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ABSTRACT

Domain generalization (DG) aims to learn predictors that perform well on un-
seen data distributions by leveraging multiple related training environments. To
this end, DG is commonly formulated as an average or worst-case optimization
problem, which however either lacks robustness or is overly conservative. In
this work, we propose a novel probabilistic framework for DG by minimizing
the gap between training and test-domain population risks. Our formulation is
built upon comprehensive information-theoretic analysis and enables direct opti-
mization without stringent assumptions. Specifically, we establish information-
theoretic upper bounds for both source and target-domain generalization errors,
revealing the key quantities that control the capability of learning algorithms to
generalize on unseen domains. Based on the theoretical findings, we propose
Inter-domain Distribution Matching (IDM) for high-probability DG by simulta-
neously aligning inter-domain gradients and representations, and Per-sample Dis-
tribution Matching (PDM) for high-dimensional and complex data distribution
alignment. Extensive experimental results validate the efficacy of our methods,
showing superior performance over various baseline methods.

1 INTRODUCTION

In real-world scenarios, distribution shifts are inevitable due to variations in the data collection pro-
cedures, resulting in machine learning systems overfitting to environment-specific correlations that
may negatively impact performance when facing out-of-distribution (OOD) data (Geirhos et al.,
2018; Hendrycks & Dietterich, 2019; Azulay & Weiss, 2019; Hendrycks et al., 2021). The DG
problem is then proposed in the literature to address this challenge. By assuming that the training
data constitutes multiple training domains that share some invariant underlying correlations, DG
algorithms then attempt to learn this invariance so that domain-specific variations do not affect the
model’s performance. To this end, various DG approaches have been proposed, including invariant
representation learning (Sun & Saenko, 2016; Li et al., 2018b), adversarial learning (Ganin et al.,
2016; Li et al., 2018c), causal inference (Arjovsky et al., 2019; Chevalley et al., 2022), gradient
manipulation (Koyama & Yamaguchi, 2020; Shi et al., 2021; Rame et al., 2022), and robust opti-
mization (Sagawa et al., 2019; Eastwood et al., 2022) techniques.

DG is commonly formulated as an average-case (Blanchard et al., 2021; Zhang et al., 2021) or
worst-case (Arjovsky et al., 2019; Sagawa et al., 2019) optimization problem, which however ei-
ther lacks robustness against OOD data (Arjovsky et al., 2019; Nagarajan et al., 2020) or leads
to overly conservative solutions (Eastwood et al., 2022). In this paper, we formulate DG from a
novel probabilistic perspective, by measuring the ability to minimize the gap between training and
test-domain population risks with high probability. Our formulation leverages the mild identical
distribution assumption of the environments and enables direct optimization. Through comprehen-
sive information-theoretic generalization analysis, we provide key insights into high-probability DG
by showing that the input-output mutual information of the learning algorithm and the extent of
distribution shift together control the gap between training and test-domain population risks.

Motivated by these theoretical findings, we propose Inter-domain Distribution Matching (IDM)
for high-probability DG by aligning marginal distributions of the gradients and the representations
across different training domains, which are proven to promote source and target-domain general-
ization respectively. Furthermore, we demonstrate that traditional distribution alignment techniques
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based on moment matching are either ineffective or insufficient for high-dimensional and complex
probability distributions. To circumvent these issues, we propose Per-sample Distribution Matching
(PDM) for distribution alignment by aligning individual sorted data points. IDM jointly working
with PDM achieves superior performance on the Colored MNIST dataset (Arjovsky et al., 2019)
and the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020).

The primary contributions of this paper can be summarized as follows:

• A probabilistic formulation: We measure the capability of DG algorithms to minimize the gap
between training and test-domain population risks with high probability. Our formulation lever-
ages mild assumptions of the environments and enables direct optimization (Section 2).

• An information-theoretic perspective: We derive novel information-theoretic upper bounds for
both source and target-domain generalization errors, providing explanations for the success of DG
algorithms based on gradient or representation matching in the literature (Section 3).

• A novel DG algorithm: We propose IDM for high-probability DG by simultaneously aligning
inter-domain distributions of the gradients and the representations. We further propose PDM for
high-dimensional distribution matching by aligning individual sorted data points (Section 4).

• We validate the effectiveness of the proposed IDM method on Colored MNIST and DomainBed,
achieving superior performance over various baseline methods (Section 6).

2 PROBLEM SETTING

We denote random variables by capitalized letters (X), their realizations by lower-case letters (x),
and their spaces by calligraphic letters (X ). Let Z = X ×Y be the instance space of interest, where
X and Y are the input space and the label space respectively. Let W be the hypotheses space, each
w ∈ W characterizes a predictor fw mapping from X to Y , comprised of an encoder fϕ: X 7→ R
and a classifier fψ: R 7→ Y with the assist of an intermediate representation space R.

We assume an existing distribution ν over all possible environments D. The source domains Dtr =

{Di}mi=1 and target domainsDte = {Dk}m
′

k=1 are both randomly sampled from ν, with each domain
d corresponding to a specific data-generating distribution µd. Let Str = {Si}mi=1 denote the training
dataset, with each subset Si = {Zij}nj=1 containing i.i.d data sampled from µDi . The task is to
design algorithm A : Dm 7→ W , taking Dtr as the input (with proxy Str) and providing possibly
randomized hypothesis W = A(Dtr). Given the loss function ℓ : Y ×Y 7→ R+, the ability of some
hypothesis w ∈ W to generalize in average is evaluated by the expected population risk:

L(w) = ED∼ν [LD(w)] = ED∼ν [EZ∼µD
[ℓ(fw(X), Y )]] = EZ∼µ[ℓ(fw(X), Y )].

Since ν is unknown in practice, only the source and target-domain population risks are tractable:

Ltr(w) =
1
m

∑m
i=1 LDi(w) and Lte(w) =

1
m′

∑m′

k=1 LDk
(w).

Main Assumptions. We list the assumptions considered in our theoretical analysis as follows:
Assumption 1. (Independent) The target domains Dte are independent of source domains Dtr.
Assumption 2. (Bounded) The loss function ℓ(·, ·) is bounded in [0,M ].
Assumption 3. (Subgaussian) ℓ(fw(X), Y ) is σ-subgaussian w.r.t Z ∼ µ for any w ∈ W .
Assumption 4. (Metric) The loss function ℓ(·, ·) is symmetric and satisfies the triangle inequality,
i.e. for any y1, y2, y3 ∈ Y , ℓ(y1, y2) = ℓ(y2, y1) and ℓ(y1, y2) ≤ ℓ(y1, y3) + ℓ(y3, y2).
Assumption 5. (Lipschitz) The loss function ℓ(fw(X), Y ) is β-Lipschitz w.r.t the metric c on Z for
any w ∈ W , i.e. for any z1, z2 ∈ Z , |ℓ(fw(x1), y1) + ℓ(fw(x2), y2)| ≤ βc(z1, z2).

Subgaussianity (Assumption 3) is one of the most common assumptions for information-theoretic
generalization analysis (Xu & Raginsky, 2017; Negrea et al., 2019; Neu et al., 2021; Wang & Mao,
2021). Notably, Assumption 2 is a strengthened version of Assumption 3, since any [0,M ]-bounded
random variable is always M/2-subgaussian. Lipschitzness (Assumption 5) is a crucial prerequi-
site for stability analysis and has also been utilized in deriving Wasserstein distance generalization
bounds (Hardt et al., 2016; Bassily et al., 2020; Lei et al., 2021; Rodrı́guez Gálvez et al., 2021; Yang
et al., 2021b;a). Assumption 4 is fulfilled when distance functions, such as mean absolute error
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(MAE) and 0-1 loss, are used as loss functions. This assumption has also been examined in previous
studies (Mansour et al., 2009; Shen et al., 2018; Wang & Mao, 2022).

High-Probability DG The classical empirical risk minimization (ERM) technique, which mini-
mizes the average-case risk: minw L(w), is found ineffective in achieving invariance across dif-
ferent environments (Arjovsky et al., 2019; Nagarajan et al., 2020). To overcome this limitation,
recent works (Krueger et al., 2021; Ahuja et al., 2021; Shi et al., 2021; Rame et al., 2022; Lin et al.,
2022; Zhou et al., 2022) have cast DG as a worst-case optimization problem: minwmaxd Ld(w).
However, this approach is generally impractical without strong assumptions made in the literature
(Christiansen et al., 2021; Eastwood et al., 2022), e.g. linearity of the underlying causal mechanism
(Arjovsky et al., 2019; Krueger et al., 2021; Ahuja et al., 2021), or strictly separable spurious and
invariant features (Zhou et al., 2022). On the contrary, we propose the following high-probability
objective by leveraging the mild Assumption 1, which is trivially satisfied in practice.
Problem 1. (High-Probability DG) minA E[Ltr(W )], s.t. Pr{|Lte(W )− Ltr(W )| ≥ ϵ} ≤ δ.

Problem 1 is directly motivated by intuition that the training-domain population risk Ltr(W ) should
be predictive of the test-domain risk Lte(W ), and the optimal algorithm A should be chosen in con-
sideration of minimizing the gap between the two. Here, the probability is taken over the sampling
process of the two groups of domains (Dtr and Dte) and the training process of the hypothesis (W ).
Note that the source (or target) domains are not necessarily independent of each other.

3 INFORMATION-THEORETIC ANALYSIS

The primary goal of DG is to tackle the distribution shift problem, where the data-generating distri-
bution µd varies depending on the corresponding environment d, influenced by the data collection
process. This inconsistency can be quantified by the mutual information I(Z;D) between data pair
Z and environment identifier D, which can be further decomposed into (Federici et al., 2021):

I(Z;D) (distribution shift) = I(X;D) (covariate shift) + I(Y ;D|X) (concept shift). (1)

While D is binary to differentiate training and test samples in (Federici et al., 2021), we extend this
concept to any discrete or continuous space, provided that each d ∈ D corresponds to a distinct data
distribution µd = PZ|D=d. The right-hand side (RHS) characterizes the changes in the marginal
input distribution PX (covariate shift) as well as the predictive distribution PY |X (concept shift). As
we will show later, these two quantities capture the main challenges of the DG problem.

We start by demonstrating that the achievable level of average-case risk L(w) is constrained by the
degree of concept shift. Specifically, we have the following theorem:
Theorem 1. For any predictor QY |X , we have KL(PY |X,D ∥ QY |X) ≥ I(Y ;D|X).

When ℓ represents the cross-entropy loss, the population risk of predictor Q on domain d can be
represented as the KL divergence between PY |X,D=d and QY |X , provided that H(Y |X,D) = 0
(i.e. the label can be entirely inferred from X and D). This implies that any model fitting well in
training domains will suffer from strictly positive risks in test domains once concept shift is induced.
This observation verifies the trade-off between optimization and generalization as we characterized
in Problem 1, and highlights the inherent difficulty of the DG problem.

We further show that Problem 1 directly serves as an optimization objective by connecting source
and target-domain population risks via the average-case risk L(W ). To be specific, since the pre-
dictor W is trained on the source domains Dtr, it is reasonable to assume that W achieves lower
population risks on Dtr than on average, i.e. Ltr(W ) ≤ L(W ). Moreover, since the sampling
process of test domains is independent of the hypothesis, the test-domain population risk Lte(W ) is
actually an unbiased estimate of L(W ). Combining these two observations, it is natural to assume
that Ltr(W ) ≤ L(W ) ≈ Lte(W ), implying that the average-case risk L(W ) acts as a natural bridge
between the two. For any constant λ ∈ (0, 1), we have the following decomposition:

Pr{|Ltr(W )−Lte(W )| ≥ ϵ} ≤ Pr{|Ltr(W )−L(W )| ≥ λϵ}+Pr{|Lte(W )−L(W )| ≥ (1−λ)ϵ}
While the first event on the RHS heavily correlates with the training domains Dtr, the second
event is instead data-independent. This observation inspires us to explore both data-dependent and
data-independent generalization bounds for source and target-domain population risks respectively,
which serve as the basis for our algorithmic design presented in Section 4.
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Generalization Bounds for Source-Domain Population Risk
Our results are motivated by recent advancements in characterizing the generalization behavior of
learning algorithms within the information-theoretic learning framework (Bu et al., 2020; Harutyun-
yan et al., 2021). Specialized to our problem, we quantify the changes in the hypothesis once the
training domains are observed through the input-output mutual information I(W ;Di):
Theorem 2. Let W = A(Dtr). If Assumption 2 holds, then |EW,Dtr

[Ltr(W )] − EW [L(W )]| ≤
1
m

∑m
i=1

√
M2

2 I(W,Di), and Pr{|Ltr(W )− L(W )| ≥ ϵ} ≤ M2

ϵ2 ( 1
m

∑m
i=1 I(W,Di) + log 3).

Intuitively, extracting correlations between X and Y that are invariant across training domains does
not lead to changes in the hypothesis when these domains are observed. The input-output mutual
information I(W ;Di) approaches zero when the correlations that a model learns from a specific
training domain Di are also present in other training environments. This does not imply that the
model learns nothing from Dtr: by assuming the independence of these domains, the summation of
I(W,Di) can be relaxed to I(W ;Dtr), which measures the actual amount of information that the
model learned from all training domains. By minimizing each I(W ;Di) and Ltr(W ) simultane-
ously, learning algorithms are encouraged to discard domain-specific correlations while preserving
invariant ones and thus achieve high generalization performance.

We further present an alternative approach by assuming Lipschitzness instead of Subgaussianity,
which usually leads to tighter bounds beyond information-theoretic measures:
Theorem 3. Let W = A(Dtr). If ℓ(fw(X), Y ) is β′-Lipschitz w.r.t w, then |EW,Dtr

[Ltr(W )] −
EW [L(W )]| ≤ β′

m

∑m
i=1 EDi

[W(PW |Di=d, PW )].

