
Byzantine-Resilient Zero-Order Optimization for
Scalable Federated Fine-Tuning of Large Language Models

Maximilian Egger 1 Mayank Bakshi 2 Rawad Bitar 1

Abstract
We introduce FEDBYZO, a Byzantine-resilient
federated zero-order optimization method that is
robust under Byzantine attacks and provides sig-
nificant savings in uplink and downlink commu-
nication costs. We introduce transformed robust
aggregation to give convergence guarantees for
general non-convex objectives under client data
heterogeneity. Empirical evaluations for standard
learning tasks and fine-tuning large language mod-
els show that FEDBYZO exhibits stable perfor-
mance with only a few scalars per-round commu-
nication cost and reduced memory requirements.

1 Introduction
Federated Learning (FL) (McMahan et al., 2017) enables
model training across distributed clients without sharing raw
data. However, it suffers from high communication costs
since each client sends high dimensional updates to a central
federator, which returns a global model. These challenges
intensify with large language models (LLMs), increasing
communication, privacy, and security concerns (Daly et al.,
2024), prompting extensive research.

Communication cost and ZO. Reducing communica-
tion overhead has received significant attention (Wen et al.,
2017; Karimireddy et al., 2019; Makkuva et al., 2024; Tang
et al., 2024b; Qin et al., 2023). Zero order (ZO) optimiza-
tion (Kiefer & Wolfowitz, 1952; Spall, 1992), which esti-
mates gradients using random perturbations and loss eval-
uations, is increasingly popular. ZO methods: (i) avoid
explicit gradients; (ii) enable training using forward passes
only (Salimans et al., 2017; Ilyas et al., 2018; Liu et al.,
2020; Malladi et al., 2023); and (iii) allow clients to send
only a few scalars in FL (Fang et al., 2022; Qiu et al., 2023;
Chen et al., 2023; Li et al., 2024). These advantages are
especially useful for fine tuning tasks with low intrinsic
dimensionality (Salimans et al., 2017; Malladi et al., 2023).
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Byzantine clients. Robustness to adversarial (Byzantine)
clients, those sending malicious updates, is essential for
secure FL (Qi et al., 2024). Although privacy in ZO FL has
been studied (Zhang et al., 2023; Tang et al., 2024a; Zhang
et al., 2025), robustness to Byzantine clients has not. Even
one Byzantine client can prevent convergence (Blanchard
et al., 2017), making robust aggregation vital (Blanchard
et al., 2017; Li et al., 2020; Yin et al., 2018; Allouah et al.,
2023; Guerraoui et al., 2024). These defenses often reduce
convergence speed, making communication efficiency even
more important.

Data heterogeneity. FL clients often have data from
different distributions, which hinders convergence (Zhao
et al., 2018; Zhu et al., 2021) and may cause privacy leak-
age (Schlegel et al., 2023; Egger et al., 2023; Jahani-Nezhad
et al., 2023; Tang et al., 2024a). This heterogeneity worsens
robustness, as aggregation rules may downweight legitimate
but outlying updates (El-Mhamdi et al., 2021; Karimireddy
et al., 2022; Charikar et al., 2017; Liu et al., 2021). Nearest
Neighbor Mixing (NNM) (Allouah et al., 2023) mitigates
this by averaging each client’s update with similar ones
before aggregation.

Our contribution. We propose FEDBYZO, the first
communication-efficient and Byzantine resilient FL frame-
work using ZO optimization with robust aggregation.
FEDBYZO supports any aggregation rule (e.g., trimmed
mean (Yin et al., 2018), Krum (Blanchard et al., 2017)) and
integrates preprocessing like NNM (Allouah et al., 2023).
We prove convergence under general nonconvex losses and
bounded heterogeneity (Wang et al., 2024), and validate
FEDBYZO on MNIST and RoBERTa large (Liu, 2019)
fine-tuning tasks. Experiments show FEDBYZO matches
gradient based Byzantine resilient FL in accuracy while re-
quiring only scalar communication and using less memory
and computation.

2 System Model and Preliminaries
The L2 norm and inner product are denoted by ∥x∥ and
⟨x,y⟩. Let Sd ≜ {x ∈ Rd : ∥x∥2 = 1} be the unit sphere
and U(Sd) the uniform distribution over Sd. For a ∈ N,
define [a] ≜ 1, . . . , a. The horizontal stacking of vectors vi

is denoted by (vi)
a
i=1 = (v1, . . . ,va).
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Algorithm 1 FEDBYZO: Robust Efficient Zero-Order FL
Require: Shared seed for PRNG, µ ≥ 0, η > 0, ν > 0, R.

1: Initialize and broadcast global model w(1).
2: for t = 1 to T do
3: for each client i ∈ [n] in parallel do
4: Initialize local model wi

t,1 = w(t).
5: for ℓ = 1 to K do
6: Draw z1t,ℓ,· · ·, zνt,ℓ ∼ U(Sd), let Zt,ℓ ≜ (zrt,ℓ)r∈[ν]

7: Compute gi(w
i
t,ℓ, z

r
t,ℓ) ≜ g(wi

t,ℓ, z
r
t,ℓ, µ,Di), r ∈

[ν] (cf. Definition 2.1)
8: Let gi(w

i
t,ℓ,Zt,ℓ) ≜ 1

ν ((gi(w
i
t,ℓ, z

r
t,ℓ))

ν
r=1)

⊤

9: Update wi
t,ℓ+1 = wi

t,ℓ − ηZt,ℓgi(w
i
t,ℓ,Zt,ℓ)

10: end for
11: Send {gi(w

i
t,ℓ,Zt,ℓ)}Kℓ=1 to federator.

12: end for
13: Aggregate Rt,ℓ = R({gi(w

i
t,ℓ,Zt,ℓ)}ni=1), ℓ ∈ [K]

14: Update w(t+1) = w(t) − η
∑K

ℓ=1 Zt,ℓRt,ℓ.
15: Broadcast Rt,ℓ.
16: Clients recover w(t+1) using Rt,ℓ and the known Zt,ℓ.
17: end for

In an FL setup with n clients and a federator, each client
i ∈ [n] holds a dataset Di, and the global dataset is
D = ∪iDi. Let F : Rd × D → R+ be the loss.
Define F (w, D̃) ≜

∑
D∈D̃ F (w, D)/|D̃|, and Fi(w) ≜

F (w,Di). For A ⊆ [n], let FA(w) ≜ 1
|A|
∑

i∈A Fi(w)

and F ⋆
A ≜ minw∈Rd FA(w). The goal is to minimize

F[n](w). All clients and the federator initialize with a model
w(1) ∈ Rd and iteratively generate models {w(t)}t∈[T ]

over T global epochs. In each epoch t, client i receives
w(t), computes an update using one or more mini batches
D̃i ⊆ Di, and sends it to the federator. The federator aggre-
gates all updates into w(t+1) and broadcasts it. For a mini
batch D̃i, define gi ≜ ∇F (w(t), D̃i).

We assume fewer than half the clients b < n/2 are Byzan-
tine, and may fully coordinate, knowing the algorithm, de-
fenses, and honest outputs. Let H be the set of honest clients
with |H| = n− b. The goal becomes minimizing FH(w).

ZO gradients are estimated by querying the loss along per-
turbation directions. We use the two point ZO estimator:
Definition 2.1 (Two-Point Zero-Order Estimate). Let z ∈
Sd, D̃ ⊆ D \ ∅ and w ∈ Rd. The two-point ZO estimate
of the gradient g ≜ ∇F (w, D̃) in direction z is defined as
zg(w, z, µ, D̃), where

g(w, z, µ, D̃) ≜

dF (w+µz,D̃)−F (w−µz,D̃)
2µ µ > 0

d
〈
∇F (w, D̃), z

〉
µ = 0

In Byzantine resilient FL, the federator uses a robust ag-
gregation rule R(·), which defaults to averaging when all
clients are honest. We adopt the robustness notion from
(Allouah et al., 2023), where the parameter κ quantifies
resilience to up to b Byzantine clients.

Definition 2.2 ((b, κ)-Robust Aggregation). Let κ ≥ 0
and b < n/2. For vectors v1, · · · ,vn and any set H ⊂
[n] of size |H| = n − b, letting v̄H = 1

|H|
∑

i∈H vi, an
aggregation rule R({vi}ni=1) is (b, κ)-robust if

∥R({vi}ni=1)− v̄H∥2 ≤ κ

|H|
∑
i∈H

∥vi − v̄H∥2 .

3 Overview of FEDBYZO
FEDBYZO (Algorithm 1) begins with a shared seed that
enables the federator and all clients to generate identical ran-
dom perturbation vectors z ∼ U(Sd) via a common pseudo-
random number generator (PRNG). The initial model is set
to w(1) on all parties. The algorithm proceeds for T global
epochs, each comprising K local epochs. Let µ ≥ 0 be the
ZO estimator scale and η the learning rate. At the start of
global epoch t, each client sets wi

t,1 = w(t).

During each local epoch ℓ ∈ [K], the parties generate ν ≥ 1
pseudorandom perturbation vectors z1t,ℓ, . . . , z

ν
t,ℓ. In the

unbiased variant, new vectors are sampled at each ℓ. In the
biased variant, the same set of perturbations is reused across
local epochs, i.e., zrt,ℓ = zrt,1 for ℓ > 1.

Each client samples a mini-batch D̃i and computes two-
point ZO gradient estimates zrt,ℓg(w

i
t,ℓ, z

r
t,ℓ, µ, D̃i) for

all r ∈ [ν], where wi
t,ℓ is the local model. Defining

gi(w
i
t,ℓ, z

r
t,ℓ) ≜ g(wi

t,ℓ, z
r
t,ℓ, µ, D̃i) and stacking the per-

turbations and scalar projections into Zt,ℓ ∈ Rd×ν and
gi(w

i
t,ℓ,Zt,ℓ) ∈ Rν , the model is updated as wi

t,ℓ+1 =

wi
t,ℓ − ηZt,ℓgi(w

i
t,ℓ,Zt,ℓ). At the end of local training,

each client sends scalar projections of the cumulative up-
date to the federator. This entails a communication cost
of Kν scalars in the unbiased case (transmitting each
gi(w

i
t,ℓ,Zt,ℓ)) or ν scalars in the biased case (transmitting∑K

ℓ=1 gi(w
i
t,ℓ,Zt,ℓ)).

The federator performs robust aggregation in the projection
space Rν using R : (Rν)n → Rν . In the unbiased case, ag-
gregation is performed separately per ℓ, yielding w(t+1) =

w(t) − η
∑K

ℓ=1 Zt,ℓR
(
{gi(w

i
t,ℓ,Zt,ℓ)}i ∈ [n]

)
. In the bi-

ased case, we aggregate over the summed projections, i.e.,
w(t+1) = w(t) − ηZt,1R

({∑K
ℓ=1 gi(w

i
t,ℓ,Zt,ℓ)

}
i∈[n]

)
.

Finally, the federator broadcasts w(t+1) via its projection
along the shared perturbation vectors zrt,ℓ. Since clients
know both w(t) and the perturbations, they can reconstruct
w(t+1) locally. The update always lies in the span of the
perturbation directions, so this projection suffices.

3.1 Choice of Robust Aggregation Rule

FEDBYZO supports any robust aggregation rule. Its theo-
retical guarantees depend on b and κ (see Definition 2.2).
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(a) Attacks on FEDBYZO-CWTM.
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(b) Worst case attack accuracies.
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(c) Label flipping attack.

Figure 1. Performance of different robust aggregation rules against different attacks for logistic regression on MNIST.

We use the following standard methods in our experiments:

• Coordinate-wise trimmed mean (CWTM) (Yin et al.,
2018): Removes the smallest and largest ⌊βn⌋ values per
coordinate from n vectors, then averages the rest. For an
input X = {v1, . . . ,vn} ⊂ Rν , CWTM returns a vector
where each entry is the coordinate-wise trimmed mean.
• Krum (Blanchard et al., 2017): Selects a single vector
whose sum of distances to its n− b− 2 closest neighbors
is minimal. For an input X = {v1, . . . ,vn}, the selected
vector is vi⋆ , where i⋆ = argmini

∑
j∈Ci

∥vi − vj∥.
• Nearest neighbor mixing (NNM) (Allouah et al., 2023):
A pre-processing step that enhances robustness under data
heterogeneity. Each client vector vi is replaced by the aver-
age of its n− b nearest neighbors in Euclidean distance.

3.2 Innovations in FEDBYZO

FEDBYZO introduces several innovations for efficient and
resilient ZO-based FL: (1) Transformed robust aggregation
aggregates updates directly in the perturbation space Rν ,
avoiding projection errors from nonlinear aggregation and
preserving robustness via Johnson–Lindenstrauss embed-
dings (Johnson & Lindenstrauss, 1984); (2) Communication
efficiency is achieved as clients send only scalar projections
and the federator broadcasts updates in the same subspace;
(3) a shared seed protocol ensures synchronized perturba-
tions without transmitting high-dimensional vectors; (4) sup-
port for multiple local epochs reduces communication fre-
quency, with a tradeoff between unbiased (accurate, costly)
and biased (compact, biased) ZO estimators; (5) FEDBYZO
inherits ZO memory savings, reducing inference memory
up to 12× (Malladi et al., 2023), enabling deployment on
constrained devices (cf. Appendix B for details).

4 Experimental Evaluation
Logistic Regression on MNIST. We evaluate FEDBYZO
on MNIST under various Byzantine attacks, comparing it
to FedAvg and FedZO with standard robust aggregation
(CWTM with β = b/n, Krum). FEDBYZO consistently
achieves higher worst-case accuracy while reducing com-
munication by several orders of magnitude.

With transformed CWTM and Krum (without NNM), FED-
BYZO reaches 69.9% accuracy under worst-case attacks,
compared to 61.8% for the best non-transformed FedZO
variant and 58.5% for FedAvg with NNM, an improvement
of over 8%. Additionally, uplink and downlink costs are
drastically reduced by operating in the perturbation space.

Figure 1 shows accuracy vs. global epochs and communi-
cation cost. Figure 1(a) summarizes performance across
attacks, with FOE causing the most degradation. Figure 1(b)
shows that FEDBYZO improves worst-case performance
by over 10% with Krum and over 25% with CWTM. Fig-
ure 1(c) shows robustness gains against LF when using
NNM. Further results are in Appendix A.6. We also com-
pare local update strategies in Appendix A.4, highlighting a
bias-variance-efficiency trade-off. The effect of ν on perfor-
mance is studied in Appendix A.5.

