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ABSTRACT

We study adversarial bandit problems with potentially heavy-tailed losses. Unlike
standard settings with non-negative and bounded losses, managing negative and
unbounded losses introduces a unique challenge in controlling the “stability” of
the algorithm and hence the regret. To tackle this challenge, we propose a Follow-
the-Perturbed-Leader (FTPL) based algorithm. Notably, our method achieves
(near-)optimal worst-case regret, eliminating the need for an undesired assumption
inherent in the Follow-the-Regularized-Leader (FTRL) based approach proposed
in the prior work. Thanks to this distinctive advantage, our algorithmic framework
finds novel applications in two important scenarios with unbounded heavy-tailed
losses. For adversarial bandits with heavy-tailed losses and Huber contamination,
which we call the robust setting, our algorithm is the first to match the lower bound
(up to a polylog(K) factor, where K is the number of actions). In the private setting,
where true losses are in a bounded range (e.g., [0, 1]) but with additional Local
Differential Privacy (LDP) guarantees, our algorithm achieves an improvement of
a polylog(T ) factor in the regret bound compared to the best-known results, where
T is the total number of rounds. Furthermore, when compared to state-of-the-art
FTRL-based algorithms, our FTPL-based algorithm has a more streamlined design.
It eliminates the need for additional explicit exploration and solely maintains the
absolute value of loss estimates below a predetermined threshold.

1 INTRODUCTION

Adversarial (or non-stochastic) Multi-armed Bandits (MAB) is a classic Online Learning problem
with rich literature (Auer et al., 2002; Audibert & Bubeck, 2009). Adversarial MAB is formulated as
a T -round repeated game between a learner and an adversary. In each round, the learner chooses (or
plays) one of the K actions, whose losses are determined by the adversary. The learner suffers a loss
from the chosen action and observes it, while the losses of all the other actions remain unrevealed.
The learner’s goal is to minimize the regret (see Eq. (1) for the formal definition), which quantifies
how well the learner performs compared to always choosing the best fixed action in hindsight.

While most works in this topic study the case where all the losses lie in a bounded range (most
commonly, in [0, 1]), handling potentially unbounded losses is still a key challenge. Taming heavy-
tailed losses, a special case of unbounded losses, has gained lots of research interest since real-world
data often exhibits a heavy-tailed nature (Hamza & Krim, 2001; Rachev, 2003; Hull, 2012).

In adversarial bandits, the main challenge from heavy-tailed losses comes largely from negative
losses, which are known to cause “extremely-negative” loss estimates (negative with large absolute
value) (Dai et al., 2023). Such loss estimates might break the “stability” of a (randomized) algorithm.
Here, stability roughly means that the (conditional) probability distributions over the actions from
which the decision is generated should not change significantly over any two consecutive rounds,
which is an essential property that ensures desirable regret guarantees. To ensure stability, Huang
et al. (2022) proposes a Follow-the-Regularized-Leader (FTRL) based algorithm, which achieves
the minimax-optimal regret, but requires an additional assumption of “truncated non-negativity”
(see Assumption 2). This assumption is undesired since not only does it restrict the heavy-tailed
distributions to a subclass, but it also prevents their algorithm from finding wider applications, e.g.,
our robust setting. On the other hand, while Follow-the-Perturbed-Leader (FTPL) has not been
investigated in the heavy-tailed setup, a natural question is: Can one design a (nearly) optimal FTPL-
based algorithm that bypasses the issues in FTRL-based prior work and finds broader applications?
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Our contributions. Leveraging a key observation on an existing stability result of FTPL, we propose a
learning algorithm under the FTPL framework, which allows us to still achieve the (nearly) minimax-
optimal regret, and more importantly, bypass issues due to negative losses including the strong
assumption required in Huang et al. (2022) (see details in Section 5). Furthermore, with the capability
of handling heavy-tailed losses, our algorithm can further be applied to obtain near-optimal or
improved regret guarantees in two important applications even with a simpler design (i.e., controlling
the scale of loss estimates via “skipping”). In contrast, existing FTRL-based counterparts need more
complicated design/analysis in addition to ours, or do not yield any non-trivial guarantees. The first
application is adversarial bandits with heavy-tailed losses and Huber contamination (Huber, 1964),
where in each round, with some constant probability β > 0, the feedback can be “contaminated”,
i.e., generated from an unknown and arbitrarily “bad” distribution rather than the original “clean”
heavy-tailed distribution. The second one is adversarial bandits with bounded losses and Local
Differential Privacy (LDP). We summarize our main contributions as follows:

(i) In the setup of heavy-tailed adversarial bandits where the losses’ α-th moment is bounded by σα

for some constants α ∈ (1, 2] and σ > 0, we propose an FTPL-based algorithm and prove a (nearly)
minimax-optimal regret bound of O(σK1−1/αT 1/α

√
lnK),1 which matches the lower bound (up

to a
√
lnK factor) in Bubeck et al. (2013). More importantly, our key observation on the stability

of FTPL (different from that of FTRL) allows us to naturally handle negative losses, without those
issues under FTRL, e.g., additional assumptions, sophisticated analyses, and worse regret bounds,
which we believe may find broader interests.

(ii) In the robust setting, i.e., heavy-tailed adversarial losses with Huber contamination, we show that
our algorithm achieves a regret upper bound of Õ(σK1−1/αT 1/α + σTβ1−1/α), which offers a first
non-trivial bound in the adversarial setting and is near-optimal (see Section 8).

(iii) In the private setting, i.e., bounded losses (in [0, 1]) with LDP guarantees, our algorithm achieves
a regret of O(

√
KT lnK/ε), where ε ∈ (0, 1] is the privacy budget, which improves upon that of the

FTRL-based algorithms in Agarwal & Singh (2017) and Tossou & Dimitrakakis (2017) by a factor of√
lnT and lnT , respectively (see Section 9).

2 RELATED WORK

Due to space limitations, we only discuss the most relevant lines of research here. See Appendix A
for an elaborated discussion on related work.

Follow-the-Perturbed-Leader. FTPL is a classic framework, where the stability is ensured by
randomly-perturbed cumulative losses. However, one hurdle of applying FTPL is that its analysis
“lacks a generic framework and relies heavily on mathematical tricks” (Abernethy et al., 2016).
Therefore, the (best-known) regret guarantee of FTPL is typically worse than that of FTRL, or
even missing. While theoretical guarantees have been established from bandits to Markov Decision
Processes (MDPs) (Neu & Bartók, 2016; Dai et al., 2022; Honda et al., 2023), all these works study
the standard bounded losses case, and FTPL has not been investigated in the heavy-tailed setup.

Adversarial Bandits with Unbounded/Heavy-tailed Losses. In adversarial bandits, (negative)
unbounded losses impose a unique challenge to ensuring the stability of a learning algorithm and
hence the regret. Putta & Agrawal (2022); Huang et al. (2023a) studied “scale-free” adversarial
bandits where the (deterministic) true losses could lie arbitrarily in R. Their FTRL/Online-Mirror-
Descent (OMD)-based algorithms with the log-barrier regularizer can adapt to the effective range of
the losses. In the heavy-tailed setup, while the (random) losses could still be unbounded, most of the
probability mass concentrates on smaller scales (around the origin). OMD with log-barrier applied to
this setup can match the minimax lower bound up to a (lnT )2 factor.2 Huang et al. (2022) proposed
an FTRL-based algorithm with Tsallis entropy regularizer. While their algorithm is minimax-optimal,
an additional technical assumption is required, which not only restricts the heavy-tailed distribution

1We use standard big O notations (i.e., O, Ω, and Θ); those with a tilde (i.e., Õ, Ω̃, and Θ̃) hide poly-
logarithmic factors with respect to K and T .

2This was suggested by Reviewer J99q due to Wei & Luo (2018, Theorem 4). We present the detailed
derivations in Appendix F.
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to a specific subclass but also prevents the extension to some other interesting scenarios such as our
robust setting. Dorn et al. (2023) studied a slightly different setup where the heavy-tailed losses are
non-negative, therefore the challenge from negative losses is not reflected.

Corruption-robust Bandits/Reinforcement Learning (RL). In this line of research, the feedback
could be corrupted, while the learner’s goal is still to minimize regret in the presence of corruption.
There are mainly two types of corruption studied in the literature. In the first one, the data can be
corrupted in total by up to some level C, which has been studied in both the stochastic settings
(Lykouris et al., 2018; Gupta et al., 2019; He et al., 2022; Chen et al., 2021b; Lykouris et al., 2021;
Wei et al., 2022) and the adversarial settings (Hajiesmaili et al., 2020; Ma & Zhou, 2023). The
second model is Huber contamination (Huber, 1964), where in each round with probability β, the
feedback could be corrupted arbitrarily, otherwise stays “clean”. This model has been studied only in
stochastic MAB (Basu et al., 2022; Wu et al., 2023) and (Contextual) Linear Bandits (Chen et al.,
2022; Charisopoulos et al., 2023), whereas the adversarial settings have not been investigated. This
work takes the first step towards handling Huber contamination when the losses are adversarial.

Bandits/RL with Differential Privacy (DP). Motivated by the need to protect users’ sensitive data,
lots of interest is gained in understanding the fundamental limit of bandit learning in different DP
models (e.g., central model (Dwork et al., 2006), shuffle model (Cheu et al., 2019), and local model
(Duchi et al., 2013)). While a large body of works study the stochastic settings (Mishra & Thakurta,
2015; Tao et al., 2022; Chowdhury & Zhou, 2022b; Shariff & Sheffet, 2018; Tenenbaum et al., 2021;
Chowdhury & Zhou, 2022c; Zhou & Tan, 2021; Chowdhury & Zhou, 2022a; Qiao & Wang, 2023;
Zhou, 2022), adversarial settings are much less explored (Tossou & Dimitrakakis, 2017; Agarwal &
Singh, 2017). There, the proposed algorithms are FTRL-based and require additional tricks to handle
unbounded noises from DP mechanisms, which leads to extra polylog(T ) factors in the regret bound.