Here W denotes the Wasserstein distance with metric c defined in Assumption 5, serving as a class
of distance measures between probability density functions (PDF) since each PDF necessarily inte-
grates to 1. Besides its elegant symmetry compared to KL divergence, the Wasserstein upper bound
is considered a tighter improvement over KL divergence or mutual information bounds. To see this,
we assume that c is discrete, which leads to the following reductions:

E[W(PW |Di=d,PW )]=E[TV(PW |Di=d,PW )]≤E
√

1
2KL(PW |Di=d ∥PW )≤

√
1
2I(W ;Di) (2)

where TV is the total variation. These reductions confirm the superiority of Theorem 3 over The-
orem 2 through a stronger Lipschitz assumption. Meanwhile, the RHS of Theorem 2 also upper
bounds these alternative measures of domain differences i.e. total variation and Wasserstein dis-
tance, and thus minimizing I(W ;Di) simultaneously penalizes these alternative measures. This
observation encourages us to directly penalize the input-output mutual information, which is also
shown to be easier and more stable for optimization (Nguyen et al., 2021; Wang & Mao, 2022).

Generalization Bounds for Target-Domain Population Risk
Since the training process is independent of the sampling process of test domains, we could con-
sider the predictor as some constant hypothesis w ∈ W . Then it is straightforward to verify that
EDte

[Lte(w)] = L(w) due to their identical marginal distribution. Moreover, by combining As-
sumption 3, we obtain the following high-probability bound:

Theorem 4. If Assumption 3 holds, then ∀w ∈ W , Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ 2σ2

ϵ2 I(Z;D).

The result above can be interpreted from two perspectives. Firstly, evaluating the predictor w on
randomly sampled test environments reflects its ability to generalize on average, since Lte(w) is
an unbiased estimate of L(w). Secondly, knowledge about L(w) can be used to predict the ability
of w to generalize on unseen domains, which complements Theorem 2 in solving Problem 1. The
probability of generalization is mainly controlled by the distribution shift I(Z;D), which can be
further decomposed into the covariate shift and the concept shift. We then demonstrate that bounding
the covariate shift I(X;D) solely is sufficient to solve Problem 1 with Assumption 4:
Theorem 5. If Assumption 4 holds and ℓ(fw(X), fw′(X)) is σ-subgaussian w.r.tX for any w,w′ ∈
W , then ∀w ∈ W , Pr{Lte(w)− L(w) ≥ ϵ+minw∗∈W [Lte(w

∗) + L(w∗)]} ≤ 2σ2

ϵ2 I(X;D).

This indicates that test-domain generalization is mainly controlled by the amount of covariate shift.
When the hypothesis space W is large enough, the minimizer w∗ ∈ W is expected to attain low-
level population risks in both test environments Lte(w∗) and average-case L(w∗). However, it is
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important to note that w∗ cannot reach zero average-case risk when concept shift is induced (i.e.
I(Y ;D|X) > 0) as indicated by Theorem 1. This implies an inevitable and strictly positive lower
bound for the attainable risk level in test domains. Similarly, we further refine these test-domain
generalization bounds by incorporating the more stringent Assumption 5 in Appendix D.

4 INTER-DOMAIN DISTRIBUTION MATCHING

In this section, we propose Inter-domain Distribution Matching (IDM) to achieve high-probability
DG, which is highly motivated by our theoretical analysis in Section 3. Recall that the average-case
risk L(W ) serves as a natural bridge to connect Ltr(W ) and Lte(W ), the regularization in Problem
1 directly indicates an objective for optimization by combining the high-probability concentration
bounds in Theorem 2 and 4. Specifically, for any λ ∈ (0, 1), we have:

Pr{|Lte(W )− Ltr(W )| ≥ ϵ} ≤ M2

λ2ϵ2 (
1
m

∑m
i=1 I(W,Di) + log 3) + 2σ2

(1−λ)2ϵ2 I(Z;D). (3)

This observation motivates us to minimize the input-output mutual information I(W ;Di) and the
distribution shift I(Z;D) simultaneously to achieve high-probability DG, which further guides us
to aligning inter-domain conditional distributions of gradients and representations respectively.

Gradient Space Distribution Matching
We first demonstrate that the minimization of I(W ;Di) in equation (3) for each i ∈ [1,m] can be
achieved by matching the conditional distributions of inter-domain gradients. To see this, we as-
sume that W is optimized by some noisy and iterative learning algorithms, e.g. Stochastic Gradient
Descent (SGD). Then the rule of updating W at step t through ERM can be formulated as:

Wt =Wt−1 − ηt
∑m
i=1 g(Wt−1, B

i
t), where g(w,Bit) =

1
m|Bi

t|
∑
z∈Bi

t
∇wℓ(fw(x), y),

providingW0 as the initial guess. Here, ηt is the learning rate, andBit is the batch of data points ran-
domly drawn from training environment Di and used to compute the direction for gradient descent.
Suppose that algorithm A finishes in T steps, we have the following upper bound for I(WT ;Di):

Theorem 6. Let Gt = −ηt
∑m
i=1 g(Wt−1, B

i
t), then I(WT ;Di) ≤

∑T
t=1 I(Gt;Di|Wt−1).

Although our analysis is derived from the bare SGD algorithm, the same conclusion also applies to
advanced techniques such as momentum and weight decay. Theorem 6 suggests that minimizing
I(Gt;Di|Wt−1) in each update step t penalizes the input-output mutual information I(WT ;Di)
and thus leads to training-domain generalization. This insight can also be verified by the Markov
chain relationship Di → {Gt}Tt=1 → WT , which implies I(WT ;Di) ≤ I({Gt}Tt=1;Di) by the
data-processing inequality. Notably, the mutual information I(Gt;Di|Wt−1) can be rewritten as the
KL divergence between marginal and conditional distributions of Gt after observing Di, which di-
rectly motivates matching the distribution of inter-domain gradients. Intuitively, gradient alignment
enforces the model to learn common correlations shared across training domains, thus preventing
overfitting to spurious features and promoting invariance (Shi et al., 2021; Rame et al., 2022).

Representation Space Distribution Matching
We now turn to test-domain generalization, which involves minimizing the distribution shift. Note
that both I(Z;D) and I(X;D) are intrinsic properties of the data collection process, and thus can-
not be penalized from the perspective of learning algorithms. Fortunately, the encoder ϕ can be
considered as part of the data preprocessing procedure, enabling learning algorithms to minimize
the representation space distribution shift. Similar to Theorem 4, we have that for any classifier ψ:

Pr{|Lte(ψ)− L(ψ)| ≥ ϵ} ≤ 2σ2

ϵ2 I(R, Y ;D), if Assumption 3 holds.

Let PR,Y be the joint distribution by pushing forward PZ via R = fϕ(X), where ϕ is some fixed
encoder. We then have the following decomposition for the representation space distribution shift:

I(R, Y ;D) (distribution shift) = I(R;D) (covariate shift) + I(Y ;D|R) (concept shift).

This motivates us to simultaneously minimize the covariate shift and concept shift in the represen-
tation space. However, the concept shift is still intractable as shown by the following theorem:

Theorem 7. For any R satisfying H(Y |R,D) ≤ H(Y |X,D), we have I(Y ;D|R) ≥ I(Y ;D|X).
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That is, the representation space concept shift is lower-bounded by the original sample space con-
cept shift when the representation is sufficient for prediction, characterizing the intrinsic trade-off
between optimization and test-domain generalization. Consider that I(Y ;D|R) is hard to estimate
when the number of classes is large, and recall that minimizing the covariate shift I(R;D) solely
is sufficient to solve Problem 1 (Theorem 5), we propose to penalize the encoder ϕ on minimizing
I(Ri;Di) for each training domain Di ∈ Dtr to achieve test-domain generalization. Notably, the
mutual information I(Ri;Di) is equivalent to the KL divergence KL(PRi|Di

∥ PRi), which directly
motivates matching the conditional distributions of inter-domain representations.

Per-sample Distribution Matching
In this section, we propose Per-sample Distribution Matching (PDM) for inter-domain distribution
alignment. Typically, learning algorithms have no knowledge about the underlying distribution of
either the representation or the gradient, and the only available way is to align them across batched
data points. The key limitation of such an approach is that when the number of samples (i.e. batch
size) is limited, it is even impossible to distinguish different high-dimensional distributions:
Theorem 8. (Informal) Let n and b be the dimension and the number of samples respectively. If
n > b + 1, then there exist infinite environments whose conditional probabilities of an arbitrarily
given group of samples are indistinguishable. If n > 2b + 1, then there exist infinite environments
whose conditional probabilities cannot distinguish two arbitrarily given groups of samples.

We refer the readers to Appendix C for a formal statement of Theorem 8. In real-world scenarios,
the dimensionality of the feature or the gradient easily exceeds that of the batch size, making al-
gorithms that aim to align the entire distribution (e.g. CORAL (Sun & Saenko, 2016) and MMD
(Li et al., 2018b)) generally ineffective since distribution alignment is basically impossible given
such few data points. This observation is also verified by Rame et al. (2022) that aligning the entire
covariance matrix achieves no better performance than aligning the diagonal elements only. Further-
more, prior distribution alignment techniques mainly focus on aligning the directions (Parascandolo
et al., 2020; Shahtalebi et al., 2021; Shi et al., 2021) or low-order moments (Sun & Saenko, 2016;
Koyama & Yamaguchi, 2020; Rame et al., 2022), which are insufficient for complex probability
distributions. For example, while the standard Gaussian distribution N(0, 1) and the uniform dis-
tribution U(−

√
3,
√
3) share the same expectation and variance, they are fundamentally different.

To address these issues, we propose PDM for distribution matching in a per-dimension manner, by
minimizing an upper bound of the KL divergence between probability density estimators.

Let {x1i }bi=1 and {x2i }bi=1 be two groups of 1-dimensional data points drawn from probability distri-
butions P andQ respectively. Let pi denote the PDF of the Gaussian distribution with expectation x1i
and variance σ2, then the probability density estimator P̄ of P can be written as p̄(x) = 1

b

∑
i pi(x)

(respectively for qi, Q̄ and q̄). The following theorem suggests a computable upper bound for the
KL divergence or the Wasserstein distance between probability density estimators:
Theorem 9. Let f be a bijection: [1, b] ↔ [1, b] and Pi (Qi) be the probability measure defined by
PDF pi (qi), then KL(P̄ ∥ Q̄) ≤ 1

b

∑b
i=1 KL(Pi ∥ Qf(i)), and W(P̄ , Q̄) ≤ 1

b

∑b
i=1 W(Pi, Qf(i)).

Hence, distribution matching can be achieved by minimizing the KL divergence or Wasserstein
distances between point Gaussian densities, which is equivalent to aligning individual data points.
The following theorem suggests an optimal bijection for choosing the order of alignment:

Theorem 10. f(j) = j is the minimizer of both
∑b
i=1 KL(Pi ∥ Qf(i)) and

∑b
i=1 W(Pi, Qf(i))

when {x1i }bi=1 and {x2i }bi=1 are sorted in the same order.

To summarize, the main procedure of PDM is to divide the data points into separate dimensions,
sort the data points in ascending (or descending) order in each dimension, and then match the sorted
data points across different training domains. PDM improves over previous distribution match-
ing techniques by simultaneously capturing multiple orders of moments, avoiding ineffective high-
dimensional distribution matching, and enabling straightforward implementation and efficient com-
putation. We provide pseudo-codes for both PDM and IDM in Appendix E for better comprehension.

It is noteworthy that this per-dimension sorting and matching scheme exhibits similarities with the
computation of sliced Wasserstein distance (Kolouri et al., 2019; Deshpande et al., 2019; Dai &
Seljak, 2021). This further validates the effectiveness of PDM by demonstrating its applicability
to probability distributions beyond density estimators. Nevertheless, it should be noted that sliced
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Wasserstein distance is not directly applicable to Problem 1, as the generalization error cannot be
unequivocally bounded by Wasserstein distance metrics without the stringent Lipschitz condition. In
contrast, our analysis based on KL divergence only necessitates the mild Subgaussian assumption.

Algorithm Design
Combining the methods discussed above, we finally propose the IDM algorithm for high-probability
DG by simultaneously aligning inter-domain distributions of the gradients and the representations.
Recall that Problem 1 incorporates an additional regularization based on ERM, we adopt the follow-
ing Lagrange multipliers to optimize the IDM objective:

LIDM = LE + λ1LG + λ2LR = 1
m

∑m
i=1

[
L′
Di

(W ) + λ1PDM(Gi) + λ2PDM(Ri)
]
. (4)

Here LE is the risk of ERM, LG and LR denote the penalty of inter-domain distribution alignment
for the gradient and the representation respectively, implemented with the proposed PDM method.
To cooperate representation alignment which regards the classifierψ as the true predictor and also for
memory and time concerns, we only apply gradient alignment for the classifier ψ as in (Rame et al.,
2022). Furthermore, λ1 and λ2 should be adaptively chosen according to the amount of covariate
and concept shifts respectively: Firstly, I(R;D) is upper bounded by I(X;D) by the Markov chain
D → X → R, so the representations are naturally aligned when I(X;D) = 0. Secondly, gradient
alignment is not required when I(Y ;D|X) = 0, since the entire distribution shift can then be
minimized by aligning the representations solely. Therefore, the Lagrange multipliers λ1 and λ2
should scale with the amount of the covariate and concept shifts respectively.

5 RELATED WORKS

In the literature, various approaches for DG have been proposed by incorporating external domain
information to achieve OOD generalization. Most recent works achieve invariance by employing
additional regularization criteria based on ERM. These methods differ in the choice of the statistics
used to match across training domains and can be categorized by the corresponding objective of 1)
gradient, 2) representation, and 3) predictor, as follows:

Invariant Gradients. Gradient alignment enforces batch data points from different domains to co-
operate and has been employed in OOD generalization by finding minima in the loss landscape that
are shared across training domains. Specifically, IGA (Koyama & Yamaguchi, 2020) proposed to
align the empirical expectations, Fish (Shi et al., 2021) suggested aligning the directions of gra-
dients, AND-mask (Parascandolo et al., 2020) and SAND-mask (Shahtalebi et al., 2021) only up-
date weights when the gradients share the same direction, and Fishr (Rame et al., 2022) proposes
matching the gradient variance. The key limitation of these gradient-based methods is their coarse
alignment of either the directions or low-order moments, resulting in substantial information loss
in more granular statistics. Our work is the first to connect gradient alignment and training-domain
generalization, providing insights into how gradient matching enhances generalization.