Fine-Tuning Large Language Models. Following (Malladi
et al., 2023; Li et al., 2024), we fine-tune RoBERTa-large
(main paper) and OPT-125M (appendix) on SST-2, SNLI,
TREC, RTE, and MNLI, using fixed CWTM aggregation.
The results are averaged over 3 runs. Table 1 reports perfor-
mance under ALIE (Baruch et al., 2019), FOE (Xie et al.,
2020), SF (Allen-Zhu et al., 2021), and TMA (Algorithm 4)
in a non-i.i.d. setting (α = 1), with n = 12, b = 3, and
ν = 1. Worst-case accuracy drops were modest: ∼ 1% on
SST-2 and 5–8% on SNLI, TREC, RTE, and MNLI. FOE
remains the most effective attack (Figure 2). Results under
i.i.d. data (α = ∞) show similar stability. Full results are
in Appendix A.8.

We perform an extensive hyperparameter study (FOE on
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Figure 2. Accuracy over epochs for fine-tuning RoBERTa-large on
TREC under different attack scenarios for non-i.i.d. data.
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Table 1. Mean and standard deviation of maximum accuracies across seeds for fine-tuning RoBERTa-large with non-i.i.d. data distribution

Dataset ALIE FOE SF TMA No Attack Worst Case

SST-2 93.3 ± 0.4 91.7 ± 1.5 91.6 ± 0.5 92.1 ± 1.2 92.9 ± 0.1 91.6
TREC 93.3 ± 1.2 91.7 ± 1.0 87.7 ± 2.9 92.2 ± 1.1 94.7 ± 0.7 87.7
SNLI 80.8 ± 1.4 78.4 ± 2.1 76.1 ± 1.0 80.0 ± 0.7 84.3 ± 0.2 76.1
RTE 78.4 ± 0.3 76.9 ± 0.3 75.6 ± 2.2 77.7 ± 1.1 80.0 ± 0.8 75.6

MNLI 72.8 ± 1.6 69.2 ± 2.1 68.0 ± 1.1 71.2 ± 1.1 76.4 ± 1.1 68.0

SST-2). Under extreme heterogeneity (α = 0.1), robustness
improves with larger n. Varying ν (with νT = 20000 fixed)
confirms a near-inverse tradeoff between ν and T . Similar
trends hold when varying local epochs K. Performance
remains stable up to b = 6 (out of 16 clients). Even in
the extreme case (α → 0), FEDBYZO achieves 90.9% on
SST-2 vs. 91.6% in i.i.d.. See Appendix A.9 for details.

5 Convergence Analysis
We establish convergence guarantees for FEDBYZO un-
der arbitrary (b, κ)-robust aggregation rules, adapted to ZO
updates, with heterogeneous data and non-convex losses.
Proofs are in Appendix C. Extending (Allouah et al., 2023)
to the ZO setting is challenging due to the bias and high vari-
ance of ZO estimates, which are aggregated in a transformed
space where robust aggregation outputs may not align with
the honest mean. Prior work on ZO FL (Fang et al., 2022)
does not consider Byzantine clients or the practical hetero-
geneity model of (Wang et al., 2024), which itself does not
apply to ZO methods due to estimator-specific challenges.

We prove that FEDBYZO converges in this setting using
projection theorems. The combination of ZO updates, trans-
formed aggregation, adversaries, heterogeneity, and non-
convexity introduces novel theoretical complexity. Our anal-
ysis assumes Lipschitz smoothness and bounded gradient
variance (Assumptions 5.1–5.2), and bounded heterogene-
ity (Assumptions 5.3–5.4) per (Wang et al., 2024). As-
sumption 5.5 captures fine-tuning regimes, where the initial
model is close to a local optimum.
Assumption 5.1 (Lipschitz gradient). For all w, ω ∈ Rd

and i ∈ [n], ∥∇Fi(w)−∇Fi(ω)∥ ≤ L ∥w − ω∥.
Assumption 5.2 (Bounded gradient variance). The variance
of the clients’ gradient estimate is uniformly bounded by
σ2, i.e., E

[
∥gi(w)−∇Fi(w)∥2

]
≤ σ2∀w, i ∈ [n].

Assumption 5.3 (Bounded gradient divergence).
∥∇Fi(w)−∇FH(w)∥2 ≤ ζ2,∀i ∈ [n].
Assumption 5.4 (Pseudo-Lipschitz on averaged gradients).∥∥ 1

n

∑n
i=1 ∇Fi(wi)−∇FH(w̄)

∥∥2≤ D2

n

∑n
i=1∥wi − w̄∥2 .

Assumption 5.5 (Lipschitz Objective function). ∀i ∈ [n],
∥Fi(w)− Fi(ω)∥ ≤ G ∥w − ω∥ ,∀w, ω ∈ Rd.

Our first result establishes the convergence rate of
FEDBYZO in the setting of fine-tuning. Let ϵ =

√
64
ν log( 2(|H|−1)

δ ), and ϵ′ ≜ (1+ϵ)
(1−ϵ) . In this setting, we

show that as long as the number of perturbation directions
is logarithmic in the number of optimization steps, FED-
BYZO achieves a convergence rate that is consistent with
the non-Byzantine literature (Li et al., 2024).
Theorem 5.6 (Lipschitz objective functions). Let 0 < ∆ <
1, and suppose that Assumptions 5.1 to 5.5 hold. Con-
sider FEDBYZO with µ > 0 and a (|H|, κ)-robust aggre-
gation rule. If (a) η ≤ min

{
1

26KL ,
1

4K
√

D2+ζ2

}
, and (b)

ν ≥ 64 log(2(|H| − 1)TK/∆), the following convergence
guarantee holds with probability at least 1−∆ and for a
suitable numerical constant φ > 0:
1

T

T∑
t=1

E
[
∥∇FH(wt)∥2

]
≤ 4(FH(w1)− F ⋆

H)

ηTK

+12KLη (κϵ′+µ)+ 2η
φ2G2d

ν

(
1

5|H|
+

8

|H|2
+2Kϵ′κ

)
+ 2ηKD2

(
φ2G2d

L2ν
+

3

L

)(
13K+24ϵ′κ(1+

ζ2

D2
)+4

)
.

We now consider general non-convex loss landscapes with-
out the fine-tuning assumption and establish convergence
rates matching those in the non-Byzantine ZO literature (Li
et al., 2024). Specifically, with K = O(1), ν = O(d), and
a sufficiently small learning rate, we obtain a convergence
rate of O(1/T ) + O(1). See Theorem C.3 in Appendix C
for the full statement and parameter dependencies.
Theorem 5.7 (General non-convex landscapes). Let 0 <
∆ < 1 and suppose Assumptions 5.1 to 5.4 hold. Consider
FEDBYZO with a (|H|, κ)-robust aggregation rule. If (a)
η2 ≤ min{ 1

72K2L ,
|H|ν

96KdL2 , 6
D2

K2 +6 ζ2

K2 +
32d
νK2L

2}, (b) ν ≥
64 log( 2(|H|−1)TK

∆ ), and (c) ν = O(d), then the following
convergence guarantee holds with probability at least 1−∆:
1

T

T∑
t=1

E
[
∥∇FH(wt)∥2

]
≤4(FH(w1)− F ⋆

H)

ηKT
+O(1).

6 Conclusion
We proposed FEDBYZO, a communication-efficient,
Byzantine-resilient FL framework using ZO optimization
and transformed robust aggregation. By working in the per-
turbation space and using shared seeds, it achieves strong
robustness with minimal communication, matching state-of-
the-art performance while reducing communication by up
to seven orders of magnitude.
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A Numerical Experiments

A.1 Experimental Details

A.1.1 SAMPLING OF PERTURBATION VECTORS

To sample the directions z, for fine-tuning large language models we use a practical approach similar to (Salimans et al.,
2017; Malladi et al., 2023) that draws each coordinate independently from a standard Gaussian distribution. This minor
modification has substantial practical implications by alleviating the allocation of the entire vector, and instead iteratively
samples each model coordinate. Thereby, considerably reducing the memory footprint of our method.

A.1.2 RECONSTRUCTION OF THE SEED

Let s be a seed initially broadcast by the federator to all clients. Then, at each global and local iteration t and ℓ, the r-th
random perturbation is sampled by setting the seed of the PRNG to s′ ≜ (s, t, ℓ, r). In this way, the perturbations zrt,ℓ
sampled by all clients will be equivalent. The client then compute the estimate according to Definition 2.1.

A.1.3 IN-PLACE MODEL PERTURBATION

Similar to (Salimans et al., 2017; Malladi et al., 2023), we use in-place perturbations of the model for memory efficient
zero-order optimization throughout the training phase. In particular, client i employs Algorithms 2 and 3 to compute the
zero-order estimate as gi(w

i
t,ℓ, z

r
t,ℓ) = ZEROORDERESTIMATE(wi

t,ℓ, s
′, µ,Di). Note that the function, instead of zrt,ℓ,

takes as input the seed s′ = (s, t, ℓ, r) used to reconstruct the projection zrt,ℓ.

Algorithm 2 PERTURB: Perturbing Model Parameters
Input: Model parameters w, scaling factor µ, seed s′

Output: Perturbed model w
Initialize PRNG with seed s′

for p = 1 to d do
Sample z ∼ N (0, 1)
Perturb parameter w(p) = w(p) + µ · z

end for
Return: Perturbed model w

Algorithm 3 ZEROORDERESTIMATE: Compute g(w, s′, µ,D) via Model Perturbation
Input: Model w, seed s′, scaling factor µ, data D
Output: Zero estimate g(w, s′, µ,D)
Step 1: Perturb(w, µ, s′) (cf. Algorithm 2)
Compute F1 = F (w(p),D)
Step 2: Perturb(w,−2µ, s′)
Compute F2 = F (w(p),D)
Step 3: Perturb(w, µ, s′) {Reset the model}
Return: g(w, s′, µ,D) = F1−F2

2µ

A.2 Byzantine Attacks

We test and compare our algorithm using several state-of-the-art gradient attacks, i.e., A little is enough (ALIE) (Baruch
et al., 2019), Fall of Empires (FOE) (Xie et al., 2020), Sign Flipping (SF) (Allen-Zhu et al., 2021), Label Flipping (LF)
(Allen-Zhu et al., 2021), and a tailored trimmed mean attack (TMA) (cf. Algorithm 4). For all non-zero-order experiments,
we conduct the attacks on the gradients gi(w

i
t,ℓ). For the zero-order experiments, the attacks are conducted on the projected

gradients, i.e., on gi(w
i
t,ℓ,Zt,ℓ) ≜ 1

ν ((gi(w
i
t,ℓ, z

r
t,ℓ))

ν
r=1)

T, which we believe is the strongest attack scenario. Let in the
following gi

t,ℓ denote the contribution of client i at global epoch t and local epoch ℓ. The attacks are summarized as follows.
Let ḡt,ℓ ≜ 1

|H|
∑

i∈H gi
t,ℓ be the average of the honest clients gradients. For ALIE, FOE, and SF, the Byzantine clients
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Algorithm 4 Transformed Trimmed-Mean Attack (TMA)
Require: β, n, gi(wi

t,ℓ, z
r
t,ℓ)∀i ∈ [n], honest clients H

1: Compute ḡ(wi
t,ℓ, z

r
t,ℓ) =

1
n

∑n
i=1 gi(w

i
t,ℓ, z

r
t,ℓ)

2: for Byzantine client i ∈ [n] \ H do
3: if ḡ(wi

t,ℓ, z
r
t,ℓ) > 0 then

4: return ⌊βn⌋ smallest value in {gi(wi
t,ℓ, z

r
t,ℓ)}i∈H

5: else
6: return ⌊βn⌋ largest value in {gi(wi

t,ℓ, z
r
t,ℓ)}i∈H

7: end if
8: end for

i ∈ B ≜ [n] \ H compute their corrupted gradient as gi
t,ℓ = ḡt,ℓ + ωat,ℓ for some optimized ω, where

• for ALIE, we have at,ℓ = σt,ℓ, where σt,ℓ is the coordinate standard deviation of ḡt,ℓ,

• for FOE, we have at,ℓ = −ḡt,ℓ, and hence gi
t,ℓ = (1− ω)ḡt,ℓ,

• for SF, we have at,ℓ = −ḡt,ℓ for fixed ω = 2, s.t. gi
t,ℓ = −ḡt,ℓ.

For ALIE and FOE, similar to (Allouah et al., 2023), we linearly optimize of potential choices of ω such that the L2 distance
of the final aggregation Rt,ℓ to the honest clients’ average ḡi

t,ℓ is maximized. For LF, each Byzantine worker manipulates
the labels of its local dataset. In particular, if for a Byzantine client i ∈ B a sample in Di is labeled ℓ, they instead train on
the label ℓ′ = 9− ℓ for a 10-class classification task.

The details of the tailored trimmed mean attack can be found in Algorithm 4.

A.3 Hyperparameters

We detail in the following Tables 2 and 3 the hyperparameters used through the experiments in Section 4.

Table 2. Simulation Parameters and Hyperparameters for MNIST

MNIST

Global Train Samples 60000
Number of Clients 40
Number of Byzantine Clients 10
Scaling Factor µ 0.001
Learning Rate η 0.01
Batch Size 64
Global Epochs T 400

Table 3. Simulation Parameters and Hyperparameters for NLP

SST-2 SNLI TREC MNLI RTE

Global Train Samples 512
Scaling Factor µ 0.001
Learning Rate η 10−6

Batch Size 64
Global Epochs T 20,000 20,000 40,000 40,000 40,000

The numerical experiments were conducted on the following cluster of simulation servers.
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Algorithm 5 FEDBYZO: Robust Efficient Zero-Order FL with Biased ZO Estimator
Require: Shared seed for PRNG, µ ≥ 0, η > 0, ν > 0, R.

1: Initialize and broadcast global model w(1).
2: for t = 1 to T do
3: for each client i ∈ [n] in parallel do
4: Initialize local model wi

t,1 = w(t).
5: Draw z1t,1,· · ·, zνt,1 ∼ U(Sd), let Zt,1 ≜ (zrt,1)r∈[ν]

6: for ℓ = 1 to K do
7: Compute gi(w

i
t,ℓ, z

r
t,1) ≜ g(wi

t,ℓ, z
r
t,1, µ,Di), r ∈ [ν] (cf. Definition 2.1)

8: Let gi(w
i
t,ℓ,Zt,1) ≜ 1

ν ((gi(w
i
t,ℓ, z

r
t,1))

ν
r=1)

⊤

9: Update wi
t,ℓ+1 = wi

t,ℓ − ηZt,1gi(w
i
t,ℓ,Zt,1)

10: end for
11: Send {

∑K
ℓ=1 gi(w

i
t,ℓ,Zt,1)} to federator.