3 PROBLEM SETUP

In this section, we formally introduce the problem setup of heavy-tailed adversarial bandits. There
are K ⩾ 2 actions and T ⩾ K rounds for the learner-adversary interaction. Both K and T are
known to the learner a priori. Before the game starts, the (oblivious) adversary determines all the loss
distributions {Pt,i}t∈[T ],i∈[K],3 all of which satisfy the following assumption.

Assumption 1 (Heavy-Tailed Losses). The α-th (raw) moment of all loss distributions are bounded
by σα for some constants α ∈ (1, 2] and σ > 0, i.e., Eℓ∼Pt,i

[|ℓ|α] ⩽ σα,∀t ∈ [T ], i ∈ [K].

Parameters α and σ are also revealed. Then, all losses are generated according to the distributions,
i.e., ℓt,i ∼ Pt,i, followed by the sequential interaction. In each round t ∈ [T ], the learner chooses one
of the K actions (denoted by at), suffers the loss of it (i.e., ℓt,at

), and observes ℓt,at
(only).

The loss mean under Pt,i is denoted by µt,i := Eℓ∼Pt,i
[ℓ] . The set of all best fixed actions in

hindsight is denoted by I∗ := argmini∈[K]

∑T
t=1 µt,i and i∗ denotes an arbitrary action in I∗.

The learner’s goal is to minimize the (expected pseudo-)regret, denoted by RT , which is defined as

RT := E

[
T∑

t=1

(µt,at − µt,i∗)

]
, (1)

where the randomness is from both loss generation and the learning algorithm. Regret measures the
gap between the cumulative losses suffered by the learner and the best fixed action in hindsight.
Remark 1. Our setup is “adversarial” since the heavy-tailed distributions can change over time (in
contrast to the stochastic setting in Wu et al. (2023)). Compared to the standard adversarial MAB, the
adversary chooses (heavy-tailed) “distributions” rather than (deterministic) bounded losses. And this
is the same setup as in the state-of-the-art (SOTA) work of Huang et al. (2022).

3The notation [N ] denotes the set {1, . . . , N} for any integer N ⩾ 1.
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4 MAIN RESULTS

We first state our main theoretical result below, i.e., the regret guarantee of our proposed algorithm
(Algorithm 1) under the heavy-tailed setup. A detailed description of it is presented later in Section 6.
Theorem 1 (Regret Guarantee of Algorithm 1). Under the setup in Section 3, Algorithm 1 achieves
RT = O(σK1− 1

αT
1
α

√
lnK),∀σ > 0, α ∈ (1, 2].

Remark 2. For completeness, we provide a lower bound of Ω(σK1− 1
αT

1
α ) with complete proofs

in Appendix B.4.2, based on the one from Bubeck et al. (2013) for σ = 1 only. The lower bound
implies that our algorithm is (nearly) minimax-optimal. Note that the extra

√
lnK factor is due to our

choice of Laplacian perturbation. Using Fréchet-type perturbation instead and removing the
√
lnK

factor (Kim & Tewari, 2019; Honda et al., 2023) is a future direction.
Remark 3. Theorem 1 is specific to α ∈ (1, 2]. For any α > 2, one can run our algorithm as if α = 2

(since higher-order moments imply lower-order moments) and obtain Õ(σ
√
KT ) regret, which is

near-optimal since the lower bound is Ω(σ
√
KT ) for any α ⩾ 2 (Auer et al., 2002; Bubeck et al.,

2013). Therefore, our algorithm handles unbounded losses with bounded α-th moment for any α > 1.

Comparision with SOTA. While an FTRL-based algorithm with Tsallis Entropy from Huang et al.
(2022) minimax-optimal, the guarantee holds only when the following assumption is satisfied:
Assumption 2 (Truncated Non-negativity (Section 3.2 of Huang et al. (2022))). There exists at least
one action i∗ ∈ I∗ such that for any M ⩾ 0 and t ∈ [T ], it holds that Eℓ∼Pt,i∗ [ℓ · I{|ℓ| > M}] ⩾ 0.

This assumption roughly says that for any threshold M , there should be more probability mass
beyond M on the positive part than the negative part beyond −M . Such an assumption indicates that
their regret guarantee holds only for a particular class of instances. More importantly, whether this
assumption holds is typically unknown to the learner.

In the rest of this paper, we first present the technical challenge from negative losses and our key
observation from FTPL (Section 5). Next, our algorithm design (Section 6), and the sketched analysis
(Section 7), will be presented. Lastly, we will show two direct yet important applications from our
main results: (i) robust setting: adversarial bandits with heavy-tailed losses and Huber contamination
(Section 8); and (ii) private setting: adversarial bandits with bounded losses with LDP (Section 9).

5 CHALLENGES FROM NEGATIVITY AND USEFUL INSIGHTS

In this section, we discuss why negative true losses (even bounded) incur fundamental challenges in
the design and analysis of FTRL, and useful insights on why FTPL can bypass (some of) those issues.

For convenience, we first define vectors µt := (µt,1, . . . , µt,K), ℓt := (ℓt,1, . . . , ℓt,K), and ℓ̂t :=

(ℓ̂t,1, . . . , ℓ̂t,K), where ℓ̂t,i is some constructed loss estimate for true loss ℓt,i (due to partial feedback
in bandits). We further define vector wt = (wt,1, . . . , wt,K) in the (K − 1)-d probability simplex
(denoted by ∆[K]) such that wt,i := P(at = i|ℓ̂1, . . . , ℓ̂t−1),4 i.e., the (conditional) probability of
playing action i given the history. We define K-d vector ei such that its i-th element is one and zero
otherwise, for any i ∈ [K]. Now, the regret can be rewritten as RT = E

[∑T
t=1⟨wt − ei∗ , µt⟩

]
.

Recall that FTRL first explicitly obtains wt via wt = argminw∈∆[K]
(ϕ(w)/ηt + ⟨w,

∑t−1
t′=1 ℓ̂t′⟩),

where the “regularizer” ϕ(·) : ∆[K] → R is some convex function and ηt > 0 is the learning
rate. With wt, FTRL plays action at ∼ wt and observes ℓt,at

. The most common way to construct
loss estimates is the “importance-weighted (IW) estimator”, which yields an unbiased estimate via
ℓ̂t,i = I{at = i} · ℓt,i/wt,i,∀i ∈ [K], where I{·} is the indicator for a (random) event.

In general, an important property for an adversarial bandit algorithm to yield a desirable regret
guarantee is the “(single-step) stability”, meaning that wt−1 and wt are “close”. Take a common
regularizer Shannon Entropy (which corresponds to the well-known EXP3/Hedge algorithm) as
an example, FTRL equipped with it requires the condition that ηt · ℓ̂t,i ⩾ −1, otherwise the

4We make the conventions that ℓ̂t1 , . . . , ℓ̂t2 be ∅ (empty set) and
∑t2

t′=t1
ℓ̂t′,i = 0 whenever t1 > t2.
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standard Hedge-type regret guarantee (Dai et al., 2023, Appendix C.1) does not hold. Suppose ℓ̂t,i is
constructed via the IW estimator, then obviously this condition always holds for non-negative ℓt,i.
However, when the ℓt,i is a negative value with even a very small scale, the loss estimate could be still
“extremely-negative” when wt,i is very small and could hence break the condition as well as the regret
guarantee. Tsallis Entropy, the regularizer used in the SOTA work of Huang et al. (2022), faces the
same issue: while arbitrary non-negative true losses ensure stability, even very small-scale negative
losses could break it.5 Therefore, whenever negative loss estimates are encountered in FTRL, much
effort is needed to handle them, which leads to worse regret bounds and/or complex design/analysis.

To our best understanding, this issue is also why an artificial assumption (Assumption 2) is proposed
in Huang et al. (2022). Specifically, they “truncate” overly-large losses |ℓt,at

| to the scale of
O((wt,at)

1/α) (intuitively, to “cancel” some inversed wt,at in IW estimates) so that the stability and
the regret of FTRL is nicely controlled. However, part of the total regret (contributed from such
“truncation”) can only be bounded by O(

∑T
t=1(wt,i∗)

1/α−1), which is out of control in general since
wt,i∗ could be very small. Assumption 2 ensures that this part is at most zero and hence dropped.

While such an issue exists in prior FTRL-based work, we come up with our key observation, namely
a stability lemma from the literature under the FTPL framework as below.

Lemma 1 (Single-Step Stability of FTPL, Lemma 3 of Dai et al. (2022)). FTPL with Laplace
perturbation of parameter η ensures that wt+1,i ⩾ wt,i exp

(
−η
∥∥∥ℓ̂t∥∥∥

1

)
,∀i ∈ [K], t ∈ [T ], η > 0.

This result seems exciting and promising in the sense that, the stability prefers equally between
negative losses and positive ones since it is directly controlled by

∥∥∥ℓ̂t∥∥∥
1
, i.e., the scale of loss

estimates, regardless of the sign. It is somewhat intuitive since the Laplace perturbation is already a
symmetric two-sided distribution and hence should not be biased toward any single side as in FTRL.

With this key lemma, our FTPL-based algorithm is shown to enjoy (nearly) optimal regret without
the need for any additional assumptions. This advantage over FTRL brings two benefits: (i) in the
robust setting, bypassing Assumption 2 allows the regret guarantee to hold against any unknown
corruption distribution (which is inherent in Huber contamination model), and (ii) in the private
setting, this leads to both simpler algorithm design and better regret bound upon previous works.
More importantly, this lemma indicates that under the FTPL framework, there is no need to artificially
control/avoid negative loss estimates, and it instead suffices to directly control the absolute value.

6 ALGORITHM DESIGN

Now we show how to leverage the insights above for our algorithm design. In particular, we only
need an additional “skipping” trick (to avoid overly-large losses) upon the standard FTPL framework,
without any other tricks or assumptions. That is, whenever the observed true loss ℓt,at has an absolute
value larger than r (which is non-adaptive and determined in the beginning), we simply set the
loss estimate vector as a zero vector and proceed to the next round. The pseudo-code is given in
Algorithm 1 and the detailed description of it is stated below.

