which avoids the distortion after decoding.

• We propose a model-based policy optimization framework, unifying the analytical gradients
of the imagination from both derived and original memories with learnable confidence. We
also provide the upper bound of the value estimation error in the frame of IDM. This sheds
light on further improvement of model-based reinforcement learning in the future.

• Experiments on DMControl [18] tasks demonstrate that IDM outperforms existing SOTA
approaches in terms of robustness to uncertainty and further improves the sample efficiency
of the model-based method. Ablation experiment results verify the superiority of IDM.

2 Preliminaries

2.1 Model-based Reinforcement Learning

Model-based reinforcement learning aims at optimizing a policy to maximize the cumulative rewards,
by accessing to a (known or learned) model of the environment. We denote a time step as t, a state at
t as st ∈ S, action at t as at ∈ A, reward function r(st, at), policy πφ(st) and a world model pθ to
characterize the process of interacting with the environment. The goal is to find a policy parameter
φ∗, which maximizes the long-horizon summed discounted rewards represented by a parameterized
value function, vψ (st)

.
= E

(∑∞
i=t γ

i−tri
)

with parameter ψ and the discounted factor γ.

2.2 World Model

The world model characterizes the process of interaction with the environment. The recurrent
stochastic state model (RSSM), which is used in PlaNet and Dreamer, is the SOTA solution for
building latent dynamics [8]. RSSM can facilitate long-term predictions and enable the agent to
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imagine thousands of trajectories in parallel. It can represent both the historical memory and the
dynamic uncertainty by using a recurrent neural network.

Let us denote the sequence of observations as õ = {o0, o1, . . . , oT }, action sequence as ã =
{a0, a1, . . . , aT }, rewards as r̃ = {r0, r1, . . . , rT }, and the corresponding latent states z̃ =
{z0, z1, . . . , zT }. RSSM assumes that the latent state zt consists of zt = (st, ht), where st, ht
are the probabilistic and deterministic variables respectively. RSSM consists of four key components,
including (1) the representation model p(zt|zt−1, at−1, ot), which encodes observations and actions
to create continuous vector-valued latent states with Markovian transitions, (2) the transition model
q(zt|zt−1, at−1), which is built by a recurrent neural network, and is to predict the future latent states
with historical memory and actions, (3) the observation model q(ot|zt), which is used to provide a
reconstruction learning signal, and (4) The reward model q(rt|zt) predicts the rewards given to the
latent states. We use p to denote distributions that generate samples in the real environment and q to
denote their approximations that enable latent imagination. Specifically, the transition model allows
us to predict ahead in the compact latent space without any interaction in the real environment.

3 Robust World Model for Derived Memory Generation

Based on RSSM, diverse memory vectors could be generated intuitively by transforming the original
memories while putting forward higher requirements on the world model’s robustness to the latent
space noise. Because if the derived memory can not correspond to the real physical state, i.e., the
reconstructed image is distorted, it could not effectively enrich the imagination but bring disturbance
for policy learning. As shown in the second row in Figure 1a and Figure 1b, if we add an random
noise to the latent state zt = (ht, st) , the derived latent state z′t = (h′t, s

′
t) in RSSM results in

low-fidelity reconstructed images, which could not be mapped to the real physical states.

(a) Add random noise on RSSM and R2S2 (ours) in Walker-Walk

(b) Add random noise on RSSM and R2S2 (ours) model in Finger-Spin

Figure 1: Comparison of reconstruction results of the derived latent states with different world models.
The first row is the original image inputs, the second row is the images decoded from the derived
latent states by RSSM, the third row is the images decoded from the derived latent states by R2S2
model (ours). (Note that the shown results are randomly selected from test episodes, and the derived
latent states are generated by adding Gaussian noise obeys N (0, 0.5) to each dimension of (ht, st)).

To alleviate this issue, we propose a Robust Recurrent Stochastic State (R2S2) model to improve the
latent model’s robustness. We add a decoding constraint to the RSSM, which improves relevancy
between the derived latent states and the real physical states, thus avoiding the distortion after
decoding. Denote ξh is a noise that obeys N(0, σh), h′t is the derived hidden state which adds
the noise ξh to the hidden state ht, ξs is a noise that obeys N(0, σs′), s′t is the derive stochastic
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state which adds the noise ξs to st, ot is the reconstructed image from zt = (ht, st), and o′t is the
reconstructed image from z′t = (h′t, s

′
t).

