
UNDER REVIEW

1.5em

R E S C I E N C E C Replication Study

[Re] BiRT: Bio-inspired Replay in Vision Transformers for
Continual Learning

***1, ID
1Purdue University, West Lafayette, Indiana

Edited by
(Editor)

Reviewed by
(Reviewer 1)
(Reviewer 2)

Received
08 November 2023

Published
—

DOI
—

1 Replication Summary

The base code for ViT model used in this replication study which was introduced in ”An
image is worth 16x16 words: Transformers for image recognition at scale” [1] is similar
to [2]. The code implementation for this replication study for all the ideas introduced
in the paper including memory updation algorithm, memory structure, and training
architecture is strictly original and has not been taken from any other source. The ex‐
periments were done for 500 epochs. The replication of this study was constrained by
computational limitations, specifically in terms of time. Due to the absence of a mech‐
anism for storing memory to be reused once the computation time limit was reached as
of yet (time of submission of this paper), the original experiment could not be fully repli‐
cated. Instead, a modified version of the study was conducted with a reduced number
of epochs, and the summarized results are presented in the paper

2 Analysis of the Original Paper

1. The authors failed to provide exact values of several hyper parameters and param‐
eters used in their equations described in the proposed method section of their
paper [3]. Thus, there is no way to replicate the exact same experimental set up.

• They failed to provide information for the hyper‐parameters αt, αm, αa, αs,
and the ones in equation 3, 4, 6, 8 used in their experiments specific to their
architecture.

• They have also not provided any information about the pre‐processing steps
taken for their dataset.

2. The proposed method focuses on continual learning, where the model learns se‐
quentially from disjoint datasets representing different tasks. The paper describes
a fine‐tuning strategy on a balanced dataset after each task for 20 epochs. How‐
ever, it is noted that the majority of learning occurs in the initial epochs. For
instance, training the Vision Transformer (ViT) model on datasets like CiFAR10
and CiFAR100 for just 5 epochs already yields a notable accuracy of 45% and 18%
respectively. This observation questions the necessity of 20 epochs of fine‐tuning
after each task. Fine‐tuning on a balanced dataset containing samples from all
tasks after each task is undermines the essence of continual learning.
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3 Dataset and Data processing

The dataset used for training and testing purposes was CiFAR10 and CiFAR100.

• CiFAR10: It consists of 60,000 32x32 color images in 10 different classes, with 6,000
images per class. The dataset is split into 50,000 training images and 10,000 testing
images.

• CiFAR100: It consists of 60,000 32x32 color images in 100 different classes, with
600 images per class. The dataset is split into 50,000 training images and 10,000
testing images.

The following transformations were applied to the dataset in the given sequence to aug‐
ment the data and make it more robust to variations in the input.

1. transforms.ToTensor():

• Converts the input image to a PyTorch tensor. Changes the image data type
from a PIL Image or numpy array to a PyTorch tensor.

2. transforms.Resize((32, 32)):

• Resizes the input image to a fixed size of 32x32 pixels.

3. transforms.RandomHorizontalFlip(p=0.5):

• Randomly flips the input image horizontally with a probability of 0.5. Intro‐
duces a form of data augmentation by providing different views of the same
image.

4. transforms.RandomResizedCrop((32, 32),scale=(0.8, 1.0),
ratio=(0.75, 1.33), interpolation=2)

• Randomly crops and resizes the input image. The scale parameter controls
the range of the cropped area as a ratio of the original image size

• The ratio parameter controls the aspect ratio of the cropped area. Interpola‐
tion=2 specifies bilinear interpolation for resizing.

5. transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)):

• Normalizes the pixel values of the input image. Subtracts the mean and di‐
vides by the standard deviation. Assumes the image has three color channels
(e.g., RGB) and standardizes the pixel values to be in the range [‐1, 1]. Mean
and standard deviation values used are both set to 0.5.

Since the paper primarily focuses on Continual Learning, the dataset needed to be pre‐
pared for continual learning. Continual learning refers to the ability of amachine learn‐
ing model to incrementally acquire and adapt to new information over time, without re‐
quiring retraining on the entire dataset. It enables the model to learn from a stream of
data in a dynamic environment, allowing it to retain knowledge from past experiences
while incorporating new knowledge efficiently.
This was done by separating the dataset with respect to each class and then creating
subsets. The number of subsets was equal to the number of tasks. The classes were
separated into tasks while ensuring that all tasks remained disjoint. The model is then
trained on each of these tasks successively and fine‐tuned on a balanced dataset at the
end of each task.
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4 Key Ideas Introduced in the Original Paper

The continual learning paradigm normally consists of T sequential tasks, with the data
gradually becoming available over time. During each task t ∈ {1, 2, . . . , T}, the samples
and the corresponding labels (xi, yi)

N
i=1 are drawn from the task‐specific distribution

Dt.