Our algorithm takes the number of actions K, time horizon T , and heavy tail parameters σ and α as
the input (Line 1). Based on these, the algorithm is initialized with the Laplace distribution parameter6

η = σ−1K
1
α−1T− 1

α

√
lnK and skipping threshold r = σT

1
αK− 1

α (Line 2). In each round t, the
algorithm first generates a random vector zt = (zt,1, . . . , zt,K) such that each element is an i.i.d. sam-
ple from lap(η) (Line 4). Given the perturbation, the algorithm plays the “perturbed leader”, which
minimizes the “perturbed cumulative losses” (zt,i +

∑t−1
t′=1 ℓ̂t′,i) among actions i ∈ [K] and receives

bandit feedback (Lines 5 and 6). If |ℓt,at
| is greater than threshold r, this round is “skipped” as ex-

plained in the previous paragraph (Lines 7 and 8). Otherwise, it starts the Geometric Resampling (GR)
procedure to construct the loss estimates. In round t, counter Mt counts the runs of GR (Line 15), and
the maximum run is set to be Lt = max{T 1−1/αK1/α/e, (1−1/α) ln(K/T )

ln(1−exp(−η
∑t−1

t′=1∥ℓ̂t′∥1
)/K)

} (Line 11).

5Log-barrier still enjoys Õ(
√
T ) dependence, but typically with an extra polylog(T ) factor.

6Laplace distribution with parameter η (denoted by Lap(η)) has Probability Density Function fη(x) =
η · exp(−η|x|)/2, ∀x ∈ R.
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Algorithm 1 FTPL with Skipping for Heavy-Tailed Losses

1: Input: Number of actions K; time horizon T ; heavy tail parameters σ > 0 and α ∈ (1, 2]

2: Initialization: Determine Laplace distribution parameter η = σ−1K
1
α−1T− 1

α

√
lnK; determine

skipping threshold r = σT
1
αK− 1

α

3: for t = 1 : T do
4: Sample perturbation zt such that zt,i

i.i.d.∼ Lap(η), ∀i ∈ [K]

5: Play action at = argmini∈[K]

(
zt,i +

∑t−1
t′=1 ℓ̂t′,i

)
6: Observe ℓt,at

7: if |ℓt,at | > r then
8: Construct loss estimate ℓ̂t = 0
9: else

10: GR counter Mt = 0

11: Set GR maximum runs as Lt = max{T 1− 1
αK

1
α /e, (1−1/α) ln(K/T )

ln(1−exp(−η
∑t−1

t′=1∥ℓ̂t′∥1
)/K)

}
12: while Mt ⩽ Lt − 1 do
13: Sample a fresh perturbation z̃ in the same way as zt
14: Calculate a′t = argmini∈[K]

(
z̃i +

∑t−1
t′=1 ℓ̂t′,i

)
15: Update GR counter Mt = Mt + 1
16: if a′t = at then
17: BREAK, i.e., go to Line 20
18: end if
19: end while
20: Construct loss estimate ℓ̂t,i = I{at = i}Mtℓt,i,∀i ∈ [K]
21: end if
22: end for

Finally, a While-Loop is executed to obtain Mt: in each iteration, a new perturbation z̃ is sampled
from fresh randomness in the same way as zt (Line 13) and the “perturbed leader” a′t with respect
to (w.r.t.) z̃ is calculated (Line 14). If a′t is the action played in the current round (i.e., at), the
While-Loop is broken (Lines 16 and 17). Otherwise, it proceeds to the next iteration, unless the
maximum run is reached. The loss estimate is constructed by Mt (the number of GR runs) multiplying
the true loss for action at, and zero for the others (Line 20).
Remark 4. In general, it is difficult to obtain the closed-form expression of wt in FTPL. Hence, the
IW estimator is not applicable (Abernethy et al., 2016), and GR is proposed as an alternative. The
purpose of setting the maximum GR runs is to ensure a finite and deterministic running time upper
bound (Neu & Bartók, 2016) (otherwise it is possible that in a single run, the While-Loop may never
stop), which incurs additional regret due to biasedness. However, this part is negligible for sufficiently
large Lt, whose choice is discussed in Section 7.3.

7 ANALYSIS SKETCH

In this section, we provide the sketched analysis for the regret guarantee of our Algorithm 1. All
omitted proofs in this section are given in Appendix B. We will first show a general decomposition of
the regret into three terms and then bound each term separately, all of order Õ(σK1−1/αT 1/α). The
decomposition is formally stated in the lemma below, obtained by simply rewriting the regret.
Lemma 2 (Regret Decomposition). The regret can be decomposed as

RT = E

[
T∑

t=1

⟨wt − ei∗ , µt − µ′
t⟩

]
︸ ︷︷ ︸

SKIPERR

+E

[
T∑

t=1

⟨wt − ei∗ , ℓ̂t⟩

]
︸ ︷︷ ︸

FTPLREG

+E

[
T∑

t=1

⟨wt − ei∗ , µ
′
t − ℓ̂t⟩

]
︸ ︷︷ ︸

GRERR

,

where µ′
t := (µ′

t,1, . . . , µ
′
t,K), and µ′

t,i := Eℓ∼Pt,i
[ℓ · I{|ℓ| ⩽ r}],∀t ∈ [T ], i ∈ [K].

Remark 5. SKIPERR (standing for “Skipping Error”) can be viewed as the error from skipping, which
goes to zero without skipping (r → ∞). FTPLREG (standing for “FTPL Regret”) is the regret w.r.t.
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loss sequence ℓ̂1, . . . , ℓ̂T . GRERR (standing for “GR Error”) comes from setting the maximum runs
of GR and yielding biased loss estimates, which goes to zero with unbiased estimates (Lt → ∞).

7.1 BOUNDING THE SKIPPING ERROR

To bound Skipping Error, we follow the analysis from Huang et al. (2022, Lemmas A.2 and A.3).
Specifically, for any fixed r > 0, the Skipping Error could be bounded by 2Tσαr1−α. Therefore, our
modified choice of r = σT 1/αK−1/α leads to a bound of 2σK1−1/αT 1/α.

7.2 BOUNDING THE FTPL REGRET

In summary, we will follow the standard analysis to decompose the FTPL Regret into two terms, re-
spectively named “Error Term” (denoted by ERRTERM) and “Stability Term” (denoted by STATERM),
and then bound them separately.
Lemma 3 (FTPL Regret Decomposition. Lemma 3 of Honda et al. (2023)). Algorithm 1 ensures that

FTPLREG = E

[
T∑

t=1

⟨wt − ei∗ , ℓ̂t⟩

]
⩽ 2 · E

z̄i
i.i.d.∼ Lap(η)

[
max
i∈[K]

|z̄i|
]

︸ ︷︷ ︸
ERRTERM

+E

[
T∑

t=1

⟨ℓ̂t, wt − wt+1⟩

]
︸ ︷︷ ︸

STATERM

,∀η > 0, r > 0.

Remark 6. This lemma reflects that the Stability Term (and hence FTPL Regret) could be nicely
controlled if wt and wt+1 are close, which is exactly the desired “stability” property we refer to.

7.2.1 BOUNDING THE ERROR TERM

The Error Term is just the (doubled) expected largest absolute value among K i.i.d. samples from
Lap(η), which is bounded by 6 ln(K)/η given Fact 2 of Wang & Dong (2020) (also see Lemma 10).

7.2.2 BOUNDING THE STABILITY TERM

The key for this part is the “single-step stability” lemma mentioned in Section 5, and we restate it
below for convenience.
Lemma 4. Algorithm 1 ensures that wt+1,i ⩾ wt,i exp

(
−η
∥∥∥ℓ̂t∥∥∥

1

)
,∀i ∈ [K], t ∈ [T ], η > 0.

Remark 7. The proof of Lemma 4 relies heavily on the fact that the perturbations are sampled from
fresh randomness (so that they are still Laplacian conditioned on the history). While Syrgkanis
et al. (2016) showed that with full information (where the losses of all actions are revealed) against
oblivious adversaries, it suffices to use the fixed perturbation sampled in the first round, it is unclear
whether this is achievable in bandit feedback. Therefore, the proposed fixed perturbations for the
bandit case in Dai et al. (2022) should be replaced with fresh perturbations. Accordingly, bounding
the Error Term (their Lemma 10), which relies heavily on fixed perturbations, may need a revisit.

Given the single-step stability, it is left to bound the entire Stability Term, adapting the proof of Dai
et al. (2022, Lemma 12) to our heavy-tailed setup. The upper bound is stated in the lemma below.
Lemma 5. Algorithm 1 ensures that STATERM ⩽ 2ησαr2−αKT, ∀η > 0, r > 0.

Remark 8. The role of skipping here is different from Huang et al. (2022). Specifically, our skipping
simply helps avoid overly-large losses (w.r.t. a fixed threshold r), and theirs is to “cancel” some wt,at

,
while their skipping threshold (of order Θ((wt,at)

1/α)) is not necessarily large (for small wt,at ).

7.3 BOUNDING THE GR ERROR

This subsection focuses on the GR Error. The lemma below formally states an upper bound on it.
Lemma 6. With r and Lt specified in Algorithm 1, it is ensured that GRERR ⩽ 2σK1−1/αT 1/α.

Proof Sketch of Lemma 6. To show this, we first decompose the GR Error into two parts by

GRERR = E

[
T∑

t=1

⟨wt, µ
′
t − ℓ̂t⟩

]
︸ ︷︷ ︸

GRERR I

+E

[
T∑

t=1

⟨ei∗ , ℓ̂t − µ′
t⟩

]
︸ ︷︷ ︸

GRERR II

.

7
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While it is standard to choose Lt ⩾ K1/αT 1−1/α/e,∀t ∈ [T ] so that GRERR I ⩽ σK1−1/αT 1/α

(Neu & Bartók, 2016), the challenge arises in the second term. Specifically, while GRERR II could
be simply bounded by zero when the losses are non-negative, it is not easy to control as the first term
when negative losses are allowed and we are not aware of any existing solution. As a workaround,
we first notice that GRERR II can be bounded by E[σ

∑T
t=1(1− wt,i∗)

Lt ] which implies the key is
to obtain a lower bound of wt,i∗ (so that choosing sufficiently large Lt suffices). Now, by applying

Lemma 4 recursively, we show that wt,i ⩾ exp
(
−η
∑t−1

t′=1

∥∥∥ℓ̂t′∥∥∥
1

)
/K,∀t ∈ [T ], i ∈ [K], which

allows us to set sufficiently large (but still finite) Lt and to bound GRERR II by σK1−1/αT 1/α.