12: end for
13: Aggregate Rt = R({

∑K
ℓ=1 gi(w

i
t,ℓ,Zt,ℓ)}ni=1)

14: Update w(t+1) = w(t) − η
∑K

ℓ=1 Zt,1Rt.
15: Broadcast Rt; clients accordingly update using Zt,1

16: end for
17: Clients recover the updated global model w(t+1) using known perturbations Zt,1.

Table 4. System specifications of our simulation cluster.
CPU(s) RAM GPU(s) VRAM
2x Intel Xeon Platinum 8176 (56 cores) 256 GB 2x NVIDIA GeForce GTX 1080 Ti 11 GB
2x AMD EPYC 7282 (32 cores) 512 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 640 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 448 GB NVIDIA GeForce RTX 4080 16 GB
2x AMD EPYC 7282 (32 cores) 256 GB NVIDIA GeForce RTX 4080 16 GB
HGX-A100 (96 cores) 1 TB 4x NVIDIA A100 80 GB
DGX-A100 (252 cores) 2 TB 8x NVIDIA Tesla A100 80 GB
DGX-1-V100 (76 cores) 512 GB 8x NVIDIA Tesla V100 16 GB
DGX-1-P100 (76 cores) 512 GB 8x NVIDIA Tesla P100 16 GB
HPE-P100 (28 cores) 256 GB 4x NVIDIA Tesla P100 16 GB

A.4 Local Iterations

FEDBYZO offers different option to conduct local epochs at the clients. We term the approach for local epochs introduced
in Algorithm 1 “Unbiased”.

A second approach is to follow Algorithm 1, but to replace the sending of {gi(w
i
t,ℓ,Zt,ℓ)}Kℓ=1 from clients to the federator,

followed by Rt,ℓ = R({gi(w
i
t,ℓ,Zt,ℓ)}ni=1), ℓ ∈ [K] and w(t+1) = w(t) − η

∑L
ℓ=1 Zt,ℓRt,ℓ. Instead of transmitting the

results {gi(w
i
t,ℓ,Zt,ℓ)}Kℓ=1 for all local epochs, the clients can instead reconstruct the aggregated local gradient updates as

gi =
∑K

ℓ=1 Zt,ℓgi(w
i
t,ℓ,Zt,ℓ) and project this gradient approximation onto random directions Zt (known to the federator

and all clients) according to Definition 2.1, and only transmit the result of ZT
t gi to the federator. The federator conducts

the transformed aggregation on Rt,ℓ = R({ZT
t gi}ni=1) and updates the global model as w(t+1) = w(t) − ηZtRt,ℓ. This

approach is by a factor of K more communication efficient. However, it can introduce significant additional variance,
especially for small values of ν. This is because two randomly drawn vectors in high dimensions are likely almost orthogonal,
and hence the subspaces resulting from Zt and {Zt,ℓ}Kℓ=1 might only be weakly dependent. However, for large values of ν,
this approach might be beneficial due to the drastic savings in the cost of communication. We term this approach “Unbiased
Compressed”.

A third approach, termed “Biased”, is to make the clients reuse the directions Zt,ℓ at each iteration, i.e., Zt,ℓ = Zt,m
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Figure 3. Comparisons of Local Epoch Strategies for µ = 0.001
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Figure 4. Comparisons of Local Epoch Strategies for µ = 0

for ℓ ̸= m ∈ [K]. It suffices for the clients to communicate to the federator
∑K

ℓ=1 gi(w
i
t,ℓ,Zt,ℓ), thus reducing the

communication cost by the same factor of K as for the second approach above. However, this strategy incurs bias in the
local training process, since the gradient updates are not uniformly and independently chosen at each local iteration ℓ ∈ [K].
We summarize this approach in Algorithm 5.

The above mentioned approaches expose an efficiency-bias-variance trade-off that we will examine in the following. In
Figure 3(a), we provide a study for µ = 0.001 in terms of accuracies over epochs. It can be observed that Unbiased
Compressed local epochs are harmful, expecially for smalle K. The larger K, the larger the space covered during the
local training process, and the smaller the loss incurred by projection the approximated overall local gradient onto an
independent subspace. Looking at the accuracies over the normlized communication cost in Figure 3, we can observe that
Biased local epochs with reasonably large values of Kcan indeed significantly improve the performance when normalized
by communication cost. The Unbiased approach, although reducing the number of packets to be transmitted, does not
significantly improve the factual communication cost. Results for µ = 0 in Figure 3(b) and Figure 4 exhibit the same trade
offs.

A.5 Effect of Number of Perturbations

To highlight the effect of the number of perturbations ν on the convergence of zero-order optimization in standard learning
tasks, we show in Figure 5 the performance of FEDBYZO compared to FedAvg (McMahan et al., 2017) for different values
of perturbations ν. While ν = 1 exhibits a substantial performance gap to FedAvg, this gap decreases with increasing ν,
until nearly vanishing with ν = 64.
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Figure 5. Comparison of Zero-Order Optimization for Different Values of ν Compared to the Baseline FedAvg.

A.6 Accuracies over Epochs for all Attacks on MNIST

We present in the following, extending the case of LF (cf. Figure 1(c)), the comparison of all countermeasures for ALIE,
ALIE-NNM, FOE, FOE-NNM, and SF. We present the results for accuracies over epochs, and accuracies over normalized
communication cost.
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Figure 6. ALIE attack on logistic regression on MNIST.
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Figure 7. ALIE-NNM attack on logistic regression on MNIST.
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Figure 8. FOE attack on logistic regression on MNIST.
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Figure 9. FOE-NNM attack on logistic regression on MNIST.
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Figure 10. SF attack on logistic regression on MNIST.
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Table 5. Mean and standard deviations of maximum accuracies for non-i.i.d. data with α = 0.1. The baseline FedAvg without robust
aggregation nor Byzantine attacks achieves 91.0± 0.2

Algorithm R(·) NNM ALIE ALIE-NNM FOE FOE-NNM SF LF

FEDBYZO CWTM No 87.4 ± 0.6 - 69.9 ± 4.8 - 71.2 ± 2.0 87.6 ± 0.6
FEDBYZO CWTM Yes 90.3 ± 0.3 88.9 ± 1.3 74.0 ± 7.3 58.9 ± 4.9 59.2 ± 3.5 90.1 ± 0.6
FEDBYZO Krum No 65.1 ± 8.9 - 34.7 ± 5.4 - 44.1 ± 11.9 66.3 ± 9.9
FEDBYZO Krum Yes 90.6 ± 0.4 89.9 ± 0.4 70.4 ± 4.4 56.9 ± 6.0 58.2 ± 2.7 87.1 ± 3.5

FEDZO CWTM No 86.9 ± 1.1 - 61.8 ± 4.0 - 69.6 ± 2.1 87.3 ± 0.9
FEDZO CWTM Yes 90.1 ± 0.9 89.4 ± 0.7 74.3 ± 4.3 59.2 ± 3.5 62.7 ± 1.8 90.6 ± 0.2
FEDZO KRUM No 72.2 ± 8.4 - 32.2 ± 11.3 - 41.7 ± 4.1 67.2 ± 2.3
FEDZO KRUM Yes 90.4 ± 0.4 89.9 ± 0.7 67.0 ± 2.7 56.4 ± 5.5 65.2 ± 6.8 90.2 ± 0.6
FedAvg CWTM No 87.6 ± 0.7 - 41.7 ± 4.8 - 42.5 ± 7.9 80.8 ± 1.4
FedAvg CWTM Yes 90.6 ± 0.3 86.9 ± 1.2 76.8 ± 3.2 58.5 ± 2.8 67.3 ± 2.6 87.9 ± 3.5
FedAvg Krum No 75.7 ± 3.5 - 23.9 ± 13.5 - 50.0 ± 8.9 55.9 ± 6.9
FedAvg Krum Yes 88.6 ± 0.6 86.9 ± 1.1 73.0 ± 2.0 50.0 ± 4.1 57.7 ± 5.8 83.9 ± 4.6
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Figure 11. LF attack on logistic regression on MNIST.

A.7 Comparison to Non-Transformed Zero-Order FL

We provide extensive experiments comparing our method to a natural extension of the non-Byzantine resilient FEDZO (Fang
et al., 2022) to robust aggregation for various aggregation functions. In particular, the robust aggregation is performed on
the reconstructed gradients, i.e., in Rd. While uplink communication efficiency can be achieved similarly to FEDBYZO by
leveraging a shared seed concept (similar to (Li et al., 2024)), it is impossible to achieve downlink communication efficiency
after robust aggregation on the full gradients. The reasoning follows the same arguments as described in Appendix B. That
is, when performing robust aggregation on the reconstructed approximate gradients, it is not guaranteed that the aggregated
vector lies in the subspace spanned by the perturbations. Hence, the aggregate cannot be compressed by projection onto this
subspace without information loss. Consequently, communication efficiency can only be achieved on the uplink. FEDBYZO
achieves both uplink and downlink communication efficiency while improving on the best-performing aggregation rule’s
worst-case performance by more than 10%. This is shown in Table 5, where we compare the performance of FEDBYZO
against robust variants of FedAvg (McMahan et al., 2017) and FEDZO (Li et al., 2024). FEDBYZO-CWTM outperforms all
baselines by at least 8% in terms of worst-case accuracy.

A.8 Accuracies over Epochs for all Attacks on Fine-Tuning Tasks

We provide in Table 6 extensive results on an i.i.d. data distribution for fine-tuning RoBERTa-large, analog to the non-i.i.d.
results in Table 1. It can be found that our algorithm exhibits stable performance for both i.i.d. and non-i.i.d. distributions,
and is not significantly affected by heterogeneity. We further show in Table 8 and Table 7 results for fine-tuning OPT-125m
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on SST-2 and TREC, for comparability to (Li et al., 2024).

Table 6. Mean and Standard Deviation of Maximum Accuracies Across Seeds for RoBERTa-large and i.i.d. data

Dataset ALIE FOE SF TMA No Attack Worst Case

SST-2 93.0 ± 0.4 91.6 ± 0.2 91.9 ± 0.1 92.1 ± 0.6 92.9 ± 0.6 91.6
TREC 95.5 ± 0.3 88.5 ± 0.9 90.5 ± 0.8 91.4 ± 1.9 95.6 ± 0.4 88.5
SNLI 83.5 ± 0.5 77.0 ± 0.8 78.7 ± 1.0 79.6 ± 0.9 84.9 ± 0.2 77.0
RTE 79.4 ± 1.8 73.8 ± 0.7 73.4 ± 0.2 76.4 ± 0.6 79.9 ± 1.1 73.4

MNLI 76.2 ± 0.6 68.1 ± 2.8 68.9 ± 2.4 70.6 ± 1.7 76.4 ± 0.8 68.1

Table 7. Mean and Standard Deviation of Maximum Accuracies Across Seeds for OPT-125m and non-i.i.d. data
Dataset ALIE FOE SF TMA No Attack Worst Case

SST-2 83.8 ± 1.3 82.3 ± 1.0 73.9 ± 4.9 82.6 ± 0.9 83.8 ± 0.5 73.9
TREC 88.3 ± 1.8 75.3 ± 4.3 74.1 ± 5.8 87.5 ± 1.3 92.2 ± 1.3 74.1

Table 8. Mean and Standard Deviation of Maximum Accuracies Across Seeds for OPT-125m and i.i.d. data
Dataset ALIE FOE SF TMA No Attack Worst Case

SST-2 83.8 ± 0.6 81.0 ± 0.2 81.2 ± 0.2 82.5 ± 0.1 85.5 ± 0.3 81.0
TREC 93.5 ± 0.6 84.9 ± 1.1 88.3 ± 0.8 90.3 ± 1.1 92.4 ± 0.2 84.9

While FEDBYZO consistently achieves satisfying performance even under i.i.d. and non-i.i.d. data distributions and various
Byzantine attacks, RoBERTa-large reaches substantially better performance (under Byzantine and non-Byzantine scenarios).
Hence, we focus our attention on RoBERTa-large. Further, we provide in the following plots for the accuracies over the
epochs for all attacks, datasets, and both i.i.d. and non-i.i.d. data distributions. FEDBYZO exhibits stable performance in all
settings.
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Figure 12. Accuracy comparison of different attacks on fine-tuning RoBERTa-large on SST-2.
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Figure 13. Accuracy comparison of different attacks on fine-tuning RoBERTa-large on SNLI.
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Figure 14. Accuracy comparison of different attacks on fine-tuning RoBERTa-large on TREC.
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Figure 15. Accuracy comparison of different attacks on fine-tuning RoBERTa-large on RTE.
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Figure 16. Accuracy comparison of different attacks on fine-tuning RoBERTa-large on MNLI.
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Figure 17. Accuracy comparison of different attacks on fine-tuning opt-125m on SST-2.
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Figure 18. Accuracy comparison of different attacks on fine-tuning opt-125m on TREC.

A.9 Hyperparameter Study

We provide in the following tables Tables 9 to 12 a sensitivity analysis of FEDBYZO with respect to the number of global
epochs T , the number of local epochs K, the number of perturbations ν, the number of clients n, and the number of
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Byzantine clients B.

We run our experiments on SST-2 and RoBERTa-large, attacked by FOE. We use non-i.i.d. data with α = 0.1. We first show
in Table 9 the robustness of FEDBYZO under varying numbers of total and Byzantine clients with b

n = 0.25 and observe
that the robustness increases with n. We fix n = 8, and b = 2 as the most challenging setting for the following experiments.
We show in Table 10 the stability of FEDBYZO under varying number ν of random perturbations. For comparability,
we fix the ratio νT = 20000 and observe very similar accuracies for ν ∈ {1, 2, 4, 8}. Hence, the number of projections
trades almost inversely with the number of global epochs T . A similar behavior can be observed in Table 11 for a varying
number of local epochs K, fixing the ratio KT . However, for large K and small T , we can see the negative impacts of
local iterations. Lastly, we evaluate FEDBYZO under varying ratios of Byzantine clients, thereby fixing n = 16 for better
flexibility, and using ν = 1. The results are depicted in Table 12, While the performance reduction from b = 2 to b = 4 is
negligible, we can observe a notable difference for b = 6, i.e., when the number of Byzantine clients is close to n/2.

Table 9. Accuracy over n, b for b/n = 0.25

Clients n Byzantine b Acc ± Std

8 2 0.86 ± 0.02
12 3 0.87 ± 0.06
16 4 0.89 ± 0.02
32 8 0.87 ± 0.03

Table 10. Accuracy over T and ν.

Global epochs T ν Acc ± Std

2500 8 0.87 ± 0.02
5000 4 0.88 ± 0.02
10000 2 0.86 ± 0.02
20000 1 0.86 ± 0.02

Table 11. Accuracy over T and K.