Invariant Representations. Extracting domain-invariant features has been extensively studied to
solve both DG and domain adaptation (DA) problems. DANN (Ganin et al., 2016) and CDANN (Li
et al., 2018c) align inter-domain representations via adversarial methods, MMD (Li et al., 2018b)
uses kernel methods for distribution alignment, and CORAL (Sun & Saenko, 2016) achieves invari-
ance by matching low-order moments of the representations. Still, these methods are insufficient
for complex probability distributions (Zhao et al., 2019), ineffective for high-dimensional distribu-
tions (Theorem 8), and incapable to address the concept shift (Theorem 7). Our theoretical results
provide an information-theoretic perspective for test-domain generalization by showing how rep-
resentation alignment minimizes the variance of target-domain risks, and thus minimizes the gap
between training and test-domain population risks with high probability.

Invariant Predictors. A recent line of works proposes to explore the connection between invariance
and causality. IRM (Arjovsky et al., 2019) and subsequent works (Zhou et al., 2022; Lin et al.,
2022) learn an invariant classifier that is simultaneously optimal for all training domains. However,
later works have shown that IRM may fail on non-linear data and lead to sub-optimal predictors
(Kamath et al., 2021; Ahuja et al., 2021). Parallel works include: V-REx (Krueger et al., 2021)
which minimizes the difference between training-domain risks, GroupDRO (Sagawa et al., 2019)
which minimizes the worst-domain training risk, and QRM (Eastwood et al., 2022) which optimizes
the quantile of the risk distribution across training domains. We will show that IDM also promotes
domain-invariant predictors and ensures optimality across different training domains.
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Figure 1: Learning dynamics of IDM.

Table 1: The Colored MNIST task.

Method Train Acc Test Acc Gray Acc

ERM 86.4 ± 0.2 14.0 ± 0.7 71.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8 66.1 ± 0.2
V-REx 71.7 ± 1.5 67.2 ± 1.5 68.6 ± 2.2
IGA 68.9 ± 3.0 67.7 ± 2.9 67.5 ± 2.7
Fishr 69.6 ± 0.9 71.2 ± 1.1 70.2 ± 0.7

IDM 70.2 ± 1.4 70.6 ± 0.9 70.5 ± 0.7

6 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed IDM algorithm on Colored MNIST (Arjovsky et al., 2019)
and DomainBed (Gulrajani & Lopez-Paz, 2020) to demonstrate its capability of generalizing against
different types of distribution shifts1. Detailed experimental settings and further empirical results
including ablation studies are reported in Appendix E and F.

The Colored MNIST task proposed by Arjovsky et al. (2019) is carefully designed to create high
correlations between image colors and the true labels, leading to spurious features that possess
superior predictive power (90% and 80% accuracy) over the actual digits (75%). However, this cor-
relation is reversed in the test domain (10%), causing any learning algorithm that solely minimizes
training-domain errors to overfit the color information and fail during test time. As such, Colored
MNIST is an ideal task to evaluate the capability of learning algorithms to achieve invariance across
source domains and generalize well on target environments.

We follow the experimental settings in (Arjovsky et al., 2019) and adopt a two-stage training tech-
nique, where the penalty strength λ is set low initially and set higher afterward. We visualize the
learning dynamics of relevant DG penalties, including IRM, V-Rex, IGA, and Fishr, using the IDM
objective for optimization in Figure 1. The penalty values are normalized for better clarity. This
visualization confirms Theorem 2 that IDM promotes source-domain generalization by minimizing
the gap between training risks, thus ensuring the optimality of the predictor across different training
domains. Moreover, the learning dynamics verify the superiority of PDM by showing that penaliz-
ing the IDM objective solely is sufficient to minimize other types of invariance penalties, including
IRM/V-REx which ensures the optimality of the classifier across training domains, and IGA/Fishr
which aligns the expectation/variance of inter-domain gradient distributions.

Table 1 presents the mean accuracy and standard deviation of different DG algorithms on Colored
MNIST across 10 independent runs. Notably, the Oracle model (ERM trained with gray-scale im-
ages) achieves 71.0% accuracy on both source and target domains. Following the hyper-parameter
tuning technique as Arjovsky et al. (2019), we select the best model by maxwmin(Ltr(w), Lte(w)).
IDM achieves the best trade-off between training and test-domain accuracies (70.2%), and near-
optimal gray-scale accuracy (70.5%) compared to the Oracle predictor (71.0%).

The DomainBed Benchmark (Gulrajani & Lopez-Paz, 2020) comprises of synthetic datasets (Col-
ored MNIST (Arjovsky et al., 2019) and Rotated MNIST (Ghifary et al., 2015)) and also various
real-world datasets (VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara
et al., 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019)) for assessing
the performance of both DA and DG algorithms. To ensure a fair comparison, DomainBed limits the
number of attempts for hyper-parameter tuning to 20, and the results are averaged over 3 indepen-
dent trials. Therefore, DomainBed serves as a rigorous and comprehensive benchmark to evaluate
different DG strategies. We compare the performance of our method with 20 baselines in total for
a thorough evaluation. Table 2 summarizes the results using test-domain model selection, i.e. the
validation set follows the same distribution as test domains. Although training-domain validation
is more common, we argue that this would result in sub-optimal selection results as indicated by
Theorem 1, and discuss the viability of test-domain selection in Appendix F.3.

As can be seen, IDM achieves top-1 accuracy (72.0%) on CMNIST which is competitive with the
Oracle (75.0%). This verifies the superiority of the proposed PDM method by outperforming all

1The source code is provided along with the supplementary materials.
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Table 2: The DomainBed benchmark. We format best, second best and worse than ERM results.
Algorithm Accuracy (↑) Ranking (↓)

CMNIST RMNIST VLCS PACS OffHome TerraInc DomNet Avg Mean Median Worst

ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7 12.3 11 20
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9 18.3 20 22
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9 11.7 10 19
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0 7.3 6 15
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7 12.6 13 18
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2 6.4 5 14
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9 10.0 10 22
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7 15.0 18 22
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2 12.4 14 18
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5 11.7 10 21
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7 11.3 9 17
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1 13.0 16 21
VREx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2 10.6 8 20
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2 13.4 13 19
AND-mask 58.6 ± 0.4 97.5 ± 0.0 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 49.8 ± 0.4 37.9 ± 0.6 67.5 17.0 16 22
SAND-mask 62.3 ± 1.0 97.4 ± 0.1 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 50.2 ± 0.1 32.2 ± 0.6 67.2 17.9 19 22
Fish 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 66.0 ± 2.9 50.8 ± 0.4 43.4 ± 0.3 69.1 11.3 11 18
Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8 5.4 3 16
SelfReg 58.0 ± 0.7 98.1 ± 0.7 78.2 ± 0.1 87.7 ± 0.1 68.1 ± 0.3 52.8 ± 0.9 43.1 ± 0.1 69.4 5.0 3 19
CausIRLCORAL 58.4 ± 0.3 98.0 ± 0.1 78.2 ± 0.1 87.6 ± 0.1 67.7 ± 0.2 53.4 ± 0.4 42.1 ± 0.1 69.4 5.0 3 15
CausIRLMMD 63.7 ± 0.8 97.9 ± 0.1 78.1 ± 0.1 86.6 ± 0.7 65.2 ± 0.6 52.2 ± 0.3 40.6 ± 0.2 69.2 10.4 10 20

IDM 72.0 ± 1.0 98.0 ± 0.1 78.1 ± 0.4 87.6 ± 0.3 68.3 ± 0.2 52.8 ± 0.5 41.8 ± 0.2 71.2 3.3 3 6

previous distribution alignment techniques by aligning the directions (AND-mask, SAND-mask,
Fish) or low-order moments (Fishr). On the contrary, algorithms that only align the representations
(CORAL, MMD, DANN, CDANN) are incapable of addressing the concept shift, thus performing
poorly on CMNIST. Moreover, IDM achieves the highest accuracy among all distribution match-
ing algorithms on RMNIST / PACS, competitive performances to the best algorithm on RMNIST
(98.0% v.s. 98.1%), PACS (87.6% v.s. 87.7%), OfficeHome (68.3% v.s. 68.4%), the highest average
accuracy (71.2% v.s. 70.8%) and rankings (mean, median and worst ranks on 7 datasets) among all
baseline methods. IDM also enables efficient implementation, such that the computational overhead
compared to ERM is only 5% on the largest DomainNet dataset, and negligible for other smaller
datasets. Notably, IDM is the only algorithm that consistently achieves top rankings (6 v.s. 14),
while any other method failed to outperform most of the competitors on at least 1 dataset.

While the results are promising, we notice that IDM is not very effective on TerraIncognita. There
are several possible reasons for such a phenomenon: Firstly, the number of hyper-parameters in IDM
exceeds most competing methods, which is critical to model selection since the number of tuning
attempts is limited in DomainBed. Recall that the value of λ1 and λ2 should adapt to the amount
of covariate and concept shifts respectively: While CMNIST manually induces high concept shift,
covariate shift is instead dominant in other datasets, raising extra challenges for hyper-parameter
tuning. Secondly, representation space distribution alignment may not always help since Lte(w) ≤
L(w) is possible by the randomized nature of target domains. These factors together result in sub-
optimal hyper-parameter selection results.

7 CONCLUSION AND DISCUSSION

In this paper, we conduct information-theoretic generalization analysis upon a probabilistic formu-
lation for DG and provide novel upper bounds for both source and target-domain generalization
errors. Our theoretical results successfully explain the elegant performance of distribution-matching
DG methods and inspire us to design the IDM algorithm by simultaneously aligning inter-domain
gradients and representations. Combining with the proposed PDM method by aligning individual
sorted data points, we achieve superior performance on the DomainBed benchmark.

While our analysis does not necessitate the independence condition between source domains or
target domains, such a condition is also naturally satisfied in most learning scenarios and leads to
tighter generalization bounds. Specifically,

∑m
i=1 I(W ;Di) ≤ I(W ;Dtr) is satisfied in Theorem 2

when the training domains are i.i.d sampled, elsewise we only have I(W ;Di) ≤ I(W ;Dtr) for any
i ∈ [1,m]. Moreover, Theorem 4 and 5 can be further tightened by a factor of 1

m′ when test domains
are i.i.d, such that one can expect better generalization performance by increasing the number of test
domains. We refer the readers to Appendix B and C for the proof of these results.
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Reproducibility Statement. To ensure reproducibility, we include complete proofs of our theoreti-
cal results in Appendix B and C, detailed explanations of our experimental settings in Appendix E,
and source codes in the supplementary materials.
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A PREREQUISITE DEFINITIONS AND LEMMAS

Definition 1. (Subgaussian) A random variableX is σ-subgaussian if for any ρ ∈ R, E[exp(ρ(X−
E[X]))] ≤ exp(ρ2σ2/2).

Definition 2. (Kullback-Leibler Divergence) Let P and Q be probability measures on the same
space X , the KL divergence from P to Q is defined as KL(P ∥ Q) ≜

∫
X p(x) log(p(x)/q(x)) dx.

Definition 3. (Mutual Information) Let (X,Y ) be a pair of random variables with values over the
space X ×Y . Let their joint distribution be PX,Y and the marginal distributions be PX and PY re-
spectively, the mutual information between X and Y is defined as I(X;Y ) = KL(PX,Y ∥ PXPY ).
Definition 4. (Wasserstein Distance) Let c(·, ·) be a metric and let P andQ be probability measures
on X . Denote Γ(P,Q) as the set of all couplings of P and Q (i.e. the set of all joint distributions
on X ×X with two marginals being P and Q), then the Wasserstein distance of order p between P

and Q is defined as Wp(P,Q) ≜
(
infγ∈Γ(P,Q)

∫
X×X c(x, x

′)p dγ(x, x′)
)1/p

.
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Unless otherwise noted, we use log to denote the logarithmic function with base e, and use W(·, ·)
to denote the Wasserstein distance of order 1.

Definition 5. (Total Variation) The total variation between two probability measures P and Q is
TV(P,Q) ≜ supE |P (E)−Q(E)|, where the supremum is over all measurable set E.

Lemma 1. (Lemma 1 in (Harutyunyan et al., 2021)) Let (X,Y ) be a pair of random variables with
joint distribution PX,Y and let Ȳ be an independent copy of Y . If f(x, y) is a measurable function
such that EX,Y [f(X,Y )] exists and f(X, Ȳ ) is σ-subgaussian, then∣∣EX,Y [f(X,Y )]− EX,Ȳ [f(X, Ȳ )]

∣∣ ≤√2σ2I(X;Y ).

Furthermore, if f(x, Y ) is σ-subgaussian for each x and the expectation below exists, then

EX,Y
[(
f(X,Y )− EȲ [f(X, Ȳ )]

)2] ≤ 4σ2(I(X;Y ) + log 3),

and for any ϵ > 0, we have

Pr
{∣∣f(X,Y )− EȲ [f(X, Ȳ )]

∣∣ ≥ ϵ
}
≤ 4σ2(I(X;Y ) + log 3)

ϵ2
.

Lemma 2. (Lemma 2 in (Harutyunyan et al., 2021)) Let X be σ-subgaussian and E[X] = 0, then
for any λ ∈ [0, 1/4σ2):

EX
[
eλX

2
]
≤ 1 + 8λσ2.

Lemma 3. (Donsker-Varadhan formula) Let P and Q be probability measures defined on the same
measurable space, where P is absolutely continuous with respect to Q. Then

KL(P ∥ Q) = sup
X

{
EP [X]− logEQ[eX ]

}
,

where X is any random variable such that eX is Q-integrable and EP [X] exists.

Lemma 4. Let P , and Q be probability measures defined on the same measurable space. Let
X ∼ P and X ′ ∼ Q. If f(X) is σ-subgaussian w.r.t X and the following expectations exists, then

|EX′ [f(X ′)]− EX [f(X)]| ≤
√
2σ2KL(Q ∥ P ),

EX′

[
(f(X ′)− EX [f(X)])

2
]
≤ 4σ2(KL(Q ∥ P ) + log 3).

Furthermore, by combining the results above and Markov’s inequality, we have that for any ϵ > 0:

Pr{|f(X ′)− EX [f(X)]| ≥ ϵ} ≤ 4σ2

ϵ2
(KL(Q ∥ P ) + log 3).