Finally, putting the respective upper bounds on the three terms in Lemma 2 together, along with η, r,
and Lt specified in Algorithm 1, yields the regret guarantee in Theorem 1.

8 HEAVY-TAILED ADVERSARIAL BANDITS WITH HUBER CONTAMINATION

In this section, we give the first application of our main result, which is adversarial bandits with
heavy-tailed losses and Huber contamination, defined formally as below. All omitted details/proofs
in this section are given in Appendix C.

Definition 1 (Heavy-tailed Adversarial Bandits with Huber Contamination). In addition to the
protocol given in Section 3, in each round t with some probability β ∈ [0, 1] (known to the learner),
the loss observed by the learner (denoted by ℓ̃t,at

) is no longer the true loss ℓt,at
generated from

“clean” distribution Pt,at
(satisfying Assumption 1), but instead is “contaminated” via being generated

from some arbitrary and unknown “bad” distribution Qt,at
. The regret is still measured w.r.t. clean

losses given by RT := E
[∑T

t=1 (µt,at − µt,i∗)
]
, while the expectation additionally includes the

randomness from the potential contaminations.

In this setup, our Algorithm 1 with modified parameters (where β is involved) is shown to enjoy the
following upper bound. The choices of modified parameters are given in Appendix C.1.

Lemma 7 (Regret Guarantee with Huber Contamination (Informal)). Under the setup given by
Definition 1, Algorithm 1 with modified η, r, and Lt, ensures that RT = Õ(σ(T

1
αK1− 1

α +Tβ1− 1
α )).

Proof Sketch of Lemma 7. We first note that the observed loss ℓ̃t,i could be viewed as a sample
directly from “mixed distribution” Pβ,t,i := (1− β)Pt,i + βQt,i. Moreover, we will ignore the GR
Error term (i.e., let Lt → ∞) since it can be bounded following the same steps as in Section 7.3 with
a modified Lt. Now we can decompose the regret by

RT = E

[
T∑

t=1

⟨wt − ei∗ , µt − µ′′
t ⟩

]
︸ ︷︷ ︸

SKIPERR′

+E

[
T∑

t=1

⟨wt − ei∗ , ℓ̂t⟩

]
︸ ︷︷ ︸

FTPLREG′

,

where µ′′
t := (µ′′

t,1, . . . , µ
′′
t,K) and µ′′

t,i := Eℓ∼Pβ,t,i
[ℓ · I{|ℓ| ⩽ r}],∀i ∈ [K], t ∈ [T ]. We obtain the

final regret by bounding these two terms separately and then choosing η and r accordingly.

Remark 9. We provide a matching lower bound in Appendix C.2, which implies that our algorithm
is (nearly) minimax-optimal. This is the first non-trivial (and indeed optimal) regret guarantee in
adversarial environments, which together with Wu et al. (2023) for the stochastic case indicates that
in this setup, adversarial environments is no harder than stochastic ones (in terms of minimax regret).
While the second term in the regret is linear in T , we note that this is a common pattern due to
arbitrary contaminations (Chen et al., 2022), and the key is the optimal Θ(β1− 1

α ) dependence.
Remark 10. With unknown and arbitrary bad distributions (as in Huber model), the FTRL-based
algorithm in Huang et al. (2022) with the current analysis cannot provide any non-trivial re-
gret guarantee in general, because the needed Assumption 2 (which now should be modified as
Eℓ∼Pt,i∗ [ℓ] − Eℓ∼Pβ,t,i∗ [ℓ · I{|ℓ| ⩽ r}] ⩾ 0) in the worst case does not hold, while our regret
guarantee holds for any clean distributions and bad ones.
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9 ADVERSARIAL BANDITS WITH BOUNDED LOSSES AND LOCAL
DIFFERENTIAL PRIVACY

Another direct yet important application of our result is the standard adversarial bandits (i.e., losses
are deterministic and bounded in [0, 1]) with LDP, which has also been studied in Agarwal & Singh
(2017); Tossou & Dimitrakakis (2017).7 All details/proofs are given in Appendix D. We first give the
definition of DP followed by the learning setup.

Definition 2 (Differential Privacy (DP)). For any given privacy budget ε > 0, a mechanism M :
D → Rm is said to be ε-differentially private (DP) if for all datasets X,X ′ in D that differ on only
one element and measurable subset E ⊂ Rm, it holds that P(M(X) ∈ E) ⩽ exp(ε) ·P(M(X ′) ∈ E).
Definition 3 (Adversarial Bandits with Bounded Losses and LDP). True losses ℓ1, . . . , ℓT ∈ [0, 1]K

are deterministic and chosen by an oblivious adversary. Given any privacy budget ε ∈ (0, 1], the
bandit model is said to be ε-LDP if at+1 lies in the sigma-algebra generated by {at′ ,M(ℓt,at′ )}t′∈[t]

in any round t ∈ [T ] where M is an ε-DP mechanism.

Roughly speaking, the algorithm should not touch true losses, and it observes privatized losses only.
Here, we adopt the widely-used Laplace mechanism (Dwork et al., 2014). Specifically, when data are
bounded in [0, 1], adding noise drawn from Lap(ε) to them ensures ε-DP. By adopting it, the observed
loss is the true loss plus an i.i.d. sample from Lap(ε), which is shown to satisfy Assumption 1
with σ = Θ(1/ε) and α = 2. That is, this setup could be viewed as a specific way of generating
heavy-tailed losses (i.e., bounded true loss + Laplace noise for privacy). Plugging σ = Θ(1/ε) and
α = 2 into Thorem 1, we directly obtain the regret guarantee in the LDP model, which is formally
stated below.

Corollary 1 (Regret Guarantee under ε-LDP). Given privacy budget ε ∈ (0, 1], Algorithm 1 with
Laplace mechanism, σ = Θ(1/ε), and α = 2 guarantees both ε-LDP and RT = O(

√
KT lnK/ε).

Remark 11. Our result improves Agarwal & Singh (2017, Theorem 4.1) by a
√
lnT factor and Tossou

& Dimitrakakis (2017, Corollary 3.1) by a lnT factor, both of which are FTRL-based with explicit
uniform exploration (which is unnecessary in FTPL) to ensure stability. Given the lower bound in
Garcelon et al. (2021, Theorem 2), our upper bound is tight (up to a

√
lnK factor) for all ε ⩽ 1.

Remark 12. As emphasized before, a subtle but central issue here is the negative (privatized) loss.
That is, solely injecting unbounded private noise in FTRL-based algorithms (for losses in [0, 1]), may
break the stability as well as the regret guarantee. This is the motivation behind the additional use
of explicit exploration in FTRL from prior works (i.e., to ensure stability). As a (counter-)example,
Zheng et al. (2020, Theorem 11) claimed a best-of-both-words (BOBW)8 regret bound with LDP
guarantee by simply injecting Gaussian noise in an FTRL/OMD-based optimal BOBW algorithm for
bounded losses from Zimmert & Seldin (2021). It is unclear whether their claimed bounds indeed
hold, since the original analysis relies heavily on non-negative observed losses, which no longer
holds with Gaussian noise.

10 CONCLUSION

We propose an FTPL-based learning algorithm for heavy-tailed adversarial MAB, and show that
it enjoys a near-optimal worst-case regret upper bound without the need for additional undesired
assumptions in prior works. We also present two important applications of our algorithm—one robust
setting and one private setting—and show that our algorithm enjoys either the first optimal regret
guarantee or improved results with an even simpler design (compared to FTRL-based ones). The key
insight behind the improvements lies in an existing stability lemma from FTPL. Future directions
include (i) exploring more problem setups where FTPL could be advantageous over FTRL and (ii)
jointly considering DP and Huber robustness (Chhor & Sentenac, 2023; Li et al., 2023; Hopkins
et al., 2023; Wu et al., 2023; Asi et al., 2023) in various Online Learning problems.

7While they claimed (central) DP, their algorithms actually ensures (the stronger) LDP which implies DP.
8BOBW refers to that one single algorithm can achieve

√
T -type regret in adversarial environments and

polylog T -type regret in stochastic environments, without being aware of the underlying environment type.
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Appendix
A ADDITIONAL RELATED WORK

Follow-the-Regularized-Leader (FTRL). FTRL is probably the most celebrated class of algorithms
for solving Online Learning problems. The key idea is to be greedy with respect to (w.r.t.) the cumula-
tive (estimated) losses so far but with an additive regularization term to ensure stability. As a generic
algorithmic framework, it captures many well-known (bandit) algorithms as special cases, such as
EXP3 (with Negative Shannon Entropy being the regularizer) (Littlestone & Warmuth, 1989) and
Implicitly Normalized Forecaster or INF (with 1/2-Tsallis Entropy being the regularizer) (Audibert &
Bubeck, 2009). Due to its relatively simple recipe for theoretical analyses, FTRL has been applied to
a broad range of Online Learning problems with bandit feedback, including Linear Bandits (Bartlett
et al., 2008), bandits with graph feedback (Mannor & Shamir, 2011; Luo et al., 2023), (episodic)
tabular Markov Decision Process (MDPs) (Jin et al., 2020), Linear MDPs (Dai et al., 2023), and
Best-of-Both-World (BoBW) guarantees in various settings (Zimmert & Seldin, 2021; Jin et al., 2021;
2023).

Heavy Tails in Stochastic Bandits/Reinforcement Learning (RL). “Stochastic” refers to the
setting where the loss distributions remain fixed throughout the game. Heavy-tailed stochastic losses
has a large body of literature, originating from MAB in Bubeck et al. (2013) and expanding to Linear
Bandits (Medina & Yang, 2016; Shao et al., 2018; Zhong et al., 2021; Xue et al., 2021; Kang & Kim,
2023), Kernelized/Gaussian-process Bandits (Ray Chowdhury & Gopalan, 2019), episodic tabular
MDPs (Zhuang & Sui, 2021), and Linear MDPs (Huang et al., 2023b; Li & Sun, 2023). The common
idea for handling heavy-tailed stochastic losses is to derive mean estimation concentration results via
robust estimators including median-of-means, truncated mean, Catoni’s M-estimator (Catoni, 2012;
Chen et al., 2021a; Bhatt et al., 2022), and Huber’s estimator (Huber, 1964; Sun et al., 2020).