Global epochs T Local epochs K Acc ± Std

2000 10 0.81 ± 0.03
4000 5 0.86 ± 0.03

20000 1 0.86 ± 0.02

Table 12. Accuracy over b/n for n = 16.

Clients n Byzantine b Acc ± Std

16 2 0.90 ± 0.01
16 4 0.89 ± 0.02
16 6 0.78 ± 0.05

B Innovations in FEDBYZO
We highlight some challenges addressed by FEDBYZO and key technical innovations.

• Transformed robust aggregation via embeddings: Robust aggregation of the full gradients is well understood for
achieving Byzantine resilience in FL. However, in FEDBYZO the federator only has access to the model updates along the
random perturbations rather than full gradients. A naive approach would be for the federator to first reconstruct approximate
gradients from the ZO updates and then apply robust aggregation. However, in general, robust aggregation rules are non-
linear, and the aggregate vector may lie outside the subspace spanned by the input vectors. For example, consider vectors
v1 = [2, 2, 0]⊤,v2 = [0,−1,−1]⊤, and v3 = [4, 0,−4]⊤ that lie in the vector space V spanned by {[1, 1, 0]⊤, [0, 1, 1]⊤}.
Then, CWTM1/3(v1,v2,v3) = [2, 0,−1]⊤ /∈ V . In our context, this implies that the global model update w(t+1) −w(t)

does not necessarily lie in the subspace spanned by the perturbation vectors {zrt,ℓ : r ∈ [ν], ℓ ∈ [K]}. Thus, communicating
the global model update requires either additional communication cost or projecting the global model update back onto the
subspace, incurring additional variance and computation.
To address this issue, FEDBYZO introduces transformed robust aggregation, i.e., robust aggregation of the clients’ model
updates when viewed as vectors embedded in the perturbation space Rν . By directly aggregating in this lower-dimensional
perturbation space, FEDBYZO preserves communication savings (as the aggregated updates continue to belong to the
perturbation space). A key challenge is to argue that performing the aggregation in the perturbation space and projecting
the result back to the gradient space preserves the robustness guarantees from Definition 2.2. To prove this, we rely on
Johnson–Lindenstrauss–style embeddings (Johnson & Lindenstrauss, 1984) to maintain the necessary geometric properties
of robust aggregation. Thus, the aggregation remains both efficient and Byzantine-resilient, while limiting the attackers’
ability to manipulate the global update outside the chosen subspace.
• Efficient downlink and uplink communication: We leverage the structure of ZO updates and transformed robust
aggregation to significantly reduce the communication cost on the uplink and the downlink. On the uplink, this is a
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consequence of having the clients perform local epochs and transmit only the resulting scalar values for each perturbation
direction. On the downlink, as the transformed robust aggregation outcome is guaranteed to lie in the span of the perturbation
vectors, it is sufficient to only specify the projections along the perturbation directions. This reduces the communication
burden to a handful of scalars, which is a major reduction compared to typical FL settings where the gradient dimension can
range from 106 to 1012.
• Shared seed mechanism for synchronizing perturbations: To ensure correct global model updates, the random
perturbation directions must be synchronized between the federator and the clients. A naive, yet inefficient strategy would
be to transmit the newly generated perturbation vectors in every round, but this negates any communication gains since
their dimension matches that of the model. In FEDBYZO, we address this challenge by adopting a lightweight shared seed
protocol, inspired by (Salimans et al., 2017), which enables both the clients and the federator to locally generate identical
pseudorandom perturbations. Note that the (one-time) cost of sharing a common seed determined by the federator with
all clients is negligible given that standard PRNGs, e.g., in Tensorflow, have a cycle length in the order of 2128 (Salmon
et al., 2011). Note that the seed is non-collaboratively established by the federator. Thus, Byzantine clients cannot execute
coordinated attacks in this phase.
• Multiple local epochs per client: We show that FEDBYZO works well with each client performing multiple local epochs.
This results in a reduction in the number of global epochs (and hence less frequent communication). Further, FEDBYZO
also offers a design choice between the unbiased ZO estimator and the biased ZO estimator. The former is more amenable
to theoretical analysis as Zt,ℓ’s are independent across the local epochs. However, it has a communication cost of Kν per
global epoch (both on each uplink as well as the downlink). The biased ZO estimator further reduces the communication
cost by a factor of K by deliberately using the same perturbation vectors for each local iteration. This, however, introduces
additional bias into the training process. We explore this tradeoff under varying numbers of local epochs in Appendix A.4.
• Memory efficiency: While it is well established that ZO methods reduce the computation cost when ν is small, the
reductions in the memory requirements are especially impressive even when ν is large. (Malladi et al., 2023) showed that
ZO methods perform inference utilizing up to a factor of 12 lower memory compared to backpropagation. FEDBYZO
inherits this property and can operate on resource-constrained edge devices in fine-tuning tasks where classical approaches
are intractable. We note that for large ν, the computation costs for µ > 0 can outweigh that of backpropagation when paired
with gradient projection, i.e., µ = 0. The details can be found in Appendix A.1.

C Proofs

C.1 Properties of ZO estimate

For a given model w, let ∇Fµ
i ≜ Ez∼U(Sd)[∇Fi(w + µz)] be a smoothened version of the gradient ∇Fi. Then, for the

two-point zero-order estimate from Definition 2.1, we have the following well-known result (Flaxman et al., 2005).
Proposition C.1. The ZO estimate satisfies on expectation

E
[
Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

]
= ∇Fµ

i (w
i
t,ℓ).

Proposition C.2 (Lemma 2, (Tang et al., 2020)). It holds∥∥∇Fµ
i (w

i
t,ℓ)−∇Fi(w

i
t,ℓ)
∥∥ ≤ Lµ.

C.2 Proof of Theorem 5.7

We state the extended form of Theorem 5.7 first. Let ξ1, ξ2, ξ3, ξ4 and ξ5 be as defined in (7)-(12) These quantities
scale as follows: ξ1 = Θ

(
η2K3 d

ν + d
νL

2η2K(K + d
|H|ν )

)
, ξ2 = Θ

(
η2K3(L+ ( dν + d2

ν2|H|L
2K2η2)

(
ζ2 + σ2 + L2µd

) )
,

ξ3 = Θ
(
d
ν (K

2ϵ′κ+ K
|H| )(1+L2η2K

(
K + d

|H|ν

)
(1+ ν

d ))
)
, ξ4 = Θ

(
K2L2η2(K2D2+ 1

|H|
d2

ν2L
2)+Kϵ′κ(D2+ζ2+ d

νL
2)
)

and ξ5 = Θ
(
(ζ2 + σ2 + L2µ2d)

(
(K2ϵ′κ)( dν + d2

ν2|H|L
2Kη2)

)
+K2L(ϵ′κ+ µ) + (K2ϵ′κ)( dνL

2η2K2Lµ)
)
.

Theorem C.3 (General non-convex landscapes). Let 0 < ∆ < 1 and suppose that Assumptions 5.1 to 5.4 hold. Consider
FEDBYZO with a (|H|, κ)-robust aggregation rule. If (a) η2 ≤ min{ 1

72K2L ,
|H|ν

96KdL2 , 6
D2

K2 + 6 ζ2

K2 + 32d
νK2L

2}, (b)
ν ≥ 64 log(2(|H|−1)TK

∆ ), and (c) ξ3 + ξ4ξ1 ≤ 1
2 are satisfied, then the following convergence guarantee holds with

probability 1−∆:

1

T

T∑
t=1

E
[
∥∇FH(wt)∥2

]
≤4(FH(w1)− F ⋆

H)

ηKT
+ η/(2K) (ξ4ξ2 + ξ5) .

18



Byzantine-Resilient Zero-Order Optimization for Communication-Efficient Heterogeneous Federated Learning

Note that Theorem C.3 requires ν = Θ(d) in order for condition (c) to be satisfied.

Sketch of Proof. We provide a brief proof outline in the following for the case when µ > 0. The proof

for µ = 0 follows similar steps with some modifications, since
∥∥∥(∇Fi(w

i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥∥2 = 0 by

definition and the gradient estimate is bounded differently. We define the following quantities ŵt,ℓ ≜
1

|H|
∑

i∈H wi
t,ℓ and ḡH(wi

t,ℓ,Zt,ℓ) ≜ 1
|H|
∑

i∈H gi(w
i
t,ℓ,Zt,ℓ), and focus on the conceptual strategy and omit all

factors. We first decompose the difference of two consecutive models into ∥∇FH(wt)∥2,
∥∥∥∑K

ℓ=1 Rt,ℓZt,ℓ

∥∥∥2 and∥∥∥K∇FH(wt)−
∑K

ℓ=1 Zt,ℓRt,ℓ

∥∥∥2. The former term is the quantity of interest. The second term can be made nega-
tive by an appropriate choice of the learning rate. On expectation and using Assumptions 5.1 and 5.4, the latter can

be bounded by i) E
[
∥wt − ŵt,ℓ∥2

]
, ii) E

[∑K
ℓ=1

∥∥∥Zt,ℓḡH(wi
t,ℓ,Zt,ℓ)− Zt,ℓRt,ℓ

∥∥∥2], iii) E
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∥∥∥2] and iv)

E
[∥∥∥∑K

ℓ=1

(∑
i∈H

∇Fi(w
i
t,ℓ)

|H| − Zt,ℓḡH(wi
t,ℓ,Zt,ℓ)

)∥∥∥2]. Lemma C.4 (in turn requiring similar derivations as for the

proof of Lemma C.5) relates the term ii) to E
[
∥∇FH(wt)∥2

]
and a term like iii). iv) can be bounded from above by∥∥∥(∇Fi(w

i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥∥2 and E
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ℓ=1

(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)∥∥∥2]. While the first is bounded by

Proposition C.2, the latter is bounded by Lemma C.5 (in turn requiring Assumption 5.2 and Lemmas C.4 and C.9 in terms
of E

[
∥∇FH(wt)∥2

]
and terms like iii). ii) is bounded by a twice application of a particular Johnson-Lindenstrauss-type

Lemma (Lemma C.8) and Lemma C.6 (which relies on (Wang et al., 2024, Lemma B.1) and Lemma C.5. All terms of the
kind iii) are bounded using Lemma C.7 (that relies on Lemma C.6) in terms of E

[
∥∇FH(wt)∥2

]
. By appropriate choices

of the learning rates so that Lemma C.4 and Lemma C.7 hold and the term that multiplies the quantity E
[
∥∇FH(wt)∥2

]
of interest is negative and can hence be rearranged and bounded, the proof is completed by telescoping over all global
iterations.

C.2.1 PROOF OF THEOREM 5.7 FOR µ > 0

We start with proving convergence for µ > 0, and apply similar steps to prove the result for µ = 0 in Appendix C.2.2.

Proof. To prove the convergence of our algorithm for general non-convex functions with local iterations, byzantine resilience
and heterogeneity, we rely on the following intermediate lemmas that we state in the following. We assume throughout that
Assumptions 5.1 to 5.4 hold, and the robust aggregator satisfies Definition 2.2.

Lemma C.4. Let

ξ6 ≜ 5 · 32η2K
(
K +

d

|H|ν

)
,

ξ7 ≜ 5Kη2
d

|H|ν
(
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)
+ 5η224K2Lµ, and

ξ8 ≜ 5 · 32η2
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d

ν
L2

)
.

Let ŵt,ℓ ≜ 1
|H|
∑

i∈H wi
t,ℓ. For a learning rate satisfying 24Kη2L2 ≤ 1

3K and 2η2 1
|H|

4d
ν 4L2 ≤ 1

3K , we have the following
upper bound on the averaged local model divergence:

E
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Lemma C.5. Let
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16d
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L2,
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ξ10 ≜
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We have the following bound on the gradient estimate variance based on multiple independent perturbations
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Lemma C.6. Let
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(
K +

d

|H|ν

)
.

Then the local gradient divergence is bounded from above by

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


≤
ℓ∑

m=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,m −wi

t,m

∥∥2]+ ℓ∑
m=1

(ξ14 + ξ15) +

ℓ∑
m=1

ξ16E
[
∥∇FH(wt)∥2

]
.

Lemma C.7. Let

ξ1 ≜ 4η2K3 16d

ν
+

4d

ν
4L25 · 32η2K

(
K +

d

|H|ν

)
and

ξ2 ≜ 4η2K3

((
d

2ν
+

80d2

ν2|H|
L2Kη2

)(
32ζ2 + 8σ2 + L2µ2d

)
+

80 · 24d
ν

L2η2K2Lµ

)
+ 12η2K3L.

For a learning rate that satisfies η ≤
√
6D2

K2 + 6 ζ2

K2 + 24d
νK2L2, we have the following upper bound on the local model

divergence

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ ξ1E
[
∥∇FH(wt)∥2

]
+ ξ2.

Now we are ready to prove Theorem 5.7. With Rt,ℓ ≜ R
(
{gi(w

i
t,ℓ,Zt,ℓ)}ni=1

)
, we have by Assumption 5.1 that

FH(wt+1)− FH(wt) ≤ ⟨∇FH(wt),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

= −η

〈
∇FH(wt),

K∑
ℓ=1

Rt,ℓz
r
t,ℓ

〉
+

η2L

2

∥∥∥∥∥
K∑
ℓ=1

Rt,ℓz
r
t,ℓ

∥∥∥∥∥
2

(1)
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We first seek an upper bound to the first term:

− η/K

〈
K∇FH(wt),

K∑
ℓ=1

Rt,ℓZt,ℓ

〉

= −η/(2K)

K2 ∥∇FH(wt)∥2 +

∥∥∥∥∥
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2

−

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2
 .