Proof. Let λ ∈ R be any non-zero constant, then by the subgaussian property of f(X):

logEX
[
eλ(f(X)−EX [f(X)])

]
≤ λ2σ2

2
,

logEX
[
eλf(X)

]
− λEX [f(X)] ≤ λ2σ2

2
.

By applying Lemma 3 with X = λf(X) we have

KL(Q ∥ P ) ≥ sup
λ

{
EX′ [λf(X ′)]− logEX

[
eλf(X)

]}
≥ sup

λ

{
EX′ [λf(X ′)]− λEX [f(X)]− λ2σ2

2

}
=

1

2σ2
(EX′ [f(X ′)]− EX [f(X)])

2
,

where the supremum is taken by setting λ = 1
σ2 (EX′ [f(X ′)] − EX [f(X)]). This completes the

proof of the first inequality.
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To prove the second inequality, let g(x) = (f(x)−EX [f(X)])2 and λ ∈ [0, 1/4σ2). Apply Lemma
3 again with X = λg(X), we have

KL(Q ∥ P ) ≥ sup
λ

{
EX′ [λg(X ′)]− logEX

[
eλg(X)

]}
= sup

λ

{
EX′

[
λ(f(X ′)− EX [f(X)])

2
]
− logEX

[
eλ(f(X)−EX [f(X)])2

]}
≥ sup

λ

{
EX′

[
λ(f(X ′)− EX [f(X)])

2
]
− log(1 + 8λσ2)

}
≥ 1

4σ2
EX′

[
(f(X ′)− EX [f(X)])

2
]
− log 3,

where the second inequality follows by applying Lemma 2 and the last inequality follows by taking
λ→ 1

4σ2 . This finishes the proof of the second inequality.

Furthermore, by applying Markov’s inequality, we can get:

Pr{|f(X ′)− EX [f(X)]| ≥ ϵ} = Pr
{
(f(X ′)− EX [f(X)])

2 ≥ ϵ2
}

≤ 1

ϵ2
EX′

[
(f(X ′)− EX [f(X)])

2
]

≤ 4σ2

ϵ2
(KL(Q ∥ P ) + log 3),

which completes the proof.

Lemma 5. (Kantorovich-Rubinstein Duality) Let P and Q be probability measures defined on the
same measurable space X , then

W(P,Q) = sup
f∈Lip1

{∫
X
f dP −

∫
X
f dQ

}
,

where Lip1 denotes the set of 1-Lipschitz functions in the metric c, i.e. |f(x) − f(x′)| ≤ c(x, x′)
for any f ∈ Lip1 and x, x′ ∈ X .

Lemma 6. (Pinsker’s Inequality) Let P and Q be probability measures defined on the same space,

then TV(P,Q) ≤
√

1
2KL(Q ∥ P ).

Lemma 7. For any constant λ ∈ (0, 1), we have

Pr{|Ltr(W )− Lte(W )| ≥ ϵ} ≤ Pr{|Ltr(W )− L(W )| ≥ λϵ}
+ Pr{|Lte(W )− L(W )| ≥ (1− λ)ϵ}.

Proof. Notice that |Ltr(W ) − L(W )| ≤ λϵ and |Lte(W ) − L(W )| ≤ (1 − λ)ϵ together implies
|Ltr(W )− Lte(W )| ≤ ϵ, we then have

Pr{|Ltr(W )− Lte(W )| ≤ ϵ} ≥ Pr{|Ltr(W )− L(W )| ≤ λϵ
⋂

|Lte(W )− L(W )| ≤ (1− λ)ϵ}.

This implies that

Pr{|Ltr(W )− Lte(W )| ≥ ϵ} ≤ Pr{|Ltr(W )− L(W )| ≥ λϵ
⋃

|Lte(W )− L(W )| ≥ (1− λ)ϵ}.

By applying Boole’s inequality, we then have

Pr{|Ltr(W )− Lte(W )| ≥ ϵ} ≤ Pr{|Ltr(W )− L(W )| ≥ λϵ}
+ Pr{|Lte(W )− L(W )| ≥ (1− λ)ϵ}.
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B OMITTED PROOFS IN SECTION 3

B.1 PROOF OF THEOREM 1

Theorem 1 (Restate). Let QR|X and QY |R denote the encoder and classifier characterized by fϕ
and fψ respectively, and let QY |X denote the whole model by QY |X =

∫
RQY |R dQR|X . Then for

any domain d ∈ D:

KL(PY |X,D ∥ QY |X) ≥ I(Y ;D|X),

KL(PY |X,D=d ∥ QY |X) ≤ I(X;Y |R,D = d) + KL(PY |R,D=d ∥ QY |R).

Proof. For better clarity, we abbreviate PX(X) as PX in the following expectations for any random
variable X .

KL(PY |X,D ∥ QY |X) = ED,X,Y
[
log

PY |X,D

QY |X

]
= ED,X,Y

[
log

PY |X,D

PY |X
·
PY |X

QY |X

]
= ED,X,Y

[
log

PY,D|X

PY |XPD|X

]
+ EX,Y

[
log

PY |X

QY |X

]
= I(Y ;D|X) + KL(PY |X ∥ QY |X) ≥ I(Y ;D|X).

The last inequality is by the positiveness of the KL divergence. It holds with equality if and only if
QY |X = PY |X .

To prove the second inequality, we apply Jensen’s inequality on the concave logarithmic function:

KL(PY |X,D=d ∥ QY |X) = EX,Y |D=d

[
log

PY |X,D=d

QY |X

]
= EX,Y |D=d

[
log

PY |X,D=d

ER|X=x[QY |R]

]
≤ EX,Y |D=dER|X=x

[
log

PY |X,D=d

QY |R

]
= EX,Y,R|D=d

[
log

PY |X,D=d

PY |R,D=d
·
PY |R,D=d

QY |R

]
= EX,Y,R|D=d

[
log

PY,X|R,D=d

PY |R,D=dPX|R,D=d

]
+ EY,R|D=d

[
log

PY |R,D=d

QY |R

]
= I(X;Y |R,D = d) + KL(PY |R,D=d ∥ QY |R).

The only inequality holds with equality when Var[QR|X=x] = 0 for any x ∈ X , i.e. fϕ is determin-
istic. This completes the proof.

B.2 PROOF OF THEOREM 2

Theorem 2 (Restate). Let W be the output of learning algorithm A with training domains Dtr. If
Assumption 2 holds, then

|EW,Dtr [Ltr(W )]− EW [L(W )]| ≤ 1

m

m∑
i=1

√
M2

2
I(W,Di),

Pr{|Ltr(W )− L(W )| ≥ ϵ} ≤ M2

ϵ2

(
1

m

m∑
i=1

I(W,Di) + log 3

)
.

Proof. For any D ∈ Dtr, let D̄ be an independent copy of the marginal distribution of D. Then by
setting X =W , Y = D and f(w, d) = Ld(w) in Lemma 1, we have

|EW,D[LD(W )]− EW [L(W )]| = |EW,D[LD(W )]− EW,D̄[LD̄(W )]|
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≤
√
M2

2
I(W,D).

EW,D[(LD(W )− L(W ))2] ≤M2(I(W,D) + log 3).

By summing up each individual training domain, we can get

|EW,Dtr [Ltr(W )]− EW [L(W )]| =

∣∣∣∣∣ 1mEW,Dtr

[
m∑
i=1

LDi(W )

]
− EW [L(W )]

∣∣∣∣∣
≤ 1

m

m∑
i=1

|EW,Di [LDi(W )]− EW [L(W )]|

≤ 1

m

m∑
i=1

√
M2

2
I(W,Di)

≤

√√√√ 1

m

m∑
i=1

M2

2
I(W,Di).

where the last inequality is by applying Jensen’s inequality on the concave square root function.
Similarly, we have

EW,Dtr
[(Ltr(W )− L(W ))2] = EW,Dtr

( 1

m

m∑
i=1

LDi(W )− L(W )

)2


≤ 1

m

m∑
i=1

EW,Di

[
(LDi

(W )− L(W ))2
]

≤ 1

m

m∑
i=1

M2(I(W,Di) + log 3)

≤ M2

m

(
m∑
i=1

I(W,Di) +m log 3

)
,

which further implies

Pr{|Ltr(W )− L(W )| ≥ ϵ} ≤ M2

mϵ2

(
m∑
i=1

I(W,Di) +m log 3

)

=
M2

ϵ2

(
1

m

m∑
i=1

I(W,Di) + log 3

)

by Lemma 1.

Additionally, by assuming that the training domains are independent, we have

I(W ;Dtr) = I(W ; {Di}mi=1) = I(W ;D1) + I(W ; {Di}mi=2|D1)

= I(W ;D1) + I(W ; {Di}mi=2)− I({Di}mi=2;D1) + I({Di}mi=2;D1|W )

= I(W ;D1) + I(W ; {Di}mi=2) + I({Di}mi=2;D1|W )

≥ I(W ;D1) + I(W ; {Di}mi=2)

≥ · · ·

≥
m∑
i=1

I(W,Di).

19



Under review as a conference paper at ICLR 2024

B.3 PROOF OF THEOREM 3

Theorem 3 (Restate). Let W be the output of learning algorithm A under training domains Dtr.
If ℓ(fw(X), Y ) is β′-Lipschitz w.r.t w, i.e. |ℓ(fw1

(X), Y ) − ℓ(fw2
(X), Y )| ≤ β′c(w1, w2) for any

w1, w2 ∈ W , then

|EW,Dtr
[Ltr(W )]− EW [L(W )]| ≤ β′

m

m∑
i=1

EDi
[W(PW |Di=d, PW )].

Proof. For any d ∈ D and Di ∈ Dtr, let P = PW |Di=d, Q = PW and f(w) = LDi(w) in Lemma
5, then

|EW,Dtr
[Ltr(W )]− EW [L(W )]| ≤ 1

m
EDtr

[
m∑
i=1

∣∣EW |Di=d[LDi
(W )]− EW [L(W )]

∣∣]

=
1

m
EDtr

[
m∑
i=1

|EW |Di=d[LDi
(W )]− EW [LDi

(W )]|

]

≤ 1

m
EDtr

[
m∑
i=1

β′W(PW |Di=d, PW )

]

=
β′

m

m∑
i=1

EDi [W(PW |Di=d, PW )].

When the metric d is discrete, the Wasserstein distance is equal to the total variation. Combining
with Lemma 6, we have the following reductions:

EDi [W(PW |Di=d, PW )] = EDi [TV(PW |Di=d, PW )]

≤ EDi

[√
1

2
KL(PW |Di=d ∥ PW )

]

≤
√

1

2
I(W ;Di),

where the last inequality follows by applying Jensen’s inequality on the concave square root func-
tion.

B.4 PROOF OF THEOREM 4

Theorem 4 (Restate). For any w ∈ W , EDte [Lte(w)] = L(w). Additionally if Assumption 3 holds,
then

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ 2σ2

ϵ2
I(Z;D).

Furthermore, when the test domains are independent, we have

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ 2σ2

m′ϵ2
I(Z;D).

Proof. By the identical marginal distribution of the test domains Dte = {Dk}m
′

k=1, we have

EDte [Lte(w)] =
1

m′

m′∑
k=1

EDk
[LDk

(w)] =
1

m′

m′∑
k=1

ED[LD(w)]

= ED[LD(w)] = EDEZ|D=d[ℓ(fw(X), Y )]

= ED,Z [ℓ(fw(X), Y )] = EZ [ℓ(fw(X), Y )] = L(w).

If Assumption 3 holds, then for any d ∈ D, by setting P = PZ , Q = PZ|D=d and f(z) =
ℓ(fw(x), y) in Lemma 4, we have

(Ld(w)− L(w))2 =
(
EZ|D=d[ℓ(fw(X), Y )]− EZ [ℓ(fw(X), Y ]

)2
20
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≤
(√

2σ2KL(PZ|D=d ∥ PZ)
)2

≤ 2σ2KL(PZ|D=d ∥ PZ).
Taking the expectation over D ∼ ν, we can get

ED[(LD(w)− L(w))2] ≤ ED
[
2σ2KL(PZ|D=d ∥ PZ)

]
= 2σ2KL(PZ|D ∥ PZ).

Furthermore, notice that

KL(PZ|D ∥ PZ) = EDEZ|D=d

[
log

PZ|D

PZ

]
= ED,Z

[
log

PZ,D
PZPD

]
= I(Z;D).

Combining the results above yields the following inequality:
ED[(LD(w)− L(w))2] ≤ 2σ2I(Z;D).

When the test domains {Dk}m
′

i=k are independent of each other, they can be regarded as i.i.d copies
of D, i.e.

VarDte
[Lte(w)] =

1

m′2

m′∑
k=1

VarDk
[LDk

(w)]

=
1

m′2

m′∑
k=1

EDk
[(LDk

(w)− L(w))2]

≤ 1

m′2

m′∑
k=1

2σ2I(Z;D)

=
1

m′ 2σ
2I(Z;D).

Finally, by applying Chebyshev’s inequality, we can prove that

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ 2σ2

m′ϵ2
I(Z;D).

Otherwise, when the independent condition is not satisfied, we have that by applying Jensen’s in-
equality:

VarDte [Lte(w)] = EDte


 1

m′

m′∑
k=1

LDk
(w)− L(w)

2


≤ 1

m′

m′∑
k=1

EDk
[(LDk

(w)− L(w))2]

≤ 1

m′

m′∑
k=1

2σ2I(Z;D)

= 2σ2I(Z;D).

One can see that this differs from the independent case above by a factor of 1/m′.

B.5 PROOF OF THEOREM 5

Theorem 5 (Restate). If Assumption 4 holds, and ℓ(fw(X), fw′(X)) is σ-subgaussian w.r.t X ∼
PX for any w,w′ ∈ W , then for any w ∈ W ,

Pr{Lte(w)− L(w) ≥ ϵ+ L∗} ≤ 2σ2

ϵ2
I(X;D),
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where L∗ = minw∗∈W(Lte(w
∗) + L(w∗)). Additionally, if the test domains are independent, then

Pr{Lte(w)− L(w) ≥ ϵ+ L∗} ≤ 2σ2

m′ϵ2
I(X;D),

Proof. For any environment d ∈ D and w,w′ ∈ W , denote

Ld(w,w
′) = EX|D=d[ℓ(fw(X), fw′(X))], and

L(w,w′) = EX [ℓ(fw(X), fw′(X))].