B OMITTED DETAILS IN SECTION 7

B.1 OMITTED DETAILS IN SECTION 7.1 (BOUNDING SKIPPING ERROR)

Lemma 8. For any skipping threshold r > 0, we have |µt,i − µ′
t,i| ⩽ σαr1−α,∀i ∈ [K], t ∈ [T ].

Proof of Lemma 8. Based on the definitions of µt,i and µ′
t,i, we have

µt,i − µ′
t,i = E

ℓ∼Pt,i

[ℓ]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]

= E
ℓ∼Pt,i

[ℓ · I{|ℓ| > r}]

⩽ E
ℓ∼Pt,i

[|ℓ| · I{|ℓ| > r}]

⩽ E
ℓ∼Pt,i

[|ℓ|αr1−α · I{|ℓ| > r}]

⩽ E
ℓ∼Pt,i

[|ℓ|αr1−α]

⩽ σαr1−α.

Similarly,

µ′
t,i − µt,i = E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ]

= E
ℓ∼Pt,i

[−ℓ · I{|ℓ| > r}]

⩽ E
ℓ∼Pt,i

[|ℓ| · I{|ℓ| > r}]

⩽ σαr1−α.
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Combining them completes the proof.

Lemma 9 (Bounding Skipping Error). For any skipping threshold r > 0, we have SKIPERR ⩽
2Tσαr1−α.

Proof of Lemma 9. In any single round, we have

E
[
⟨wt − ei∗ , µt,i − µ′

t,i⟩
]
=

K∑
i=1

wt,i(µt,i−µ′
t,i)+(µ′

t,i∗−µt,i∗) ⩽
K∑
i=1

wt,iσ
αr1−α+σαr1−α = 2σαr1−α,

where the inequality is from Lemma 8 and the last step is simply due to
∑K

i=1 wt,i = 1 . Taking the
summation over all T rounds completes the proof.

B.2 OMITTED DETAILS IN SECTION 7.2 (BOUNDING FTPL REGRET)

Lemma 10 (Fact 2 of Wang & Dong (2020)). Suppose X1, . . . , XK are i.i.d. samples form Lap(η),
it holds that

E
[
max
i∈[K]

|Xi|
]
⩽

1 + lnK

η

(K⩾2)

⩽
3 lnK

η
.

Proof of Lemma 3. Let us look at one particular trajectory {w1, ℓ̂1, . . . , wT , ℓ̂T }. Let z̄ :=
(z̄1, . . . , z̄K) ∈ RK be a random vector generated in the same way as all the perturbations (i.e.,
Line 4) and be independent to the trajectory. Now define (random) vector ut = (ut,1, . . . , ut,K),
such that its each entry is defined by ut,i := I{i = argminj∈[K](z̄j +

∑t−1
t′=1 ℓ̂t′,j)},∀i ∈ [K] and

hence ut ∈ {ei}i∈[K]. Since zt (the perturbation generated in Line 4) and z̄ are independent and
identically distributed conditioned on the history up to round t− 1, we have

E[ut|ℓ̂1, . . . , ℓ̂t−1] = wt.

Now we have
T∑

t=1

⟨ℓ̂t, ei∗⟩ =

〈
T∑

t=1

ℓ̂t + z̄, ei∗

〉
− ⟨z̄, ei∗⟩

(a)
⩾

〈
T∑

t=1

ℓ̂t + z̄, uT+1

〉
− ⟨z̄, ei∗⟩

=

〈
T−1∑
t=1

ℓ̂t + z̄, uT+1

〉
+
〈
ℓ̂T , uT+1

〉
− ⟨z̄, ei∗⟩

(b)
⩾

〈
T−1∑
t=1

ℓ̂t + z̄, uT

〉
+
〈
ℓ̂T , uT+1

〉
− ⟨z̄, ei∗⟩ ,

where step (a) is because uT+1 is defined to be the “leader” w.r.t. loss vector
(∑T

t=1 ℓ̂t + z̄
)

, and
step (b) is obtained for the same reason.

By doing this recursively, we get

T∑
t=1

〈
ℓ̂t, ei∗

〉
⩾ ⟨z̄, u1⟩ − ⟨z̄, ei∗⟩+

T∑
t=1

⟨ℓ̂t, ut+1⟩,

and after rearranging it, we have

T∑
t=1

〈
ℓ̂t, ut − ei∗

〉
⩽ ⟨z̄, ei∗ − u1⟩+

T∑
t=1

⟨ℓ̂t, ut − ut+1⟩.
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Now by taking expectation on both sides over the randomness from z̄ (while the trajectory is fixed),
we arrive at

T∑
t=1

⟨ℓ̂t, wt − ei∗⟩ ⩽ E [⟨z̄, ei∗ − u1⟩] +
T∑

t=1

⟨ℓ̂t, wt − wt+1⟩.

Further taking expectations on both sides over the randomness of the trajectory, we get

E

[
T∑

t=1

⟨ℓ̂t, wt − ei∗⟩

]
⩽ E [⟨z̄, ei∗ − u1⟩] +

[
T∑

t=1

⟨ℓ̂t, wt − wt+1⟩

]
.

Finally, noticing that both ei∗ and u1 lie in the probability simplex, we have

E [⟨z̄, ei∗ − u1⟩] ⩽ 2 · E
z̄i

i.i.d.∼ Lap(η)

[
max
i∈[K]

|z̄i|
]
,

which completes the proof.

Proof of Lemma 4. In this proof, we abuse the notation a little bit and use fη(z) to denote the
Probability Density Function (PDF) at vector z = (z1, . . . , zK) such that zi ∼ Lap(η),∀i ∈ [K]. We
first rewrite wt,i as

wt,i = P(at = i|ℓ̂1, . . . , ℓ̂t−1)

(a)
=

∫
z

I{ei = argmin
w∈{ei}i∈[K]

⟨
t−1∑
t′=1

ℓ̂t′ + z, w⟩}fη(z) dz

(b)
=

∫
z

I{ei = argmin
w∈{ei}i∈[K]

⟨
t−1∑
t′=1

ℓ̂t′ + (z + ℓ̂t), w⟩}fη(z + ℓ̂t) d(z + ℓ̂t)

(c)
=

∫
z

I{ei = argmin
w∈{ei}i∈[K]

⟨
t∑

t′=1

ℓ̂t′ + z, w⟩}fη(z + ℓ̂t) dz,

where step (a) is due to the fact that perturbation is sampled from fresh randomness (and hence z is
still Laplacian conditioned on the history), in step (b) we use the “change of variables” trick and the
fact that z has support over the whole RK space, and step (c) is because (z + ℓ̂t) is linear in z.

Similarly, we can write wt+1,i as

wt+1,i =

∫
z

I{ei = argmin
w∈{ei}i∈[K]

⟨
t∑

t′=1

ℓ̂t′ + z, w⟩}fη(z) dz.

Since each element in z is an i.i.d sample from Lap(η), we have

fη(z) =
∏

i∈[K]

η

2
exp(−η|zi|) =

(η
2

)K
exp(−η ∥z∥1),

and similarly we get

fη(z + ℓ̂t) =
(η
2

)K
exp

(
−η∥z + ℓ̂t∥1

)
.

Taking the ratio between them, by triangle inequality, we obtain

fη(z + ℓ̂t)

fη(z)
= exp

(
−η
(
∥z + ℓ̂t∥1 − ∥z∥1

))
∈
[
exp

(
−η∥ℓ̂t∥1

)
, exp

(
η∥ℓ̂t∥1

)]
.

Since this ratio of the two densities holds for any z in RK , it also applies to the integrals (i.e.,
wt+1,i/wt,i), which completes the proof.
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Proof of Lemma 5. Based on Lemma 4, for any round t ∈ [T ] we have

K∑
i=1

(wt,i − wt+1,i) ℓ̂t,i ⩽
K∑
i=1

wt,i

(
1− exp(−η

∥∥∥ℓ̂t∥∥∥
1
)
)
ℓ̂t,i

(a)
⩽

K∑
i=1

wt,i

(
η
∥∥∥ℓ̂t∥∥∥

1

)
ℓ̂t,i

(b)
= η

K∑
i=1

wt,i(ℓ̂t,i)
2,

where step (a) is from elementary inequality 1− exp(−x) ⩽ x, and step (b) is due to the fact that∥∥∥ℓ̂t∥∥∥
1
· ℓ̂t,i = (ℓ̂t,i)

2 since ℓ̂t has at most one non-zero entry.

Taking conditional expectations on both sides, we have

E

[
K∑
i=1

(wt,i − wt+1,i)ℓ̂t,i|ℓ̂1, . . . , ℓ̂t−1

]
⩽ η · E

[
K∑
i=1

wt,i(ℓ̂t,i)
2|ℓ̂1, . . . , ℓ̂t−1

]

= η

K∑
i=1

wt,iE[(I{at = i}I{|ℓt,i| ⩽ r}Mtℓt,i)
2|ℓ̂1, . . . , ℓ̂t−1]

= η

K∑
i=1

wt,iE[I{at = i}I{|ℓt,i| ⩽ r}(Mt)
2(ℓt,i)

2|ℓ̂1, . . . , ℓ̂t−1]

⩽ η

K∑
i=1

wt,iE[I{at = i}(Mt)
2(ℓt,i)

αr2−α|ℓ̂1, . . . , ℓ̂t−1]

⩽ ησαr2−α
K∑
i=1

wt,iE[I{at = i}(Mt)
2|ℓ̂1, . . . , ℓ̂t−1]

= ησαr2−α
K∑
i=1

wt,i · P
(
at = i|ℓ̂1, . . . , ℓ̂t−1

)
· E
[
(Mt)

2|ℓ̂1, . . . , ℓ̂t−1, at = i
]

= ησαr2−α
K∑
i=1

(wt,i)
2E
[
(Mt)

2|ℓ̂1, . . . , ℓ̂t−1, at = i
]

(a)
⩽ ησαr2−α

K∑
i=1

(wt,i)
2

(
1− wt,i

(wt,i)2
+

1

(wt,i)2

)
= 2ησαr2−αK,

where step (a) follows from Lemma 12. Taking the summation over T rounds completes the proof.