The leftmost term is the quantity of interest and will later be brought to the LHS of the equation. The prefactor of the mid-
dle term will, by an appropriate choice of the learning rate, be made small enough such that c ≜ η2L

2 − η
2K ≤ 0,

and hence we can bound the term c
∥∥∥∑K

ℓ=1 Rt,ℓZt,ℓ

∥∥∥2 by 0. It remains to find a bound for the rightmost term∥∥∥K∇FH(wt)−
∑K

ℓ=1 Rt,ℓZt,ℓ

∥∥∥2. Let ḡH(wi
t,ℓ,Zt,ℓ) ≜ 1

|H|
∑

i∈H gi(w
i
t,ℓ,Zt,ℓ). By expansion, we can obtain

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Zt,ℓRt,ℓ

∥∥∥∥∥
2

=

∥∥∥∥K∇FH(wt)+

K∑
ℓ=1

(
−∇FH(ŵt,ℓ) +∇FH(ŵt,ℓ)−

∑
i∈H

∇Fi(w
i
t,ℓ)

|H|

+
∑
i∈H

∇Fi(w
i
t,ℓ)

|H|
− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ) + Zt,ℓḡH(wi
t,ℓ,Zt,ℓ)− Zt,ℓRt,ℓ

)∥∥∥∥2

≤ 4K

K∑
ℓ=1

∥∇FH(wt)−∇FH(ŵt,ℓ)∥2 + 4

∥∥∥∥∥
K∑
ℓ=1

(
Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)− Zt,ℓRt,ℓ

)∥∥∥∥∥
2

+ 4K

K∑
ℓ=1

∥∥∥∥∥∇FH(ŵt,ℓ)−
∑
i∈H

∇Fi(w
i
t,ℓ)

|H|

∥∥∥∥∥
2

+ 4

∥∥∥∥∥
K∑
ℓ=1

(∑
i∈H

∇Fi(w
i
t,ℓ)

|H|
− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2

(a)

≤ 4K

K∑
ℓ=1

L2 ∥wt − ŵt,ℓ∥2 + 4

∥∥∥∥∥
K∑
ℓ=1

(
Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)− Zt,ℓRt,ℓ

)∥∥∥∥∥
2

+ 4K

K∑
ℓ=1

D2

|H|
∑
i∈H

∥∥wi
t,ℓ − ŵt,ℓ

∥∥2
+ 4

∥∥∥∥∥
K∑
ℓ=1

(∑
i∈H

∇Fi(w
i
t,ℓ)

|H|
− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2

,

where (a) holds by Assumption 5.1 and Assumption 5.4. We take the expectation on both sides and obtain

E

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Zt,ℓRt,ℓ

∥∥∥∥∥
2


≤ 4K

K∑
ℓ=1

L2E
[
∥wt − ŵt,ℓ∥2

]
+ 4E

[
K∑
ℓ=1

∥∥Zt,ℓḡH(wi
t,ℓ,Zt,ℓ)− Zt,ℓRt,ℓ

∥∥2]

+ 4K

K∑
ℓ=1

D2

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2]+ 4E

∥∥∥∥∥
K∑
ℓ=1

(∑
i∈H

∇Fi(w
i
t,ℓ)

|H|
− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2
 . (2)

We continue with bounding the individual terms, and start with the latter term.

E

∥∥∥∥∥
K∑
ℓ=1

(∑
i∈H

1

|H|
∇Fi(w

i
t,ℓ)− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2

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≤ 2E

∥∥∥∥∥
K∑
ℓ=1

∑
i∈H

1

|H|
(
∇Fi(w

i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥∥∥∥

2
+ 2E

∥∥∥∥∥
K∑
ℓ=1

∑
i∈H

1

|H|
(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2


(a)

≤ 2
K

|H|
∑
i∈H

K∑
ℓ=1

∥∥(∇Fi(w
i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥2 + 2

1

|H|2
∑
i∈H

E

∥∥∥∥∥
K∑
ℓ=1

(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2


(b)

≤ 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

E
[∥∥∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

∥∥2]
(c)

≤ 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

(
ξ9E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ ξ12

+ ξ11E
[
∥∇FH(wt)∥2

]
+ ξ10

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2])

(d)

≤ 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

(
ξ9E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ ξ12

+ ξ11E
[
∥∇FH(wt)∥2

]
+

ξ10K(K − 1)

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2])

= 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

(
(ξ9 + ξ10K(K − 1))E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ ξ12 + ξ11E
[
∥∇FH(wt)∥2

])
, (3)

where (a) is due to the independence of
∑K

ℓ=1

(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)
and∑K

ℓ=1

(
∇Fµ

j (w
j
t,ℓ)− Zt,ℓgj(w

j
t,ℓ,Zt,ℓ)

)
for i ̸= j. (b) follows from Proposition C.1 and (Wang et al., 2021, Lemma 2).

(c) is by the application of Lemma C.5. (d) holds since
∑K

ℓ=1

∑ℓ−1
ℓ′=1 xℓ′ ≤

∑K
ℓ=1

∑ℓ
ℓ′=1 xℓ′ ≤ K(K−1)

2

∑
ℓ xℓ.

We continue with bounding the robustness term using a double-sided application of an extension of the Johnson-Lindenstrauss
Lemma as stated in the following Lemma C.8 and the application of Lemma C.6.

Lemma C.8 (Proposition 8, (Li, 2024)). Let Z = (z1, · · · , zν)T ∈ Rν×d with zr ∼ U(Sd),∀r ∈ [ν]. For a given vector
x ∈ Rd, we have for ϵ > 0, δ < 1/2 with probability at least 1− δ that

(1− ϵ) ∥x∥2 ≤ ∥Zx∥2 ≤ (1− ϵ) ∥x∥2

for ν ≥ 64ϵ−2 log(2/δ).

For the robustness term, we have

E

∥∥∥∥∥
K∑
ℓ=1

Zt,ℓ

(
Rt,ℓ − ḡH(wi

t,ℓ,Zt,ℓ)
)∥∥∥∥∥

2


≤ K

K∑
ℓ=1

∥∥Zt,ℓ

(
Rt,ℓ − ḡH(wi

t,ℓ,Zt,ℓ)
)∥∥2

(a)

≤ K

K∑
ℓ=1

(1 + ϵ)
κ

|H|
∑
i∈H

E
[∥∥gi(w

i
t,ℓ,Zt,ℓ)− ḡH(wi

t,ℓ,Zt,ℓ)
∥∥2]

(b)

≤ K

K∑
ℓ=1

(1 + ϵ)

(1− ϵ)

κ

|H|
∑
i∈H

E
[∥∥Zt,ℓ(gi(w

i
t,ℓ,Zt,ℓ)− ḡH(wi

t,ℓ,Zt,ℓ))
∥∥2]

(c)

≤ K
(1 + ϵ)

(1− ϵ)
κ

(
K∑
ℓ=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ K∑
ℓ=1

(ξ14 + ξ15) +

K∑
ℓ=1

ξ16E
[
∥∇FH(wt)∥2

])
(4)
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where (a) and (b) are by the application of Lemma C.8 for in total |H|+ 1 projections. By a union bound over Lemma C.8,

the distance preservation holds with probability 1 − δ for ϵ ≥
√

64
ν log( 2(|H|−1)

δ ). We choose the smallest possible ϵ.
This must hold for each iteration, so the distance preservation holds w.p. at least 1 −Kδ for all local epochs. (c) is by
Lemma C.6.

To bound the local model divergence from the global model, by Lemma C.4, we have

K∑
ℓ=1

E
[
∥ŵt,ℓ −wt∥2

]
≤

K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2]

≤
K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8K(K − 1)

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] , (5)

where the latter follows since
∑K

ℓ=1

∑ℓ−1
ℓ′=1 xℓ′ ≤

∑K
ℓ=1

∑ℓ
ℓ′=1 xℓ′ ≤ K(K−1)

2

∑
ℓ xℓ.

Plugging (3), (4), and (5) into (2), we obtain

E

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Zt,ℓRt,ℓ

∥∥∥∥∥
2


≤ 4KL2

(
K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8K(K − 1)

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2])

+ 4

(
K

(1 + ϵ)

(1− ϵ)
κ

(
K∑
ℓ=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ K∑
ℓ=1

(ξ14 + ξ15) +

K∑
ℓ=1

ξ16E
[
∥∇FH(wt)∥2

]))

+ 4K

K∑
ℓ=1

D2

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2]

+ 4

(
2K2Lµ+ 2

1

|H|2
∑
i∈H

K∑
ℓ=1

(
(ξ9 + ξ10K(K − 1))E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ ξ12 + ξ11E
[
∥∇FH(wt)∥2

]))

≤ ξ′3E
[
∥∇FH(wt)∥2

]
+ ξ′4

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ ξ′5

≤ ξ′3E
[
∥∇FH(wt)∥2

]
+ ξ′4ξ1E

[
∥∇FH(wt)∥2

]
+ ξ′4ξ2 + ξ′5,

≤ (ξ′3 + ξ′4ξ1)E
[
∥∇FH(wt)∥2

]
+ ξ′4ξ2 + ξ′5, (6)

where the penultimate step is by the application of Lemma C.7, and the constants read and can be bounded as

ξ′3 ≜ 4KL2
K∑
ℓ=1

ξ6 + 4K
(1 + ϵ)

(1− ϵ)
κ

K∑
ℓ=1

ξ16 + 4 · 2 1

|H|2
∑
i∈H

K∑
ℓ=1

ξ11

≤ 4K2L2ξ6 +

(
8K2 (1 + ϵ)

(1− ϵ)
κ+ 8

1

|H|
K

)
ξ11

≤ ξ3 ≜ 4K2L25 · 32η2K
(
K +

d

|H|ν

)
+

(
8K2 (1 + ϵ)

(1− ϵ)
κ+ 8

1

|H|
K

)(
16d

ν
+

80 · 32d
ν

L2η2K

(
K +

d

|H|ν

))
ξ′4 ≜ 4KL2ξ8K(K − 1) + 4K

(1 + ϵ)

(1− ϵ)
κξ13 + 4KD2 + 4 · 2 1

|H|
(ξ9 + ξ10K(K − 1))

≤ 4K3L2ξ8 + 4K
(1 + ϵ)

(1− ϵ)
κξ13 + 4KD2 + 8

1

|H|
(ξ9 + ξ10K

2)
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≤ 4K3L2ξ8 + 8K
(1 + ϵ)

(1− ϵ)
κ
(
3D2 + 3ζ2 + ξ9 + ξ10K

2
)
+ 4KD2 + 8

1

|H|
(ξ9 + ξ10K

2)

≤ 4K3L2ξ8 + 8K
(1 + ϵ)

(1− ϵ)
κ
(
3D2 + 3ζ2

)
+ 4KD2 + 8

(
1

|H|
+K

(1 + ϵ)

(1− ϵ)
κ

)
(ξ9 + ξ10K

2)

≤ 20 · 32K3L2η2
(
KD2 +

1

|H|
d

ν
L2

)
+ 8K

(1 + ϵ)

(1− ϵ)
κ
(
3D2 + 3ζ2

)
+ 4KD2

+ 8

(
1

|H|
+K

(1 + ϵ)

(1− ϵ)
κ

)(
16d

ν
L2 +

80 · 32d
ν

L2η2
(
KD2 +

1

|H|
d

ν
L2

)
K2

)
≤ ξ4 ≜ 20 · 32K2L2η2

(
KD2 +

1

|H|
d

ν
L2

)(
K +

4d

ν

)
+ 8K

(1 + ϵ)

(1− ϵ)
κ

(
3D2 + 3ζ2 +

16d

ν
L2

)
+ 4KD2 + 8

1

|H|
16d

ν
L2

ξ′5 ≜ 4KL2
K∑
ℓ=1

ξ7 + 4K
(1 + ϵ)

(1− ϵ)
κ

K∑
ℓ=1

(ξ14 + ξ15) + 4 · 2K2Lµ+ 4 · 2 1

|H|2
∑
i∈H

K∑
ℓ=1

ξ12

≤ 4K2L2ξ7 + 4K2 (1 + ϵ)

(1− ϵ)
κ(ξ14 + ξ15) + 8K2Lµ+ 8

1

|H|
Kξ12

≤ 4K2L2ξ7 + 4K2 (1 + ϵ)

(1− ϵ)
κ(2ξ12 + 6L) + 8K2Lµ+ 8

1

|H|
Kξ12

≤ 4K2L2ξ7 + 4K2 (1 + ϵ)

(1− ϵ)
κ6L+ 8K2Lµ+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)
ξ12

≤ 4K2L2

(
5Kη2

d

|H|ν
(
32ζ2 + 8σ2 + L2µ2d

)
+ 5η224K2Lµ

)
+ 4K2 (1 + ϵ)

(1− ϵ)
κ6L+ 8K2Lµ

+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)((
d

2ν
+

80d2

ν2|H|
L2Kη2

)(
32ζ2 + 8σ2 + L2µ2d

)
+

80 · 24d
ν

L2η2K2Lµ

)
≤ ξ5 ≜

(
32ζ2 + 8σ2 + L2µ2d

)(
20K3L2η2

d

|H|ν
+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)(
d

2ν
+

80d2

ν2|H|
L2Kη2

))
+ 4K2L25η224K2Lµ+ 4K2 (1 + ϵ)

(1− ϵ)
κ6L+ 8K2Lµ+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)(
80 · 24d

ν
L2η2K2Lµ

).

By taking the expectation over (1) and replacing E
[∥∥∥K∇FH(wt)−

∑K
ℓ=1 Zt,ℓRt,ℓ

∥∥∥2] by (6), we can write

E [FH(wt+1)]− E [FH(wt)]

≤ −η/(2)KE
[
∥∇FH(wt)∥2

]
+

(
η2L

2
− η

2K

)
E

∥∥∥∥∥
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2


+ η/(2K)E

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2


(a)

≤ −η/(2)KE
[
∥∇FH(wt)∥2

]
+ η/(2K)

(
(ξ3 + ξ4ξ1)E

[
∥∇FH(wt)∥2

]
+ ξ4ξ2 + ξ5

)
(b)

≤ −ηK

4
E
[
∥∇FH(wt)∥2

]
+ η/(2K) (ξ4ξ2 + ξ5) ,

where (a) holds when η ≤ 1
KL and (b) assumes that η

2K (ξ3 + ξ4ξ1) ≤ ηK
4 .

