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Abstract

Spatially Resolved Transcriptomics (SRT) is a
cutting-edge technique that captures the spatial
context of cells within tissues, enabling the study
of complex biological networks. Recent graph-
based methods leverage both gene expression and
spatial information to identify relevant spatial do-
mains. However, these approaches fall short in
obtaining meaningful spot representations, espe-
cially for spots near spatial domain boundaries,
as they heavily emphasize adjacent spots that
have minimal feature differences from an anchor
node. To address this, we propose Spotscape,
a novel framework that introduces the Similarity
Telescope module to capture global relationships
between multiple spots. Additionally, we pro-
pose a similarity scaling strategy to regulate the
distances between intra- and inter-slice spots, fa-
cilitating effective multi-slice integration. Exten-
sive experiments demonstrate the superiority of
Spotscape in various downstream tasks, includ-
ing single-slice and multi-slice scenarios. Our
code is available at the following link: https:
//github.com/yunhak0/Spotscape.

1. Introduction
Recently, Spatially Resolved Transcriptomics (SRT) has
gained significant attention for its ability to capture the
spatial context of cells within tissues. It provides spatially
resolved gene expressions, quantifying gene activity levels
and mapping each spot’s physical location within the tissue.
Although it helps uncover complex transcriptional structures
in tissue, analyzing SRT data remains challenging due to
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noise caused by the technology’s limited resolution and high
dimensionality.

In response to these challenges, representation learning
methods have been developed to capture biologically mean-
ingful spot representations by integrating spatial and gene
expression data. Specifically, graph-based methods (Xu
et al., 2024a; Hu et al., 2021) construct graphs using spatial
coordinates to gather information from nearby spots and gen-
erate representations using graph neural networks (GNNs).
While this approach effectively incorporates spatial informa-
tion into latent representations, it faces limitations for spots
near spatial domain boundaries. These boundary spots may
receive information from nodes representing different types
of spots (i.e., heterophilic nodes), which can complicate
accurate representation learning. To address this limitation,
STAGATE (Dong & Zhang, 2022) utilized graph attention
networks (GAT) (Veličković et al., 2017) to learn spot sim-
ilarities, enhancing the representations of spots at spatial
domain boundaries.

Despite the effectiveness of STAGATE, we argue that learn-
ing attention weights in SRT data remains challenging due
to the continuous nature of biological systems, where gene
expression values vary smoothly along spatial coordinates
(Cembrowski & Menon, 2018; Phillips et al., 2019; Adler
et al., 2019; Harris et al., 2021). This continuity blurs the
distinction between spatial domains, as shown in Figure 1
(a), since spots in local neighborhoods exhibit high similar-
ity even across different domains. Furthermore, even with
well-learned edge weights (e.g., assigning high weights to
same-type spots and low weights otherwise), an anchor spot
may still struggle to extract meaningful information from its
neighbors due to marginal feature differences. As a result,
the received information may be largely redundant, hinder-
ing representation quality. To corroborate our argument,
we compared the clustering performance of various graph
autoencoder (GAE) architectures, as shown in Figure 1 (b):
(1) GAE on the original spatial nearest neighbor (SNN)
graph1, (2) GAE with a GAT encoder, (3) GAE with oracle

1The SNN graph is constructed by connecting spots that are
either within a predefined radius r or among the nearest top k
neighbors based on spatial distance.
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(a) Feature similarity comparison (b) Clustering performance comparison

(2) Local view

(1) Global view
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(Total CA: 0.6032, Boundary CA: 0.4900)(Total CA: 0.6142, Boundary CA: 0.4133)(Total CA: 0.5463, Boundary CA: 0.3805)(Total CA: 0.5037, Boundary CA: 0.3994)

Figure 1. (a) Feature similarity comparison from global and local perspectives. In global view, the similarity between the anchor (i.e., red
dot) and other spots gradually changes with their spatial coordinates. In contrast, in the local view, neighboring spots exhibit minimal
feature discrepancy compared to the anchor, irrespective of the true spatial domain. (b) Clustering performance comparison in terms of
clustering accuracy for all spots (Total CA) and particularly for spots located at the boundary of clusters (Boundary CA) in the human
dorsolateral prefrontal cortex (DLPFC) dataset.

edge weights2, and (4) GAE incorporating global similarity
learning (our proposed method). While the attention mecha-
nism improves general clustering performance (i.e., Total
CA), it degrades the clustering performance of boundary
spots (i.e., Boundary CA). This highlights the difficulty of
learning spot representations near the boundary of spatial
domains using attention. Another interesting observation is
that even with oracle edge weights, improvement in terms
of boundary CA is not significant compared with the GAE
on the original SNN, supporting our argument that solely
relying on the local view provides limited information.

In addition to addressing the aforementioned challenges in
single-slice analysis, representation learning models for the
SRT dataset must account for batch effects (Li et al., 2020b)
to facilitate multi-slice analysis. The batch effect refers to
the phenomenon where gene expression profiles from the
same slice cluster together unexpectedly, regardless of their
biological relevance, during multi-slice integration. While
integrating multiple datasets offers significant advantages,
addressing batch effects remains a key challenge.

To this end, we propose Spotscape, a novel framework
designed to tackle challenges in both single-slice and multi-
slice tasks. Based on our findings that relying solely on spa-
tially local neighbors provides limited performance gains,
Spotscape introduces the Similarity Telescope module,
which captures relative similarities not only among spatially
neighboring spots but also across global spots. This learning
scheme is particularly beneficial for SRT data, as optimiz-
ing similarity directly supports downstream analyses that
involve comparing relative distances, such as clustering or
marker gene detection.

Furthermore, we extend Spotscape to multi-slice tasks by
employing a prototypical contrastive learning (PCL) scheme
to cluster semantically similar spots (i.e., spots with the

2Edges between spots of the same type were assigned a weight
of 1, and 0 otherwise. That is, we remove heterophilic edges.

same domain) from different slices in latent space. More-
over, we propose a similarity scale matching loss that ex-
plicitly balances the similarity scales of inter- and intra-
relationships to mitigate the batch effect. This strategy
enhances the integration of representations across slices,
enabling our model to handle both single- and multi-slice
SRT data effectively.

In summary, our contributions are four-fold:

• We find that capturing similarity among spatially local
neighbors alone is insufficient for learning meaningful
representations in SRT data, especially near the bound-
aries of spatial domains.

• To address this limitation, we propose a global similarity
learning scheme called the Similarity Telescope module
to capture the relationships between spots in the global
context.

• We adopt a PCL scheme and introduce a similarity scale
matching strategy to mitigate batch effects during si-
multaneous training with multiple slices, enabling our
model to perform effectively on both single-slice and
multi-slice SRT data.

• We conduct extensive experiments across various
tasks and datasets to validate the effectiveness of
Spotscape in both single- and multi-slice datasets.

2. Related Work
2.1. Representation learning for SRT data

Learning effective representations of SRT data is critical
for downstream tasks, such as spatial domain identifica-
tion (SDI), which categorizes biologically meaningful tissue
regions and enhances our understanding of tissue organi-
zation (Maynard et al., 2021). Recently, graph-based deep
learning methods have incorporated spatial coordinates and
gene expression. For instance, SEDR (Xu et al., 2024a)
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employs a graph autoencoder (GAE) with masking to learn
and denoise spatial gene expression, while SpaGCN (Hu
et al., 2021) integrates spatial and gene expression data us-
ing graph neural networks and clustering loss (Xie et al.,
2016). STAGATE (Dong & Zhang, 2022) applies graph
attention networks to address boundary heterogeneity. Self-
supervised learning has also gained popularity for captur-
ing robust representations without labels. SpaceFlow (Ren
et al., 2022) utilizes Deep Graph Infomax (DGI) (Veličković
et al., 2018) with spatial regularization for spatial consis-
tency, while SpaCAE (Hu et al., 2024) uses a GAE with
contrastive learning to handle sparse and noisy SRT data.

2.2. Slice Integration and Alignment

Numerous SRT studies collect data from neighboring tissue
sections, but inconsistencies in dissection and positioning
lead to misaligned spatial coordinates. As a result, inte-
grating data across slices is essential for extracting diverse
insights. PASTE (Zeira et al., 2022) addresses this using op-
timal transport to align spots into a shared embedding space.
However, SRT data is sometimes generated under varying
conditions (e.g., different technology platforms, develop-
mental stages, or sample conditions). We refer to this as
the heterogeneous case, which presents an additional chal-
lenge: batch effects, where gene expression profiles from
the same slice cluster together, irrespective of their biologi-
cal significance. STAligner (Zhou et al., 2023) mitigates this
by defining mutual nearest neighbors as positive samples
and using triplet loss to integrate embeddings across slices.
GraphST (Long et al., 2023) employs DGI to correct batch
effects by maximizing mutual information in vertical or hor-
izontal integrations. Moreover, PASTE2 (Liu et al., 2023)
uses partial optimal transport concept for partial alignment.
Furthermore, SLAT (Xia et al., 2023) uses graph adversarial
training for robust slice alignment and CAST (Tang et al.,
2024) leverages CCA-SSG (Zhang et al., 2021) for hetero-
geneous slices integration and alignment. Our approach
addresses both homogeneous and heterogeneous integration
and alignment tasks using a prototypical contrastive learning
scheme and simple similarity scale matching strategy.