B.3 OMITTED DETAILS IN SECTION 7.3 (BOUNDING GR ERROR)

Proof of Lemma 6. In this proof, we first show an upper bound on E
[
|µ′

t,i − ℓ̂t,i|
∣∣ℓ̂1, . . . , ℓ̂t−1

]
.
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In the beginning, we rewrite the loss estimate as ℓ̂t,i = I{at = i}I{|ℓt,i| ⩽ r}Mtℓt,i. And then, its
conditional expectation (given all the loss estimates so far) can be rewritten as

E[ℓ̂t,i
∣∣ℓ̂1, . . . , ℓ̂t−1] = E[I{at = i}I{|ℓt,i| ⩽ r}Mtℓt,i

∣∣ℓ̂1, . . . , ℓ̂t−1]

(a)
=

K∑
j=1

wt,jE[I{at = i}I{|ℓt,i| ⩽ r}Mtℓt,i
∣∣ℓ̂1, . . . , ℓ̂t−1, at = j]

(b)
= wt,iE[I{|ℓt,i| ⩽ r}Mtℓt,i|ℓ̂1, . . . , ℓ̂t−1, at = i]

(c)
= wt,iE[Mt|ℓ̂1, . . . , ℓ̂t−1, at = i] · E[I{|ℓt,i| ⩽ r}ℓt,i|ℓ̂1, . . . , ℓ̂t−1, at = i]

= wt,iE[Mt|ℓ̂1, . . . , ℓ̂t−1, at = i] · E
ℓt,i∼Pt,i

[I{|ℓt,i| ⩽ r}ℓt,i], (2)

where (a) is from the law of total probability, (b) is based on the fact that only the summand with
j = i is non-zero, and (c) is due to the fact that loss generation is independent of the GR process.

Taking the difference between µ′
t,i and E[ℓ̂t,i

∣∣ℓ̂1, . . . , ℓ̂t−1], we get

µ′
t,i − E

[
ℓ̂t,i
∣∣ℓ̂1, . . . , ℓ̂t−1

]
= E[ℓt,i · I{|ℓt,i| ⩽ r}]− E[ℓ̂t,i

∣∣ℓ̂1, . . . , ℓ̂t−1]

(a)
=
(
1− wt,iE[Mt|ℓ̂1, . . . , ℓ̂t−1, at = i]

)
· E
ℓt,i∼Pt,i

[I{|ℓt,i| ⩽ r}ℓt,i]

(b)
= (1− wt,i)

Lt E
ℓt,i∼Pt,i

[I{|ℓt,i| ⩽ r}|ℓt,i|]

⩽ (1− wt,i)
Lt E

ℓt,i∼Pt,i

[|ℓt,i|]

(c)
⩽ (1− wt,i)

Lt E
ℓt,i∼Pt,i

[|ℓt,i|α]1/α

⩽ σ (1− wt,i)
Lt , (3)

where (a) is from Eq. (2), (b) is from Lemma 11, and (c) follows from Hölder’s inequality.

Similarly, we have

E
[
ℓ̂t,i
∣∣ℓ̂1, . . . , ℓ̂t−1

]
− µ′

t,i ⩽ σ (1− wt,i)
Lt . (4)

Combining Eqs. (3) and (4), we get

E
[
|µ′

t,i − ℓ̂t,i|
∣∣ℓ̂1, . . . , ℓ̂t−1

]
⩽ σ (1− wt,i)

Lt . (5)

Now, we decompose the GR Error into two terms by

GRERR = E

[
T∑

t=1

⟨wt, µ
′
t − ℓ̂t⟩

]
︸ ︷︷ ︸

GRERR I

+E

[
T∑

t=1

⟨ei∗ , ℓ̂t − µ′
t⟩

]
︸ ︷︷ ︸

GRERR II

.

and bound these two terms separately.
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Bounding GRERR I. To bound GRERR I, we have

GRERR I =

T∑
t=1

K∑
i=1

E
[
wt,i(µ

′
t,i − ℓ̂t,i)

]
=

T∑
t=1

K∑
i=1

E
[
E
[
wt,i(µ

′
t,i − ℓ̂t,i)

∣∣ℓ̂1, . . . , ℓ̂t−1

]]
=

T∑
t=1

K∑
i=1

E
[
wt,iE

[
(µ′

t,i − ℓ̂t,i)
∣∣ℓ̂1, . . . , ℓ̂t−1

]]
(a)
⩽

T∑
t=1

K∑
i=1

E[σ · wt,i(1− wt,i)
Lt ]

(b)
⩽

σK

e
· E

[
T∑

t=1

1

Lt

]
,

where (a) is from Eq. (5), and (b) is from the elementary inequality x(1 − x)Lt ⩽ xe−xLt ⩽
1/(eLt),∀x ∈ [0, 1], given any Lt > 0 (Neu & Bartók, 2016, Lemma 5).

Therefore, by choosing Lt ⩾ K
1
αT 1− 1

α /e, we ensure that

GRERR I ⩽ σK1− 1
αT

1
α .

Bounding GRERR II. To begin with, we bound GRERR II by

GRERR II =

T∑
t=1

E
[
ℓ̂t,i∗ − µ′

t,i∗

]
=

T∑
t=1

E
[
E
[
ℓ̂t,i∗ − µ′

t,i∗

∣∣ℓ̂1, . . . , ℓ̂t−1

]]
(a)
⩽ σ

T∑
t=1

E
[
(1− wt,i∗)

Lt
]
, (6)

where step (a) is due to Eq. (5).

One may notice that, now the challenge is that we do not have a nice control of form x(1− x)Lt as
in the first term (which was nicely bounded regardless of x ∈ [0, 1]). Therefore, we instead obtain a
lower bound on wt,i∗ , using the single-step stability lemma (Lemma 4).

Specifically, recall that w1 = (1/K, . . . , 1/K) (due to the decision rule in Line 5). Combining it
with Lemma 4, we have

wt,i ⩾
1

K
· exp

(
−η

t−1∑
t′=1

∥∥∥ℓ̂t′∥∥∥
1

)
,∀t ∈ [T ], i ∈ [K], η > 0.

Therefore, in order to ensure

σ

T∑
t=1

E
[
(1− wt,i∗)

Lt
]
⩽ σK1− 1

αT
1
α ,

it suffices to choose Lt such that1−
exp

(
−η
∑t−1

t′=1

∥∥∥ℓ̂t′∥∥∥
1

)
K

Lt

⩽

(
K

T

)1− 1
α

,
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which yields

Lt ⩾

(
1− 1

α

)
ln
(
K
T

)
ln

(
1−

exp(−η
∑t−1

t′=1∥ℓ̂t′∥1
)

K

) .

Bounding Two Terms. Combining two cases, choosing

Lt = max{
(
1− 1

α

)
ln
(
K
T

)
ln

(
1−

exp(−η
∑t−1

t′=1∥ℓ̂t′∥1
)

K

) ,K
1
αT 1− 1

α /e}

ensures that
GRERR ⩽ 2σK1− 1

αT
1
α .

Remark 13. As long as r, L1, . . . , Lt−1 are all finite, so is Lt. The reason is that
∥∥∥ℓ̂t∥∥∥

1
⩽ rLt,∀t,

almost surely.

B.4 UPPER BOUND AND LOWER BOUND FOR HEAVY-TAILED ADVERSARIAL BANDITS

B.4.1 PROOF OF THEOREM 1 (UPPER BOUND)

Proof of Theorem 1. Putting Lemmas 5, 6, 9, and 10 together, along with the choice of η, r, and Lt,
we have,

RT ⩽ 2Tσαr1−α +
6 lnK

η
+ 2ησαr2−αKT + 2σK1− 1

αT
1
α

= 2Tσα(σT
1
αK− 1

α )1−α +
6

σ−1K
1
α−1T− 1

α

√
lnK

+ 2σ−1K
1
α−1T− 1

α

√
lnKσα(σT

1
αK− 1

α )2−αKT + 2σK1− 1
αT

1
α

= O(σK1− 1
αT

1
α

√
lnK).

B.4.2 FORMAL STATEMENT AND PROOF OF LOWER BOUND

Theorem 2. Consider the heavy-tailed MAB problem defined in Section 3. For any bandit algorithm,
there must exist at one problem instance such that the algorithm suffers regret

RT = Ω
(
σK1− 1

αT
1
α

)
.

Proof of Theorem 2. This proof is a direct modification based on Wu et al. (2023, Appendix B).
We use π to denote a bandit algorithm. We construct two environments, denoted by ν1 and ν2,
respectively. And then we show that any algorithm suffers the claimed regret in one of these two
environments.

Environment ν1. In ν1, the loss of action 1 in every round t ∈ [T ] is given by

ℓ1 =


σ/γ ,with probability

1

2
γα

0 ,with probability 1− 1

2
γα,

where γ ⩽ 1 is some free parameter to choose at the last step of the proof. One can verify that
E[|ℓ1|α] ⩽ σα via direct calculations.

For any suboptimal action i ̸= 1, the loss in every round t ∈ [T ] is given by

ℓi =


σ/γ ,with probability

3

10
γα

0 ,with probability 1− 3

10
γα.
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One can verify that E[|ℓi|α] ⩽ σα,∀i ̸= 1. Moreover, action 1 is the optimal one and we have the
“sub-optimality gap” ∆ := E[ℓ1 − ℓi] =

σ
5 γ

α−1,∀i ̸= 1.

For any i ∈ [K], we use Ni(T ) to denote how many times action i is taken in total by the end
of round T (which is a random variable). Given algorithm π and environment ν1, we define
i′ = argmin

a∈{2,...,K}
E

π,ν1

[Ni(T )], and hence we have E
π,ν1

[Ni′(T )] ⩽ T
K−1 . Now we are able to construct

the second environment.