Reordering and telescoping over t, we obtain

1

T

T∑
t=1

E
[
∥∇FH(wt)∥2

]
≤ 4(E [FH(w1)]− E [FH(wT+1)])

TηK
+ η/(2K) (ξ4ξ2 + ξ5)
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with probability 1 − δKT by a union bound argument over all global iterations T . We let ∆ ≜ δKT , and ob-

tain ϵ ≥
√

64
ν log( 2(|H|−1)

δ ) =
√

64
ν log( 2(|H|−1)TK

∆ ). Since it is required to satisfy ϵ < 1, the proof holds for

ν ≥ 64 log( 2(|H|−1)TK
∆ ). Noting that FH(wT+1) ≥ F ⋆

H by definition concludes the proof. The requirements on the
learning rate are summarized as follows:

• 24Kη2L2 ≤ 1
3K → η ≤ 1√

72K2L

• 2η2 1
|H|

4d
ν 4L2 ≤ 1

3K → η ≤
√

|H|ν
96KdL2

• η ≤
√
6D2

K2 + 6 ζ2

K2 + 32d
νK2L2

The constants are summarized as

ξ1 ≜ 4η2K3 16

ν
+

4d

ν
4L25 · 32η2K

(
K +

d

|H|ν

)
ξ2 ≜ 4η2K3

((
d

2ν
+

80d2

ν2|H|
L2Kη2

)(
32ζ2 + 8σ2 + L2µ2d

)
+

80 · 24d
ν

L2η2K2Lµ

)
+ 12η2K3L

ξ3 ≜ 4K2L25 · 32η2K
(
K +

d

|H|ν

)
+

(
8K2 (1 + ϵ)

(1− ϵ)
κ+ 8

1

|H|
K

)(
16d

ν
+

80 · 32d
ν

L2η2K

(
K +

d

|H|ν

))
ξ4 ≜ 20 · 32K2L2η2

(
KD2 +

1

|H|
d

ν
L2

)(
K +

4d

ν

)
+ 8K

(1 + ϵ)

(1− ϵ)
κ

(
3D2 + 3ζ2 +

16d

ν
L2

)
+ 4KD2 + 8

1

|H|
16d

ν
L2

ξ5 ≜
(
32ζ2 + 8σ2 + L2µ2d

)(
20K3L2η2

d

|H|ν
+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)(
d

2ν
+

80d2

ν2|H|
L2Kη2

))
+ 4K2L25η224K2Lµ+ 4K2 (1 + ϵ)

(1− ϵ)
κ6L+ 8K2Lµ+

(
8

1

|H|
K + 8K2 (1 + ϵ)

(1− ϵ)
κ

)(
80 · 24d

ν
L2η2K2Lµ

)
,

and, with ϵ′ ≜ (1+ϵ)
(1−ϵ) , can be approximated by

ξ1 = Θ

(
η2K3 d

ν
+

d

ν
L2η2K

(
K +

d

|H|ν

))
(7)

ξ2 = Θ

(
η2K3

(
L+

(
d

ν
+

d2

ν2|H|
L2K2η2

)(
ζ2 + σ2 + L2µd

)))
(8)

ξ3 = Θ

(
d

ν

(
K2ϵ′κ+

K

|H|

)(
1 + L2η2K

(
K +

d

|H|ν

)
(1 +

ν

d
)

))
(9)

ξ4 = Θ

(
K2L2η2

(
K2D2 +

1

|H|
d2

ν2
L2

)
+Kϵ′κ

(
D2 + ζ2 +

d

ν
L2

))
(10)

ξ5 = Θ

((
ζ2 + σ2 + L2µ2d

)((
K2ϵ′κ

)(d

ν
+

d2

ν2|H|
L2Kη2

))
(11)

+K2L(ϵ′κ+ µ) +
(
K2ϵ′κ

)(d

ν
L2η2K2Lµ

))
. (12)

We now continue to prove all intermediate Lemmas C.4 to C.7.

Proof of Lemma C.4. By definition, E
[
∥ŵt,1 −wt∥2

]
= 0. For ℓ ∈ {2, · · · ,K}, we have

E
[
∥ŵt,ℓ −wt∥2

]
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= E

∥∥∥∥∥ŵt,ℓ−1 −
η

|H|
∑
i∈H

Zt,ℓ−1gi(w
i
t,ℓ−1,Zt,ℓ−1)−wt

∥∥∥∥∥
2


= E
[∥∥∥∥ŵt,ℓ−1 −wt − η

(
1

|H|
∑
i∈H

Zt,ℓ−1gi(w
i
t,ℓ−1,Zt,ℓ−1)−

1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1) +

1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1)

− 1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1) +

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)−∇FH(ŵt,ℓ−1) +∇FH(ŵt,ℓ−1)−∇FH(wt) +∇FH(wt)

)∥∥∥∥2]
≤ (1 +

1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+

(1 + τ)E
[∥∥∥∥− η

(
1

|H|
∑
i∈H

Zt,ℓ−1gi(w
i
t,ℓ−1,Zt,ℓ−1)−

1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1) +

1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1)

− 1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1) +

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)−∇FH(ŵt,ℓ−1) +∇FH(ŵt,ℓ−1)−∇FH(wt) +∇FH(wt)

)∥∥∥∥2]
(b)

≤ (1 +
1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 2(1 + τ)η2E

[∥∥∥∥ 1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1)−

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1) +

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)−∇FH(ŵt,ℓ−1)

+∇FH(ŵt,ℓ−1)−∇FH(wt) +∇FH(wt)

∥∥∥∥2]
+ 2η2

1

|H|2
∑
i∈H

E
[∥∥Zt,ℓ−1gi(w

i
t,ℓ−1,Zt,ℓ−1)−∇Fµ

i (w
i
t,ℓ−1)

∥∥2]

≤ (1 +
1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2E

∥∥∥∥∥ 1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1)−

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)

∥∥∥∥∥
2


+ 8(1 + τ)η2E
[
∥∇FH(wt)∥2

]
+ 8(1 + τ)η2E

∥∥∥∥∥ 1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)−∇FH(ŵt,ℓ−1)

∥∥∥∥∥
2
+ 8(1 + τ)η2E

[
∥∇FH(ŵt,ℓ−1)−∇FH(wt)∥2

]
+ 2η2

1

|H|2
∑
i∈H

E
[∥∥Zt,ℓ−1gi(w

i
t,ℓ−1,Zt,ℓ−1)−∇Fµ

i (w
i
t,ℓ−1)

∥∥2]
(13)

(c)

≤ (1 +
1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ+ 8(1 + τ)η2E

[
∥∇FH(wt)∥2

]
+ 8(1 + τ)η2

D2

|H|
∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 8(1 + τ)η2L2E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 2η2

1

|H|2
∑
i∈H

4d

ν

(
4L2E

[∥∥wi
t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 4ζ2 + 4L2E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 4E

[
∥∇FH(wt)∥2

])
+ 2η2

1

|H|
4d

ν
σ2 + 2η2

1

|H|
L2µ2d2

2ν
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(d)

≤
(
(1 +

1

τ
) + 8(1 + τ)η2L2 + 2η2

1

|H|
4d

ν
4L2

)
E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ

+

(
8(1 + τ)η2 + 2η2

1

|H|
4d

ν
4

)
E
[
∥∇FH(wt)∥2

]
+

(
8(1 + τ)η2

D2

|H|
+ 2η2

1

|H|2
4d

ν
4L2

)∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 2η2
1

|H|
4d

ν
4ζ2

+ 2η2
1

|H|
4d

ν
σ2 + 2η2

1

|H|
L2µ2d2

2ν

where (a) is by independence for i ̸= j, and (b) is because ∥x+ y∥2 = (1+ 1/τ) ∥x∥2 + (1+ τ) ∥y∥2, τ > 0. (c) follows
from Assumption 5.1, Assumption 5.4 and an intermediate step in the proof of Lemma C.5.

To ensure the bound holds uniformly for all ℓ ∈ [K], we now choose τ = 3K − 1 and the learning rate small enough so that(
(1 + 1

τ ) + 8(1 + τ)η2L2 + 2η2 1
|H|

4d
ν 4L2

)
≤ 1 + 1

K−1 , i.e., that 8(1 + τ)η2L2 ≤ 1
3K and 2η2 1

|H|
4d
ν 4L2 ≤ 1

3K . With
this choice of the learning rate, we have

E
[
∥ŵt,ℓ −wt∥2

]
≤ (1 +

1

K − 1
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ+

(
8(1 + τ)η2 + 2η2

1

|H|
4d

ν
4

)
E
[
∥∇FH(wt)∥2

]
+

(
8(1 + τ)η2

D2

|H|
+ 2η2

1

|H|2
4d

ν
4L2

)∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 2η2
1

|H|
4d

ν
4ζ2

+ 2η2
1

|H|
4d

ν
σ2 + 2η2

1

|H|
L2µ2d2

2ν

(d)

≤ ξ′6(ℓ)E
[
∥∇FH(wt)∥2

]
+ ξ′7(ℓ) + ξ′8

ℓ−1∑
ℓ′=1

∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2] ,

where (e) is by the recursive application of (d) and the fact that (1 + 1
K )ℓ ≤ (1 + 1

ℓ )
ℓ ≤ e for all ℓ ∈ [K]. This concludes

the proof. The constants are given as

ξ′6(ℓ) ≜ 5(ℓ− 1)

(
8(1 + τ)η2 + 2η2

1

|H|
4d

ν
4

)
≤ ξ6 ≜ 5 · 32η2K

(
K +

d

|H|ν

)
ξ′7(ℓ) ≜ 5(ℓ− 1)

(
2η2

1

|H|
4d

ν
4ζ2 + 2η2

1

|H|
4d

ν
σ2 + 2η2

1

|H|
L2µ2d2

2ν
+ 8(1 + τ)η2Lµ

)
≤ ξ7 ≜ 5Kη2

d

|H|ν
(
32ζ2 + 8σ2 + L2µ2d

)
+ 5η224K2Lµ

ξ′8 ≜ 5

(
8(1 + τ)η2D2 + 2η2

1

|H|
4d

ν
4L2

)
≤ ξ8 ≜ 5 · 32η2

(
KD2 +

1

|H|
d

ν
L2

)

Proof of Lemma C.5. For the proof of the zero-order approximated gradient variance, we rely on the following intermediate
lemma.

Lemma C.9. The second moment of the gradient estimate can be bounded from above as

E
[
∥zg(w, z, µ,D)∥2

]
≤ 2d ∥∇FH(w,D)∥2 + L2µ2d2

2
.

Proof.

E
[
∥zg(w, z, µ,D)∥2

]
= E

[∥∥∥∥dF (w + µz)− F (w − µz)

2µ

∥∥∥∥2
]
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= E

[∥∥∥∥dF (w + µz)− F (w) + F (w)− F (w − µz)

2µ

∥∥∥∥2
]

≤ 1

2
E

[∥∥∥∥dF (w + µz)− F (w)

µ

∥∥∥∥2
]
+

1

2
E

[∥∥∥∥dF (w − µz)− F (w)

µ

∥∥∥∥2
]

= E

[∥∥∥∥dF (w + µz)− F (w)

µ

∥∥∥∥2
]

≤ 2d ∥∇FH(w)∥2 + L2µ2d2

2
,

where the penultimate step holds by symmetry and the last step is from (Gao et al., 2018, Lemma 4.1).

We bound the zero-order approximated gradient variance as follows: Since E
[
∥Z − E [Z]∥2

]
≤ E

[
∥Z∥2

]
, and

E
[
zrt,ℓgi(w

i
t,ℓ, z

r
t,ℓ)
]
= ∇Fµ

i (w
i
t,ℓ), we have

E
[∥∥Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2] = E

∥∥∥∥∥1ν
ν∑

r=1

zrt,ℓgi(w
i
t,ℓ, z

r
t,ℓ)−∇Fµ

i (w
i
t,ℓ)

∥∥∥∥∥
2


(a)
=

1

ν2

ν∑
r=1

E
[∥∥zrt,ℓgi(wi

t,ℓ, z
r
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2]

≤ 1

ν2

ν∑
r=1

E
[∥∥zrt,ℓgi(wi

t,ℓ, z
r
t,ℓ)
∥∥2]

(b)

≤ 2d

ν2

ν∑
r=1

E
[
E
[∥∥gi(w

i
t,ℓ)
∥∥2]]+ L2µ2d2

2ν

≤ 2d

ν2

ν∑
r=1

E
[
E
[∥∥gi(w

i
t,ℓ)−∇Fi(w

i
t,ℓ) +∇Fi(w

i
t,ℓ)
∥∥2]]+ L2µ2d2

2ν

≤ 2d

ν2

ν∑
r=1

E
[
2E
[∥∥gi(w

i
t,ℓ)−∇Fi(w

i
t,ℓ)
∥∥2]+ 2

∥∥∇Fi(w
i
t,ℓ)
∥∥2]+ L2µ2d2

2ν

(c)

≤ 4d

ν2

ν∑
r=1

E
[∥∥∇Fi(w

i
t,ℓ)
∥∥2]+ 4d

ν
σ2 +

L2µ2d2

2ν
(14)

where (a) is due to the independence of zrt,ℓgi(w
i
t,ℓ, z

r
t,ℓ) and zr

′

t,ℓgi(w
i
t,ℓ, z

r′

t,ℓ) for r ̸= r′. (b) is by Lemma C.9. (c) follows
from Assumption 5.2.

E
[∥∥∇Fi(w

i
t,ℓ)
∥∥2]

= E
[∥∥∇Fi(w

i
t,ℓ)−∇Fi(ŵt,ℓ) +∇Fi(ŵt,ℓ)−∇FH(ŵt,ℓ) +∇FH(ŵt,ℓ)−∇FH(wt) +∇FH(wt)

∥∥2]
≤ 4E

[∥∥∇Fi(w
i
t,ℓ)−∇Fi(ŵt,ℓ)

∥∥2]+ 4E
[
∥∇Fi(ŵt,ℓ)−∇FH(ŵt,ℓ)∥2

]
+ 4E

[
∥∇FH(ŵt,ℓ)−∇FH(wt)∥2

]
+ 4E

[
∥∇FH(wt)∥2

]
≤ 4L2E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ 4ζ2 + 4L2E
[
∥ŵt,ℓ −wt∥2

]
+ 4E

[
∥∇FH(wt)∥2

]
.

Substituting the result in (14), we obtain

E
[∥∥Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2] = E

∥∥∥∥∥1ν
ν∑

r=1

zrt,ℓgi(w
i
t,ℓ, z

r
t,ℓ)−∇Fµ

i (w
i
t,ℓ)

∥∥∥∥∥
2

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≤ 4d

ν2

ν∑
r=1

(
4L2E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ 4ζ2 + 4L2E
[
∥ŵt,ℓ −wt∥2

]
+ 4E

[
∥∇FH(wt)∥2

])
+

4d

ν
σ2 +

L2µ2d2

2ν

=
4d

ν

(
4L2E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ 4ζ2 + 4L2E
[
∥ŵt,ℓ −wt∥2

]
+ 4E

[
∥∇FH(wt)∥2

])
+

4d

ν
σ2 +

L2µ2d2

2ν

≤ 4d

ν

(
4L2E

[∥∥wi
t,ℓ − ŵt,ℓ

∥∥2]+ 4ζ2 + 4E
[
∥∇FH(wt)∥2

])
+

4d

ν
σ2 +

L2µ2d2

2ν

+
4d

ν
4L2

(
ξ6E

[
∥∇FH(wt)∥2

]
+ ξ7 + ξ8

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2])

≤ ξ′9E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2]+ ξ′12 + ξ′11E
[
∥∇FH(wt)∥2

]
+ ξ′10

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2] ,

where the latter is by Lemma C.4, and we have

ξ′9 ≜ ξ9 ≜
4d

ν
4L2

ξ′10 ≜
4d

ν
4L2ξ8 ≤ ξ10 ≜

4d

ν
4L25 · 32η2

(
KD2 +

1

|H|
d

ν
L2

)
ξ′11 ≜

4d

ν
4 +

4d

ν
4L2ξ6 ≤ ξ11 ≜

4d

ν
4 +

4d

ν
4L25 · 32η2K

(
K +

d

|H|ν

)
ξ′12 ≜

4d

ν
4ζ2 +

4d

ν
σ2 +

L2µ2d2

2ν
+

4d

ν
4L2ξ7

≤ d

2ν

(
32ζ2 + 8σ2 + L2µ2d

)
+

4d

ν
4L2

(
5Kη2

d

|H|ν
(
32ζ2 + 8σ2 + L2µ2d

)
+ 5η224K2Lµ

)
≤ ξ12 ≜

(
d

2ν
+

80d2

ν2|H|
L2Kη2

)(
32ζ2 + 8σ2 + L2µ2d

)
+

4d

ν
4L25η224K2Lµ.