4.1 Knowledge consolidation through complementary learning system
Complementary learning systemposits that the hippocampus and neocortex entail com‐
plementary properties necessary to capture complex interactions in the brain [4]. In‐
spired by CLS they propose a dual memory transformer‐based learning system in which
the working model encounters new tasks and consolidates knowledge over short peri‐
ods of timewhich is then gradually aggregated into the weights of the semanticmemory
during intermittent stages of inactivity.

θs = γθs + (1− γ)θw (1)

4.2 Episodic Memory
They propose a high level representation rehearsal for vision transformers. The work‐
ing model comprises two nested functions: g() and fw(). The first few layers of the
encoder g(), processes the raw image input, and the output along with the ground truth
label is stored in the episodic memory Dm, fw() and its stable counter part fs() is up‐
dated according to equation 1. They populate the episodicmemory at the task boundary
using iCarL herding [5] at the end of task boundry. The algorithm used to implement
iCarl herding is described in the next section. The learning objective for representation
rehearsal is given in equation 2

Ler = E(xi,yi)∼Dt
[Lce(fθ(xi), yi)] + αE(xj ,yj)∼Dm

[Lce(fθ(xj), yj)] (2)

4.3 Noise and Trial-to-Trial Variability
Noise is prevalent at every level of the nervous system and has been shown to play con‐
structive role in brain. Furthermore, injecting noise into the neural network learning
pipeline has been shown to result in faster convergence to the global optimum [6] , bet‐
ter generalization [7], and effective knowledge distillation.

Representation Noise M̃ —
r̃ = λri + (1− λ)rj (3)

ỹ = λyi + (1− λ)yj (4)

The authors propose to linearly combine the representations sampled from episodic
memory using a manifold mixup as shown in ?? where ri and rj are stored representa‐
tions of two different samples, and yi and yj are the corresponding labels.
This concept has not been explored in this implementation.

Attention Noise Ã — The working model fw(.) in BiRT consists of several multi‐head self‐
attention layers that map a query and a set of key‐value pairs to an output. The authors
inject noise into the scaled dot‐product attention at each layer of fw(.) while replaying
the representation as shown in equation 5.
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Attention(Q,K, V ) =

(
softmax

(
QKT

√
dk

)
+ ϵ

)
V (5)

where Q, K, and V are query, key, and value matrices, and ϵ ∼ N (0, σ2) is a white
Gaussian noise. By stochastically injecting noise into self‐attention, they discourage
BiRT from overfitting.

Label Noise T̃ — The author introduce a synthetic label noise T̃ in which they re‐assign a
small percentage of the samples a random class, thus taking advantage of the fact that
label noise is sparse in the real world [8].

Supervision Noise S̃ — They also regularize the function learned by the working model
to enforcing consistency in its predictions with respect to the semantic memory using
equations 6 and 7.

Lcr = β1Exi∼Dt
∥fw(g(xi))− fs(g(xi))∥p + β2Erj∼Dm

∥fw(rj)− fs(rj)∥p, (6)

fs(rj)← fs(rj) + δ, (7)

where β1 and β2 are balancing weights, δ ∼ N (0, σ2) is a white Gaussian noise, and
Lcr represents the expected Minkowski distance between the corresponding pairs of
predictions, and p = 2. Thus the final learning objective becomes equation 8

L = Lrepr + ρLcr (8)