3. Problem Statement
Notations. The SRT data is composed of spatial coordinates
S ∈ RNs×2 and gene expression profile X ∈ RNs×Ng ,
where Ns represents the total number of spots across all
slices, and Ng denotes the number of genes. In multi-
slice cases, the spatial coordinates and gene expression
profiles are denoted as S = (S(1), S(2), . . . , S(Nd)) and
X = (X(1), X(2), . . . , X(Nd)), respectively, where Nd rep-
resents the number of slices. We construct spatial nearest
neighbors (SNN) graphs G = (G(1),G(2), . . . ,G(Nd)) based
on distances computed from spatial coordinates and rep-
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Figure 2. Overall framework of Spotscape, which is trained with
the SNN graph using (a) similarity telescope and reconstruction
loss, while additionally utilizing (b) PCL and similarity scale
matching loss in multi-slice SRT.

resent the entire structure as G = (X,A). The adjacency
matrix A ∈ RNs×Ns is defined such that Aij = 1 if there is
an edge connecting nodes i and j, and Aij = 0 otherwise.
For simplicity, we do not define a separate adjacency matrix
for each slice, resulting in a block-diagonal matrix where
all elements are zero across different slices.

Task description. Given the constructed SNN graph G, our
goal is to train a graph neural network (GNN) that generates
spot representations without any label information, i.e., self-
supervised learning. The trained GNN is then utilized for
various downstream tasks, including SDI, trajectory infer-
ence, imputation, multi-slice integration, and alignment.

4. Methodology
In this section, we introduce our method, Spotscape. In a
nutshell, Spotscape learns spot representations by captur-
ing global similarities between spots through the Similarity
Telescope module (Sec 4.2) for the single-slice tasks. More-
over, to enhance multi-slice tasks, we adopt a prototypical
contrastive learning module (Sec 4.3) to group spots from
the same spatial domain across different slices and introduce
a similarity scaling strategy (Sec 4.4) to balance intra- and
inter-slice similarities, thereby alleviating batch effects. The
overall framework of Spotscape is depicted in Figure 2.

4.1. Model Architecture

In this work, we propose novel self-supervised learning
strategies specifically tailored for SRT data, while adhering
to a basic siamese network structure for our model architec-
ture. In siamese network, we generate two augmented views,
G̃ = (X̃, Ã) and G̃′

= (X̃
′
, Ã

′
), by applying a stochastic

graph augmentation T to the original graph G, which con-
sists of node feature masking and edge masking. Then,
Spotscape computes spot representations Z̃ = fθ(X̃, Ã)
and Z̃

′
= fθ(X̃

′
, Ã

′
), fθ is a shared GNN-based encoder,

Z̃ ∈ RNs×D and Z̃
′ ∈ RNs×D represent spot representa-

tions derived from augmented graph G̃ and G̃′
, respectively,
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and D denotes the dimension size of representations.

4.2. Similarity Telescope with Relation Consistency

Biological systems exhibit a continuous nature, where gene
expression values vary smoothly along spatial coordinates.
This continuity results in feature similarities between neigh-
boring spots, influenced by both meaningful functional char-
acteristics and spatial proximity. Consequently, spatially
neighboring spots provide limited information, as their fea-
ture differences are not fully obtained from meaningful ones
and are often merely close due to their spatial proximity.
Therefore, relying solely on spatially neighboring spots is in-
sufficient for accurate representation learning, highlighting
the importance of reflecting the global context in this do-
main. To this end, we propose a novel relation consistency
loss for spot representation learning, which aims to capture
the relationship between cells in the biological systems by
reflecting the global context among multiple spots.

Specifically, given spot representations Z̃ and Z̃
′
, we pro-

pose to learn the consistent relationship that are invariant
under augmentation as follows:

LSC(Z̃, Z̃
′
) = MSE(Z̃norm(Z̃

′

norm)
T , Z̃

′

norm(Z̃norm)
T ) (1)

where Z̃norm ∈ RNs×D denotes the L2-normalized version
of Z̃, and MSE represents the Mean Squared Error. That
is, we aim to minimize the cosine similarity between the
spot representations that are obtained through differently
augmented SNN graph. By doing so, the model learns con-
sistent relationships, which is represented as cosine similar-
ity, between all paired spots under different augmentations,
capturing the continuous variations of spot representations
across the entire slice. A more detailed interpretation of the
relation consistency loss LSC can be found in Appendix L.

To avoid degenerate solutions, Spotscape employs a recon-
struction loss as follows:

LRecon(X, X̂, X̂
′
) = MSE(X, X̂) + MSE(X, X̂

′
) (2)

where X̂ = gθ(Z̃) and X̂
′
= gθ(Z̃

′
) are reconstructed

feature matrices predicted by a shared MLP decoder gθ from
each augmented view. Note that utilizing this reconstruction
module offers additional advantages, as the reconstructed
output (i.e., imputed data) can be valuable for imputing and
denoising raw transcriptomics data.

Combining all these two losses, the final training loss for
single-slice representation learning is formally defined as:

LSingle = λSCLSC + λReconLRecon (3)

4.3. Prototypical Contrastive Learning

Beyond single-slice SRT, multi-slice SRT analysis eluci-
dates the spatial regulatory mechanisms of specific biolog-

ical processes by analyzing the continuity of gene expres-
sion across the entire tissue or organ. For this analysis,
researchers need to identify corresponding or similar spots
across different slices, requiring an integrated representa-
tion space. To ensure a well-integrated representation space,
spots should be merged based on meaningful characteristics.
To this end, Spotscape employs a prototypical contrastive
learning (PCL) scheme (Li et al., 2020a; De Donno et al.,
2023; Lee et al., 2023) to group spots with the same spatial
domain while distancing others in latent space. Specifi-
cally, we obtain prototypes (i.e., centroids) by performing
K-means clustering on spot representations Z̃

′
derived from

an augmented view G̃′
. Pairs of spots assigned to the same

prototype are categorized as positive pairs, while pairs be-
longing to different prototypes are treated as negative pairs.
This clustering is repeated T times with varying values of
K to identify semantically similar groups across different
granularities. It is formally represented as follows:

lPCL(Z̃i, Pset) =
1

T

T∑
t=1

log
e(sim(Z̃i,p

t
mapt(i)

)/τ)∑Kt

j=1 e
(sim(Z̃i,pt

j)/τ)
, (4)

where τ represents temperature, and Kt indicates the num-
ber of clusters at each level of granularity during the t-
th clustering iteration. Pset = (P 1, ..., P t, ..., PT ) rep-
resents the collection of prototype sets, with each P t =
(pt1, p

t
2, ..., p

t
kt
) containing the set of prototype representa-

tions for a specific granularity t. Additionally, mapt(·)
denotes the mapping function that assigns each spot to a cor-
responding prototype based on the clustering assignments.
By applying this to all spot representations, the overall PCL
loss is given as follows:

LPCL = − 1

Ns

Ns∑
i=1

lPCL(Z̃i, Pset). (5)

Note that to avoid the risk of obtaining inaccurate prototypes,
the PCL loss LPCL gets involved in the training procedure
after a warm-up period (500 epochs). This loss could be
applied to single-slice cases; however, since the representa-
tions in this case are better grouped than in multi-slice cases,
we chose not to use it due to the trade-off with running time.
We discuss this trade-off in Appendix F.

4.4. Similarity Scaling Strategy

The primary challenge of learning representations from mul-
tiple slices is the batch effect, which causes representations
from the same slice to cluster together unexpectedly, regard-
less of their biological significance. From a computational
perspective, this means that a given spot’s top-k nearest
neighbors from the same batch exhibit higher similarity
than those from different batches, causing its representation
space to be dominated by same-batch spots.

To alleviate this issue, given the SNN graph G(c) and G(j)

of the current slice c and another slice j, respectively, we
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explicitly regulate the scale of these similarities to maintain
consistency across spots, as described below:

lSS(Hi,G(j)) = (Mean(S(c)
top )− Mean(S(j)

top ))
2, for i ∈ G(c)

where S
(c)
top = Top-kl∈G(c)(Hi[l]) = (a1, a2, . . . , ak),

S
(j)
top = Top-kl∈G(j)(Hi[l]) = (b1, b2, . . . , bk)

(6)
Here, H = Z̃norm(Z̃

′

norm)
T ∈ RNs×Ns represents the simi-

larity matrix that we optimize in the Similarity Telescope
module, and Hi[s] refers to the element in the i-th row and
s-th column of this matrix. S(c)

top is the list of the top-k high-
est similarity values for spot i within its own slice, and the
list S(j)

top consists of the top-k highest similarity values for
spot i in another slice j. By doing this, Spotscape ensures
that the distances between the top-k spots remain nearly the
same, regardless of their slice, effectively incorporating all
spots from different slices within the latent space. By ex-
tending it to all spots and slices, the final similarity scaling
loss is given as follows:

LSS =
1

Ns(Nd − 1)

Ns∑
i=1

Nd∑
j=1

1(i /∈ G(j)) · lSS(Hi,G(j))

(7)
where 1(i /∈ G(j)) is the indicator function that equals 1 if
spot i is not included in G(j) and 0 otherwise. Note that
since this loss matches similarities across different slices, it
is not applicable to the single-slice case. Finally, the overall
loss for multi-slice SRT data is formally represented as:

LMulti = λSCLSC+λReconLRecon+λPCLLPCL+λSSLSS (8)

where λPCL, λSS are additional balancing parameters of pro-
totypical contrastive learning loss and similarity scaling loss,
respectively. The pseudo-code for Spotscape is provided
in Appendix C.