This concludes the proof.

Proof of Lemma C.6. We start with stating an intermediate lemma proven by (Wang et al., 2024).

Lemma C.10 (Extracted from Lemma B.1, (Wang et al., 2024)). The following holds for the divergence of the local
gradients: ∥∥∥∥∥∥ 1

|H|
∑
j∈H

∇Fj(w
j
t,ℓ)−∇Fi(w

i
t,ℓ)

∥∥∥∥∥∥
2

≤ 3
D2

|H|
∑
j∈H

∥∥∥ŵt,ℓ −wj
t,ℓ

∥∥∥2 + 3L+ 3ζ2
∥∥ŵt,ℓ −wi

t,ℓ

∥∥2 .
Following similar lines as in the proof of (Wang et al., 2024, Lemma B.2), for some local iteration m ∈ [ℓ], we have

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


= E

[∥∥∥∥Zt,mgi(w
i
t,m,Zt,m)−∇Fi(w

i
t,m) +∇Fi(w

i
t,m)

− 1

|H|
∑
j∈H

∇Fj(w
j
t,m) +

1

|H|
∑
j∈H

∇Fj(w
j
t,m)− 1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥
]

≤ 2E


∥∥∥∥∥∥∇Fi(w

i
t,m)− 1

|H|
∑
j∈H

∇Fj(w
j
t,m)

∥∥∥∥∥∥
2

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+ 2E


∥∥∥∥∥∥Zt,mgi(w

i
t,m,Zt,m)−∇Fi(w

i
t,m) +

1

|H|
∑
j∈H

∇Fj(w
j
t,m)− 1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


(a)

≤ 2E


∥∥∥∥∥∥∇Fi(w

i
t,m)− 1

|H|
∑
j∈H

∇Fj(w
j
t,m)

∥∥∥∥∥∥
2


+ 2E
[∥∥Zt,mgi(w

i
t,m,Zt,m)−∇Fi(w

i
t,m)

∥∥2]
≤ 2E

3D2

|H|
∑
j∈H

∥∥∥ŵt,m −wj
t,m

∥∥∥2 + 3L+ 3ζ2
∥∥ŵt,m −wi

t,m

∥∥2
+ 2E

[∥∥(Zt,mgi(w
i
t,m,Zt,m)−∇Fi(w

i
t,m)

)∥∥2] , (15)

where (a) is since 1
|H|
∑

i∈H

∥∥∥xi − 1
|H|
∑

j∈H xj

∥∥∥2 = 1
|H|
∑

j∈H ∥xj∥2 −
∥∥∥ 1
|H|
∑

j∈H xj

∥∥∥2 ≤ 1
|H|
∑

i∈H ∥xi∥2 for

xi ∈ Rd,∀i, where we set xi = Zt,mgi(w
i
t,m,Zt,m)−∇Fi(w

i
t,m).

Summing over all benign clients, we obtain

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


(a)

≤ 2

ℓ∑
m=1

E

[(
3
D2

|H|
+ 3

ζ2

|H|

)∑
i∈H

∥∥ŵt,m −wi
t,m

∥∥2 + 3L

]

+ 2

ℓ∑
m=1

1

|H|
∑
i∈H

(
ξ9E

[∥∥wi
t,m − ŵt,m

∥∥2]+ ξ12 + ξ11E
[
∥∇FH(wt)∥2

]
+ ξ10

m−1∑
ℓ′=1

∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2])

≤ 2

ℓ∑
m=1

1

|H|
∑
i∈H

((
3D2 + 3ζ2 + ξ9

)
E
[∥∥wi

t,m − ŵt,m

∥∥2]+ ξ12 + 3L

+ ξ11E
[
∥∇FH(wt)∥2

]
+ ξ10

m−1∑
ℓ′=1

∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2])

≤ 2

ℓ∑
m=1

1

|H|
∑
i∈H

((
3D2 + 3ζ2 + ξ9

)
E
[∥∥wi

t,m − ŵt,m

∥∥2]+ ξ12 + 3L

+ ξ11E
[
∥∇FH(wt)∥2

]
+ ξ10ℓ(ℓ− 1)

1

|H|
∑
i∈H

E
[∥∥wi

t,m − ŵt,m

∥∥2])

≤
ℓ∑

m=1

1

|H|
∑
i∈H

ξ′13(ℓ)E
[∥∥ŵt,m −wi

t,m

∥∥2]+ ℓ∑
m=1

(ξ14 + ξ15) +

ℓ∑
m=1

ξ16E
[
∥∇FH(wt)∥2

]
,

where (a) is due to Lemma C.5 and (b) is since
∑ℓ

m=1

∑m
ℓ′=1 xm ≤ ℓ(ℓ−1)

2

∑
m xm. Thereby,

ξ′13(ℓ) ≜ 2(3D2 + 3ζ2 + ξ9 + ξ10ℓ(ℓ− 1)) ≤ ξ13 ≜ 6D2 + 6ζ2 + 2ξ9 + 2ξ10K
2

ξ14 ≜ 2ξ12

ξ15 ≜ 6L

ξ16 ≜ 2ξ11.

This concludes the proof.
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Proof of Lemma C.7. From Lemma C.6, we have

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] = K∑
ℓ=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥η

ℓ∑
m=1

Zt,mgi(w
i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


≤ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


= η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

∑
i∈H

1

|H|
ξ13E

[∥∥ŵt,m −wi
t,m

∥∥2]+ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ16E
[
∥∇FH(wt)∥2

]

≤ η2
K∑
ℓ=1

1

|H|
∑
i∈H

K2ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ16E
[
∥∇FH(wt)∥2

]
.

We rewrite the equation as

(
1− η2K2ξ13

) K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ16E
[
∥∇FH(wt)∥2

]
and choose the learning rate small enough so that

(
1− η2K2ξ13

)
≥ 1

2 . Letting ξ13 = 6D2 + 6ζ2 + 32d
ν L2 +

160·32d
ν L2η2

(
KD2 + 1

|H|
d
νL

2
)
K2, we require that η ≤

√
6D2

K2 + 6 ζ2

K2 + 32d
νK2L2 + 160·32d

ν L2η2
(
KD2 + 1

|H|
d
νL

2
)

.

Since 160·32d
ν L2η2

(
KD2 + 1

|H|
d
νL

2
)
≥ 0, it suffices to let η ≤

√
6D2

K2 + 6 ζ2

K2 + 32d
νK2L2. Hence, we obtain

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ ξ′2 + ξ′1E
[
∥∇FH(wt)∥2

]
,

where

ξ′1 ≜ 2η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ16 ≤ 2η2K3ξ16 ≤ ξ1 ≜ 4η2K3ξ11,

ξ′2 ≜ 2η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + 2η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15 ≤ ξ2 ≜ 4η2K3ξ12 + 12η2K3L.

C.2.2 PROOF OF THEOREM 5.7 FOR µ = 0

Proof. For the proof of the projected gradient variance, we rely on the following intermediate lemma.

Lemma C.11. The second moment of the projected gradient according to Definition 2.1 for µ = 0 is bounded as

E
[
∥zg(w, z, µ,D)∥2

]
≤ d ∥∇F (w,D)∥2 .

Proof of Lemma C.11.

E
[
∥zg(w, z, µ,D)∥2

]
= E

[
∥dz ⟨∇F (w,D), z⟩∥2

]
= E

[∥∥dzzT∇F (w,D)
∥∥2]

= E
[
d2∇F (w,D)T zzT zzT∇F (w,D)

]
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= d2∇F (w,D)TE
[
zzT

]
∇F (w,D)

= d∇F (w,D)T∇F (w,D)

= d ∥∇F (w,D)∥2 ,

where the penultimate step is by (Gao et al., 2018, Lemma 7.3), which states that E
[
zzT

]
= 1

dI, for I being the identity
matrix.

Accordingly, the bound in Lemma C.9 for the zero-order estimate is an upper bound to the result of Lemma C.11 when
choosing µ = 0 in Lemma C.9. Further, we observe that Proposition C.2 still holds for µ = 0, due to a non-zero bias in
the gradient projection case. Since those are the only two intermediate results where the case of gradient projection differs
from the zero-order estimate, the result established in Theorem 5.7 holds for the gradient projection case when choosing
µ = 0.

C.3 Proof of Theorem 5.6

Proof. We assume for all that follows that the objective F exhibits a G-Lipschitz behavior. Similar to the proof of
Theorem 5.7, we first state necessary intermediate lemmas, which we prove in the sequel. All lemmas hold under
Assumptions 5.1 to 5.5 and a robust aggregator according to Definition 2.2.

Lemma C.12. Let

ξ6 ≜ 5 · 16η2K2

ξ7 ≜ 5Kη2
φ2G2d

|H|ν
+ 5η216K2Lµ

ξ8 ≜ 5 · 16η2
(
KD2

)
For a learning rate satisfying η ≤

√
1

32L2K2 , we have the following upper bound on the averaged local model divergence:

E
[
∥ŵt,ℓ −wt∥2

]
≤ ξ6E

[
∥∇FH(wt)∥2

]
+ ξ7 + ξ8

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2]

Lemma C.13. The following holds for the gradient estimate variance

E
[∥∥Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2] ≤ φ2G2d

ν

Lemma C.14. Let

ξ13 ≜ 6D2 + 6ζ2

ξ14 ≜ 2
φ2G2d

ν

ξ15 ≜ 6L

Then

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


≤
ℓ∑

m=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,m −wi

t,m

∥∥2]+ ℓ∑
m=1

(ξ14 + ξ15)
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Lemma C.15. Let

ξ2 ≜ 4η2K3φ
2G2d

ν
+ 12η2K3L.

For a learning rate that satisfies η ≤
√

1
12K2(D2+ζ2) , we have

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ ξ2

To proof Theorem 5.6, we first follow the same lines as in the proof of Theorem 5.7, arriving at Equation (2). We continue
with bounding the individual terms.

E

∥∥∥∥∥
K∑
ℓ=1

(∑
i∈H

1

|H|
∇Fi(w

i
t,ℓ)− Zt,ℓḡH(wi

t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥
K∑
ℓ=1

∑
i∈H

1

|H|
(
∇Fi(w

i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥∥∥∥

2
+ 2E

∥∥∥∥∥
K∑
ℓ=1

∑
i∈H

1

|H|
(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2


(a)

≤ 2
K

|H|
∑
i∈H

K∑
ℓ=1

∥∥(∇Fi(w
i
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
)∥∥2 + 2

1

|H|2
∑
i∈H

E

∥∥∥∥∥
K∑
ℓ=1

(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)∥∥∥∥∥
2


(b)

≤ 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

E
[∥∥∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

∥∥2]
(c)

≤ 2K2Lµ+ 2
1

|H|2
∑
i∈H

K∑
ℓ=1

φ2G2d

ν

(c)

≤ 2K2Lµ+ 2
1

|H|
K

φ2G2d

ν
(16)

where (a) is due to the independence of
∑K

ℓ=1

(
∇Fµ

i (w
i
t,ℓ)− Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)

)
and∑K

ℓ=1

(
∇Fµ

j (w
j
t,ℓ)− Zt,ℓgj(w

j
t,ℓ,Zt,ℓ)

)
for i ̸= j. (b) follows from Proposition C.1 and (Wang et al., 2021,

Lemma 2). (c) is by the application of Lemma C.13.

We continue with bounding the robustness term using as the main ingredient a double-sided application of an extended
Johnson-Lindenstrauss Lemma as stated in Lemma C.8 and the application of Lemma C.14. We have

E

∥∥∥∥∥
K∑
ℓ=1

Zt,ℓ

(
Rt,ℓ − ḡH(wi

t,ℓ,Zt,ℓ)
)∥∥∥∥∥

2


≤ K

K∑
ℓ=1

∥∥Zt,ℓ

(
Rt,ℓ − ḡH(wi

t,ℓ,Zt,ℓ)
)∥∥2

(a)

≤ K

K∑
ℓ=1

(1 + ϵ)
κ

|H|
∑
i∈H

E
[∥∥gi(w

i
t,ℓ,Zt,ℓ)− ḡH(wi

t,ℓ,Zt,ℓ)
∥∥2]

(b)

≤ K

K∑
ℓ=1

(1 + ϵ)

(1− ϵ)

κ

|H|
∑
i∈H

E
[∥∥Zt,ℓ(gi(w

i
t,ℓ,Zt,ℓ)− ḡH(wi

t,ℓ,Zt,ℓ))
∥∥2]

(c)

≤ K
(1 + ϵ)

(1− ϵ)
κ

(
K∑
ℓ=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ K∑
ℓ=1

(ξ14 + ξ15)

)
(17)
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where (a) and (b) are by the application of Lemma C.8 for in total |H|+ 1 projections. By a union bound over Lemma C.8,

the distance preservation holds with probability 1 − δ for ϵ ≥
√

64
ν log( 2(|H|−1)

δ ). We choose the smallest possible ϵ.
This must hold for each iteration, so the distance preservation holds w.p. at least 1 −Kδ for all local epochs. (c) is by
Lemma C.6.

To bound the local model divergence from the global model, by Lemma C.4, we have

K∑
ℓ=1

E
[
∥ŵt,ℓ −wt∥2

]
≤

K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8

ℓ−1∑
ℓ′=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2]

≤
K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8K(K − 1)

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] , (18)

where the latter follows since
∑K

ℓ=1

∑ℓ−1
ℓ′=1 xℓ′ ≤

∑K
ℓ=1

∑ℓ
ℓ′=1 xℓ′ ≤ K(K−1)

2

∑
ℓ xℓ.