4.4 Algorithm Used by the Authors
The algorithm used by the authors [3] is presented in algorithm 1.

4.5 Models and Algorithms Used in this Implementation

Vision Transformer andWorkingModel Architecturefw()/fs() and g() — TheVisionTransformer
Architecture is largely taken and is similiar to the original paper ”An image is worth
16x16 words: Transformers for image recognition at scale” [1] [2]. The paper introduces
an input embedding layer, followed bymultiple encoder blocks followed by aMLP head.
The architecture is summed up in the image 1. The values of the parameters used are
summarized in tables 1,2. The g() model contains the embedding layer and 2 encoder
blocks from the encoder stack. The input to thismodel is of the dimension batch * chan‐
nel * height * width and the output is batch * patches + 1* hidden_size. The fs() and fw()
consist of num_heads ‐ 2 encoder blocks and the MLP head. The input to this model is
of the dimension batch * patches + 1 * latent size and the output is the batch * 1.
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Algorithm 1 BiRT Algorithm
input: Data streams Dt, buffer Dm, working model fw, hyperparameters γ, αt, αm,
αa, αs

for tasks t ∈ {1, 2, .., T} do
for epochs e ∈ {1, 2, .., E} do

Sample a mini‐batch (x, y) ∼ Dt

x = augment(x)
if Dm ̸= ∅ then

Sample a mini‐batch (r, y) ∼ Dm

a, b, c, d, e ∼ U(0, 1)
ỹ ← T̃ (y) if a < αt

(r̃, ỹ)← M̃(r, y) if b < αm ▷ (Eq. 3, 4)
Ã← Ã(A) if c < αa ▷ (Eq. 5)
fs(r)← S̃(fs(r), δ) if d < αs ▷ (Eq. 7)

end if
Compute outputs of fw(.) and fs(.)
Compute L = Lrepr + ρLcr ▷ (Eqs. 2, 6, 8)
θw ← θw +∇θwL
θs ← γθs + (1− γ)θw if e < αe and t > 1

end for
if task‐end = True then

if t = 1 then
Freeze g(.)
θs = copy(θw)

end if
Dm ← (r, y)

end if
end for
Return: working model θw, and semantic memory θs

Table 1. Parameters for ViT

Variable Description
patch_size Patch size of the image fed into the embedding layer
hidden_size Output size of each patch after the embedding layer

num_hidden_layers Number of encoder blocks in the model
num_attention_heads Number of attention heads in the multi‐head atten‐

tion layers
intermediate_size Dimensionality of the intermediate layer in the feed‐

forward layers of MLP
hidden_dropout_prob Dropout probability for the hidden layers

attention_probs_dropout_prob Dropout probability for attention probabilities
initializer_range Range for weight initialization

image_size Size of the input images
num_classes Number of output classes
num_channels Number of input image channels

qkv_bias Whether to include bias in the query, key, and value
projections

use_faster_attention Whether to use a faster attention implementation

Episodic Memory Architecture — The episodicmemory is updated based on iCarl implemen‐
tation The representations from the model g() are appended to a list for that particular
task during task training. After the end of the task, the representations are sorted based
on classes in the tasks. Each class is then sorted based on iCarl herding, which sorts
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Figure 1. ViT architecture

Table 2. Parameters for General Training

Variable Description
base_lr Hyperparameter for the optimizer

weight_decay Hyperparameter for the optimizer
num_classes Number of classes in the dataset
accum_iter parameter for implementing gradient accumula‐

tion, computes gradient and backpropogates after
accum_iter number of batches

tasks Number of tasks used for Continual Learning
epochs Number of epochs in training layer

batch_size Number of images processed by the model at a time
fine_tune_epoch Number of epochs for fine tuning after each tasks.

representations from the most representative representations for that class to the least
representative representations of the class.This is done by select_exemplar() function
(Algorithm 2). These sorted representations are then stored in a dictionary correspond‐
ing to their class key. The first n representations from each class the model has been
trained on until the current task are taken, ensuring that all classes have equal represen‐
tation in thememory (Algorithm 3). The algorithm formemory updation is presented in
Algorithm 4. The algorithm to sample batches during training is presented in Algorithm
5.

Ideas Implemented — The ideas implemented from the paper are

• Knowledge consolidation through complementary learning system as illustrated
in 1

• Episodic Memory

• Attention Noise Ã as illustrated in 5

• Label Noise T̃

• Supervision Noise S̃ as described in 7

• The final learning objective which is given by 8 by combining 6, 2.
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Algorithm 2 iCaRL CONſTRUCTEXEMPLARSET
Require: Input: image setX = {x1, . . . , xn} of class y
Require: Input: m target number of exemplars
Require: current feature function ϕ : X → Rd

µ← 1
n

∑
x∈X ϕ(x) // current class mean

for k = 1, . . . ,m do
pk ← argmin

x∈X

∥∥∥µ− 1
k [ϕ(x) +

∑k−1
j=1 ϕ(pj)]