Environment ν2. In this environment, the loss for action i (denoted by ℓ′i) is the same as ℓi, except
that for action i′, now the loss follows

ℓ′i′ =


σ/γ ,with probability

7

10
γα

0 ,with probability 1− 7

10
γα.

One can verify that E[ℓ′i′ ] = 7
10γ

α,E[|ℓ′i′ |α] ⩽ σα, and now the optimal action is i′. Moreover,
E[ℓ′i′ − ℓ′1] = ∆ and E[ℓ′i′ − ℓ′i] = 2∆,∀i ̸= 1, i′.

Now we are ready to follow the steps in Lattimore & Szepesvári (2020, Section 15.2) to obtain
the lower bound. We use RT (π, ν1) and RT (π, ν2) to denote the regret incurred by algorithm
π interacting with environments ν1 and ν2 respectively and use Pπ,ν1

(·),Pπ,ν2
(·) to denote the

probability of an event yielded by algorithm π interacting with ν1 and ν2 respectively. For two
distributions Q,Q′ on the same space, their KL-divergence is denoted by KL(Q∥Q′), and their Total
Variation (TV) distance is denoted by TV(Q∥Q′) := sup

A measurable
|Q(A)−Q′(A)|.

Following from the regret definition, we first have

RT (π, ν1) = ∆

(
T − E

π,ν1

[N1(T )]

)
⩾

∆T

2
Pπ,ν1

(
N1(T ) ⩽

T

2

)
,

RT (π, ν2) = ∆ E
π,ν2

[N1(T )] +
∑

i/∈{1,i′}

2∆ E
π,ν2

[Ni(T )] ⩾
∆T

2
Pπ,ν2

(
N1(T ) ⩾

T

2

)
.

By adding them together, we have

RT (π, ν1) +RT (π, ν2) ⩾
∆T

2

(
Pπ,ν1

(
N1(T ) ⩽

T

2

)
+ Pπ,ν2

(
N1(T ) ⩾

T

2

))
(a)
⩾

∆T

4
exp (−KL(Pπ,ν1∥Pπ,ν2)) ,

where step (a) follows from the Bretagnolle–Huber inequality (Lattimore & Szepesvári, 2020,
Theorem 14.2).

It is left to bound KL(Pπ,ν1
∥Pπ,ν2

). We abuse the notation a little bit and use ℓt,i or ℓ′t,i to denote
the corresponding loss distribution. Lattimore & Szepesvári (2020, Lemma 15.1) yields

KL(Pπ,ν1∥Pπ,ν2) = E
π,ν1

[N1(T )] ·KL(ℓt,i′∥ℓ′t,i′)

= E
π,ν1

[N1(T )] ·KL

(
Ber(

3

10
γα)∥Ber( 7

10
γα)

)
⩽ E

π,ν1

[N1(T )] ·
( 3
10γ

α − 7
10γ

α)2

7
10γ

α(1− 7
10γ

α)

= E
π,ν1

[N1(T )] ·
8
35γ

α

(1− 7
10γ

α)

⩽
4

5
E

π,ν1

[N1(T )] · γα,

where the last step is simply because γα ⩽ 1 and hence 1− 7
10γ

α ⩾ 3
10 .
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Therefore, we have

RT (π, ν1) +RT (π, ν2) ⩾
σγα−1T

20
exp

(
− 4Tγα

5(K − 1)

)
.

Choosing γ = (K−1
T )

1
α (which is no larger than 1 since K ⩽ T and α > 1), we have

max{RT (π, ν1), RT (π, ν2)} ⩾ Ω(σK1− 1
αT

1
α ),

which completes the proof.

C OMITTED DETAILS IN SECTION 8

C.1 RESTATEMENT AND PROOF OF LEMMA 7

Lemma 7. Running Algorithm 1 modified skipping threshold r′ = min{ 1
ηK , σ

(2β)
1
α
,
(

2σα

ηβK

) 1
1+α }

and Laplace distribution parameter η′ = min{β
1
α

σK ,
(
3
2

) 1
α (lnK)

1
α

σT
1
α K1− 1

α
} ensures

RT = O
(
σ(T

1
αK1− 1

α (lnK)
1− 1

α + Tβ1− 1
α )
)
.

Remark 14. In this proof we will ignore the GR Error, since as long as we know of what order we
want to control it, we can follow the proof of Lemma 6 to determine sufficiently large Lt accordingly.

Proof of Lemma 7. We first decompose the regret by

RT = E

[
T∑

t=1

⟨wt − ei∗ , µt − µ′′
t ⟩

]
︸ ︷︷ ︸

SKIPERR′

+E

[
T∑

t=1

⟨wt − ei∗ , ℓ̂t⟩

]
︸ ︷︷ ︸

FTPLREG′

,

where µ′′
t := (µ′′

t,1, . . . , µ
′′
t,K) and µ′′

t,i := E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}],∀i ∈ [K], t ∈ [T ] is the “contami-

nated skipped mean”, and we are going to bound these two terms separately.

Bounding SKIPERR′. We start with bounding |µt,i − µ′′
t,i|. In particular, we have

µt,i − µ′′
t,i = E

ℓ∼Pt,i

[ℓ]− E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]

=

(
E

ℓ∼Pt,i

[ℓ]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)
+

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]
)

= E
ℓ∼Pt,i

[ℓ · I{|ℓ| > r}] +
(

E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]
)

⩽ σαr1−α +

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]
)

= σαr1−α + β

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Qt,i

[ℓ · I{|ℓ| ⩽ r}]
)

︸ ︷︷ ︸
⩽2r

+ (1− β)

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

︸ ︷︷ ︸
=0

⩽ σαr1−α + 2βr.
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Similarly, we have

µ′′
t,i − µt,i = E

ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ]

=

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ]

)
+

(
E

ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

⩽ E
ℓ∼Pt,i

[|ℓ| · I{|ℓ| > r}] +
(

E
ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

⩽ σαr1−α +

(
E

ℓ∼Pβ,t,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

= σαr1−α + β

(
E

ℓ∼Qt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

︸ ︷︷ ︸
⩽2r

+ (1− β)

(
E

ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]− E
ℓ∼Pt,i

[ℓ · I{|ℓ| ⩽ r}]
)

︸ ︷︷ ︸
=0

⩽ σαr1−α + 2βr.

Therefore, we have
|µ′′

t,i − µt,i| ⩽ σαr1−α + 2βr

and hence we arrive at
SKIPERR′ ⩽ 2T

(
σαr1−α + 2βr

)
as in the proof of Lemma 9.

Bounding FTPLREG′. The proof for this part deviates that of Lemma 5 starting from its last step.
Specifically, now we have

E

[
K∑
i=1

(wt,i − wt+1,i)ℓ̂t,i|ℓ̂1, . . . , ℓ̂t−1

]
⩽ η

K∑
i=1

wt,iE[I{at = i}(Mt)
2(ℓ̃t,i)

αr2−α|ℓ̂1, . . . , ℓ̂t−1]

⩽ 2η
(
(1− β)σαr2−α + βr2

) K∑
i=1

wt,iE[I{at = i}(Mt)
2|ℓ̂1, . . . , ℓ̂t−1]

⩽ 2η
(
(1− β)σαr2−α + βr2

)
K,

and therefore the entire FTPL Regret is bounded by

FTPLREG′ ⩽ 2η
(
σαr2−α + βr2

)
KT +

6 lnK

η
.

Choosing η′ and r′. It is left to show that our choice of η′ and r′ yields the claimed upper bound.
Combining the bounds on two terms shown above, we have

RT ⩽ 2σαr1−αT︸ ︷︷ ︸
T1(r)

+2ησαr2−αKT︸ ︷︷ ︸
T2(r)

+4βrT︸ ︷︷ ︸
T3(r)

+2ηβr2KT︸ ︷︷ ︸
T4(r)

+
6 lnK

η
.

We first determine r′ while treating η as a given constant and then decide η.

To determine r′, we rely on some values r1, r2, and r3 given by the following:

T1(r) = T2(r) → r1 =
1

ηK
,

T1(r) = T3(r) → r2 =
σ

(2β)
1
α

,

T1(r) = T4(r) → r3 =

(
σα

ηβK

) 1
1+α

.
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By choosing r′ = min{r1, r2, r3}, we have

RT ⩽ 2T1(r1) + 2T1(r2) + 2T1(r3) +
6 lnK

η

= 4σα

(
1

ηK

)1−α

T + 4σα

(
σ

(2β)
1
α

)1−α

T + 4σα

((
σα

ηβK

) 1
1+α

)1−α

T +
6 lnK

η

⩽ 4σα(ηK)α−1T︸ ︷︷ ︸
T ′
1 (η)

+4σβ1− 1
αT + 4σ

2α
α+1 (ηβK)

α−1
α+1 T︸ ︷︷ ︸

T ′
2 (η)

+
6 lnK

η︸ ︷︷ ︸
T ′
3 (η)

.

To see the first inequality of this step, suppose r′ = min{r1, r2, r3} = r1, then

T1(r′) + T2(r′) + T3(r′) + T4(r′) = T1(r1) + T2(r1) + T3(r1) + T4(r1)
= 2T1(r1) + T3(r1) + T4(r1)
⩽ 2T1(r1) + T3(r2) + T4(r3)
= 2T1(r1) + T1(r2) + T1(r3),

where the inequality is because both T3 and T4 are monotonically increasing w.r.t. the input.

Then, suppose r′ = min{r1, r2, r3} = r2, we have

T1(r′) + T2(r′) + T3(r′) + T4(r′) = T1(r2) + T2(r2) + T3(r2) + T4(r2)
= T2(r2) + 2T1(r2) + T4(r2)
⩽ T2(r1) + 2T1(r2) + T4(r3)
= T1(r1) + 2T1(r2) + T1(r3).

Similarly, one can show that when r′ = min{r1, r2, r3} = r3, we have

T1(r′) + T2(r′) + T3(r′) + T4(r′) = T1(r3) + T2(r3) + T3(r3) + T4(r3)
= T2(r3) + T3(r3) + 2T1(r3)
⩽ T2(r1) + T3(r2) + 2T1(r3)
= T1(r1) + T1(r2) + 2T1(r3).