Plugging (3), (17), and (18) into (2), we obtain

E

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Zt,ℓRt,ℓ

∥∥∥∥∥
2


≤ 4KL2

(
K∑
ℓ=1

ξ6E
[
∥∇FH(wt)∥2

]
+

K∑
ℓ=1

ξ7 +

K∑
ℓ=1

ξ8K(K − 1)

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2])

+ 4

(
K

(1 + ϵ)

(1− ϵ)
κ

(
K∑
ℓ=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ K∑
ℓ=1

(ξ14 + ξ15)

))

+ 4K

K∑
ℓ=1

D2

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2]+ 4

(
2K2Lµ+ 2

1

|H|
K

φ2G2d

ν

)

≤ ξ′3E
[
∥∇FH(wt)∥2

]
+ ξ′4

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ ξ′5

≤ ξ′3E
[
∥∇FH(wt)∥2

]
+ ξ′4ξ2 + ξ′5, (19)

where

ξ′3 ≜ 4KL2
K∑
ℓ=1

ξ6 ≤ ξ3 ≜ 4K4L25 · 16η2

ξ′4 ≜ 4KL2ξ8K(K − 1) + 4K
(1 + ϵ)

(1− ϵ)
κξ13 + 4KD2

≤ 4KL25 · 16η2
(
KD2

)
K(K − 1) + 4Kκ

(1 + ϵ)

(1− ϵ)
6(D2 + ζ2) + 4KD2

≤ ξ4 ≜ 20 · 16K4L2η2D2 + 4K
(1 + ϵ)

(1− ϵ)
κ6(D2 + ζ2) + 4KD2

ξ′5 ≜ 4KL2
K∑
ℓ=1

ξ7 + 4K
(1 + ϵ)

(1− ϵ)
κ

K∑
ℓ=1

(ξ14 + ξ15) + 4 · 2K2Lµ+ 4 · 2 1

|H|2
K

φ2G2d

ν

≤ 4KL2
K∑
ℓ=1

(
5Kη2

φ2G2d

|H|ν
+ 5η216K2Lµ

)
+ 4K

(1 + ϵ)

(1− ϵ)
κ

K∑
ℓ=1

(2
φ2G2d

ν
+ 6L)

+ 4 · 2K2Lµ+ 4 · 2 1

|H|2
K

φ2G2d

ν

≤ 4K2L2

(
5Kη2

φ2G2d

|H|ν
+ 5η216K2Lµ

)
+ 4K2 (1 + ϵ)

(1− ϵ)
κ(2

φ2G2d

ν
+ 6L)
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+ 4 · 2K2Lµ+ 4 · 2 1

|H|2
K

φ2G2d

ν

≤ ξ5 ≜ 4K
φ2G2d

ν

(
5K2L2η2

1

|H|
+ 2K

(1 + ϵ)

(1− ϵ)
κ+

8

|H|2

)
+ 4K2L

(
5η216K2L2µ+ 6κ

(1 + ϵ)

(1− ϵ)
+ 2µ

)

By taking the expectation over (1) and replacing E
[∥∥∥K∇FH(wt)−

∑K
ℓ=1 Zt,ℓRt,ℓ

∥∥∥2] by (6), we can write

E [FH(wt+1)]− E [FH(wt)]

≤ −η/(2)KE
[
∥∇FH(wt)∥2

]
+

(
η2L

2
− η

2K

)
E

∥∥∥∥∥
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2


+ η/(2K)E

∥∥∥∥∥K∇FH(wt)−
K∑
ℓ=1

Rt,ℓZt,ℓ

∥∥∥∥∥
2


(a)

≤ −η/(2)KE
[
∥∇FH(wt)∥2

]
+ η/(2K)

(
ξ3E

[
∥∇FH(wt)∥2

]
+ ξ4ξ2 + ξ5

)
(b)

≤ −ηK

4
E
[
∥∇FH(wt)∥2

]
+ η/(2K) (ξ4ξ2 + ξ5) ,

where (a) holds when η ≤ 1
KL and (b) assumes that η/(2K)ξ3 = η/(2K)4K2L25 · 16η2K2 ≤ ηK

4 . The learning rate
must hence satisfy η2 ≤ 1

8·K2L25·16 , and consequently η ≤ 1
26KL .

Reordering and telescoping over t, we obtain

1

T

T∑
t=1

E
[
∥∇FH(wt)∥2

]
≤ 4(E [FH(w1)]− E [FH(wT+1)])

TηK
+ η/(2K) (ξ4ξ2 + ξ5)

with probability 1 − δKT by a union bound argument over all global iterations T . Noting that FH(wT+1) ≥ F ⋆
H by

definition concludes the proof.

Since the learning rates must satisfy η ≤ 1
6KL ≤

√
1

32L2K2 , η ≤ 1

4K
√

D2+ζ2
≤
√

1
12K2(D2+ζ2) and η ≤ 1

26KL for all

lemmas to hold, and hence η ≤ min

{
1

26KL ,
1

4K
√

D2+ζ2

}
, we have

η/(2K) (ξ4ξ2 + ξ5)

=
η

2K

(
4η2K3φ

2G2d

ν
+ 12η2K3L

)(
20 · 16K4L2η2D2 + 4K

(1 + ϵ)

(1− ϵ)
κ6(D2 + ζ2) + 4KD2

)
+ 4K

φ2G2d

ν

η

2K

(
5K2L2η2

1

|H|
+ 2K

(1 + ϵ)

(1− ϵ)
κ+

8

|H|2

)
+ 4K2L

η

2K

(
5η216K2L2µ+ 6κ

(1 + ϵ)

(1− ϵ)
+ 2µ

)
= 2η3K2

(
φ2G2d

ν
+ 3L

)(
20 · 16K4L2η2D2 + 4K

(1 + ϵ)

(1− ϵ)
κ6(D2 + ζ2) + 4KD2

)
+ 2

φ2G2d

ν
η

(
5K2L2η2

1

|H|
+ 2K

(1 + ϵ)

(1− ϵ)
κ+

8

|H|2

)
+ 4K2L

η

2K

(
5η216K2L2µ+ 6κ

(1 + ϵ)

(1− ϵ)
+ 2µ

)
= 2ηK

(
φ2G2d

L2ν
+ 3

1

L

)(
13KD2 + 4

(1 + ϵ)

(1− ϵ)
κ6(D2 + ζ2) + 4D2

)
+ 2η

φ2G2d

ν

(
1

5|H|
+ 2K

(1 + ϵ)

(1− ϵ)
κ+

8

|H|2

)
+ 2KLη

(
6κ

(1 + ϵ)

(1− ϵ)
+ 6µ

)
.
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We let ∆ ≜ δKT , and obtain ϵ ≥
√

64
ν log( 2(|H|−1)

δ ) =
√

64
ν log( 2(|H|−1)TK

∆ ). Since it is required to satisfy ϵ < 1, the

proof holds for ν ≥ 64 log( 2(|H|−1)TK
∆ ). This concludes the proof.

Proof of Lemma C.13. For the proof of the zero-order approximated gradient variance, we rely on the following intermediate
lemma.

Lemma C.16 (Lemma 5.3, (Tang et al., 2020)). Let F be G-Lipschitz. Then for any w ∈ Rd, z and µ > 0, we have for a
numerical constant φ > 0 according to (Tang et al., 2020) that

E
[∥∥zT g(w, z, µ,D)

∥∥2] ≤ φ2G2d.

We bound the zero-order approximated gradient variance as follows: Since E
[
∥Z − E [Z]∥2

]
≤ E

[
∥Z∥2

]
, and

E
[
zrt,ℓgi(w

i
t,ℓ, z

r
t,ℓ)
]
= ∇Fµ

i (w
i
t,ℓ), we have

E
[∥∥Zt,ℓgi(w

i
t,ℓ,Zt,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2] = E

∥∥∥∥∥1ν
ν∑

r=1

zrt,ℓgi(w
i
t,ℓ, z

r
t,ℓ)−∇Fµ

i (w
i
t,ℓ)

∥∥∥∥∥
2


(a)
=

1

ν2

ν∑
r=1

E
[∥∥zrt,ℓgi(wi

t,ℓ, z
r
t,ℓ)−∇Fµ

i (w
i
t,ℓ)
∥∥2]

≤ 1

ν2

ν∑
r=1

E
[∥∥zrt,ℓgi(wi

t,ℓ, z
r
t,ℓ)
∥∥2] (b)

≤ φ2G2d

ν

where (a) is due to the independence of zrt,ℓgi(w
i
t,ℓ, z

r
t,ℓ) and zr

′

t,ℓgi(w
i
t,ℓ, z

r′

t,ℓ) for r ̸= r′. (b) is by Lemma C.16.

Proof of Lemma C.12. By definition, E
[
∥ŵt,1 −wt∥2

]
= 0. From (13), we have for ℓ ∈ {2, · · · ,K},

E
[
∥ŵt,ℓ −wt∥2

]
≤ (1 +

1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2E

∥∥∥∥∥ 1

|H|
∑
i∈H

∇Fµ
i (w

i
t,ℓ−1)−

1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)

∥∥∥∥∥
2


+ 8(1 + τ)η2E
[
∥∇FH(wt)∥2

]
+ 8(1 + τ)η2E

∥∥∥∥∥ 1

|H|
∑
i∈H

∇Fi(w
i
t,ℓ−1)−∇FH(ŵt,ℓ−1)

∥∥∥∥∥
2
+ 8(1 + τ)η2E

[
∥∇FH(ŵt,ℓ−1)−∇FH(wt)∥2

]
+ 2η2

1

|H|2
∑
i∈H

E
[∥∥Zt,ℓ−1gi(w

i
t,ℓ−1,Zt,ℓ−1)−∇Fµ

i (w
i
t,ℓ−1)

∥∥2]
(a)

≤ (1 +
1

τ
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ+ 8(1 + τ)η2E

[
∥∇FH(wt)∥2

]
+ 8(1 + τ)η2

D2

|H|
∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 8(1 + τ)η2L2E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 2η2

1

|H|2
∑
i∈H

φ2G2d

ν
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=

(
(1 +

1

τ
) + 8(1 + τ)η2L2

)
E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ

+
(
8(1 + τ)η2

)
E
[
∥∇FH(wt)∥2

]
+

(
8(1 + τ)η2

D2

|H|

)∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 2η2
1

|H|
φ2G2d

ν
,

where (a) follows from Assumption 5.1, Assumption 5.4 and an intermediate step in the proof of Lemma C.5.

To ensure the bound holds uniformly for all ℓ ∈ [K], we now choose τ = 2K − 1 and the learning rate small enough so
that

(
(1 + 1

τ ) + 8(1 + τ)η2L2
)
≤ 1 + 1

K−1 , i.e., that 8(1 + τ)η2L2 ≤ 1
2K . Hence, the learning rate is required to satisfy

η ≤
√

1
32L2K2 With this choice of the learning rate, we have

E
[
∥ŵt,ℓ −wt∥2

]
≤ (1 +

1

K − 1
)E
[
∥ŵt,ℓ−1 −wt∥2

]
+ 8(1 + τ)η2Lµ+

(
8(1 + τ)η2

)
E
[
∥∇FH(wt)∥2

]
+

(
8(1 + τ)η2

D2

|H|

)∑
i∈H

E
[∥∥wi

t,ℓ−1 − ŵt,ℓ−1

∥∥2]+ 2η2
1

|H|
φ2G2d

ν

(d)

≤ ξ′6(ℓ)E
[
∥∇FH(wt)∥2

]
+ ξ′7(ℓ) + ξ′8

ℓ−1∑
ℓ′=1

∑
i∈H

E
[∥∥wi

t,ℓ′ − ŵt,ℓ′
∥∥2] ,

where (e) is by the recursive application of (d) and the fact that (1 + 1
K )ℓ ≤ (1 + 1

ℓ )
ℓ ≤ e ≤ 5 for all ℓ ∈ [K]. This

concludes the proof. The constants are given as

ξ′6(ℓ) ≜ 5(ℓ− 1)
(
8(1 + τ)η2

)
≤ ξ6 ≜ 5 · 16η2K2

ξ′7(ℓ) ≜ 5(ℓ− 1)

(
2η2

1

|H|
φ2G2d

ν
+ 8(1 + τ)η2Lµ

)
≤ ξ7 ≜ 5Kη2

φ2G2d

|H|ν
+ 5η216K2Lµ

ξ′8 ≜ 5
(
8(1 + τ)η2D2

)
≤ ξ8 ≜ 5 · 16η2

(
KD2

)

Proof of Lemma C.14. Using (15) , we obtain

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


(a)

≤ 2

ℓ∑
m=1

E

[(
3
D2

|H|
+ 3

ζ2

|H|

)∑
i∈H

∥∥ŵt,m −wi
t,m

∥∥2 + 3L

]

+ 2

ℓ∑
m=1

1

|H|
∑
i∈H

(
φ2G2d

ν

)

≤
ℓ∑

m=1

1

|H|
∑
i∈H

ξ13E
[∥∥ŵt,m −wi

t,m

∥∥2]+ ℓ∑
m=1

(ξ14 + ξ15)

where (a) is due to Lemma C.13. Thereby,

ξ13 ≜ 6D2 + 6ζ2
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ξ14 ≜ 2
φ2G2d

ν

ξ15 ≜ 6L

Proof of Lemma C.15. From Lemma C.14, we have

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2]

=

K∑
ℓ=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥η

ℓ∑
m=1

Zt,mgi(w
i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


≤ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

1

|H|
∑
i∈H

E


∥∥∥∥∥∥Zt,mgi(w

i
t,ℓ,Zt,ℓ)−

1

|H|
∑
j∈H

Zt,mgj(w
j
t,m,Zt,m)

∥∥∥∥∥∥
2


= η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

∑
i∈H

1

|H|
ξ13E

[∥∥ŵt,m −wi
t,m

∥∥2]+ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15

≤ η2
K∑
ℓ=1

1

|H|
∑
i∈H

K2ξ13E
[∥∥ŵt,ℓ −wi

t,ℓ

∥∥2]+ η2put

K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15

We rewrite the expression as

(
1− η2K2ξ13

) K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15

and choose the learning rate small enough so that
(
1− η2K2ξ13

)
=
(
1− 6η2K2(D2 + ζ2)

)
≥ 1

2 . Hence, we obtain

K∑
ℓ=1

1

|H|
∑
i∈H

E
[∥∥wi

t,ℓ − ŵt,ℓ

∥∥2] ≤ ξ′2,

where

ξ′2 ≜ 2η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ14 + 2η2
K∑
ℓ=1

ℓ

ℓ∑
m=1

ξ15 ≤ ξ2 ≜ 4η2K3φ
2G2d

ν
+ 12η2K3L.

The learning rate must satisfy η ≤
√

1
12K2(D2+ζ2) . This concludes the proof.
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