∥∥∥
end for
P ← (p1, . . . , pm)
Output: exemplar set P

Algorithm 3 iCaRL REDUCEEXEMPLARSET
Require: Input: m // target number of exemplars
Require: Input: P = (p1, . . . , p|P |) // current exemplar set

P ← (p1, . . . , pm) // keep only firstm
Output: exemplar set P

4.6 Algorithm Used in this Implementation
Other hyperparameters used in the training implementation specific to BiRT architec‐
ture are listed in table 4.6 and the algorithm is illustrated in Algorithm 6

Table 3. Hyperparameters specific to BiRT training

Hyperparameter Description
αt Controls amount of label noise
αa Controls amount of attention noise
αs Controls amount of trial to trial variability, by applying

noise to logits of semantic memory
αe Controls updation of semantic weights

αloss_rep Hyperparameter used in representation loss
ρloss_cr Hyperparameter used in calculating total loss
β1loss Hyperparameter used in consistency regulation loss
β2loss Hyperparameter used in consistency regulation loss

_gamma Hyperparameter used for updating semantic memory
percentage_change Hyperparameter used in label noise

std Hyperparameter for normal distribution used in creating
noise to be applied to semantic memory logits

mean Hyperparameter for normal distribution used in creating
noise to be applied to semantic memory logits

c Value of 1 enables attention noise, 0 disables it

For every tasks, the training loop loops through multiple epochs, for all the batches in
that task. It first stores outputs from g() along with each of the labels in a list specific
to the tasks. The control variables αt_comp, αa_comp, αs_comp, αe_comp are sampled
from a normal distribution to control different noises introduced in BiRT. The values of
these variables change with every batch. Thus the application of various noises intro‐
duced in this paper is randomand largely depends on the randomvalues of these control
variables which are updated dynamically with every batch and the threshold hyperpa‐
rameters against which they are compared αt, αa, αs, αe. A minibatch is samples from
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Algorithm 4 Update
1: procedure UPDATE(task_sem_mem_list, task_num)
2: num_needed_per_class ← int(self.max_length/(((task_num + 1) ×

num_classes)/self.tasks))
3: self.buffer_images← []
4: self.buffer_labels← []
5: images_list← [tup[0] for tup in task_sem_mem_list]
6: labels_list← [tup[1] for tup in task_sem_mem_list]
7: concatenate_images← torch.cat(images_list,dim = 0)
8: concatenate_labels← torch.cat(labels_list,dim = 0)
9: single_images_list← torch.split(concatenate_images, 1,dim = 0)
10: single_images_list← [tensor.squeeze(dim = 0) for tensor in single_images_list]
11: single_labels_list← torch.split(concatenate_labels, 1,dim = 0)
12: single_labels_list← [tensor.squeeze(dim = 0).item()
13: for tensor in single_labels_list]
14: task_set← set(single_labels_list)
15: for i in range(len(single_images_list)) do
16: self.class_separate_list[int(single_labels_list[i])].append(single_images_list[i])
17: end for
18: for i in task_set do
19: select_exemplar_length← min(self.max_length, len(self.class_separate_list[int(i)]))
20: self.class_icarl_list[i]← select_exemplars(self.class_separate_list[int(i)],

select_exemplar_length)
21: end for
22: for i in range(num_classes) do
23: if (i in self.class_icarl_list) then
24: self.buffer_images.extend(self.class_icarl_list[i][0 :

num_needed_per_class])
25: self.buffer_labels.extend([i]× num_needed_per_class)
26: end if
27: end for
28: self.num_elements← len(self.buffer_images)
29: end procedure

the episodic memory only if the memory is not empty, that is after the first task. After
which label noise is introduced on it if αt_comp < αt, attention noise is implemented if
αa_comp < αa, noise is added to logits of semantic memory (mini batch sampled from
it) if αt_comp < αt and the weights of the semantic model f_s() is updated by interpo‐
lating with that of f_w() if αe_comp < αe. For the first task, weights of working model
f_w() are simply assigned to the semantic model f_s() at the end. Loss is computed and
weights of the working model g() and f_w() are updated by the optimizer according to
the equations 2, 6 and 8. The memory is updated at the end of each task using iCarl
herding [5].
One important thing to notice is that, a copy of the output from the g() after being de‐
tached from the compute graph is stored in the episodic memory. Storing without de‐
taching leads to problems in loss computation because it gets backpropogated twice
once during training in g() and other time during training in f_w() and f_s().
The training loop implemented in this replication study is summarized in Algorithm 6.