5. Experiments
Datasets. We conduct a comprehensive evaluation of
Spotscape across five datasets derived from different se-
quencing technologies. For single-slice experiments, we
use the dorsolateral prefrontal cortex (DLPFC) dataset,
which includes 3 patients, each with 4 slices (12 slices in
total). Additionally, we assess the middle temporal gyrus
(MTG) dataset, comprising slices from a control group
and an Alzheimer’s disease (AD) group, as well as the
Mouse embryo dataset. Lastly, we utilize non-small cell
lung cancer (NSCLC) data obtained from CosMX sequenc-
ing, which provides one of the highest subcellular resolu-
tions among sequencing platforms. In multi-slice experi-
ments, we integrate the four slices from the same patient in
the DLPFC dataset for the homogeneous integration task,
while analyzing the differences between the control and

AD groups in the MTG dataset for heterogeneous integra-
tion. Lastly, we evaluate heterogeneous alignment using the
Mouse embryo dataset, where slices from different devel-
opmental stages require alignment to track developmental
progression, and the Breast Cancer dataset, which includes
spots corresponding to cancer cell types. Further details
about data statistics can be found in Table 5 of Appendix A.

Compared methods. To ensure a fair comparison, we
carefully select baseline methods based on their relevance
to specific tasks. For the single-slice tasks, we com-
pare Spotscape with five state-of-the arts methods, i.e.,
SEDR (Xu et al., 2024a), STAGATE (Dong & Zhang, 2022),
SpaCAE (Hu et al., 2024), SpaceFlow (Ren et al., 2022),
and GraphST (Long et al., 2023). For homogeneous inte-
gration, we add three more methods, PASTE (Zeira et al.,
2022), STAligner (Zhou et al., 2023), and CAST (Tang et al.,
2024). For heterogeneous tasks, we compare with GraphST,
STAligner (Zhou et al., 2023), and CAST, while for hetero-
geneous alignment, we compare with PASTE2 (Liu et al.,
2023), CAST, STAligner, and SLAT (Xia et al., 2023), both
specialized for alignment tasks. Further details about each
method’s adoptable application can be found in Table 6 of
Appendix B.

Evaluation protocol. Since Spotscape and all baseline
methods focus on learning spot representations, we first ob-
tain representations from each method and apply the same
evaluation tools for downstream tasks. For single-slice spa-
tial domain identification, we apply K-means clustering and
evaluate performance using Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI), and Clustering Ac-
curacy (CA). For trajectory inference, we compute the pseu-
dotime following Spaceflow (Ren et al., 2022) and measure
its spearman correlation with gold-standard layers with scal-
ing. For multi-slice integration, we assess clustering using
the same metrics as in the single-slice experiments and ad-
ditionally evaluate batch effect correction using Silhouette
Batch, kBET, Graph Connectivity, and PCR comparison.
For alignment, we utilize the ‘spatial matching’ function
from SLAT (Xia et al., 2023) and evaluate the alignment
quality using Label Transfer ARI (LTARI), which measures
the agreement between true and the aligned labels. To en-
sure fairness, we conduct a hyperparameter search for all
baseline methods instead of using their default settings, as
optimal hyperparameters may vary across datasets. The
best-performing hyperparameters are determined based on
NMI using the first seed. For Spotscape, only the learning
rate is searched using the same criterion. Details of the
selected hyperparameters and search spaces are provided in
Appendix E.1, along with an unsupervised approach for hy-
perparameter selection in Appendix E.2 to address potential
concerns about our evaluation strategy. All experiments are
repeated over 10 runs with different random seeds, and we
report the mean and standard deviation of the results. For all
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Table 1. Single-slice spatial domain identification performance on (a) DLPFC, (b) MTG, (c) Mouse Embryo,
and (d) NSCLC datasets.

(a) DLPFC (Patient 1)

Slice 151673 Slice 151674 Slice 151675 Slice 151676

ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA
SEDR 0.36 (0.08) 0.49 (0.08) 0.55 (0.06) 0.37 (0.08) 0.48 (0.07) 0.51 (0.07) 0.33 (0.06) 0.45 (0.05) 0.51 (0.03) 0.29 (0.03) 0.41 (0.04) 0.47 (0.02)

STAGATE 0.37 (0.04) 0.55 (0.03) 0.52 (0.04) 0.34 (0.03) 0.50 (0.02) 0.51 (0.03) 0.33 (0.03) 0.50 (0.03) 0.48 (0.03) 0.33 (0.00) 0.47 (0.01) 0.52 (0.01)

SpaCAE 0.21 (0.01) 0.37 (0.01) 0.43 (0.01) 0.25 (0.03) 0.38 (0.01) 0.44 (0.03) 0.23 (0.03) 0.41 (0.03) 0.42 (0.04) 0.23 (0.02) 0.34 (0.02) 0.43 (0.03)

SpaceFlow 0.42 (0.06) 0.57 (0.05) 0.57 (0.03) 0.37 (0.04) 0.51 (0.03) 0.53 (0.03) 0.38 (0.07) 0.55 (0.06) 0.53 (0.05) 0.38 (0.05) 0.51 (0.05) 0.53 (0.04)

GraphST 0.20 (0.02) 0.34 (0.03) 0.41 (0.02) 0.27 (0.02) 0.41 (0.01) 0.46 (0.01) 0.22 (0.02) 0.34 (0.01) 0.40 (0.02) 0.26 (0.05) 0.40 (0.05) 0.45 (0.04)

Spotscape 0.48** (0.02) 0.64** (0.01) 0.61** (0.02) 0.47** (0.04) 0.60** (0.02) 0.60** (0.03) 0.45** (0.02) 0.60* (0.01) 0.59** (0.02) 0.42* (0.05) 0.58** (0.04) 0.57* (0.03)

(a) DLPFC (Patient 2)

Slice 151507 Slice 151508 Slice 151509 Slice 151510

ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA
SEDR 0.29 (0.06) 0.39 (0.07) 0.45 (0.06) 0.21 (0.02) 0.31 (0.02) 0.39 (0.02) 0.37 (0.04) 0.47 (0.04) 0.51 (0.05) 0.31 (0.05) 0.44 (0.04) 0.47 (0.04)

STAGATE 0.41 (0.01) 0.53 (0.01) 0.59 (0.00) 0.32 (0.01) 0.49 (0.00) 0.54 (0.01) 0.41 (0.02) 0.57 (0.02) 0.61 (0.04) 0.32 (0.03) 0.50 (0.02) 0.50 (0.02)

SpaCAE 0.28 (0.06) 0.41 (0.06) 0.46 (0.06) 0.20 (0.04) 0.31 (0.05) 0.40 (0.04) 0.31 (0.01) 0.44 (0.02) 0.50 (0.04) 0.27 (0.02) 0.42 (0.03) 0.45 (0.02)

SpaceFlow 0.55 (0.03) 0.68 (0.02) 0.71 (0.05) 0.44 (0.04) 0.57 (0.03) 0.58 (0.04) 0.53 (0.05) 0.66 (0.02) 0.65 (0.04) 0.50 (0.03) 0.64 (0.01) 0.61 (0.02)

GraphST 0.31 (0.01) 0.45 (0.01) 0.50 (0.01) 0.34 (0.01) 0.45 (0.02) 0.53 (0.02) 0.35 (0.01) 0.51 (0.01) 0.55 (0.02) 0.30 (0.02) 0.47 (0.01) 0.49 (0.03)

Spotscape 0.60** (0.03) 0.72** (0.01) 0.76** (0.03) 0.48* (0.05) 0.64** (0.03) 0.63** (0.02) 0.59** (0.01) 0.71** (0.01) 0.70** (0.02) 0.53* (0.04) 0.67** (0.02) 0.64 (0.04)

(a) DLPFC (Patient 3)

Slice 151669 Slice 151670 Slice 151671 Slice 151672

ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA
SEDR 0.24 (0.07) 0.40 (0.07) 0.48 (0.06) 0.24 (0.06) 0.39 (0.05) 0.48 (0.05) 0.37 (0.10) 0.50 (0.09) 0.59 (0.07) 0.49 (0.09) 0.58 (0.06) 0.66 (0.07)

STAGATE 0.29 (0.05) 0.45 (0.07) 0.52 (0.04) 0.20 (0.01) 0.38 (0.01) 0.44 (0.01) 0.40 (0.07) 0.49 (0.03) 0.63 (0.06) 0.38 (0.02) 0.51 (0.04) 0.54 (0.01)

SpaCAE 0.21 (0.02) 0.28 (0.03) 0.43 (0.02) 0.21 (0.03) 0.28 (0.02) 0.43 (0.04) 0.38 (0.16) 0.29 (0.01) 0.49 (0.05) 0.25 (0.04) 0.35 (0.05) 0.50 (0.01)