The components of the R2S2 are optimized jointly to increase the variational lower bound [19] with a
decoding constraint. The variational lower bound JM includes reconstruction terms for observations
J tO and rewards J tR and a KL regularizer J tD [4]. The expectation is taken under the dataset and
representation model,

minJM = Ep

(∑
t

(
J tO + J tR + J tD

))
s.t.DKL {p(o′t|z′t), p(ot|zt)} ≤ δ (1)

J tO = log q(ot|zt) J tR = log q(rt|zt) J tD = −βDKL {p (zt|zt−1, at−1, ot) , q (zt|zt−1, at−1)} .

As demonstrated in Figure 1, our proposed R2S2 model generates high-fidelity reconstructions,
which suggests the enriched dynamic representation is capable for facilitate behaviour learning. The
decoding constraint leaves a margin δ between the derived branch’s output and the original branch’s
output. The constrained problem is solved by the fixed penalty method [20] where the penalty
coefficient is given in the appendix A.4. As shown in the third row of Figure 1a and Figure 1b, after
adding noise on the original latent state zt = (ht, st) in R2S2 model, the reconstructed images with
derived latent state z′t = (h′t, s

′
t) are sharper than RSSM, and are demonstrated different states of

motion compared to the the reconstructed images with original latent state zt = (ht, st). In summary,
the decoding constraint used in the R2S2 model aims to guide the derived memory in latent space to
meet a basic condition that the neighbouring latent states from real data should also follow the real
physical states.

4 Policy Optimization with Derived Memory

By leveraging the R2S2 model, we propose an Imagining with Derived Memory (IDM) algorithm
that aims to enable the agent to learn the policy with diverse imagination. As shown in Figure 2, the
derived memory is generated by the transformation from the original memory. The agent imagines
the future states and rewards with both derived and original memories. The policy is improved by the
enriched imagination with prediction reliability weight under the actor-critic framework.

4.1 Imagining with Derived Memory

We add several zero-mean noises ξh ∼ N (0, σ2
h) on the hidden state ht and ξs ∼ N (0, σ2

s′) on the
stochastic state st ∼ N (µs, σ

2
s) in the original memory to extend the agent’s memory which includes

diverse embedded historical information. Thus the agent could learn behaviours with the trajectories
in an enlarged latent space, rather than just the agent’s real experiences. The Gaussian noise in latent
space could be theoretically mapped to any type of uncertainty in image level, and this principle is
extensively used in VAE and GAN. Adding Gaussian perturbations should be an intuitive way to
simulate the influences in latent space caused by the uncertainty of input image, since the stochastic
part of latent state st in the R2S2 model obeys Gaussian distribution, any image will be encoded to a
Gaussian variable in latent space with R2S2 model. The latent trajectories are imagined from both
original memory and the derived memory by the learned transition model. The method to generate
derived memory can be summarized as Equation (2), for the i-th derived trajectory, the deriving
process contains two key steps: derived memory generation and trajectory imagination.

Derived memory generation:

hit ∼ N (ht, σ
2
h), sit ∼ N (µs, (σs + σs′)

2)

Trajectory imagination:

hit, s
i
t ∼ p(hit, sit|hit−1, s

i
t−1, a

i
t−1), ait ∼ π(ait|sit, hit)

(2)

In order to ensure the reliability of the imagination with derived memory and further mitigate the
model error’s impact, we consider the reliability of the imagined trajectories by adding a trajectory
evaluator. Every imagined trajectory is used with a reliability multiplier given by the evaluator. In the
region where the model has reliable predict accuracy, the derived memory should be able to improve
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Figure 2: The overall framework of the IDM. The original memory z1 = (h1, s1) is embedded from a
high-dimensional state, and the derived memory (h′1, s

′
1) is generated by the transformation from the

original memory. The decoding constraint is used to avoid reconstructed distortion. Latent trajectories
are imagined from both the original memory and the derived memory. Each trajectory is given a
reliability weight by the evaluator. The optimal policy π∗ is learned by the enriched imagination with
prediction reliability weight under the actor-critic framework.

the policy robustness and sample efficiency significantly. We penalize the weight of the trajectories
in the region with poor model prediction. The trajectory evaluator E aims to discriminate between
real and overshoot sequences predicted by the model. In every iteration, we sample a number of
state-action sequences generated by real interactions as real sequences Seqreal = [zτ , aτ , zτ+1]

t+T
τ=t ,

use the latent model to predict the overshoot trajectories from the same start points as the fake
sequences Seqfake = [zt, at, ẑt+1]∪ [ẑτ , aτ , ẑτ+1]

t+T
τ=t+1. Train the evaluator to output the probability

of whether a real trajectory, which is equal to maximize the following objective function

Jeva = E(zτ ,aτ )∼D

{
t+N∑
τ=t

[log (E (zτ , aτ , zτ+1)) + log (1− E (ẑτ , aτ , ẑτ+1))]

}
(3)

where E(·) is approximated by the combination of the MLP and the outermost Softmax and zt = ẑt
since zt is the start point of the overshoot trajectory.