5 Tests and Results: CiFAR10

All the Training and Testing was done on V100 GPU with 32GB RAM.
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Algorithm 5 Sample Batch
procedure GETBATCH

batch_images← []
batch_labels← []
for i in range(self.batch_size) do

index← np.random.randint(0, self.num_elements)
batch_images.append(self.buffer_images[index])
batch_labels.append(torch.tensor(self.buffer_labels[index]))

end for
images← torch.stack(batch_images,dim = 0)
labels← torch.stack(batch_labels,dim = 0)
return images, labels

end procedure

Figure 2. Test Loss for ViT trained on CiFAR10

5.1 CiFAR10 with ViT Model
The loss and accuracy of ViT model [1] on training dataset after each training epoch is
shown in graph ?? 3. The parameters of ViT model are summarized in table . It is to be
noted that the dataset was not segregated into tasks for this experiment, and was done
on the entire dataset.
The loss criterion is Cross Entropy Loss.
Time taken to train over the entire dataset per epoch is 52 secs.

5.2 CiFAR10 with ViT Model separated into g() and f()
The loss and accuracy of ViT model separated into g() and f() based on the BiRT paper
on training dataset after each training epoch is shown in image 4. The parameters of
ViT model are summarized in table 5. It is, again, to be noted that the dataset was not
segregated into tasks for this experiment, and was done on the entire dataset. The loss

Figure 3. Accuarcy Percentage for ViT trained on CiFAR10
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Algorithm 6 Training Loop
for each task do

for each epoch do
train_loss← 0.0
task_sem_mem_list←
for each batch do

x, y ← batch
x, y ← x.to(device), y.to(device)
y_hat_temp,←model_g(x, c)
sem_mem.append((y_hat_temp, y))
alpha_t_comp, alpha_a_comp, alpha_s_comp, alpha_e_comp ∼ U(0, 1)
if ¬sem_mem.is_empty() then

r, r_y ← sem_mem.get_batch()
if alpha_t_comp < alpha_t then

num_change← int(percentage_change/100× batch_size)
indices_change_r_y ← randperm(len(y))[: num_change]
r_y_changed← randint(0, classes, (num_change, ))
r_y[indices_change_r_y]← r_y_changed

end if
if alpha_a_comp < alpha_a then

c← 1
end if
r_y_working,←model_f_w(r, c)
r_y_semantic,←model_f_s(r, c)

end if
y_working,←model_f_w(y_hat_temp, c)
y_semantic,←model_f_s(y_hat_temp, c)
if alpha_s_comp < alpha_s then

r_y_semantic← r_y_semantic+ noise ∼ U(0, 1)
end if
loss_representation← 2
loss_consistency_reg ← 6
loss← 8
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss← train_loss+ loss.detach().cpu().item()/len(taskloader)
if alpha_e_comp < alpha_e and task_index > 0 then

for params1, params2 in (model_f_s.params,model_f_w.params do
interpolated_params← γ× params1.data+(1− γ)× params2.data
params1.data← interpolated_params

end for
end if

end for
end for
if task_index = 0 then

for params1, params2 in model_f_s.params,model_f_w.params do
interpolated_params← params2.data
params1.← interpolated_params

end for
end if

end for
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Table 4. CiFAR10 with ViT Model

Parameter Value Parameter Value

attention_probs_dropout_prob 0.0 qkv_bias True
batch_size 32 hidden_dropout_prob 0.0
epochs 30 hidden_size 48
initializer_range 0.02 intermediate_size 192
lr 0.0005 num_attention_heads 4
num_channels 3 num_classes 10
num_hidden_layers 4 patch_size 4
use_faster_attention True learning_rate 5e‐4
weight_decay 1e‐6 optimizer Adam

Figure 4. Test Loss for ViT split into g() and f() trained on CiFAR10

criterion used is Cross Entropy Loss. Time taken to train over the entire dataset per
epoch is ~52 secs.