SpaceFlow 0.30 (0.07) 0.48 (0.03) 0.51 (0.05) 0.34 (0.05) 0.50 (0.03) 0.56 (0.05) 0.54 (0.04) 0.67 (0.02) 0.67 (0.04) 0.60 (0.06) 0.70 (0.02) 0.73 (0.06)

GraphST 0.17 (0.04) 0.26 (0.04) 0.43 (0.02) 0.14 (0.01) 0.23 (0.00) 0.37 (0.01) 0.30 (0.05) 0.38 (0.03) 0.54 (0.03) 0.23 (0.01) 0.32 (0.02) 0.49 (0.01)

Spotscape 0.46** (0.02) 0.58** (0.01) 0.65** (0.02) 0.45** (0.04) 0.56** (0.03) 0.66** (0.03) 0.68** (0.10) 0.74** (0.04) 0.79** (0.08) 0.75** (0.04) 0.74** (0.02) 0.84** (0.05)

(b) MTG - Control Group (b) MTG - AD Group (c) Mouse Embryo (d) NSCLC

ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA

SEDR 0.41 (0.02) 0.59 (0.02) 0.52 (0.02) 0.43 (0.08) 0.59 (0.07) 0.57 (0.07) SEDR 0.32 (0.02) 0.56 (0.01) 0.42 (0.02) SEDR 0.44 (0.08) 0.46 (0.06) 0.70 (0.08)

STAGATE 0.54 (0.00) 0.65 (0.00) 0.59 (0.00) 0.51 (0.01) 0.61 (0.01) 0.59 (0.01) STAGATE 0.36 (0.01) 0.60 (0.01) 0.47 (0.01) STAGATE 0.35 (0.05) 0.41 (0.04) 0.64 (0.02)

SpaCAE 0.37 (0.03) 0.52 (0.00) 0.44 (0.03) 0.22 (0.01) 0.40 (0.01) 0.40 (0.01) SpaCAE 0.34 (0.01) 0.60 (0.01) 0.48 (0.02) SpaCAE 0.32 (0.05) 0.38 (0.03) 0.62 (0.02)

SpaceFlow 0.66 (0.03) 0.74 (0.01) 0.70 (0.03) 0.54 (0.01) 0.71 (0.00) 0.65 (0.01) SpaceFlow 0.42 (0.03) 0.60 (0.02) 0.49 (0.03) SpaceFlow 0.53 (0.03) 0.52 (0.02) 0.75 (0.02)

GraphST 0.38 (0.00) 0.51 (0.00) 0.48 (0.00) 0.43 (0.06) 0.55 (0.05) 0.55 (0.04) GraphST 0.34 (0.01) 0.59 (0.02) 0.45 (0.01) GraphST 0.30 (0.00) 0.38 (0.00) 0.65 (0.00)

Spotscape 0.73** (0.02) 0.78** (0.01) 0.75** (0.03) 0.68** (0.02) 0.75** (0.01) 0.77** (0.03) Spotscape 0.44 (0.01) 0.63** (0.01) 0.54** (0.01) Spotscape 0.57** (0.02) 0.57** (0.01) 0.74 (0.01)
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Figure 3. Trajectory con-
servation between pseu-
dotimes and Layers in
DLPFC data.
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Figure 4. Spatial ex-
pression of raw and
Spotscape imputed data
for marker genes of Layer
6 in DLPFC data.

experimental results, Bold indicates the best performance,
underlining denotes the second-best, and an asterisk (*)
marks statistically significant improvements of Spotscape
over the top-performing baseline based on a paired t-test (**:
p < 0.01, *: p < 0.05), with the numbers in parentheses
representing the standard deviation.

5.1. Single-slice Experimental Results

Spatial domain identification (SDI). Experimental results
on four different datasets are reported in Table 1, which
shows the SDI performance on (a) DLPFC, (b) MTG, (c)
Mouse Embryo, and (d) NSCLC datasets, respectively.
From these results, we have the following observations: 1)
Spotscape consistently outperforms in all 16 slices across
four datasets in terms of ARI, NMI, and CA. We argue that
this is because Spotscape not only explores information
from spatially local neighbors, which provides limited in-
sights due to the continuous nature of SRT data, but also
leverages global contextual information. 2) SpaceFlow also
shows high performance compared to other baselines by
mapping the spatial distance between spots to the represen-
tation space through regularization loss. This suggests that
accurately capturing the distance between spots is crucial
for SRT data analysis. 3) However, it still exhibits lower
performance compared to Spotscape, as the proposed sim-
ilarity telescope module directly optimizes the similarities
(i.e., distances) between spots by maintaining consistency
between augmentations, thereby providing more accurate
similarities. Further analysis of this learned similarity is

provided in Section 5.3, and a comparison to general self-
supervised learning methods can be found in Appendix B.

Trajectory inference. To further validate the broad applica-
bility of Spotscape, we conducted trajectory inference on
DLPFC data. The results, shown in Figure 3, demonstrate
that Spotscape effectively performs trajectory inference
and accurately captures biologically meaningful spatiotem-
poral patterns. Specifically, Spotscape reveals a layer-
patterned pseudotime, indicating a pseudo-spatiotemporal
order from White Matter to Layer 1, which aligns with
the correct inside-out developmental sequence of cortical
layers and reflects the tissue’s layered spatial organization.
Additional details can be found in Appendix H.

Imputation. To demonstrate the benefits of incorporating
a decoder layer and reconstruction loss, we perform impu-
tation tasks to show that the reconstructed outputs can help
identify marker genes that were not differentially expressed
in the raw data. In Figure 4, we show that NR4A2, a marker
for layer 6 neurons (Maynard et al., 2021; Darbandi et al.,
2018), which was not well-recognized in the raw data, be-
comes more distinct in the denoised output. Comprehensive
results on additional marker gene detection and quantitative
comparisons with baselines are provided in Appendix I.

5.2. Multi-slice Experimental Results

Homogeneous integration. Among the multi-slice exper-
iments, we first start with homogeneous integration tasks,
which aim to integrate multiple slices from the homoge-
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Table 2. Homogeneous integration performance on DLPFC data.
Patient 1 Patient 2 Patient 3

ARI NMI CA ARI NMI CA ARI NMI CA
SEDR 0.38 (0.06) 0.49 (0.06) 0.56 (0.06) 0.32 (0.05) 0.44 (0.07) 0.48 (0.07) 0.43 (0.02) 0.51 (0.01) 0.56 (0.03)

STAGATE 0.31 (0.03) 0.46 (0.03) 0.49 (0.03) 0.30 (0.02) 0.46 (0.01) 0.48 (0.02) 0.31 (0.09) 0.43 (0.06) 0.54 (0.08)

SpaCAE 0.21 (0.03) 0.36 (0.02) 0.40 (0.02) 0.12 (0.06) 0.19 (0.07) 0.32 (0.05) 0.13 (0.05) 0.14 (0.05) 0.43 (0.06)

SpaceFlow 0.48 (0.03) 0.60 (0.02) 0.60 (0.02) 0.44 (0.05) 0.59 (0.02) 0.58 (0.04) 0.51 (0.02) 0.60 (0.01) 0.69 (0.05)

GraphST 0.18 (0.01) 0.32 (0.01) 0.38 (0.02) 0.25 (0.01) 0.39 (0.01) 0.42 (0.02) 0.25 (0.04) 0.30 (0.04) 0.50 (0.01)

PASTE 0.34 (0.00) 0.45 (0.00) 0.54 (0.00) 0.17 (0.00) 0.28 (0.00) 0.40 (0.00) 0.29 (0.00) 0.43 (0.00) 0.54 (0.00)

STAligner 0.38 (0.04) 0.52 (0.04) 0.55 (0.04) 0.29 (0.02) 0.45 (0.02) 0.48 (0.03) 0.37 (0.06) 0.47 (0.05) 0.59 (0.06)

CAST 0.26 (0.02) 0.37 (0.03) 0.42 (0.03) 0.30 (0.04) 0.43 (0.05) 0.47 (0.03) 0.38 (0.06) 0.40 (0.04) 0.56 (0.05)

Spotscape 0.57** (0.03) 0.70** (0.02) 0.67** (0.03) 0.53** (0.02) 0.67** (0.01) 0.63** (0.02) 0.63** (0.09) 0.68** (0.03) 0.75** (0.09)

Table 3. Heterogeneous integration performance on MTG data.
Clustering Metric Batch Effect Correction Metric

ARI NMI CA Silhouette batch kBET
Graph

connectivity
PCR

comparison
GraphST 0.23 (0.02) 0.42 (0.00) 0.39 (0.01) 0.56 (0.00) 0.02 (0.01) 0.65 (0.02) 0.00 (0.00)

STAligner 0.38 (0.03) 0.54 (0.03) 0.49 (0.02) 0.62 (0.04) 0.11 (0.08) 0.85 (0.04) 0.18 (0.10)

CAST 0.48 (0.07) 0.52 (0.06) 0.59 (0.06) 0.45 (0.02) 0.11 (0.02) 0.81 (0.06) 0.97 (0.03)

Spotscape (w/o LPCL) 0.61 (0.03) 0.71 (0.01) 0.70 (0.02) 0.67 (0.01) 0.03 (0.00) 0.79 (0.03) 0.50 (0.04)

Spotscape (w/o LSS) 0.47 (0.09) 0.60 (0.04) 0.59 (0.06) 0.24 (0.01) 0.00 (0.00) 0.63 (0.00) 0.00 (0.00)

Spotscape 0.72** (0.04) 0.76** (0.01) 0.81** (0.05) 0.69** (0.01) 0.08 (0.02) 0.86 (0.03) 0.60 (0.08)

Figure 5. Alignment
results of Mouse embryo
data.