By setting P = PX , Q = PX|D=d and f(x) = ℓ(fw(x), fw′(x)) in Lemma 4, we have

(Ld(w,w
′)− L(w,w′))

2 ≤ 2σ2KL(PX|D=d ∥ PX).

By taking the expectation over D ∼ ν, we get

ED
[
(Ld(w,w

′)− L(w,w′))
2
]
≤ 2σ2KL(PX|D ∥ PX)

= 2σ2I(X;D).

Through a similar procedure of proving Theorem 4, we have

Pr{|Lte(w,w′)− L(w,w′)| ≥ ϵ} ≤ 2σ2

m′ϵ2
I(X;D).

If Assumption 4 holds, then for any w,w∗ ∈ W , we can prove that

Ld(w) = EZ|D=d[ℓ(fw(X), Y )]

≤ EZ|D=d[ℓ(fw(X), fw∗(X)) + ℓ(fw∗(X), Y )]

= Ld(w,w
∗) + Ld(w

∗).

Additionally, for any environment d ∈ D,

Ld(w,w
∗) = EX|D=d[ℓ(fw(X), fw∗(X))]

≤ EZ|D=d[ℓ(fw(X), Y ) + ℓ(Y, fw∗(X))]

= Ld(w) + Ld(w
∗).

Combining the results above, we have that with probability at least 1− 2σ2

m′ϵ2 I(X;D),

Lte(w) ≤ Lte(w,w
∗) + Lte(w

∗)

≤ L(w,w∗) + ϵ+ Lte(w
∗)

≤ L(w) + L(w∗) + ϵ+ Lte(w
∗).

By minimizing Lte(w∗) + L(w∗) over w∗ ∈ W , it follows that

Pr

{
Lte(w)− L(w) ≥ ϵ+ min

w∗∈W
(Lte(w

∗) + L(w∗))

}
≤ 2σ2

m′ϵ2
I(X;D),

which finishes the proof.

C OMITTED PROOFS IN SECTION 4

C.1 PROOF OF THEOREM 6

Theorem 6 (Restate). Let Git = −ηtg(Wt−1, B
i
t) and Gt =

∑m
i=1G

i
t, then

I(WT ;Di) ≤
T∑
t=1

I(Gt;Di|Wt−1).

Additionally, if the training domains are independent, then

I(WT ;Di) ≤
T∑
t=1

I(Git;Di|Wt−1).
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Proof. Noticing the Markov chain relationship Di → (WT−1, GT ) → WT−1 + GT , then by the
data processing inequality

I(WT ;Di) = I(WT−1 +GT ;Di)

≤ I(WT−1, GT ;Di)

= I(WT−1;Di) + I(GT ;Di|WT−1).

where the last equality is by the chain rule of conditional mutual information. By applying the
reduction steps above recursively, we can get

I(WT ;Di) ≤ I(WT−1;Di) + I(GT ;Di|WT−1)

≤ I(WT−2;Di) + I(GT−1;Di|WT−2)

+ I(GT ;Di|WT−1)

≤ · · ·

≤
T∑
t=1

I(Gt;Di|Wt−1).

When the training domains are independent, we additionally have

I(WT ;Di) ≤ I(WT−1;Di) + I(GT ;Di|WT−1)

≤ I(WT−1;Di) + I
(
{GkT }mk=1;Di|WT−1

)
= I(WT−1;Di) + I

(
GiT ;Di|WT−1

)
+ I
(
{GkT }mk=1 \GiT ;Di|WT−1, G

i
T

)
= I(WT−1;Di) + I

(
GiT ;Di|WT−1

)
.

Then by the same scheme of recursive reduction, we can prove that

I(WT ;Di) ≤
T∑
t=1

I
(
Git;Di|Wt−1

)
.

C.2 PROOF OF THEOREM 7

Theorem 7 (Restate). Assume the Markov chain relationship Y → X → R, then for any sufficient
R satisfying H(Y |R,D) ≤ H(Y |X,D), we have

I(Y ;D|R) ≥ I(Y ;D|X).

Proof. From the Markov chain Y → X → R, we know that

I(Y ;X)− I(Y ;R) ≥ 0 ≥ H(Y |R,D)−H(Y |X,D)

= H(Y |D)−H(Y |X,D)− (H(Y |D)−H(Y |R,D))

= I(Y ;X|D)− I(Y ;R|D).

By the definition of interaction information (denoted as I(·; ·; ·)), we have

I(Y ;X;D) = I(Y ;X)− I(Y ;X|D) ≥ I(Y ;R)− I(Y ;R|D) = I(Y ;R;D),

which implies

I(Y ;D|R) = I(Y ;D)− I(Y ;R;D) ≥ I(Y ;D)− I(Y ;X;D) = I(Y ;D|X).

The proof is complete.

C.3 PROOF OF THEOREM 8

Theorem 8 (Formal). Let n be the dimensionality of the distribution and b be the number of data
points, then
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• If n > b+ 1, then for any sampled data points s = {xi}bi=1, there exists infinite environments d1,
d2, · · · such that p(S = s|D = d1) = p(S = s|D = d2) = · · · .

• If n > 2b + 1, then for any two batch of sampled data points s1 = {x1i }bi=1 and s2 = {x2i }bi=1,
there exists infinite environments d1, d2, · · · such that for each j ∈ [1,∞), p(S = s1|D = dj) =
p(S = s2|D = dj).

Proof. Without loss of generality, we assume that the data-generating distributions p(X|D) are
Gaussian with zero means for simplicity, i.e.

p(x|D = d) =
1√

(2π)n|Σd|
exp

(
−1

2
x⊤Σdx

)
,

where Σd is the corresponding covariance matrix of environment d. Let X ∈ Rn×b be the data
matrix of S such that the i-th column of X equals xi, we then have

p(S = s|D = d) =
1√

(2π)bn|Σd|b
exp

(
−1

2
tr(X⊤ΣdX)

)
.

Since the rank of X is at most b, one can decompose Σd = Σ1
d + Σ2

d with rank(Σ1
d) = b and

rank(Σ2
d) = n − b ≥ 2 through eigenvalue decomposition, and let the eigenvector space of Σ1

d
cover the column space of X . Then we have

tr(X⊤Σ1
dX) = tr(X⊤ΣdX), and tr(X⊤Σ2

dX) = 0.

Therefore, one can arbitrarily modify the eigenvector space of Σ2
d as long as keeping it orthogonal

to that of Σ1
d, without changing the value of tr(X⊤ΣdX). This finishes the proof of the first part.

To prove the second part, similarly we decompose Σd by Σ1
d+Σ2

d such that rank(Σ1
d) = 2b+1 and

rank(Σ2
d) = n− 2b− 1 ≥ 1, and make the eigenvector space of Σ1

d cover the column space of both
X1 and X2, where X1 and X2 are the data matrix of S1 and S2 respectively. We then have

tr(X⊤
1 Σ1

dX1) = tr(X⊤
1 ΣdX1),

tr(X⊤
2 Σ1

dX2) = tr(X⊤
2 ΣdX2),

and tr(X⊤
1 Σ2

dX1) = tr(X⊤
2 Σ2

dX2) = 0.

Let Σ1
d = U⊤

d ΛdUd be the eigenvalue decomposition of Σ1
d, where Ud ∈ R(2b+1)×n and

Λd = diag(λd1, · · · , λd2b+1). Notice that for any x ∈ Rn, we have x⊤Σdx = (Udx)
⊤Λd(Udx) =∑2b+1

i=1 (Udx)
2
iλi. By assuming that p(S = s1|D = d) = p(S = s2|D = d), we have the following

homogeneous linear equations:

a11λ1 + a21λ2 + · · ·+ a2b+1
1 λ2b+1 = 0,

a12λ1 + a22λ2 + · · ·+ a2b+1
2 λ2b+1 = 0,

· · ·
a1bλ1 + a2bλ2 + · · ·+ a2b+1

b λ2b+1 = 0,

where aji = (Udx
1
i )

2
j − (Udx

2
i )

2
j . Since 2b + 1 > b, the linear system above has infinite non-zero

solutions, which finishes the proof of the second part.

C.4 PROOF OF THEOREM 9

Theorem 9 (Restate). Let f be a bijection mapping from [1, b] to [1, b], then KL(P̄ ∥ Q̄) ≤
1
b

∑b
i=1 KL(Pi ∥ Qf(i)), and W(P̄ , Q̄) ≤ 1

b

∑b
i=1 W(Pi, Qf(i)), where Pi is the probability mea-

sure defined by pi (respectively for Qi).

Proof. Recall that p̄(x) = 1
b

∑b
i=1 pi(x) and q̄(x) = 1

b

∑b
i=1 qi(x), we then have

KL(P̄ ∥ Q̄) =

∫
X
p̄(x) log

(
p̄(x)

q̄(x)

)
dx
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= −
∫
X
p̄(x) log

(
1

b

b∑
i=1

pi(x)

p̄(x)
·
qf(i)(x)

pi(x)

)
dx

≤ −
∫
X
p̄(x)

1

b

b∑
i=1

pi(x)

p̄(x)
log

(
qf(i)(x)

pi(x)

)
dx

= −1

b

b∑
i=1

∫
X
pi(x) log

(
qf(i)(x)

pi(x)

)
dx

=
1

b

b∑
i=1

KL(Pi ∥ Qf(i)),

where the only inequality follows by applying Jensen’s inequality on the concave logarithmic func-
tion. This finishes the proof of the upper bound for KL divergence.

To prove the counterpart for Wasserstein distance, we apply Lemma 5 on P̄ and Q̄:

W(P̄ , Q̄) = sup
f∈Lip1

{∫
X
f dP̄ −

∫
X
f dQ̄

}

= sup
f∈Lip1

{∫
X
f d

(
1

b

b∑
i=1

Pi

)
−
∫
X
f d

(
1

b

b∑
i=1

Qf(i)

)}

≤ 1

b

b∑
i=1

sup
f∈Lip1

{∫
X
f dPi −

∫
X
f dQf(i)

}

=
1

b

b∑
i=1

W(Pi, Qf(i)).

The proof is complete.

C.5 PROOF OF THEOREM 10

Theorem 10 (Restate). Suppose that {x1i }bi=1, {x2i }bi=1 are sorted in the same order, then f(j) = j

is the minimizer of
∑b
i=1 KL(Pi ∥ Qf(i)) and

∑b
i=1 W(Pi, Qf(i)).

Proof. For simplicity, we assume that all data points of {x1i }bi=1 and {x2i }bi=1 are different from
each other. Since Pi and Qi are Gaussian distributions with the same variance, the KL divergence
and Wasserstein distance between them could be analytically acquired:

KL(Pi ∥ Qj) =
(x1i − x2j )

2

2σ2
, and W(Pi, Qj) = |x1i − x2j |.

Suppose there exists i ∈ [1, b] such that f(i) ̸= i. Without loss of generality, we assume that
f(i) > i. Then by the pigeonhole principle, there exists j ∈ (i, b] that satisfies f(j) < f(i). Suppose
that {x1i }bi=1, {x2i }bi=1 are both sorted in ascending order, we have x1i < x1j and x2f(i) > x2f(j). For
any p ∈ {1, 2}, the following 3 cases cover all possible equivalent combinations of the order of x1i ,
x1j , x2f(j) and x2f(i):

• When x1i < x1j < x2f(j) < x2f(i) and p = 2, we have

(x1i − x2f(i))
2 + (x1j − x2f(j))

2 − (x1i − x2f(j))
2 − (x1j − x2f(i))

2

= (2x1i − x2f(i) − x2f(j))(x
2
f(j) − x2f(i))− (2x1j − x2f(j) − x2f(i))(x

2
f(j) − x2f(i))

= (x2f(j) − x2f(i))(2x
1
i − 2x1j ) > 0.

Elsewise when p = 1, we have

|x1i − x2f(i)|+ |x1j − x2f(j)| = |x1i − x2f(j)|+ |x1j − x2f(i)|.
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• When x1i < x2f(j) < x1j < x2f(i), we have

|x1i − x2f(i)|
p > |x1i − x2f(j)|

p + |x1j − x2f(i)|
p.

• When x1i < x2f(j) < x2f(i) < x1j , we have

|x1i − x2f(i)|
p + |x1j − x2f(j)|

p ≥ |x1i − x2f(j)|
p + |x2f(i) − x2f(j)|

p

+ |x1j − x2f(i)|
p + |x2f(i) − x2f(j)|

p

> |x1i − x2f(j)|
p + |x1j − x2f(i)|

p.

In conclusion, under all possible circumstances, we have |x1i − x2f(i)|
p + |x1j − x2f(j)|

p ≥ |x1i −
x2f(j)|

p + |x1j − x2f(i)|
p, which implies that by setting f ′(i) = f(j), f ′(j) = f(i) and f ′(k) = f(k)

for k /∈ {i, j}, f ′ will be a better choice over f to minimize KL(P̄ ∥ Q̄) or W(P̄ , Q̄). The proof is
complete since the existence of a minimizer is obvious.

D FURTHER DISCUSSIONS

D.1 LEVERAGING THE INDEPENDENCE ASSUMPTION

In the main text, we only assume that the test domains are independent of the training domains,
while the training domains are not necessarily independent of each other (same for test domains).
This assumption is much weaker than i.i.d. by allowing correlations between training domains, e.g.
sampling from a finite set without replacement. While this weaker assumption is preferable, we
highlight that we can tighten the previous generalization bounds if the independence assumption is
incorporated, such that the training and test domains are i.i.d sampled.

Firstly, when the training domains satisfy the i.i.d condition, we prove in Theorem 13 that∑m
i=1 I(W ;Di) ≤ I(W ;Dtr). Otherwise, we can only prove that for any i ∈ [1,m], I(W ;Di) ≤

I(W ;Dtr). This indicates that while the model can achieve source-domain generalization by letting
I(W ;Di) → 0, it can still learn from the training domain set Dtr. Notably, having I(W ;Di) = 0
for each i ∈ [1,m] does not mean that the model learns nothing from the training domains, i.e.
I(W ;Dtr) can still be positive. To see this, we take Di as i.i.d random binary variables such that
Pr(Di = 0) = Pr(Di = 1) = 1

2 , and let W = D1⊕· · ·⊕Dm, where ⊕ is the XOR operator. Then
it is easy to verify that W is independent of each Di since PW |Di

= PW , implying I(W ;Di) = 0.
However, I(W ;Dtr) = H(W ) is strictly positive.