Table 5. CiFAR10 with ViT Model split into g() and f()

Parameter Value Parameter Value

attention_probs_dropout_prob 0.0 qkv_bias True
batch_size 32 hidden_dropout_prob 0.0
epochs 30 hidden_size 48
initializer_range 0.02 intermediate_size 192
lr 0.0005 num_attention_heads 4
num_channels 3 num_classes 10
num_hidden_layers 4 patch_size 4
use_faster_attention True learning_rate 5e‐4
weight_decay 1e‐6 optimizer Adam
c 0

5.3 CiFAR10 with BiRT architecture for Continual Learning
The parameters used for training CiFAR 10 with BiRT architecture are given in table 6.
The 10 classeswere divided into 5 taskswith 2 classes each. The architecturewas trained
for 38 epochs for each task, and then fine tuned on a small balanced dataset with 1000
images for 5 epochs. The average time to update memory after each tasks was 13 mins
and the average time to train the model for each epoch per task was 55 sec (36 mins per
task for 38 epochs) The values of hyperparameters used in the section is given in 6.
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Table 6. Parameters for BiRT Architecture with CiFAR 10

Parameter Value Parameter Value

attention_probs_dropout_prob 0.0 hidden_size 48
base_lr 0.0005 image_size 32
batch_size 64 initializer_range 0.02
epochs 20 intermediate_size 192
hidden_dropout_prob 0.0 num_attention_heads 12
num_channels 3 num_classes 10
num_hidden_layers 5 optimizer Adam
patch_size 4 qkv_bias True
tasks 5 use_faster_attention True
weight_decay 1e‐06 accum_iter 2
αt 0.005 αa 0.005
αs 0.005 αe 0.003
αloss_rep 0.4 ρloss_cr 1
β1loss 0.05 β2loss 0.01
_gamma 0.005 Percentage Change 5
Std 1 Mean 0
Semantic Memory Length 500

Training BiRT architecture on each tasks successively for 38 epochs — The loss for each task is
summarized in figure 5 and figure 6. The percentage accuracy obtained after training
the BiRT architecture for 38 epochs on each tasks was 13.92 %.

Fine Tuning BiRT architecture for 5 epochs on a balanced dataset of 1000 images — After tarining
on each task, the model was fine tuned on a balanced dataset. The parameters for the
ViT model were kept the same as table 6. The loss per epoch is summarized in figure
7. The accuracy obtained after finetuning was 24.96% and the time taken to train the
model per epoch was 0.03 sec.

6 Test and Results: CiFAR100

The authors trained their BiRTmodel on 5 tasks of CiFAR 100 for 500 epochs for each task
and fine tuned the model for 20 epochs on after each tasks. They report their last accu‐
racy (accuracy on the test dataset of CiFAR 100 after the model has been done training)
as 54.15 %. It took them average of 45 mins to train each tasks for 500 epochs.

6.1 ViT Model with CiFAR100
The loss and accuracy of ViT model [1] on training dataset after each training epoch is
shown in graphs 8 . The parameters of ViT model are summarized in table . It is to be
noted that the dataset was not segregated into tasks for this experiment, and was done
on the entire dataset.
The loss criterion is Cross Entropy Loss.
Time taken to train over the entire dataset per epoch is ~55 secs.

6.2 BiRT Model with CiFAR 100
The BiRT model in this implementation was trained on V100 GPU with 32 GB RAM. The
dataset was divided into 5 task each with 20 classes in each. The time taken to update
memory after each taskwas ~5mins. The time taken to train on each epoch for each task
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Figure 5. Loss per Task for BiRT on CiFAR10 for 38 epochs for Task 0‐2

Figure 6. Loss per Task for BiRT on CiFAR10 for 38 epochs for Task 3‐4

Figure 7. Loss per epoch on fine tuning on 1000 CiFAR10 images
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Name Value Name Value

attention_probs_dropout_prob 0.0 hidden_dropout_prob 0.0
batch_size 32 hidden_size 384
epochs 30 image_size 32
optimizer Adam initializer_range 0.02
intermediate_size 1536 lr 0.0005
num_attention_heads 12 num_channels 3
num_classes 100 num_hidden_layers 5
patch_size 4 qkv_bias True
use_faster_attention True wd 1e‐6

Table 7. Parameter Values

Figure 8. Loss and Accuracy of ViT with CiFAR 100 after 30 epochs

was ~1 min. The model was first trained for 30 epochs each on each of the 5 task and
then fine tuned for 5 epochs on a balanced dataset with 1000 images. It was then again
trained for 42 epochs on each of the five tasks and then fine tuned again for 5 epochs.
The parameters used for the model are given in table 9. The results are summarized
below.