Table 4. Alignment
performance of Mouse
embryo data.

LTARI
PASTE2 0.21 (0.02)

CAST 0.10 (0.00)

STAligner 0.46 (0.01)

SLAT 0.41 (0.11)

Spotscape 0.51** (0.01)

Figure 6. UMAP of Raw, GraphST, STAligner, CAST, Spotscape (w/o LSS), Spotscape (w/o LPCL),
Spotscape by slice, ground truth, and K-means clustering results.

w/o 𝓛𝐑𝐞𝐜𝐨𝐧 w/o 𝓛𝐒𝐂 Spotscape

w/o 𝓛𝐑𝐞𝐜
𝐨𝐧

w/o 𝓛𝐒𝐂
Spotscape

w/o 𝓛𝐏𝐂𝐋w/o 𝓛𝐒𝐒

Figure 7. Ablation stud-
ies.

neous sample. To do so, we conduct experiments on the
DLPFC data, which consists of multiple slices obtained
from vertical cuts of a single patient. Since these slices are
from a single patient, they do not exhibit significant batch ef-
fects, enabling us to incorporate both multi-slice integration
methods as well as single-slice SDI methods as baselines.
As shown in Table 2, we observe that Spotscape consis-
tently outperforms all baseline methods, demonstrating its
effectiveness in integrating spots from the multiple slices.

Heterogeneous integration. For the heterogeneous integra-
tion experiments, we assess the model’s ability in integrating
two distinct types of samples—the control (CT) group and
the Alzheimer’s disease (AD) group in the MTG data—to
analyze the differences between them. In this experiment,
we also report batch effect correction metrics to evaluate the
effectiveness of correcting batch effects, along with clus-
tering metrics. In Table 3, Spotscape demonstrates its
effectiveness in integrating multi-slice data in terms of both
clustering and batch effect correction, showing significantly
better performance than the baselines. Moreover, in Fig-
ure 6, we observe that Spotscape’s spot representations

from different slices are well integrated while preserving
their biological meaning. We also verified that both PCL
and similarity scaling perform as intended by evaluating
their effects after removing each component. Without PCL
(i.e., Spotscape w/o LPCL), we observe a drop in cluster-
ing performance, as the spot representations are not tightly
condensed in the representation space. Additionally, we
observe that the batch effect becomes severe without the
similarity scaling module (i.e., Spotscape w/o LSS), result-
ing in a significant degradation in clustering performance,
which highlights the importance of this module to alleviate
the batch effect for handling multiple slices.

Differentially expressed gene analysis. We verify that
our results yield biologically meaningful insights by inves-
tigating differentially expressed genes (DEGs) and their
biological functions between the Control and AD groups
using Gene Ontology (GO) enrichment analysis for each
cluster representing a cortical layer. Spotscape reveals
that layer 2 reflects early-stage AD processes (e.g., oxida-
tive stress), while layer 5 captures later-stage events (e.g.,
inclusion body assembly), aligning with established AD
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pathology and showcasing Spotscape’s utility in uncover-
ing meaningful biological variation. The detailed results are
provided in Appendix J due to space limitations.

Multi-slice alignment. We conduct experiments on multi-
slice alignments of the Mouse Embryo data, which re-
quire alignment results to track the development stages
of the embryo. To this end, we match E11.5 and E12.5
and report the Label Transfer ARI (LTARI) in Table 4,
which measures the agreement between true labels and
the labels assigned through the alignment process, and vi-
sualize our results in Figure 5. These results show that
Spotscape achieves better alignment than SLAT, which
is specifically designed for alignment tasks, demonstrating
the general applicability of Spotscape. Furthermore, we
conduct cross-technology alignment between data obtained
from Xenium and Visium, as reported in Appendix K, to
demonstrate that Spotscape can successfully align spots
from more heterogeneous scenarios.

5.3. Model Analysis

Ablation studies. We conduct ablation studies on the com-
ponents of Spotscape to clarify the necessity of each mod-
ule, as shown in Figure 7. Across both tasks, our proposed
Similarity Telescope (i.e., LSC) demonstrates its importance
by showing a significant performance drop without this
module, highlighting the value of incorporating global con-
text. In contrast, the reconstruction loss (LRecon) does not
show significant performance gains, as it mainly serves to
prevent degenerate solutions. In these experiments, results
show that degeneracy does not occur without this module,
but it is necessary to address potential issues when apply-
ing to other datasets. Additionally, prototypical contrastive
learning (i.e., LPCL) further confirms its role in grouping
semantically similar spots in latent space by consistently
showing performance improvements. Similarly, similarity

(a) Single slice (b) Multi-slice

Single slice

Multi-slice

Figure 10. The running time of Spotscape and baseline methods
over the various number of spots on (a) the single and (b) multi-
slice dataset.

scaling (LSS) demonstrates its necessity, with a significant
performance drop observed without this module. Addition-
ally, we perform ablation studies on encoder variations in
the Appendix F.

Sensitivity analysis. We conduct a sensitivity analysis on
all four balancing parameters λRecon, λSC, λPCL, and λSS in
Figure 8. The reconstruction loss and similarity consistency
loss demonstrate robustness across a wide range of values.
However, when the weight of the reconstruction loss (λRecon)
is excessively high, performance tends to degrade, indicat-
ing that it serves primarily as an auxiliary loss to prevent
degenerate solutions. In contrast, the relation consistency
loss (λSC) leads to performance degradation when its weight
is too small, highlighting its critical role in capturing global
similarities within Spotscape. The prototypical contrastive
loss (λPCL) negatively impacts performance when assigned
excessive weight. We attribute this to its tendency to group
spots from different domains in the latent space when it
dominates the overall training process. Finally, the simi-
larity scaling (λSS) maintains robust performance, except
when set to extremely low or high values.

Similarity analysis. As a deeper analysis of Spotscape,
we examine whether it successfully learns the relative simi-
larities between spots, which is a key motivation behind
our approach. In Figure 9, we randomly select an an-
chor spot from the DLPFC data and visualize the similar-
ity between the selected anchor and other remaining spots.
While other baselines fail to capture appropriate similarities,
Spotscape accurately reflects the dynamics of the SRT
data with respect to the spatial distance and exhibits varying
levels of similarity corresponding to true spatial domain.

Scalability. With recent advancements in high-throughput
sequencing technologies, model scalability has become a
crucial factor in performance evaluation. To assess this,
we generate a synthesized dataset by downsampling or
oversampling the Mouse Embryo dataset, creating datasets
ranging from 1,000 to 100,000 spots. We report the cor-
responding runtime in Figure 10. Our results indicate
that Spotscape achieves fast training times, highlighting
its practicality for high-throughput datasets (e.g., 100,000
spots) within a reasonable timeframe. Furthermore, to
demonstrate the scalability of Spotscape for real-world,
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large-scale datasets, we present the runtime for varying
numbers of slices in Appendix G. These results show that
Spotscape can handle extremely large datasets without
an exponential increase in runtime as the number of slices
grows.

6. Conclusion
In this work, we propose Spotscape, a novel framework
for representation learning on SRT data, designed to ad-
dress challenges in both single-slice and multi-slice tasks.
Recognizing the limitations of relying solely on spatial lo-
cality due to the continuous nature of SRT data, Spotscape
captures global spot similarities through the Similarity Tele-
scope module, preserving a global similarity map invariant
to augmentations. Additionally, we extend Spotscape to
multi-slice tasks by employing a prototypical contrastive
learning scheme and introducing a simple yet effective simi-
larity scaling strategy to group spots with the same domain
across different slices and mitigate batch effects. Exten-
sive experiments demonstrate that Spotscape outperforms
existing baselines, uncovering biologically meaningful in-
sights and paving the way for more effective SRT analysis
in diverse applications.
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A. Datasets

Table 5. Statistics for datasets used for experiments.
Dataset Species Tissue Technology Resolution Cells/Spots Genes # of Spatial Domains Reference
DLPFC Human Brain (dorsolateral prefrontal cortex; DLPFC) 10x Visium 50 µm 3460 ˜ 4789 33538 5 ˜ 7 (Maynard et al., 2021)
MTG Human Brain (middle temporal gyrus; MTG) 10x Visium 50 µm 3445 ˜ 4832 36601 6 ˜ 7 (Chen et al., 2022b)
Mouse Embryo Mouse Whole embryo Stereo-seq 0.2 µm 30756 ˜ 55295 25485 ˜ 27330 18 ˜ 19 (Chen et al., 2022a)
NSCLC Human Non-small cell lung cancer (NSCLC) NanoString CosMX Subcellular 960 11756 4 (Bhuva et al., 2024)
Breast Cancer Human Breast Cancer 10x Visium 50 µm 4992 18085 11 (Janesick et al., 2023)
Breast Cancer Human Breast Cancer 10x Xenium Subcellular 167780 313 20 (Janesick et al., 2023)

In this section, we compare Spotscape with baseline methods on various datasets. The data statistics are in Table 5.