4.2 Policy Optimization

The policy πφ(zτ ) is optimized by the imagined trajectories {zτ , aτ , rτ}t+Hτ=t . We estimate every
state’s value in the imagined trajectory to trade off the difficulty of long-horizon back-propagation
and efficiency of gradient utilization. That means a single trajectory {zτ , aτ , rτ}t+Hτ=t generates many
sub-trajectories with different rollout steps. Every sub-trajectory is used to update the actor and critic
with different reliability weight w(ziτ ) given by the trajectory evaluator and is normalized in batch.

W (ziτ ) = E(ziτ , aiτ , ziτ+1), ziτ ∼ (Dori, Dderi)

w(ziτ ) =
W (ziτ )∑N

i=0

∑t+H
τ=t W (ziτ )

(4)

where N is the batch size, Dori represents the trajectories imagined with original memory, and Dderi

represents the trajectories imagined with derived memory.

The value model vψ (zτ ) estimates the expected imagined rewards that the action model achieves
from each state zτ . In an attempt to trade off bias and variance, we calculate the target state value by
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TD-λ method [21] as in Dreamer, which is an exponentially-weighted average of the estimates for
different k to make the estimation robust to different prediction horizons.

Vλ (zτ )
.
= (1− λ)

H−1∑
n=1

λn−1VnN (zτ ) + λH−1VHN (zτ ) (5)

VkN (zτ )
.
= Eqφ,qψ

(
h−1∑
n=τ

γn−τrn + γh−τvψ (zh)

)
h = min(τ + k, t+H)

(6)

where the V KN estimates rewards beyond k steps with the learned value model.

The critic is updated to regress the targets around which we stop the gradient [21]. The reliability
weight is used in the critic updating, which is called weighted regression of target value. The objective
for the critic vψ (zτ ), in turn, is to regress the target value

min
ψ

(
N∑
i=0

(
t+H∑
τ=t

w(ziτ )

2
∥vψ

(
ziτ
)
−Vλ

(
ziτ
)
∥2
))

(7)

Different from DDPG [22] and SAC [23] which only maximize immediate Q-values, we leverage
gradients through transitions and update the policy by backpropagation through the value model.

The objective of the actor with policy πφ(zτ ) is to

max
φ

(
N∑
i=0

(
t+H∑
τ=t

w(ziτ )Vλ
(
ziτ
)))

(8)

Since all steps are implemented as neural networks, we analytically compute∇φJactor by stochastic
backpropagation. We use reparameterization for continuous actions and latent states,

aτ = tanh (µφ (sτ ) + σφ (sτ ) ϵ) , ϵ ∼ N (0, I). (9)

4.3 Theoretical analysis of IDM Framework

We give the upper bound of the value estimation error for MBRL under the IDM framework based
on [24]. Denote the policy distribution shift between the current policy π and the data-collecting
policy πD as maxsDTV (π∥πD) ≤ ϵπ by the maximum total-variation distance and the model gen-
eralization error as ϵm = maxEs∼D [DTV (p (z′, r | z, a) ∥p′ (z′, r | z, a))], where p (z′, r | z, a)
is the real state transition distribution and p′ (z′, r | z, a) is the estimated state transition distri-
bution. Under the IDM framework, if the model error under the updated policy is bounded by
maxEz∼(Dori,Daug) [DTV (p(z′, r | z, a)||p′(z′, r | z, a))] ≤ ϵm′ and the reweighting coefficient
w(z) given by the evaluator is bounded by max {|w(z)− p(z′, r | z, a) /pθ ((z′, r | z, a)|} ≤ ϵw,
then the returns estimation error upper bound is