Next, the test-domain generalization bounds in Theorem 4 and 5 can be further tightened by a
factor of 1/m′ when the i.i.d condition of test domains is incorporated. Therefore, one can now
guarantee better generalization by increasing the number of domains, which is consistent with real-
world observations.

D.2 HIGH-PROBABILITY PROBLEM FORMULATION

Another high-probability formulation of the DG problem is presented by Eastwood et al. (2022),
namely Quantile Risk Minimization (QRM). Under our notations, the QRM objective can be ex-
pressed as:

min
w
ϵ s.t. Pr{Lte(w) ≥ ϵ} ≤ δ.

The main difference between our formulation in Problem 1 and QRM is that we not only consider the
randomness of Dte, but also those of Dtr and W . This randomized nature of training domains and
the hypothesis serve as the foundation of our information-theoretic generalization analysis. When
the training-domain risks have been observed, i.e. Ltr(W ) is fixed, our formulation reduces to
QRM. The main advantage of our formulation is that it could be directly optimized by learning algo-
rithms without further assumptions or simplifications. On the contrary, Eastwood et al. (2022) needs
to further adopt kernel density estimation to approximate the quantile of the risks and transform the
QRM problem to the empirical one (EQRM). Further advantages of our formulation include:
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• Kernel density estimation required by QRM is challenging when the number of training domains
is not sufficiently large. For comparison, IDM could be easily applied as long as there are at least
2 training domains.

• Our formulation aims to find the optimal learning algorithm instead of the optimal hypothesis.
This would be essential to analyze the correlations between the hypothesis W and training do-
mains Dtr, and also is more suitable in robust learning settings when measuring the error bar.

• Our formulation directly characterizes the trade-off between optimization and generalization,
which is the main challenge to achieve invariance across different domains (Arjovsky et al., 2019).

D.3 TIGHTER BOUNDS FOR TARGET-DOMAIN POPULATION RISK

In a similar vein, we provide the following two upper bounds for test-domain generalization error
in terms of Wasserstein distances. For the following analysis, we assume the independence between
training and test domains.

Theorem 11. If Assumption 5 holds, then for any w ∈ W ,

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ β2

m′ϵ2
ED[W2(PZ|D=d, PZ)].

Furthermore, if the metric d is discrete, then

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ β2

2m′ϵ2
I(Z;D).

Proof. For any d ∈ D, by setting P = PZ|D=d, Q = PZ and f(z) = 1
β ℓ(fw(x), y) in Lemma 5,

we have
(Ld(w)− L(w))2 ≤ β2W2(PZ|D=d, PZ).

Following a similar procedure with the proof of Theorem 4, we have

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ β2

m′ϵ2
ED[W2(PZ|D=d, PZ)].

When the metric d is discrete, Wasserstein distance is equivalent to the total variation. Therefore

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ β2

m′ϵ2
ED[TV2(PZ|D=d, PZ)]

≤ β2

m′ϵ2
ED
[
1

2
KL(PZ|D=d ∥ PZ)

]
=

β2

2m′ϵ2
I(Z;D),

where the second inequality is by applying Lemma 6. The proof is complete.

Theorem 12. If Assumption 4 holds, and ℓ(fw(X), fw′(X)) is β-Lipschitz for any w,w′ ∈ W , then
for any w ∈ W

Pr{Lte(w)− L(w) ≥ ϵ+ L∗} ≤ β2

m′ϵ2
ED[W2(PX|D=d, PX)],

where L∗ = minw∗∈W(Lte(w
∗) + L(w∗)). Furthermore, if the metric d is discrete, then

Pr{Lte(w)− L(w) ≥ ϵ+ L∗} ≤ β2

2m′ϵ2
I(X;D).

Proof. Following the proof sketch of Theorem 5, by setting P = PX , Q = PX|D=d and f(x) =
ℓ(fw(x), fw′(x)) in Lemma 5, we have

(Ld(w,w
′)− L(w,w′))

2 ≤ β2W2(PX|D=d, PX),
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for any d ∈ D and w,w′ ∈ W . Similarly, by applying the independence of {Dk}m
′

k=1 and Cheby-
shev’s inequality, we have

Pr{|Lte(w,w′)− L(w,w′)| ≥ ϵ} ≤ β2

m′ϵ2
ED[W2(PX|D=d, PX)].

Through a similar procedure of proving Theorem 5 and Theorem 11, we can get

Pr

{
Lte(w)− L(w) ≥ ϵ+ min

w∗∈W
(Lte(w

∗) + L(w∗))

}
≤ β2

m′ϵ2
ED[W2(PX|D=d, PX)]

≤ β2

2m′ϵ2
I(X;D),

which finishes the proof.

The expected Wasserstein distances can be regarded as analogs to the mutual information terms
I(Z;D) and I(X;D) respectively, through a similar reduction procedure as depicted in (2). This
also provides alternative perspectives to the distribution shift and the covariate shift in (1).

Moreover, these bounds can be further tightened by considering the risk space distribution shift.
Given a hypothesis w ∈ W and domain d ∈ D, let V = ℓ(fw(X), Y ) be the risk of predicting some
random sample Z ∼ PZ|D=d. Then by applying Lemma 4 with P = PV , Q = PV |D=d, f(x) = x
and Assumption 2, we have

ED[(LD(w)− L(w))2] = ED[(EV |D=d[V ]− EV [V ])2]

≤ ED

(√M2

2
KL(PV |D=d ∥ PV )

)2


=
M2

2
I(V ;D).

Through the similar sketch of proving Theorem 4, we can prove that

Pr{|Lte(w)− L(w)| ≥ ϵ} ≤ M2

2m′ϵ2
I(V ;D).

By the Markov chain relationship D → (X,Y ) → (fϕ(X), Y ) → (fw(X), Y ) → V , this upper
bound is strictly tighter than Theorem 4 which uses sample space I(Z;D) or representation space
I(R, Y ;D) distribution shifts. Also, notice that the mutual information I(V ;D) could be rewritten
as KL(PV |D ∥ PV ), this suggests that matching the inter-domain distributions of the risks helps
to generalize on test domains. Considering that V is a scalar while R is a vector, aligning the
distributions of the risks avoids high-dimensional distribution matching, and thus enables effective
implementation than aligning the representations. We will leave this method for future research.

D.4 GENERALIZATION BOUNDS FOR SOURCE-DOMAIN EMPIRICAL RISK

The information-theoretic technique adopted in this paper to derive generalization bounds is closely
related to the recent advancements of information-theoretic generalization analysis. Specifically,
Theorem 2 can be viewed as a multi-domain version of the standard generalization error bound in
supervised learning Xu & Raginsky (2017); Bu et al. (2020). In this section, we further consider
the effect of finite training samples, which further raises a gap between domain-level population and
empirical risks. In addition to the generalization bounds for population risks established in Section
3, upper bounds for the empirical risk can also be derived by incorporating Assumption 2:
Theorem 13. Let W be the output of learning algorithm A with input Str. If Assumption 2 holds,
then

|EW,Dtr,Str
[L′(W )]− EW [L(W )]| ≤ 1

m

m∑
i=1

√
M2

2
I(W ;Di)

+
1

mn

m∑
i=1

n∑
j=1

√
M2

2
I(W ;Zij |Di),

Pr{|EW,Dtr,Str
[L′(W )]− EW [L(W )]| ≥ ϵ} ≤ M2

mnϵ2
(I(W ;Str) + log 3).
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Proof. Recall that any random variables bounded by [0,M ] are M
2 -subgaussian. From assumption

2, we know that ℓ(fW (X), Y ) is M
2 -subgaussian w.r.t PW ◦ PZ . Then by applying Lemma 4, we

have

|EW,Dtr,Str
[L′(W )]− EW [L(W )]|

=

∣∣∣∣∣∣ 1m
m∑
i=1

1

n

n∑
j=1

EW,Di,Zi
j
[ℓ(fW (Xi

j), Y
i
j )]− EW,D,Z [ℓ(fW (X), Y )]

∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Zi
j
[ℓ(fW (Xi

j), Y
i
j )]− EW,D,Z [ℓ(fW (X), Y )]

∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

√
M2

2
KL
(
PW,Di,Zi

j

∥∥∥ PWPDi,Zi
j

)
.

Notice that for any D ∈ Dtr and Z ∈ SD,

KL(PW,D,Z ∥ PWPD,Z) = EW,D,Z
[
log

PW,D,Z
PWPD,Z

]
= I(W ;D,Z)

= I(W ;D) + I(W ;Z|D).

Combining our results above, we then get

|EW,Dtr,Str
[L′(W )]− EW [L(W )]| ≤ 1

mn

m∑
i=1

n∑
j=1

√
M2

2
(I(W ;Di) + I(W ;Zij |Di))

≤ 1

mn

m∑
i=1

n∑
j=1

(√
M2

2
I(W ;Di) +

√
M2

2
I(W ;Zij |Di)

)

=
1

m

m∑
i=1

√
M2

2
I(W ;Di) +

1

mn

m∑
i=1

n∑
j=1

√
M2

2
I(W ;Zij |Di).

Similarly, we have

EW,Str

[
(L′(W )− EW [L(W )])2

]
= EW,Str


 1

m

m∑
i=1

1

n

n∑
j=1

ℓ(fW (Xi
j), Y

i
j )− EW [L(W )]

2


=
M2

mn
(I(W ;Str) + log 3).

This further implies by Lemma 1 that

Pr{|EW,Dtr,Str [L
′(W )]− EW [L(W )]| ≥ ϵ} ≤ M2

mnϵ2
(I(W ;Str) + log 3),

which completes the proof.

Theorem 14. Let W be the output of learning algorithm A under training domains Dtr. If
ℓ(fw(X), Y ) is β′-Lipschitz w.r.t w, then

|EW,Dtr,Str
[L′(W )]− EW [L(W )]| ≤ β′

m

m∑
i=1

EDi
[W(PW |Di

, PW )]

+
β′

mn

m∑
i=1

n∑
j=1

EDi,Zi
j
[W(PW |Di,Zi

j
, PW |Di

)].

29



Under review as a conference paper at ICLR 2024

Proof. Recall the proof of Theorem 13, we have

|EW,Dtr,Str [L
′(W )]− EW [L(W )]|

≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Zi
j
[ℓ(fW (Xi

j), Y
i
j )]− EW,D,Z [ℓ(fW (X), Y )]

∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Zi
j
[ℓ(fW (Xi

j), Y
i
j )]− EW,Di,Z [ℓ(fW (X), Y )]

∣∣∣
+

1

mn

m∑
i=1

n∑
j=1

|EW,Di,Z [ℓ(fW (X), Y )]− EW,D,Z [ℓ(fW (X), Y )]|

≤ 1

mn

m∑
i=1

n∑
j=1

EDi,Zi
j

∣∣∣EW |Di,Zi
j
[ℓ(fW (Xi
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where the last inequality is by applying Lemma 5. The proof is complete.

The theorems above provide upper bounds for the empirical generalization risk by exploiting the
mutual information between the hypothesis and the samples (or the Wasserstein distance counter-
parts). Compared to Theorems 2 and 3, these results additionally consider the randomness of the
sampled data points Zij , and indicate that traditional techniques that improve the generalization of
deep learning algorithms by minimizing I(W ;Str), such as gradient clipping (Wang & Mao, 2021;
2022) and stochastic gradient perturbation (Pensia et al., 2018; Wang et al., 2021) methods, also
enhance the capability of learning algorithm A to generalize on target domains under our high-
probability problem setting by preventing overfitting to training samples. This observation is also
verified in (Wang & Mao, 2022). Relevant analysis may also motivate information-theoretic gener-
alization analysis for meta-learning tasks (Chen et al., 2021; Jose & Simeone, 2021; Hellström &
Durisi, 2022; Bu et al., 2023). We do not consider these approaches in this paper, as they are beyond
the scope of solving Problem 1.

E EXPERIMENT DETAILS

In this paper, deep learning models are trained with an Intel Xeon CPU (2.10GHz, 48 cores), 256GB
memory, and 4 Nvidia Tesla V100 GPUs (32GB).

E.1 IMPLEMENTATION OF IDM

We provide the pseudo-code for PDM in Algorithm 1, where the moving averages Xi
ma are initial-

ized with 0. The input data points for distribution alignment are represented as matricesXi ∈ Rb×d,
where b denotes the batch size and d represents the dimensionality. Each row of X then corresponds
to an individual data point. We also present the pseudo-code for IDM in Algorithm 2 for complete-
ness.

We follow the experiment settings of (Rame et al., 2022) and utilize a moving average to increase
the equivalent number of data points for more accurate probability density estimation in distribution
alignments. This does not invalidate our analysis in Theorem 8, as the maximum equivalent batch
size (b/(1 − γ) ≈ 32/(1 − 0.95) = 640) remains significantly smaller than the dimensionality
of the representation (2048 for ResNet-50 in DomainBed) or the gradient (2048× c, the number of
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Algorithm 1 PDM for distribution matching.
1: Input: Data matrices {Xi}mi=1, moving average γ.
2: Output: Penalty of distribution matching.
3: for i from 1 to m do
4: Sort the elements of Xi in each column in ascending order.
5: Calculate moving average Xi

ma = γXi
ma + (1− γ)Xi.

6: end for
7: Calculate the mean of data points across domains: Xma = 1

m

∑m
i=1X

i
ma.

8: Output: LPDM = 1
mdb

∑m
i=1∥Xma −Xi

ma∥2F .

Algorithm 2 IDM for high-probability DG.
1: Input: Model W , training dataset Str, hyper-parameters λ1, λ2, t1, t2, γ1, γ2.
2: for t from 1 to #steps do
3: for i from 1 to m do
4: Randomly sample a batch Bit = (Xi

t , Y
i
t ) from SDi of size b.