Human Dorsolateral Prefrontal Cortex (DLPFC). It comprises 12 tissue slices from 3 adult samples, with 4 consecutive
slices per sample, derived from the dorsolateral prefrontal cortex. These slices were profiled using the 10x Visium platform.
The original study manually annotated 6 neocortical layers (layers 1 to 6) as well as the white matter (see Figure 11).

Slice 151673 Slice 151673 Slice 151673 Slice 151673

Slice 151507 Slice 151508 Slice 151509 Slice 151510

Slice 151669 Slice 151670 Slice 151671 Slice 151672

Figure 11. Spatial coordinates of DLPFC dataset.

Middle Temporal Gyrus (MTG). The MTG (middle temporal gyrus) dataset includes samples from both control and
Alzheimer’s disease (AD) groups. The MTG is a brain region particularly vulnerable to early AD pathology. In the original
study, spatial transcriptomics profiles were characterized for both AD and control MTG samples by the 6 neocortical layers
(layer 1 to 6) and white matter, utilizing the 10x Visium platform for detailed tissue profiling. The spot distribution is
denoted in Figure 12.

Mouse Embryo. It is mouse whole embryo datasets by development stages. It was profiled by Stereo-seq technology, which
allows spatial transcriptomics at the cellular level by integrating DNA nanoball-patterned arrays with in situ RNA capture. It
offers a detailed spatiotemporal transcriptomic atlas (MOSTA) of mouse embryonic development (see Figure 14).

Non-small Cell Lung Cancer (NSCLC). The dataset comprises high-resolution, subcellular-level spatial transcriptomics
data from human lung tissue, encompassing four distinct spatial domains (see Figure 13), including a tumor region. This
data was generated using the NanoString CosMX platform.

Human Breast Cancer. It comprises spatial transcriptomics of human breast cancer tissues using 10x Visium for whole-
transcriptome spatial data and 10x Xenium for high-resolution gene expression at the subcellular level. This combined
approach offers detailed mapping of tumor microenvironments (see Figure 31), highlighting molecular differences and
cell-type composition to better understand cancer heterogeneity and invasion.
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Control AD

Figure 12. Spatial coordinates of MTG dataset. Figure 13. Spatial coordinates of NSCLC dataset.

E11.5 E12.5

Figure 14. Spatial coordinates of Mouse Development dataset.

B. Baseline Methods
In Table 6, we indicate which baseline methods are applicable to specific tasks, categorizing them based on whether
their respective papers address those problems. Furthermore, we compare the performance of Spotscape with general
self-supervised representation learning schemes. Graph Contrastive Learning (Chen et al., 2020; Zhu et al., 2020) is a
instance-wise contrastive learning method that learns representations by pushing negative pairs apart and pulling positive pairs
together. BGRL (Thakoor et al., 2021; Grill et al., 2020) is a consistency regularization method that learns representations
by enforcing consistency between two differently augmented views. SwAV (Caron et al., 2020b) learns representations by
minimizing the difference between two cluster assignments that are obtained through optimal transport. Barlow twins (Caron
et al., 2020a) learns representations by minimizing redundancy between two augmented view. Although these methods
demonstrate strong performance across various domains, our results in Figure 15 indicate that Spotscape is the most
suitable model for SRT data, emphasizing its effectiveness in this context.

Table 6. Baseline methods and their application across various tasks.
Single-slice Tasks Multi-slice Tasks

Method
Spatial domain
identification

Trajectory
inference Imputation

Homogeneous
integration

Homogeneous
alignment

Heterogeneous
integration

Heterogeneous
alignment

SEDR ✔ ✔ ✔
STAGATE ✔ ✔ ✔
SpaCAE ✔ ✔ ✔

SpaceFlow ✔ ✔
GraphST ✔ ✔ ✔ ✔
PASTE ✔ ✔

STAligner ✔ ✔ ✔ ✔
SLAT ✔ ✔

PASTE2 ✔ ✔
CAST ✔ ✔ ✔ ✔ ✔ ✔

Spotscape ✔ ✔ ✔ ✔ ✔ ✔ ✔

0.25

0.30

0.35

0.40

0.45

0.50

AR
I

GCL
BGRL

Barlow Twins
SwAV

Spotscape

Figure 15. Comparison with self-
supervised learning.
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C. Pseudo Code
In this section, we provide pseudocode of Spotscape in Algorithm 1.

Algorithm 1 Overall framework of Spotscape
Require: Spatial nearest neighbor graph G = (X,A), feature matrix X , adjacency matrix A, graph augmentation T , GCN encoder

fθ , MLP decoder gθ , number of slices Nd, number of spots Ns, number of latent dimensions D, loss balancing parameters
(λRecon, λSC, λPCL, λSS), temperature τ , learning rate η

Ensure: Node embeddings Z, reconstructed feature matrix X̂

1: for epoch in epochs:
2: G̃ = T (G), G̃

′
= T

′
(G) /* two randomly augmented version of G */

3: Step 1: Graph Autoencoder
4: Z̃ = fθ(G), Z̃

′
= fθ(G̃

′
) /* compute spot embedding using GCN encoder */

5: X̂ = gθ(Z̃), X̂
′
= gθ(Z̃

′
) /* reconstruct the feature matrix using MLP decoder */

6: Step 2: Similarity Telescope with Relation Consistency (Section 4.2)
7: LRecon = Reconstruction Loss(X, X̂, X̂

′
) (Eqn. 2)

8: LSC, H = Similarity Telescope with Relation Consistency Loss(Z̃, Z̃
′
)

9: Step 3: Prototypical Contrastive Learning (Section 4.3)
10: if Nd ≥ 2 and epoch ≥ warm-up epoch then /* for multi-slice only */
11: LPCL = PCL Loss(Z̃, Z̃

′
)

12: else
13: LPCL = 0
14: end if

15: Step 4: Similarity Scaling Strategy (Section 4.4)
16: if Nd ≥ 2 then /* for multi-slice only */
17: LSS = Similarity Scaling Loss(H,G) (Eqn. 6, 7)
18: else
19: LSS = 0
20: end if

21: Step 5: Compute Loss
22: L = λReconLRecon + λSCLSC + λPCLLPCL + λSSLSS

23: Step 6: Backpropagation and Parameter Update
24: Update parameters θ using Adam optimizer: θepoch ← Adam(θepoch−1, η)

25: Return: Node embeddings Z, reconstructed feature matrix X̂

/* Utility Functions */
26: Function Similarity Telescope with Relation Consistency Loss(Z̃, Z̃

′
):

27: Z̃norm = L2-norm(Z̃), Z̃
′
norm = L2-norm(Z̃

′
) /* L2-normalization */

28: H = Z̃norm(Z̃
′
norm)

T , H
′
= Z̃

′
norm(Z̃norm)

T /* compute cosine similarity */
29: LSC = MSE(H, H

′
) (Eqn. 1)

30: Return: LSC, H

31: Function PCL Loss(Z̃, Z̃
′
):

32: # Pset: the collection of prototype sets from K-means clustering
33: Pset ← Assign Prototype(Z̃

′
)

34: Calculate the prototypical contrastive loss LPCL using τ , Z̃, and Pset (Eqn. 4, 5)
35: Return: LPCL

36: Function Assign Prototype(Z):
37: Pset ← [ ]
38: for K in [K1,K2, . . . ,KT ]:
39: Cluster each cell into K clusters based on Z
40: Compute a prototype matrix P ∈ RK×D by averaging of the spot embeddings per cluster
41: Append P to Pset
42: Return: Pset
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D. Sensitivity Analysis
We conduct broad sensitivity analysis for all of the four balance parameters (λRecon, λSC, λPCL λSS), temperature τ , and
the learning rate in Figure 16, 17, 18, and 19. Furthermore, the sensitivity to the number of clusters used in K-means
clustering and the ground truth clusters is reported in Figure 20. These results indicate that the representation learned by
Spotscape remains robust even when the number of clusters is not perfectly accurate with that ground truth clusters.
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Figure 16. Sensitivity analysis for reconstruction loss balancing parameter (λRecon) of single DLPFC.
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Figure 17. Sensitivity analysis for similarity telescope loss balancing parameter (λSC) of single DLPFC.
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Figure 18. Sensitivity analysis for learning rate of single DLPFC.
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Figure 19. Sensitivity analysis for multi-slice parameters.
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Figure 20. Sensitivity analysis for number of cluster (K) of single DLPFC.
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E. Hyperparameter Selection and Implementation Details
E.1. Hyperparamter search for model performance comparison

To ensure a fair comparison, we conducted a hyperparameter search for both Spotscape and the baseline meth-
ods. The best-performing hyperparameters were selected by evaluating the NMI with the first seed. Specifically, for
Spotscape, the hyperparameter search was conducted only for the learning rate, with the search space consisting of
{0.00001, 0.00005, 0.0001, 0.0005, 0.001}. The remaining hyperparameters were fixed, and the ones used to report the
experimental results are listed in Table 7.