ηbranch [π]− η[π] ≤ 2rmax

[
γk+1ϵπ
(1− γ)2

+
γkϵπ

(1− γ)
+

k

1− γ
ϵ′w

]
(10)

where ϵ′w = ϵw + ϵπ
dϵw′
dϵπ

. The detailed proof can be seen in the Appedix A.5. ϵw indicates how
well is the IDM helps to approximate the imagined distribution p′(z′, r | z, a) to the real distribution
p(z′, r | z, a). The trajectories imagined with the derived memory increase the sample diversity,
while the evaluator plays the role of importance sampling by reweighting the trajectories by w(z).
Coherent work of these two modules should effectively decrease the ϵw, thus reducing the estimation
error of the value function. If the evaluator is removed, the imagined trajectories, which are unreliable,
will negatively impact the policy learning. If the derived memory module is removed, the effect of
importance sampling will be weakened due to the lack of sample diversity. In addition, the positive
effect on sample diversity of derived memory needs to be guaranteed by the decoding constraint in
the R2S2 model, which is used to ensure the relevance between the derived memory and real physical
states. Corresponding experiments are in Section 5.2.
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Table 1: Performance comparison with image uncertainty
IDM Dreamer DrQ

100 K 500 K 100 K 500 K 100 K 500 K
Walker-Walk 527.1± 166 914.9± 61 372.5± 19 876.3± 48 122.5± 15 151.9± 23
Walker-Run 159.2± 32 529.3± 43 116.1± 11 464.2± 65 58.3± 14 105.2± 25
Hopper-Stand 108.5± 37 841.2± 54 85.6± 52 430.2± 128 65.7± 24 252.6± 38
Cartpole-Swingup 329.6± 58 659.4± 136 303.3± 43 423.2± 66 112.6± 17 157.3± 23
Cheetah-Run 197.4± 69 598.2± 42 174.9± 132 401.34± 104 85.9± 22 96.3± 38
Finger-Spin 415.8± 54 505.5± 61 283.5± 42 374.9± 88 145.9± 33 436.3± 27

Table 2: Performance comparison without external image uncertainty (under the same setting in
Dreamer)

IDM Dreamer DrQ
100 K 500 K 100 K 500 K 100 K 500 K

Walker-Walk 630± 113 959± 22 277± 12 897± 49 612± 164 921± 45
Walker-Run 211± 162 536± 25 161± 112 482± 68 185± 148 459± 139
Hopper-Stand 216± 73 819± 27 94± 48 734± 136 106± 51 789± 38
Cartpole-Swingup 594± 63 824± 63 326± 27 762± 27 759± 92 868± 10
Cheetah-Run 328± 48 631± 103 235± 137 570± 253 344± 67 660± 96
Finger-Spin 623± 76 875± 89 341± 70 769± 183 901± 104 938± 103

5 Experiments

The IDM framework is implemented as Algorithm 1 (see Appendix A.2). We compare with both the
SOTA of model-based methods and model-free methods. We mainly choose Dreamer as the model-
based baseline to test the effectiveness of the IDM framework. As for model-free methods, DrQ [25]
uses data regularized Q-learning method to learn the policy and shows a significant advantage in
sample efficiency compared to CURL [26]. We choose the DrQ [25] as the model-free baseline.

5.1 Overall Performance

Robustness to Uncertainty: In an attempt to test the agent’s ability to handle environmental
uncertainty, the experiments are implemented in DMControl tasks [18] with observation uncertainty.
Robotics may encounter observation uncertainties like the random swing of the input image caused
by the robot’s motion when the camera’s fixed device is loose. We add a random rotation (−5◦,+5◦)
to the input image from the Mujoco environment (also used in RAD and DrQ paper as an augmented
method) to simulate the possible random swing that may be experienced by robotics. Random rotation
is a representative uncertainty the agent may encounter in the real world. During the training process
of RL, images are only collected horizontally from the simulator, but in the real world, the camera
could be skewed in a different direction, which changes the angles that agents or objects appear in
the input image. Under this setting, we test the performance of IDM together with the Dreamer and
the DrQ. The image uncertainty is added only at test time, and the purpose of this experiment is
to test the robustness of policies learned by different methods when encountering unknown image
uncertainties. The effectiveness of the IDM framework to tackle the input uncertainty is demonstrated
in Table 1 and as Figure 3.

We also test the robustness of DrQ. Since DrQ’s input is a stack of three sequential images (3
continuous images), we implement 2 different experiments: 1) randomly rotate the 3 images by the
same angle and 2) randomly rotate the 3 images by different angles. All the rotate angles are sampled
from (−5◦, 5◦). The results show that under the first type of uncertainty DrQ’s performance dropped
significantly and under the second type of uncertainty DrQ almost failed. As shown in Figure 4, the
training curve (the orange one) of DrQ demonstrates that it learns behaviour successfully; however,
its performance decreases significantly when it is tested with image uncertainty, as illustrated in the
testing curve (the blue one). The reason why DrQ performs poorly under external uncertainty is
that DrQ has no guarantee to resist the uncertainty out of optimality invariant image transformations
proposed in their paper, which especially constrains shifting under ±4 pixels from the original image.
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Figure 3: IDM exceeds Dreamer and DrQ at visual control tasks that testing with image uncertainty
(the image uncertainty is added only at test time).