5: Compute individual representations: (Rit)j = fΦ
(
(Xi

t)j
)
, for j ∈ [1, b].

6: Compute individual risks: (Lit)j = ℓ
(
fΨ
(
(Rit)j

)
, (Y it )j

)
, for j ∈ [1, b].

7: Compute individual gradients: (Git)j = ∇Ψ(L
i
t)j , for j ∈ [1, b].

8: end for
9: Compute total empirical risk: LIDM = 1

mn

∑m
i=1

∑n
j=1(L

i
t)j .

10: if t ≥ t1 then
11: Compute gradient alignment risk: LG = PDM({Git}mi=1, γ1).
12: LIDM = LIDM + λ1LG.
13: end if
14: if t ≥ t2 then
15: Compute representation alignment risk: LR = PDM({Rit}mi=1, γ2).
16: LIDM = LIDM + λ2LR.
17: end if
18: Back-propagate gradients ∇WLIDM and update the model W .
19: end for

classes) and satisfies d > 2b+1. Therefore, it is still impossible to distinguish different inter-domain
distributions as indicated by Theorem 8. However, this moving average technique indeed helps to
improve the empirical performance, as shown by our ablation studies.

E.2 COLORED MNIST

The Colored MNIST dataset is a binary classification task introduced by IRM (Arjovsky et al.,
2019). The main difference between Colored MNIST and the original MNIST dataset is the manu-
ally introduced strong correlation between the label and image colors. Colored MNIST is generated
according to the following procedure:

• Give each sample an initial label by whether the digit is greater than 4 (i.e. label 0 for 0-4 digits
and label 1 for 5-9 digits.

• Randomly flip the label with probability 0.25, so an oracle predictor that fully relies on the shape
of the digits would achieve a 75% accuracy.

• Each environment is assigned a probability Pe, which characterizes the correlation between the
label and the color: samples with label 0 have Pe chance to be red, and 1−Pe chance to be green,
while samples with label 1 have Pe chance to be green, and 1− Pe chance to be red.

The original environment setting of (Arjovsky et al., 2019) includes two training domains Dtr =
{P1 = 90%, P2 = 80%}, such that the predictive power of the color superiors that of the actual
digits. This correlation is reversed in the test domain Dte = {P3 = 10%}, thus fooling algo-
rithms without causality inference abilities to overfit the color features and generalize poorly on test
environments.
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The original implementation2 uses a 3-layer MLP network with ReLU activation. The model is
trained for 501 epochs in a full gradient descent scheme, such that the batch size equals the number
of training samples 25, 000. We follow the hyper-parameter selection strategy of (Arjovsky et al.,
2019) through a random search over 50 independent trials, as reported in Table 3 along with the
parameters selected for IDM. Considering that the covariate shift is not prominent according to the
dataset construction procedure, we only apply gradient alignment without feature alignment in this
experiment.

Table 3: The hyper-parameters of Colored MNIST.
Parameter Random Distribution Selected Value

dimension of hidden layer 2Uniform(6,9) 433

weight decay 10Uniform(−2,−5) 0.00034

learning rate 10Uniform(−2.5,−3.5) 0.000449
warmup iterations Uniform(50, 250) 154

regularization strength 10Uniform(4,8) 2888595.180638

E.3 DOMAINBED BENCHMARK

DomainBed (Gulrajani & Lopez-Paz, 2020) is an extensive benchmark for both DA and DG algo-
rithms, which involves various synthetic and real-world datasets mainly focusing on image classifi-
cation:

• Colored MNIST (Arjovsky et al., 2019) is a variant of the MNIST dataset. As discussed pre-
viously, Colored MNIST includes 3 domains {90%, 80%, 10%}, 70, 000 samples of dimension
(2, 28, 28) and 2 classes.

• Rotated MNIST (Ghifary et al., 2015) is a variant of the MNIST dataset with 7 domains
{0, 15, 30, 45, 60, 75} representing the rotation degrees, 70, 000 samples of dimension (28, 28)
and 10 classes.

• VLCS (Fang et al., 2013) includes 4 domains {Caltech101,LabelMe,SUN09,VOC2007},
10, 729 samples of dimension (3, 224, 224) and 5 classes.

• PACS (Li et al., 2017) includes 4 domains {art, cartoons,photos, sketches}, 9, 991 samples of
dimension (3, 224, 224) and 7 classes.

• OfficeHome (Venkateswara et al., 2017) includes 4 domains {art, clipart,product, real}, 15, 588
samples of dimension (3, 224, 224) and 65 classes.

• TerraIncognita (Beery et al., 2018) includes 4 domains {L100,L38,L43, 46} representing loca-
tions of photographs, 24, 788 samples of dimension (3, 224, 224) and 10 classes.

• DomainNet (Peng et al., 2019) includes 6 domains {clipart, infograph,painting, quickdraw, real, sketch},
586, 575 samples of dimension (3, 224, 224) and 345 classes.

We list all competitive DG approaches below. Note that some recent progress is omitted (Cha et al.,
2021; Eastwood et al., 2022; Wang et al., 2022; 2023; Setlur et al., 2023; Chen et al., 2023), which
either contributes complementary approaches, does not report full DomainBed results, or does not
report the test-domain validation scores. Due to the limitation of computational resources, we are
not able to reproduce the full results of these works on DomainBed.

• ERM: Empirical Risk Minimization.

• IRM: Invariant Risk Minimization (Arjovsky et al., 2019).

• GroupDRO: Group Distributionally Robust Optimization (Sagawa et al., 2019).

• Mixup: Interdomain Mixup (Yan et al., 2020).

• MLDG: Meta Learning Domain Generalization (Li et al., 2018a).

• CORAL: Deep CORAL (Sun & Saenko, 2016).

2https://github.com/facebookresearch/InvariantRiskMinimization
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• MMD: Maximum Mean Discrepancy (Li et al., 2018b).
• DANN: Domain Adversarial Neural Network (Ganin et al., 2016).
• CDANN: Conditional Domain Adversarial Neural Network (Li et al., 2018c).
• MTL: Marginal Transfer Learning (Blanchard et al., 2021).
• SagNet: Style Agnostic Networks (Nam et al., 2021).
• ARM: Adaptive Risk Minimization (Zhang et al., 2021).
• V-REx: Variance Risk Extrapolation (Krueger et al., 2021).
• RSC: Representation Self-Challenging (Huang et al., 2020).
• AND-mask: Learning Explanations that are Hard to Vary (Parascandolo et al., 2020).
• SAND-mask: Smoothed-AND mask (Shahtalebi et al., 2021).
• Fish: Gradient Matching for Domain Generalization (Shi et al., 2021).
• Fishr: Invariant Gradient Variances for Out-of-distribution Generalization (Rame et al., 2022).
• SelfReg: Self-supervised Contrastive Regularization (Kim et al., 2021).
• CausIRL: Invariant Causal Mechanisms through Distribution Matching (Chevalley et al., 2022).

The same fine-tuning procedure is applied to all approaches: The network is a multi-layer CNN
for synthetic MNIST datasets and is a pre-trained ResNet-50 for other real-world datasets. The
hyper-parameters are selected by a random search over 20 independent trials for each target domain,
and each evaluation score is reported after 3 runs with different initialization seeds3. The hyper-
parameter selection criteria are shown in Table 4. Note that warmup iterations and moving average
techniques are not adopted for representation alignment.

Table 4: The hyper-parameters of DomainBed.
Condition Parameter Default Value Random Distribution

MNIST Datasets learning rate 0.001 10Uniform(−4.5,−3.5)

batch size 64 2Uniform(3,9)

Real-world Datasets

learning rate 0.00005 10Uniform(−5,−3.5)

batch size 32 2Uniform(3,5) (DomainNet) / 2Uniform(3,5.5) (others)
weight decay 0 10Uniform(−6,−2)

dropout 0 Uniform({0, 0.1, 0.5})
- steps 5000 5000

IDM

gradient penalty 1000 10Uniform(1,5)

gradient warmup 1500 Uniform(0, 5000)

representation penalty 1 10Uniform(−1,1)

moving average 0.95 Uniform(0.9, 0.99)

Note that although the same Colored MNIST dataset is adopted by DomainBed, the experimental
settings are completely different from the previous one (Arjovsky et al., 2019). The main difference
is the batch size (25000 for IRM, less than 512 for DomainBed), making it much harder to learn
invariance for causality inference and distribution matching methods since fewer samples are avail-
able for probability density estimation. This explains the huge performance drop between these two
experiments using the same DG algorithms.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPONENT ANALYSIS

In this section, we conduct ablation studies to demonstrate the effect of each component of the pro-
posed IDM algorithm. Specifically, we analyze the effect of gradient alignment (GA), representation
alignment (RA), warmup iterations (WU), moving average (MA), and the proposed PDM method
for distribution matching.

3https://github.com/facebookresearch/DomainBed
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Table 5: Component Analysis on ColoredMNIST of DomainBed.
Algorithm GA RA WU MA 90% 80% 10% Average

ERM - 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8

IDM

✗ ✓ ✗ ✗ 71.9 ± 0.4 72.5 ± 0.0 28.8 ± 0.7 57.7
✓ ✗ ✓ ✓ 73.1 ± 0.2 72.7 ± 0.3 67.4 ± 1.6 71.1
✓ ✓ ✗ ✓ 72.9 ± 0.2 72.7 ± 0.1 60.8 ± 2.1 68.8
✓ ✓ ✓ ✗ 72.0 ± 0.1 71.5 ± 0.3 48.7 ± 7.1 64.0

✓ ✓ ✓ ✓ 74.2 ± 0.6 73.5 ± 0.2 68.3 ± 2.5 72.0

Table 6: Component Analysis on OfficeHome of DomainBed.
Algorithm GA RA WU MA A C P R Average

ERM - 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4

IDM

✗ ✓ ✗ ✗ 64.7 ± 0.5 54.6 ± 0.3 76.2 ± 0.4 78.1 ± 0.5 68.4
✓ ✗ ✓ ✓ 61.9 ± 0.4 53.0 ± 0.3 75.5 ± 0.2 77.9 ± 0.2 67.1
✓ ✓ ✗ ✓ 62.5 ± 0.1 53.0 ± 0.7 75.0 ± 0.4 77.2 ± 0.7 66.9
✓ ✓ ✓ ✗ 64.2 ± 0.3 53.5 ± 0.6 76.1 ± 0.4 78.1 ± 0.4 68.0

✓ ✓ ✓ ✓ 64.4 ± 0.3 54.4 ± 0.6 76.5 ± 0.3 78.0 ± 0.4 68.3

F.1.1 GRADIENT ALIGNMENT

According to our theoretical analysis, gradient alignment promotes training-domain generalization,
especially when concept shift is prominent. As can be seen in Table 5, IDM without gradient align-
ment (57.7%) performs similarly to ERM (57.8%), which is unable to learn invariance across train-
ing domains. Gradient alignment also significantly boosts the performance on VLCS (77.4% to
78.1%) and PACS (86.8% to 87.6%), as seen in Table 7 and 8. However, for datasets where concept
shift is not prominent e.g. OfficeHome, gradient alignment cannot help to improve performance
as shown in Table 6. It is worth noting that gradient alignment also penalizes a lower bound for
the representation space distribution shift: In the t-th step of gradient descent, the Markov chain
relationship Di → Bit → (Rit, Y

i
t ) → Git holds conditioned on the current predictor Wt−1, which

implies the lower bound I(Git;Di|Wt−1) ≤ I(Rit, Y
i
t ;Di|Wt−1) by the data processing inequality.

This indicates that gradient alignment also helps to address the covariate shift, which explains the
promising performance of gradient-based DG algorithms e.g. Fish and Fishr. However, since this
is a lower bound rather than an upper bound, gradient manipulation is insufficient to fully address
representation space covariate shifts, as seen in the following analysis for representation alignment.

Table 7: Effect of gradient alignment (GA) on VLCS of DomainBed.
Algorithm GA A C P S Average

ERM - 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IDM ✗ 97.1 ± 0.7 67.2 ± 0.4 69.9 ± 0.4 75.6 ± 0.8 77.4
IDM ✓ 97.6 ± 0.3 66.9 ± 0.3 71.8 ± 0.5 76.0 ± 1.3 78.1

F.1.2 REPRESENTATION ALIGNMENT

Representation alignment promotes test-domain generalization by minimizing the representation
level covariate shift. As shown in Table 5 - 9, representation alignment is effective in OfficeHome
(67.1% to 68.3%) and RotatedMNIST (97.8% to 98.0%), and still enhances the performance even
though covariate shift is not prominent in ColoredMNIST (71.1% to 72.0%). This verifies our
claim that representation alignment complements gradient alignment in solving Problem 1, and is
necessary for achieving high-probability DG.
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Table 8: Effect of gradient alignment (GA) on PACS of DomainBed.
Algorithm GA A C P S Average

ERM - 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IDM ✗ 87.8 ± 0.6 81.6 ± 0.3 97.4 ± 0.2 80.6 ± 1.3 86.8
IDM ✓ 88.0 ± 0.3 82.6 ± 0.6 97.6 ± 0.4 82.3 ± 0.6 87.6

Table 9: Effect of representation alignment (RA) on RotatedMNIST of DomainBed.
Algorithm RA 0 15 30 45 60 75 Average

ERM - 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IDM ✗ 95.6 ± 0.1 98.4 ± 0.1 98.7 ± 0.2 99.1 ± 0.0 98.7 ± 0.1 96.6 ± 0.4 97.8
IDM ✓ 96.1 ± 0.3 98.7 ± 0.1 99.1 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.6 ± 0.1 98.0

F.1.3 WARMUP ITERATIONS

Following the experimental settings of (Arjovsky et al., 2019; Rame et al., 2022), we do not apply the
penalties of gradient or representation alignment until the number of epochs reaches a certain value.
This is inspired by the observation that forcing invariance in early steps may hinder the models from
extracting useful correlations. By incorporating these warmup iterations, predictors are allowed to
extract all possible correlations between the inputs and the labels at the beginning, and then discard
spurious ones in later updates. As can be seen in Table 5 and 6, this strategy helps to enhance the
final performances on ColoredMNIST (68.8% to 72.0%) and OfficeHome (66.9% to 68.3%).