Combining all these three cases yields

T1(r′) + T2(r′) + T3(r′) + T4(r′) ⩽ 2T1(r1) + 2T1(r2) + 2T1(r3).
Now we determine η′ via first obtaining η1 and η2:

T ′
1 (η) = T ′

2 (η) → η1 =
β

1
α

σK
,

T ′
1 (η) = T ′

3 (η) → η2 =

(
3

2

) 1
α (lnK)

1
α

σT
1
αK1− 1

α

.

By choosing η′ = min{η1, η2}, we have

RT ⩽ 2T ′
1 (η1) + 2T ′

1 (η2) + 8σβ1− 1
αT

= O
(
σ(T

1
αK1− 1

α (lnK)
1− 1

α + Tβ1− 1
α )
)
.

C.2 FORMAL STATEMENT AND PROOF OF LOWER BOUND FOR HEAVY-TAILED ADVERSARIAL
BANDITS WITH HUBER CONTAMINATION

Theorem 3 (Lower Bound for Heavy-tailed Adversarial Bandits with Huber Contamination). For
heavy-tailed adversarial bandits with Huber contamination defined in Definition 1, and for any bandit
algorithm, there must exist one problem instance such that the algorithm suffers regret

RT = Ω
(
σ
(
T

1
αK1− 1

α + Tβ1− 1
α

))
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Proof of Theorem 3. Theorem 2 indicates that, in the presence of heavy tails, every algorithm suffers
Ω
(
σT

1
αK1− 1

α

)
regret in the worst case, regardless of contamination level β. To see this, one can

let Pt,i = Qt,i,∀t ∈ [T ], i ∈ [K] so that Pβ,t,i = Pt,i and there is equivalently no contamination.

Therefore, to show the lower bound with contamination, it suffices to show a lower bound of

Ω
(
σTβ1− 1

α

)
given any β ∈ (0, 1].

To begin with, we construct two environments, denoted by ν′1 and ν′2, respectively, and ν′1 is exactly
the same as ν1 given in the proof of Theorem 2. And then, we use ν̃′1 to denote the contaminated
version of ν′1 (the bad distributions will be determined later).

Given algorithm π and environment ν′1, we define i′′ = argmin
a∈{2,...,K}

E
π,ν′

1

[Ni(T )], and hence we have

E
π,ν′

1

[Ni′′(T )] ⩽ T
K−1 . Now we are able to construct the second environment.

Environment ν′2. In this environment, everything is the same as in ν′1, except that for action i′′, now
the loss follows

ℓ′i′′ =


σ/γ ,with probability

7

10
γα

0 ,with probability 1− 7

10
γα.

One can verify that E[ℓ′i′′ ] = 7
10γ

α,E[|ℓ′i′′ |α] ⩽ σα and now the optimal action is i′′. We use ν̃′2 to
denote the contaminated version of ν′2 (where the bad distributions are determined later).

We choose γ = β
1
α ∈ (0, 1]. Then for any i ∈ [K], we have TV(ℓi∥ℓ′i) ⩽ 2

5γ
α = 2

5β ⩽ β
1−β .

According to Lemma 13, for any action i ∈ [K], there exist bad distributions Gi and G′
i such that

(1− β)ℓi + βGi = (1− β)ℓ′i + βG′
i,

and we construct ν̃′1 and ν̃′2 by

ν̃′1 = {xi = (1− β)ℓi + βGi : i ∈ [K]},
ν̃′2 = {x′

i = (1− β)ℓ′i + βG′
i : i ∈ [K]},

where xi and x′
i denote the loss distributions for action i in these two environments, respectively.

Following from the regret definition, we first have

RT (π, ν̃
′
1) = ∆

(
T − E

π,ν̃′
1

[N1(T )]

)
⩾

∆T

2
Pπ,ν̃′

1

(
N1(T ) ⩽

T

2

)
,

RT (π, ν̃
′
2) = ∆ E

π,ν̃′
2

[N1(T )] +
∑

i/∈{1,i′′}

2∆ E
π,ν̃′

2

[Ni(T )] ⩾
∆T

2
Pπ,ν̃′

2

(
N1(T ) ⩾

T

2

)
.

By adding them together, we have

RT (π, ν̃
′
1) +RT (π, ν̃

′
2) ⩾

∆T

2

(
Pπ,ν̃′

1

(
N1(T ) ⩽

T

2

)
+ Pπ,ν̃′

2

(
N1(T ) ⩾

T

2

))
(a)
⩾

∆T

4
exp

(
−KL(Pπ,ν̃′

1
∥Pπ,ν̃′

2
)
)

(b)
=

∆T

4
exp (0) ,

where step (a) follows from the Bretagnolle–Huber inequality (Lattimore & Szepesvári, 2020,
Theorem 14.2), and step (b) is due to the fact that ν̃′1 and ν̃′2 are identical under our construction.

Recall that ∆ = σ
5 γ

α−1 and γ = β
1
α , we arrive at

max{RT (π, ν1), RT (π, ν2)} ⩾ Ω(σTβ1− 1
α ),

which completes the proof together with Theorem 2.
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D OMITTED DETAILS IN SECTION 9

D.1 PROOF OF COROLLARY 1

Proof of Corollary 1. To show the regret guarantee, it suffices to show that the observed loss always
satisfies Assumption 1 with σ = O(1/ε) and α = 2.

Recall that now all losses are deterministic and lie in [0, 1], let b ∈ [0, 1] be the loss for some action in
some round, then the corresponding observed loss b̃ has PDF f ′(x) := ε · exp(−ε|x− b|)/2,∀x ∈ R
for some ε ∈ (0, 1], and its second raw moment is equal to 2(1/ε)2 + b2 ⩽ 2(1/ε)2 + 1 ⩽
3(1/ε)2 = (

√
3/ε)2. Therefore, running Algorithm 1 with σ =

√
3/ε and α = 2 ensures RT =

O(
√
KT lnK/ε).

E AUXILIARY LEMMAS

In this section, we provide some auxiliary lemmas used in this paper.
Lemma 11 ((Part of) Lemma 4 of Neu & Bartók (2016)). Consider the Geometric Resampling
process defined in Algorithm 1, we have

E
[
Mt

∣∣ℓ̂1, . . . , ℓ̂t−1, at = i
]
=

1− (1− wt,i)
Lt

wt,i
.

Proof. By direct calculation, we have

E
[
Mt

∣∣ℓ̂1, . . . , ℓ̂t−1, at = i
]
=

∞∑
n=1

n(1− wt,i)
n−1wt,i −

∞∑
n=Lt

(n− Lt)(1− wt,i)
n−1wt,i

=
(
1− (1− wt,i)

Lt
) ∞∑
n=1

n(1− wt,i)
n−1wt,i =

1− (1− wt,i)
Lt

wt,i
.

Lemma 12 ((Part of) Lemma 39 of Dai et al. (2022)). Consider the Geometric Resampling process
defined in Algorithm 1, we have

E
[
(Mt)

2
∣∣ℓ̂1, . . . , ℓ̂t−1, at = i

]
⩽

2

(wt,i)2
.

Proof. Notice that Mt is stochastically dominated by a Geometric distribution with parameter wt,i

(denoted by Geo(wt,i)), its second moment is bounded by

E
[
(Mt)

2
∣∣ℓ̂1, . . . , ℓ̂t−1, at = i

]
⩽ E[(Geo(wt,i))

2] = Var(Geo(wt,i)) + (E[Geo(wt,i)])
2

=
1− wt,i

(wt,i)2
+

1

(wt,i)2
⩽

2

(wt,i)2
.

Lemma 13 (Theroem 5.1 of Chen et al. (2018)). Let R1 and R2 be two distributions on X . If for
some β ∈ [0, 1] it holds that TV(R1∥R2) ⩽ β

1−β , then there exist two distributions on the same
probability space G1 and G2 such that

(1− β)R1 +G1 = (1− β)R2 +G2.

F DERIVATION OF OMD WITH LOG-BARRIER FOR HEAVY-TAILED
ADVERSARIAL BANDITS

In this section, we present how to adopt a data-dependent regret guarantee achieved by OMD
with log-barrier (with specific choices of update rule, loss estimator, and learning rate η′ to be
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determined later) from Wei & Luo (2018, Theorem 4) to achieve near-optimal regret bound of
O(σK1−1/αT 1/α(lnT )2). The derivations were suggested by the reviewer J99q.9

It suffices to show that, after skipping with r = σ(T/K)1/α (so that true losses are bounded in
[−r, r]), the O(σK1−1/αT 1/α(lnT )2) regret bound is ensured. Now, by further scaling all losses by
1/r, all losses are bounded in [−1, 1], and we can directly apply Theorem 4 of Wei & Luo (2018)
and get

E [⟨wt − ui∗ , ℓt/r⟩] = O

E

K lnT

η′
+ η′

T∑
t=1

(
ℓt,i∗

r
−

T∑
t′=1

ℓt,i∗

rT

)2

+K(lnT )2

 .

By multiplying r on both sides (and now the LHS becomes exactly the regret definition), we have

E [⟨wt − ui∗ , ℓt⟩] = O

E

rK lnT

η′
+ rη′

T∑
t=1

(
ℓt,i∗

r
−

T∑
t′=1

(
ℓt,i∗

rT

))2

+ rK(lnT )2


⩽ O

(
E

[
rK lnT

η′
+ rη′

T∑
t=1

(
ℓt,i∗

r

)2

+ rK(lnT )2

])

⩽ O

(
E

[
rK lnT

η′
+

η′

r

T∑
t=1

(ℓt,i∗)
α
r2−α + rK(lnT )2

])

⩽ O

(
rK lnT

η′
+

η′

r
Tσαr2−α + rK(lnT )2

)
.

Finally, by plugging in r = σ(T/K)1/α and choosing η′ = Θ(1), we get the desired regret bound.

9See “Weakness” in https://openreview.net/forum?id=jeMZi2Z9xe&noteId=J2d8meZpEu.
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