Our experiments show that although DrQ can effectively learn policy in training process with the
given 5 random seeds, its performance on overcoming uncertainty is much worse than IDM.
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Figure 4: DrQ’s performance decreased due to the observation uncertainty (the uncertainty is
performed by the same parameter for each frame in the stack).

Sample efficiency: In order to show the sample efficiency of IDM, compared to Dreamer and DrQ
[25], we test the performance of IDM in DMControl environments without image uncertainty with 5
random seeds. As illustrated in Table 2, IDM outperforms Dreamer and is comparable with the DrQ
in environments without external uncertainty.

Our selection of the environment in Table 1 and Table 2 follows the below principle to ensure
fairness: 3 tasks in which MBRL is more competitive than MFRL and 3 tasks in which MFRL is
more competitive than MBRL. The measure of competitiveness is the comparison between the final
performance of Dreamer and D4PG (top model-free method) with 1e9 steps shown in Dreamer paper.

Overall, the experimental results suggest that IDM outperforms Dreamer and DrQ in terms of
robustness to uncertainty and further improves the sample efficiency of the model-based method,
which proves that our proposed IDM can facilitate learning better behaviour with limited experiences.

5.2 Ablation Studies

In IDM, there are three key components: decoding constraint, derived memory and trajectory
evaluator. We implement 4 groups of ablation experiments which are tested in DMControl tasks with

8



observation uncertainty. Note that the derived memory is based on the decoding constraint. If we
keep the derived memory module without adding decoding constraint, it is theoretically invalid.

(1) IDM without the evaluator(w/o EVA): In this setting, latent trajectories are imagined with
derived memory but without the trajectory evaluator. Although it performs better than Dreamer in
Walker-Walk, it has lower performance in Hopper-Stand due to lack of reliable guarantee for the
derived data.

(2) IDM without derived memory (w/o DM): In this setting, the constraint for RSSM and the
trajectory evaluator are kept. As illustrated in Figure 5, it performs better than Dreamer but is
insufficient compared with IDM. For instance, at the 100k steps of Walker-walk, its performance is
26.6% better than Dreamer, but IDM is 41.6% better than Dreamer.

(3) IDM without decoding constraint and derived memory (w/o CST and DM) : In this setting,
only the trajectory evaluator is kept, which is used to avoid the damage caused by the trajectory with
low prediction accuracy. The experimental results show that its performance is basically similar to
Dreamer, which means that if we only use it to reweight the latent trajectories imagined with original
memory, it makes little difference.

(4) Dreamer with doubled batch size: We compare IDM with Dreamer with two times of batch
size than IDM (Doubled-Dreamer), as shown in Figure 5, Doubled-Dreamer shows less improvement
than Dreamer, but IDM also outperforms it.

Overall, all the components in IDM are critical, and they complement each other. The importance of
different components depends on the characteristic of the environment. For example, in Walker-Walk,
which is a relatively stable bipedal walking environment compared to a single-legged robot, the
generated derived memory does not hugely diverge from the real states experienced by the agent.
Therefore, as shown in Figure 5(a) the derived memory provides a major contribution. On the contrary,
due to the single-legged robot’s instability, the derived memory generated by Hopper-stand usually
contains poor quality states. Thus, as shown in Figure 5(c), the evaluator plays a significant role in
this environment, but not in Walker. The ablation results in some difficult tasks, such as Walker-run
(the agent needs to stand up first and then accelerate to run), the generated derived memory is not as
helpful to improve the performance as the other environments, so does the evaluator. As shown in
Figure 5(b), there is little difference in the results of ablation. This result also enlightens us to find a
better way to construct derived memory in future work.
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Figure 5: Contribution of each component in IDM to the performance improvement.
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6 Related Works