F.1.4 MOVING AVERAGE

Following Rame et al. (2022); Pooladzandi et al. (2022), we use an exponential moving average
when computing the gradients or the representations. This strategy helps when the batch size is
not sufficiently large to sketch the probability distributions. In the IRM experiment setup where
the batch size is 25000, Fishr (70.2%) and IDM (70.5%) both easily achieve near-optimal accuracy
compared to Oracle (71.0%). In the DomainBed setup, the batch size 2Uniform(3,9) is significantly
diminished, resulting in worse test-domain accuracy of Fishr (68.8%). As shown in Table 5 and 6,
this moving average strategy greatly enhances the performance of IDM on ColoredMNIST (64.0%
to 72.0%) and OfficeHome (68.0% to 68.3%).

F.1.5 PDM FOR DISTRIBUTION MATCHING

We then demonstrate the superiority of our PDM method over moment-based distribution alignment
techniques. Specifically, we compare IGA (Koyama & Yamaguchi, 2020) which matches the em-
pirical expectation of the gradients, Fishr (Rame et al., 2022) which proposes to align the gradient
variance, the combination of IGA + Fishr (i.e. aligning the expectation and variance simultane-
ously), and our approach IDM (without representation space alignment). The performance gain of
IDM on the Colored MNIST task in (Arjovsky et al., 2019) is not significant, since it is relatively
easier to learn invariance with a large batch size (25000). In the DomainBed setting, the batch size
is significantly reduced (8-512), making this learning task much harder. The results are reported in
Table 10.

Table 10: Superiority of PDM on Colored MNIST of DomainBed.
Algorithm 90% 80% 10% Average

ERM 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8
IGA 72.6 ± 0.3 72.9 ± 0.2 50.0 ± 1.2 65.2
Fishr 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8
IGA + Fishr 73.3 ± 0.0 72.6 ± 0.5 66.3 ± 2.9 70.7

IDM 74.2 ± 0.6 73.5 ± 0.2 68.3 ± 2.5 72.0
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Table 11: Computational overhead of IDM using default batch size.

Dataset Training Time (h) Memory Requirement (GB)

ERM IDM Overhead ERM IDM Overhead

ColoredMNIST 0.076 0.088 14.6% 0.138 0.139 0.2%
RotatedMNIST 0.101 0.110 9.3% 0.338 0.342 1.0%
VLCS 0.730 0.744 2.0% 8.189 8.199 0.1%
PACS 0.584 0.593 1.5% 8.189 8.201 0.1%
OfficeHome 0.690 0.710 2.9% 8.191 8.506 3.8%
TerraIncognita 0.829 0.840 1.3% 8.189 8.208 0.2%
DomainNet 2.805 2.947 5.0% 13.406 16.497 23.1%

As can be seen, IDM achieves significantly higher performance on Colored MNIST (72.0%) even
compared to the combination of IGA + Fishr (70.7%). This verifies our conclusion that matching the
expectation and the variance is not sufficient for complex probability distributions, and demonstrates
the superiority of the proposed PDM method for distribution alignment.

F.2 RUNNING TIME COMPARISON

Since IDM only stores historical gradients and representations for a single batch from each training
domain, the storage and computation overhead is marginal compared to training the entire network.
As shown in Table 11, the training time is only 5% longer compared to ERM on the largest Domain-
Net dataset.

F.3 TRAINING-DOMAIN MODEL SELECTION

Table 12: DomainBed using training-domain validation. We format best, second best and worse
than ERM results.

Algorithm Accuracy (↑) Ranking (↓)
CMNIST RMNIST VLCS PACS OffHome TerraInc DomNet Avg Mean Median Worst

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6 9.6 10 15
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4 13.1 18 22
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8 13.9 17 22
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7 7.4 4 17
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7 10.6 10 19
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5 4.6 3 15
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3 15.3 13 22
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1 13.1 15 20
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6 14.0 14 22
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2 14.1 13 21
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2 4.9 4 10
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1 11.0 10 21
V-REx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6 10.4 11 19
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1 14.6 13 21
AND-mask 51.3 ± 0.2 97.6 ± 0.1 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 65.5 16.9 19 22
SAND-mask 51.8 ± 0.2 97.4 ± 0.1 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 42.9 ± 1.7 32.1 ± 0.6 64.6 16.7 17 22
Fish 51.6 ± 0.1 98.0 ± 0.0 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 67.1 7.0 6 18
Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1 7.6 6 17
SelfReg 52.1 ± 0.2 98.0 ± 0.2 77.8 ± 0.9 86.5 ± 0.3 67.9 ± 0.7 47.0 ± 0.3 42.8 ± 0.0 67.3 3.7 2 8
CausIRLCORAL 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.6 85.8 ± 0.1 68.6 ± 0.3 47.3 ± 0.8 41.9 ± 0.1 67.3 6.9 7 12
CausIRLMMD 51.6 ± 0.1 97.9 ± 0.0 77.6 ± 0.4 84.0 ± 0.8 65.7 ± 0.6 46.3 ± 0.9 40.3 ± 0.2 66.2 13.1 12 19

IDM 51.5 ± 0.1 98.0 ± 0.1 77.5 ± 0.6 85.9 ± 0.3 67.9 ± 0.1 46.2 ± 1.5 41.8 ± 0.2 67.0 8.0 6 15

We focus on the test-domain model selection criterion in the main text, where the validation set
follows the same distribution as the test domains. Our choice is well-motivated for the following
reasons:

• Test-domain validation is provided by the DomainBed benchmark as one of the default model-
selection methods, and is also widely adopted in the literature in many significant works like IRM
(Arjovsky et al., 2019), V-Rex (Krueger et al., 2021), and Fishr (Rame et al., 2022).

• As suggested by Theorem 1, any algorithm that fits well on training domains will suffer from
strictly positive risks in test domains once concept shift is induced. Therefore, training-domain
validation would result in sub-optimal selection results.
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• Training-domain validation may render efforts to address concept shift useless, as spurious fea-
tures are often more predictive than invariant ones. This is particularly unfair for algorithms that
aim to tackle the concept shift. As shown in Table 12, no algorithm can significantly outperform
ERM on Colored MNIST using training-domain validation (an exception is ARM which uses test-
time adaptation, and thus cannot be directly compared), even though ERM is shown to perform
much worse than random guessing (10% v.s. 50% accuracy) for the last domain (see Table 1 in
(Arjovsky et al., 2019) and Appendix D.4.1 in (Rame et al., 2022)). As a result, models selected
by training-domain validation may not generalize well when concept shift is substantial.

• As mentioned by D’Amour et al. (2022), training-domain validation suffers from underspecifi-
cation, where predictors with equivalently strong performances in training domains may behave
very differently during testing. It is also emphasized by Teney et al. (2022) that OOD performance
cannot, by definition, be performed with a validation set from the same distribution as the train-
ing data. This further raises concerns about the validity of using training-domain accuracies for
validation purposes.

• Moreover, test-domain validation is also applicable in practice, as it is feasible to label a few
test-domain samples for validation purposes. It is also unrealistic to deploy models in target
environments without any form of verification, making such efforts necessary in practice.

In Table 12, we report the results for training-domain model selection just for completeness, where
the proposed IDM algorithm consistently outperforms ERM. Yet, such a training-domain selection
strategy is flawed and has clear limitations, and we believe the test-domain results are sufficient to
demonstrate the effectiveness of our approach in real-world learning scenarios.

F.4 FULL DOMAINBED RESULTS

Finally, we report detailed results of IDM for each domain in each dataset of the DomainBed bench-
mark under test-domain model selection for a complete evaluation in Table 13 - 19. Note that
detailed scores of certain algorithms (Fish, CausIRL) are not available.

Table 13: Detailed results on Colored MNIST in DomainBed.
Algorithm 90% 80% 10% Average

ERM 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8
IRM 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7
GroupDRO 73.5 ± 0.3 73.0 ± 0.3 36.8 ± 2.8 61.1
Mixup 72.5 ± 0.2 73.9 ± 0.4 28.6 ± 0.2 58.4
MLDG 71.9 ± 0.3 73.5 ± 0.2 29.1 ± 0.9 58.2
CORAL 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6
MMD 69.0 ± 2.3 70.4 ± 1.6 50.6 ± 0.2 63.3
DANN 72.4 ± 0.5 73.9 ± 0.5 24.9 ± 2.7 57.0
CDANN 71.8 ± 0.5 72.9 ± 0.1 33.8 ± 6.4 59.5
MTL 71.2 ± 0.2 73.5 ± 0.2 28.0 ± 0.6 57.6
SagNet 72.1 ± 0.3 73.2 ± 0.3 29.4 ± 0.5 58.2
ARM 84.9 ± 0.9 76.8 ± 0.6 27.9 ± 2.1 63.2
V-REx 72.8 ± 0.3 73.0 ± 0.3 55.2 ± 4.0 67.0
RSC 72.0 ± 0.1 73.2 ± 0.1 30.2 ± 1.6 58.5
AND-mask 71.9 ± 0.6 73.6 ± 0.5 30.2 ± 1.4 58.6
SAND-mask 79.9 ± 3.8 75.9 ± 1.6 31.6 ± 1.1 62.3
Fishr 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8
SelfReg 71.3 ± 0.4 73.4 ± 0.2 29.3 ± 2.1 58.0

IDM 74.2 ± 0.6 73.5 ± 0.2 68.3 ± 2.5 72.0
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Table 14: Detailed results on Rotated MNIST in DomainBed.
Algorithm 0 15 30 45 60 75 Average

ERM 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IRM 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5
GroupDRO 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9
Mixup 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0
MLDG 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8
CORAL 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0
DANN 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9
CDANN 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9
MTL 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
SagNet 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9
ARM 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1
V-REx 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9
RSC 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6
AND-mask 94.9 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.7 ± 0.2 98.6 ± 0.2 95.5 ± 0.2 97.5
SAND-mask 94.7 ± 0.2 98.5 ± 0.2 98.6 ± 0.1 98.6 ± 0.1 98.5 ± 0.1 95.2 ± 0.1 97.4
Fishr 95.8 ± 0.1 98.3 ± 0.1 98.8 ± 0.1 98.6 ± 0.3 98.7 ± 0.1 96.5 ± 0.1 97.8
SelfReg 96.0 ± 0.3 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.8 ± 0.1 98.1

IDM 96.1 ± 0.3 98.7 ± 0.1 99.1 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.6 ± 0.1 98.0

Table 15: Detailed results on VLCS in DomainBed.
Algorithm C L S V Average

ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
V-REx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8
AND-mask 98.3 ± 0.3 64.5 ± 0.2 69.3 ± 1.3 73.4 ± 1.3 76.4
SAND-mask 97.6 ± 0.3 64.5 ± 0.6 69.7 ± 0.6 73.0 ± 1.2 76.2
Fishr 97.6 ± 0.7 67.3 ± 0.5 72.2 ± 0.9 75.7 ± 0.3 78.2
SelfReg 97.9 ± 0.4 66.7 ± 0.1 73.5 ± 0.7 74.7 ± 0.7 78.2

IDM 97.6 ± 0.3 66.9 ± 0.3 71.8 ± 0.5 76.0 ± 1.3 78.1
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Table 16: Detailed results on PACS in DomainBed.
Algorithm A C P S Average

ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
V-REx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
AND-mask 86.4 ± 1.1 80.8 ± 0.9 97.1 ± 0.2 81.3 ± 1.1 86.4
SAND-mask 86.1 ± 0.6 80.3 ± 1.0 97.1 ± 0.3 80.0 ± 1.3 85.9
Fishr 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9
SelfReg 87.5 ± 0.1 83.0 ± 0.1 97.6 ± 0.1 82.8 ± 0.2 87.7

IDM 88.0 ± 0.3 82.6 ± 0.6 97.6 ± 0.4 82.3 ± 0.6 87.6

Table 17: Detailed results on OfficeHome in DomainBed.
Algorithm A C P R Average

ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
V-REx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5
AND-mask 60.3 ± 0.5 52.3 ± 0.6 75.1 ± 0.2 76.6 ± 0.3 66.1
SAND-mask 59.9 ± 0.7 53.6 ± 0.8 74.3 ± 0.4 75.8 ± 0.5 65.9
Fishr 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2
SelfReg 64.2 ± 0.6 53.6 ± 0.7 76.7 ± 0.3 77.9 ± 0.5 68.1

IDM 64.4 ± 0.3 54.4 ± 0.6 76.5 ± 0.3 78.0 ± 0.4 68.3
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Table 18: Detailed results on TerraIncognita in DomainBed.
Algorithm L100 L38 L43 L46 Average

ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2
V-REx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1
AND-mask 54.7 ± 1.8 48.4 ± 0.5 55.1 ± 0.5 41.3 ± 0.6 49.8
SAND-mask 56.2 ± 1.8 46.3 ± 0.3 55.8 ± 0.4 42.6 ± 1.2 50.2
Fishr 60.4 ± 0.9 50.3 ± 0.3 58.8 ± 0.5 44.9 ± 0.5 53.6
SelfReg 60.0 ± 2.3 48.8 ± 1.0 58.6 ± 0.8 44.0 ± 0.6 52.8

IDM 60.1 ± 1.4 48.8 ± 1.9 57.9 ± 0.2 44.3 ± 1.2 52.8

Table 19: Detailed results on DomainNet in DomainBed.
Algorithm clip info paint quick real sketch Average

ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
V-REx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 17.3 ± 0.5 43.7 ± 1.1 12.3 ± 0.4 55.8 ± 0.4 46.1 ± 0.8 37.9
SAND-mask 43.8 ± 1.3 15.2 ± 0.2 38.2 ± 0.6 9.0 ± 0.2 47.1 ± 1.1 39.9 ± 0.6 32.2
Fishr 58.3 ± 0.5 20.2 ± 0.2 47.9 ± 0.2 13.6 ± 0.3 60.5 ± 0.3 50.5 ± 0.3 41.8
SelfReg 60.7 ± 0.1 21.6 ± 0.1 49.5 ± 0.1 14.2 ± 0.3 60.7 ± 0.1 51.7 ± 0.1 43.1

IDM 58.8 ± 0.3 20.7 ± 0.2 48.3 ± 0.1 13.7 ± 0.4 59.1 ± 0.1 50.2 ± 0.3 41.8
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