Training BiRT on CiFAR 100 for first 30 epochs — The average time to train for 1 epoch per task
was 60 secs. Thus it took ~30 mins to train for each task. The accuracy obtained after
training for 30 epochs on each task was 1.002 %. The loss plots are summarized in 10
and 11

Fine Tuning BiRT on a balanced dataset of 1000 images from CiFAR 100 for 5 epochs — The model
was then fine tuned on a balanced dataset consisting of 5000 samples for 5 epochs. The
accuracy achievedwas 4.698%. The loss plot is summarized in the image 12. The average
time to train per epoch was 0.02 sec.

Training BiRT on CiFAR 100 for second 42 epochs — The average time to train for 1 epoch per
task was 60 secs. Thus it took ~43 mins to train each task. The accuracy obtained after

Figure 9. Loss and Accuracy of ViT when split into f() and g() with CiFAR 100 after 30 epochs
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Figure 10. Loss per Task for BiRT on CiFAR100 for 30 epochs for Task 0‐1

Figure 11. Loss per Task for BiRT on CiFAR100 for 30 epochs for Task 2‐4

Figure 12. BiRT fine tuned on balanced CiFAR 100 dataset of 1000 images
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Table 8. Parameter Values for ViT Model with CiFAR 100

Name Value Name Value

attention_probs_dropout_prob 0.0 hidden_dropout_prob 0.0
batch_size 32 hidden_size 384
epochs 30 image_size 32
optimizer Adam initializer_range 0.02
intermediate_size 1536 lr 0.0005
num_attention_heads 12 num_channels 3
num_classes 100 num_hidden_layers 5
patch_size 4 qkv_bias True
use_faster_attention True wd 1e‐6

Table 9. Parameters and Hyperparameters for BiRT with CiFAR 100 dataset

Parameter Value Parameter Value

Base Learning Rate 0.0005 Batch Size 64
Accum_iter 2 Attention Probs Dropout Prob 0.0
Epochs 30 Hidden Dropout Prob 0.0
Hidden Size 384 Image Size 32
Initializer Range 0.02 Intermediate Size 1536
Num Attention Heads 12 Num Channels 3
Num Classes 100 Num Hidden Layers 5
Optimizer Adam Patch Size 4
QKV Bias True Tasks 5
Use Faster Attention True Weight Decay 1e‐06
αt 0.005 αa 0.005
αs 0.005 αe 0.003
αloss_rep 0.4 ρloss_cr 1
β1loss 0.05 β2loss 0.01
_gamma 0.005 Percentage Change 5
Std 1 Mean 0
Semantic Memory Length 500

training for 42 epochs on each task was 3.305 %. The loss plots are summarized in 13
and 14

Fine Tuning BiRT on a balanced dataset of 1000 images from CiFAR 100 for 5 epochs for the second
time — The model was then fine tuned on a balanced dataset consisting of 5000 samples
for 5 epochs. The accuracy achieved was 6.801%. The loss plot is summarized in the
image 15. The average time to train per epoch was 0.02 sec.

6.3 Conclusion
We first showcase the accuracy of the ViT model used in the BiRT with the dataset for
both CIFAR‐10 and CIFAR‐100. This helps us understand themaximum accuracy achiev‐
able by implementing the BiRT training architecture for continual learning when these
datasets are divided into different tasks. The key observation is that the reduction in
loss is directly proportional to the number of epochs. The rehearsal learning effect of
the BiRT algorithm is more evident in a dataset with larger number of classes where
the loss takes more epochs to decrease significantly. We hypothesize that this is due to
sampling different classes from previous tasks stored in the episodic memory, which
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Figure 13. Loss per Task for BiRT on CiFAR100 for 42 epochs for Task 0‐1

Figure 14. Loss per Task for BiRT on CiFAR100 for 42 epochs for Task 2‐4

Figure 15. BiRT fine tuned on balanced CiFAR 100 dataset
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Figure 16. BiRT model with CiFAR100 trained in the first 3 task of a total of 5

brings in more variation, making it longer for the loss to stabilize and decrease with
each successive task. This is evident from figure 16 where CiFAR 100 dataset is divided
into 5 task and the model is trained on different number of epochs for the first 3 tasks.
Fine‐tuning, even on a very small number of images for just a few epochs, has a great
effect on the accuracy of the model. We critique that the author should have shown
results without fine‐tuning as well because in real‐world continual learning scenarios,
this is not practically possible.
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