Table 7. Hyperparameter settings of Spotscape.
Fixed DLPFC Single MTG Single Mouse Embryo NSCLC DLPFC Multi Integration MTG Multi Integration Mouse Embryo Alignment Visium - Xenium Alignment

λRecon ✔ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
λSC ✔ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λPCL ✔ N/A N/A N/A N/A 0.01 0.01 0.01 0.01
λSS ✔ N/A N/A N/A N/A 1.0 1.0 1.0 1.0

GCN encoder dimensions ✔ [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64] [Ng , 256, 64]
τ ✔ N/A N/A N/A N/A 0.75 0.75 0.75 0.75
Top-k ✔ N/A N/A N/A N/A 5 5 5 5

Training epochs ✔ 1000 1000 1000 1000 1000 1000 1000 1000
Warm-up epochs ✔ 500 500 500 500 500 500 500 500
Learning rate ✗ 0.0001 0.0001 0.00001 0.0005 0.0005 0.0005 0.001 0.00001

Feature masking rate (Tf , 1) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Feature masking rate (Tf , 2) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Edge masking rate (Te, 1) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Edge masking rate (Te, 2) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Additionally, we conducted a grid search primarily targeting the learning rate and loss balancing parame-
ters for the baseline models. The learning rates for all baselines were explored within the search space
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. Similarly, the loss balancing parameters were tuned across
the range {0.1, 1.0, 10.0} including their default parameter. More precisely, for SEDR, it searched learning rate and balance
parameters regarding reconstruction loss, VGAE loss, and self-supervised loss. For STAGATE, the search focused solely
on the learning rate. In the case of SpaCAE, both the learning rate and the spatial expression augmentation parameter (α)
were tuned within {0.5, 1.0}. SpaceFlow was optimized by adjusting the learning rate and the spatial consistency loss
balancing parameter. For GraphST, we explored the learning rate and the balancing parameters for feature reconstruction
loss and self-supervised contrastive loss. Regarding STAligner, we searched for the optimal learning rates for both the
pretrained model (i.e., STAGATE) and the fine-tuning process. Finally, for SLAT, we applied the default parameters since
the experiments were conducted under identical settings and with the same dataset. This systematic parameter-tuning
process facilitated the effective optimization of each baseline model’s performance.

E.2. Unsupervised Hyperparameter Search Strategy

Table 8. Optimized hyperparameter settings for Spotscape.
Type Dataset Learning Rate
Single DLPFC Patient 1 0.00005
Single DLPFC Patient 2 0.0001
Single DLPFC Patient 3 0.0001
Single MTG Control 0.0005
Single MTG AD 0.0001
Single Mouse Embryo 0.00001
Single NSCLC 0.00005

Multi Integration DLPFC 0.001
Multi Integration MTG 0.0005
Multi Alignment Mouse Embryo 0.001
Multi Alignment Breast Cancer 0.00001

To apply Spotscape to new data, an appropriate hyperparameter search strategy is essential. Fortunately, since Spotscape is
largely robust to hyperparameters, we fix all parameters except the learning rate and search for the learning rate that
maximizes the silhouette score, which can be achieved without any supervised information. Using this hyperparameter
optimization strategy, we obtained the hyperparameters listed in Table 8 and reported the computed silhouette scores during
the search process for DLPFC in Figure 21. It shows that the trend between the Silhouette Score and clustering performance
(i.e., ARI) is similar, indicating that these strategies work well.
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We then compared the performance of the hyperparameters optimized without supervision with that of the hyperparameters
optimized with supervision, which were used solely for performance comparison with the baseline methods in Figure 22. In
this comparison, the performances of both sets of hyperparameters are competitive, with the unsupervised optimization
showing even better performance in some cases, thereby demonstrating the effectiveness of our search strategy and
confirming the robustness of hyperparameter sensitivity.

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.35

0.40

0.45

DLPFC Single - Slice 151673 (Patient 1)
(Optimized Learning Rate: 5e-05)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.3

0.4

0.5

0.6

DLPFC Single - Slice 151507 (Patient 2)
(Optimized Learning Rate: 0.0001)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.35

0.40

0.45

0.50

DLPFC Single - Slice 151669 (Patient 3)
(Optimized Learning Rate: 0.0001)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.5

0.6

0.7

MTG Single - CT
(Optimized Learning Rate: 0.0005)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.4

0.5

0.6

MTG Single - AD
(Optimized Learning Rate: 0.0001)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.25

0.30

0.35

0.40

Mouse Embryo Single
(Optimized Learning Rate: 1e-05)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.3

0.4

0.5

NSCLC Single
(Optimized Learning Rate: 0.00005)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.3

0.4

0.5

0.6

DLPFC Multi - Patient 1
(Optimized Learning Rate: 0.001)

1e-05 5e-05 0.0001 0.0005 0.001
Learning Rate

0.3

0.4

0.5

0.6

0.7

MTG Multi
(Optimized Learning Rate: 0.0005)

Silhouette Score ARI

Figure 21. Unsupervised hyperparameter searching strategy using silhouette scores.
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Figure 22. Performance comparison between optimized and reported hyperparameters.

E.3. Implementation Details

Model architecture and training. The model employs a 2-layer GCN (Kipf & Welling, 2016) as the GNN-based encoder
and a 2-layer MLP as the decoder, both utilizing batch normalization and ReLU activation functions. The encoder’s hidden
dimensions are set to [Ng, 256, 64], while the decoder’s dimensions are configured as [64, 256, Ng]. The clustering process
in PCL is performed T = 3 times, with the K-means granularity set to [K, 1.5K, 2K] to get a fine-grained representation.

18



Global Context-aware Representation Learning for Spatially Resolved Transcriptomics

Optimization is carried out using the Adam optimizer with a learning rate determined through hyperparameter searching
(see Appendix E.1) and a weight decay of 0.0001.

Preprocessing. We follow the preprocessing methodology described in prior work (Dong & Zhang, 2022). Initially, 5000
highly variable genes are selected using Seurat v3 (Stuart et al., 2019). The data is then normalized to a CPM target
of 10, 000 and log-transformed using the SCANPY package (Wolf et al., 2018). For datasets with multiple slices, we
concatenate the slices to enable integration or alignment.

Computational Resources. All the experiments are conducted on Intel Xeon Gold 6326 CPU and NVIDIA GeForce A6000
(48GB).

Software Configuration. Spotscape is implemented in Python 3 (version 3.9.7) using PyTorch 2.1.1 (https:
//pytorch.org/) with Pytorch Geometric (https://github.com/pyg-team/pytorch_geometric) pack-
ages.

F. Empirical Validation of Spotscape Architecture
Loss design for single-slice tasks. In this section, we evaluate the impact of PCL loss on single-slice tasks. While it can
be applied in this setting, there is a trade-off between performance gains and computational cost, as shown in Figure 23.
Although PCL loss helps cluster spots from the same spatial domain while separating others, the improvement is marginal
compared to the significant increase in running time. Consequently, we chose to exclude PCL loss for single-slice tasks.

Additionally, similarity scaling loss, which is specifically designed to align similarities across different slices, is only
applicable to multi-slice integration and does not apply to single-slice cases.
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Figure 23. Trade-off between single-slice SDI performance and running time for LPCL

GNN vs. MLP in Spatially Resolved Transcriptomics. In this section, we aim to validate the architecture of Spotscapeby
investigating whether Graph Neural Networks (GNNs) are indeed more suitable than Multi-Layer Perceptrons (MLPs) in
the domain of Spatially Resolved Transcriptomics. We further examine whether GNNs maintain their advantage over MLPs
when modeling cell type-specific signals rather than spatial domain information.

To this end, we used the Postnatal Mouse Brain (PMB) from STOmicsDB (Xu et al., 2024b) (Database ID: STDS0000004),
which is annotated by cell types. We conduct ablation studies comparing the performance of a GNN-based encoder with an
MLP encoder on both the PMB dataset and the Dorsolateral Prefrontal Cortex (DLPFC) dataset, with clustering results
reported in Tables 9 and 10.

Our results consistently show that the GNN-based encoder outperforms the MLP-based encoder for both spatial signals (i.e.,
DLPFC dataset) and cell type-specific signals (i.e., PMB dataset). However, the GNN-based encoder offers less pronounced
benefits in the PMB dataset, which focuses on cell-type signals, compared to the DLPFC dataset, which emphasizes spatial
domain clustering. This observation supports the intuition that spatial graphs encode richer spatial-specific information,
while cell-type-specific signals are less spatially dependent. Nevertheless, the GNN still provides a measurable performance
gain on the PMB dataset. This can be attributed to the fact that spatial regions inherently carry signals related to cell
types, as similar cell types tend to cluster together within tissues. Such clustering reflects their functional and structural
organization and their interactions within specific tissue regions. Supporting this, the homophily ratio for the Shared Nearest
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Neighbor (SNN) graphs in both DLPFC and PMB datasets is high (0.92), indicating that spatial neighborhoods indeed
contain substantial cell-type-related information.

Table 9. Spatial domain clustering performance for DLPFC dataset. Bold indicates the best performance, with the numbers in parentheses
representing the standard deviation.

ARI NMI CA

Spotscape (w/ MLP encoder) 0.20 (0.01) 0.30 (0.01) 0.42 (0.02)
Spotscape 0.48 (0.02) 0.64 (0.01) 0.61 (0.02)

Table 10. Cell-type clustering performance for Postnatal Mouse Brain (PMB) dataset. Bold indicates the best performance, with the
numbers in parentheses representing the standard deviation.