(1) Model-based policy optimization: Prior works can be divided into the following categories,
including Dyna-like algorithms, value expansion, backpropagation through paths, and sampling-based
planning. Dyna-like algorithms alternate between model learning from environmental interaction,
data generation, and policy improvement by model-free methods [5], e.g., ME-TRPO [6]. Value
expansion algorithm utilizes the dynamic model to improve the estimation accuracy of the cumulative
return [11]. The backpropagation through path method is built upon using the analytic gradient of
state value backpropagate through the dynamic transition. Typical algorithms in this category include
Dreamer [4], PILCO [27], and SVG [14]. Dreamer is the most representative model-based algorithm
for visual control tasks. The idea of sampling-based planning is to choose the best action by a large
number of samples and regard it as the objective for the policy network. Representative algorithms
include the cross-entropy method [28] in continuous space, which is used in PlaNet [8] and PETS
[9], and MCTS [10] in discrete space. MuZero further incorporates MCTS and achieves remarkable
performance on Atari, and board games [29].

(2) Latent world model: In MBRL for high dimension input tasks, the latent world model offers
a flexible way to represent key information of the observations. World Models [1] learn latent
dynamics in a two-stage process: representation learning and latent dynamics learning. However,
it lacks the coordination of the two processes. PlaNet [2] proposes a recurrent stochastic state
model (RSSM), which learns them jointly. Dreamer [4] utilizes the RSSM to make the long-term
imagination. [30] represents the model uncertainty by neural network ensemble to approximately
infer model posteriors and further improves the performance of PlaNet. DreamerV2 [31] proposes
discrete world models for discrete visual control tasks like Atari games. BIRD [3] improves the
prediction accuracy by maximizing the mutual information between the trajectories imagined with
memory and real trajectories but does not consider the diversity of memory. Recently, contrastive
learning-based approaches are gathering increasing attention. It has been applied to learn latent world
models [4, 32, 33, 34] motivated from different perspectives. Hafner et al.[4] try to use contrastive
learning as an alternative to image reconstruction, however, the contrastive learned agent gives worse
performance compared with the one learned by image reconstruction. Dreaming [33] derives an
InfoMax objective of contrastive learning from the evidence lower bound of Dreamer and removes
the decoder to solve the object vanishing problem of the representation methods based on image
reconstruction. CVRL [34] emphasizes the strength of contrastive learning in handling complex
visual observations and uses a hybrid training scheme that includes a model-based scheme (Dreamer)
and a model-free scheme (SAC). Since the key idea of IDM is not in conflict with contrastive learning,
we can extend our framework by incorporating advanced contrastive representation learning to further
improve the overall performance, which is left as future work.

(3) Data augmentation for reinforcement learning: Data augmentation has been investigated in the
context of RL to improve generalization and sample efficiency. CURL [26] minimize the contrastive
loss between an image and its augmented version to learn a better latent representation. RAD [35]
attempts to directly train the RL objective on multiple augmented views of the observations without
any auxiliary loss. DrQ [25] aims to solve the distribution mismatch problem in off-policy RL, which
utilized random cropping and regularized Q-functions in conjunction.

7 Conclusion

We present a novel model-based framework, called Imagining with Derived Memory (IDM), aiming
to improve the policy robustness and the sample efficiency by effectively enhancing the agent’s
imagination diversity. IDM optimizes a parameterized policy with the extended imagined trajectories
from both original and derived memory by propagating analytic gradients of multi-step values back
through learned latent dynamics. It outperforms previous methods in terms of the robustness to
uncertainty and further improves the sample efficiency of the model-based method on a variety of
challenging continuous control tasks with image inputs. Other methods to generate derived memory,
such as employing different assumptions for latent noise distribution, will be investigated in the future.
Furthermore, since our method is compatible with representation learning techniques, extending our
framework by incorporating advanced contrastive representation learning (e.g., RAD, CURL, and
Dreaming ) to further improve the sample efficiency could also be left as future work.
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Broader Impact

Sample efficiency and policy robustness are key factors for the development of real-world applications
on automatic control, such as robotics and autonomous driving. The proposed IDM algorithm is
situated in model-based RL and learns behaviours via imagination with derived memory, which
enables the agent to tackle unseen situations by efficient enhancement on imagination. Thus it further
improves policy robustness and sample efficiency over existing works, which provides a broader
prospect for real-world applications. The technique to generate and utilize the derived memory is wide
applicable computational efficient and could motivate both research and the industrial community
to refine the presented method for addressing the uncertainty in different sources of collected data
and making up the gap between the real world and training environments. In the long run, this paper
contributes to the foundation for realizing robust artificial intelligence, which will improve efficiency,
reduce cost and risk in industrial operation, agriculture and also facilitate people’s life by enhancing
daily life intelligence levels.
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