ARI NMI CA

Spotscape (w/ MLP encoder) 0.58 (0.03) 0.65 (0.02) 0.67 (0.03)

Spotscape 0.61 (0.07) 0.68 (0.03) 0.74 (0.06)

G. Scalability of Spotscape for Large Dataset
In this section, we conduct additional analysis for time complexity using the mouse main olfactory bulb dataset from
STOmicsDB (Xu et al., 2024b), which comprises 39 slices and a total of 1,792,797 spots. This result highlights the
Spotscape’s efficiency with extremely large-scale data, as shown in Figure 24.
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Figure 24. The running time of Spotscape and baseline methods over the various number of slices on the large dataset (ST Omics DB -
Dataset ID: STDS0000142)
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H. Trajectory Analysis
For quantitative validation, we assign numerical values to layers as follows: WM = 0, layer 6 = 1, layer 5 = 2, layer 4 = 3,
layer 3 = 4, layer 2 = 5, and layer 1 = 6. We then calculate pseudotimes following Spaceflow (Ren et al., 2022) using the
representation from each model. Finally, we compute the spearman correlation with scaling between these assigned values
and the calculated pseudotimes and report the results in Figure 25. We also present these results visually in Figure 26. In
these results, Spotscape demonstrates effectiveness in the trajectory inference task, further validating its broad applicability.

(a) DLPFC Patient 1

(b) DLPFC Patient 2

(c) DLPFC Patient 3

Figure 25. Trajectory conservation between pseudotimes and Layers in DLPFC data.
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(a) DLPFC Patient 1

(b) DLPFC Patient 2

(c) DLPFC Patient 3

Figure 26. Trajectory inference results of Spotscape.
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I. Imputation
For quantitative evaluation with baseline methods, we masked certain non-zero values in the data and evaluated whether
the model successfully recovers these values, following the settings from previous works (Lee et al., 2024). In Figure 27,
Spotscape outperforms in terms of both RMSE and median L1-distance, demonstrating its superiority in imputation
tasks. Moreover, we also report the broad results for marker gene detection results of denoised output from Spotscape in
Figure 28. Specifically, RORB serves as a canonical marker for layer 4 neurons (Clark et al., 2020); ETV1 is associated with
layer 5 neurons (Goralski et al., 2024); NTNG2 and NR4A2 are well-recognized markers for layer 6 neurons (Maynard
et al., 2021; Darbandi et al., 2018); and OLIG2 is indicative of white matter regions (Wegener et al., 2015). The results show
that after imputation using Spotscape, marker genes are more distinctly expressed, demonstrating the practical applicability
of Spotscape.
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Figure 27. Imputation error comparison across various drop rates in the DLPFC.
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J. Differentially Expressed Gene Analysis
To check whether our results yield biologically meaningful results, we investigate differentially expressed genes (DEGs)
and their biological functions between the Control and Alzheimer’s disease (AD) groups through Gene Ontology (GO)
enrichment analysis for each cluster, representing a cortical layer in a brain. We use cells whose number of genes is between
500 and 7,500, the number of reads is between 1,000 and 30,000, and the ratio of the mitochondrial gene is below 35%
for quality control. Genes with log2(fold) > 0.25 and an adjusted p-value of DESeq2 < 0.05 are considered differentially
expressed genes (DEG).

Since Spotscape provides spatially organized and reliably distributed clusters as actual cortical layers in a brain, all clusters
are assigned to the cortical layers. As the pathological influence of AD on different cortical layers is diverse, it is highly
worthwhile to identify the differences between Control and AD in each region (Romito-DiGiacomo et al., 2007). We
compare two clusters corresponding to layer 2 and layer 5, respectively. Layer 2 is regarded as a superficial layer, while layer
5 is deemed a deeper layer. As depicted in Figure 29 and Figure 30, terms relevant to AD such as regulation of apoptosis,
microglial cell activation, and synapse pruning are enriched in both layer 2 and layer 5, identifying the shared alteration of
AD and ensuring the reliability of the result (Goel et al., 2022; Gao et al., 2023; Brucato & Benjamin, 2020). Comparison of
the top terms enriched uniquely in each layer provides interesting observations, that is, layer 2 shows hallmark processes of
early-stage AD pathology, such as oxidative stress responses, while layer 5 reflects later-stage events involving inclusion
body assembly and advanced apoptotic pathways. Critically, these findings align with the established understanding that
layer 2 is among the earliest sites impacted in AD, whereas deeper layers (including layer 5) exhibit more pronounced
synaptic and proteostatic perturbations in later stages (Romito-DiGiacomo et al., 2007). By delineating clusters that map
onto these distinct laminar features, Spotscape demonstrates utility in uncovering meaningful biological variation from
spatial transcriptomics data and in corroborating the different influences of AD across cortical layers.
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Figure 29. Top 25 biological process that DEGs between AD and Control enriched in a cluster assigned to layer 2.

24



Global Context-aware Representation Learning for Spatially Resolved Transcriptomics
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Figure 30. Top 25 biological process that DEGs between AD and Control enriched in a cluster assigned to layer 5.
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K. Cross-technology Alignment

Xenium

Visium

Figure 31. Alignment results of triple positive cells.

We conduct cross-technology alignment between data obtained from Xenium and Visium. Since Xenium offers higher
resolution than Visium, while Visium provides a more comprehensive transcriptome view, aligning Xenium with Visium
creates a complementary approach that combines the strengths of both: high resolution and broader coverage. To this end,
we align triple-positive cells in Xenium—those positively enriched for the ERBB2, PGR, and ESR1 marker genes associated
with breast tumors—with corresponding Visium spots. Figure 31 shows that Spotscape successfully outputs seven aligned
points and identifies five triple-positive cells in the Visium data. This demonstrates the superiority of Spotscape, as it can
successfully align extremely rare cell types (e.g., cancer cells).

L. Interpretation of LSC

The similarity consistency loss in Equation (1) serves two key purposes: 1) explicitly guiding the embedding space to
capture quantitative similarity relationships, and 2) encouraging the model to learn a global relational structure that spans all
nodes.

In downstream tasks, we rely on cosine similarity between normalized embeddings. In other words, we treat the normalized
embedding space as an Euclidean space, where distance serves as a proxy for semantic closeness. However, embeddings
from GAE trained solely with the reconstruction loss are optimized for compression. As a result, the cosine similarity
between embeddings lacks direct interpretability or consistency across different pairs. In an Euclidean space, the consistency
loss equals zero ideally. Thus, the consistency loss serves as a regularizer that aligns the embedding space more closely with
the desired geometry, making similarity values more meaningful and consistent.

Moreover, the reconstruction loss satisfies ∂2LRecon

∂Z̃i∂Z̃
′
j

= 0 for i ̸= j, which implies that updates to each embedding do not

depend on the others. This is problematic, since downstream tasks involve comparing representations of even distant nodes.
The consistency loss helps mitigate this limitation by considering similarity relations between all node pairs. The second
derivative of the consistency loss, ∂2LSC

∂Z̃i∂Z̃
′
j

, can have non-zero values, indicating that the update to each embedding depends

on others. A detailed proof is provided below.

Let P = Z̃norm(Z̃
′
norm)

T , Q = Z̃ ′
norm(Z̃norm)

T .

Since P = QT ,
∂LSC

∂z̃k
=

2

N2
s

∑
i,j

(Pij −Qij)(
∂Pij

∂z̃k
− ∂Qij

∂z̃k
) =

4

N2
s

∑
i,j

(Pij −Qij)
∂Pij

∂z̃k
. (9)
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In addition,

∂Pkj

∂z̃k
=

1

||zk||
(I − 1

||z̃k||2
z̃kz̃

T
k )

z̃j
′

||z̃j ′||
, (10)

∂Pij

∂z̃k
= 0, if i ̸= k. (11)

Hence,
∂LSC

∂z̃k
∝

∑
j

(Pkj −Qkj)
∂Pkj

∂z̃k
=

∑
j

(Pkj −Qkj)
1

||z̃k||
(I − 1

||z̃k||2
z̃kz̃

T
k )

z̃j
′

||z̃j ′||
. (12)

Therefore, Eq (13) can take nonzero values.

∂2LSC

∂z̃′j∂z̃k
∝ (Pkj −Qkj)

1

||z̃k|| · ||z̃′j ||
(I − 1

||z̃k||2
z̃kz̃

T
k ) (13)

In summary, the consistency loss not only enhances the quantitative interpretability of similarity in the learned space, but
also provides a mechanism for global information flow, thus improving the utility of the representations for downstream
tasks.

M. Future Works
In this work, we discover that reflecting the global relationships between spots provides significant information on SRT data;
however, we currently leverage this relationship only implicitly through the loss function. We recognize that the model could
benefit from incorporating more complex interactions by constructing edges between spots, thereby implementing graph
structure learning. Future work could explore this avenue to enhance the representation of spatial relationships, allowing the
model to leverage valuable information from the global context more effectively.

Furthermore, SRT data frequently includes histology images that offer critical contextual information about tissue architecture
and cellular organization. However, in this study, we concentrate on a more general case that limits our analysis to spatial
coordinates and gene expression profiles, potentially overlooking the rich insights that histological features could provide.
We anticipate that integrating this information with Spotscape could represent a promising direction for future research.
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