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Abstract
Momentum based optimizers are central to a wide range of machine learning applications. These
typically rely on an Exponential Moving Average (EMA) of gradients, which decays exponen-
tially the present contribution of older gradients. This accounts for gradients being local linear
approximations which lose their relevance as the iterate moves along the loss landscape. This work
questions the use of a single EMA to accumulate past gradients and empirically demonstrates how
this choice can be sub-optimal: a single EMA cannot simultaneously give a high weight to the
immediate past, and a non-negligible weight to older gradients. Building on this observation, we
propose AdEMAMix, a simple modification of the Adam optimizer with a mixture of two EMAs
to better take advantage of past gradients. Our experiments on language modeling show—quite
surprisingly—that gradients can stay relevant for tens of thousands of steps. They help to converge
faster, and often to lower minima: e.g., a 1.3B parameter AdEMAMix LLM trained on 101B tokens
performs comparably to an AdamW model trained on 197B tokens (+95%). Moreover, our method
significantly slows-down model forgetting during training. Our work motivates further exploration
of different types of functions to leverage past gradients, beyond EMAs. For an extended version of
this work, see: https://arxiv.org/abs/2409.03137.

1. Introduction

With large neural networks, deep-learning has revolutionized numerous fields, such as computer
vision and natural language processing. At the heart of this paradigm lies the challenge of optimizing
complex, non-convex loss functions using noisy gradient estimates. This optimization process is
typically carried out using variants of Stochastic Gradient Descent (SGD) [28] or adaptive methods
such as Adam and AdamW [16, 19], which have become ubiquitous in training state-of-the-art
models [1, 5–8, 27, 33, 36].

A key component in many of these iterative optimization algorithms is momentum, which
has long been shown to accelerate convergence [21] and often leads to solutions with superior
generalization properties [31]. By accumulating gradient vectors over successive optimization steps,
momentum helps overcome small local variations of the loss landscape, potentially escaping shallow
local minima, and accelerate in plateau regions [12, 26, 29]. Both SGD with momentum (SGD+M)
and Adam incorporate momentum under the form of Exponential Moving Averages (EMAs) of past
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(c) 1.3B parameters.

Figure 1: Comparing AdamW and AdEMAMix on language modeling. In (a,b,c), we plot
the loss obtained using AdamW and AdEMAMix (our optimizer) to train Transformer models of
various sizes on the Redpajama dataset. In (a), we train multiple baselines for 256k, 400k, and 500k
iterations, resulting in processing from 17B to 33B tokens. Two AdamW runs with different number
of iterations look very different as we use a cosine-decay for the learning rate. We compare those
baselines to training AdEMAMix for 256k iterations. We observe that our method reaches a similar
loss as an AdamW model trained on nearly twice the number of tokens. Analogous comparisons
can be derived from (b) and (c). Notably, in (c), a 1.3B parameter AdEMAMix model trained on
101B tokens performs comparably to an AdamW model trained on 197B tokens (95% more, blue
horizontal line).

gradients GT = {g(0), . . . , g(T )}:

EMA(β,GT ) ≜ β · EMA(β,G(T−1)) + (1− β)g(T ) =

T∑
i=0

βi(1− β)g(T−i). (EMA)

Two considerations support the use of EMAs. From a practical standpoint, the recursive formula of
EMA allows for efficient implementations, which do not require maintaining a buffer of past gradients.
From a theoretical standpoint, gradient descent with momentum leads to optimal convergence rates for
quadratics [22, 25]. However, those results do not guarantee any optimality for general non-quadratic
cases [13].

The use of momentum in optimization is grounded in the varying nature of gradients. As local
linear approximations of the loss landscape, their information can quickly become outdated as
the optimization process progresses [24]. For this reason, practitioners typically employ moderate
momentum values (i.e. β ≈ 0.8 or 0.9), effectively creating a moving average of recent gradients
while discarding older information. Selecting larger β values seems counter-intuitive, as it would
suggest that older gradients maintain their relevance over extended periods of training. While it is
tempting to see the use of small βs as a confirmation of the limited temporal relevance of gradients,
our work reveals instead that older gradients can efficiently be used. When we increase β, we
decrease the relative importance of recent gradients, and the iterate now fails to respond to local
changes in the loss landscape. We observe that a single EMA cannot both give a significant weight to
recent gradients, and give a non-negligible weight to older gradients. However, a linear combination
between a “fast-changing” (e.g. β = 0.9 or β = 0) and a “slow-changing” (e.g. β = 0.9999) EMA
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allows the iterate to beneficiate from (i) the great speedup provided by the larger (slow-changing)
momentum, while (ii) still being reactive to small changes in the loss landscape (fast-changing). More
precisely, we find the following statement to convey an important intuition behind this approach:

While changing the direction of the slow momentum is difficult, any adjustment orthogonal
to that direction is easy—which favors fast progress in sinuous canyon-like landscapes.

A toy illustration of this can be seen in Fig. 3. Based on this idea, we propose AdEMAMix (Adaptive
EMA Mixture), a novel Adam based optimizer which successfully leverages very old gradients to
reach better solutions.

Contributions. Our contributions can be summarized as follows: (i) We propose AdEMAMix, a
novel optimizer which better leverages past gradients by avoiding a common pitfall of EMA-based
optimizers (see § 3). (ii) We empirically demonstrate the superiority of our method over Adam by
training Transformer language models of up to 1.3B parameters (see § 4). (iii) We show AdEMAMix
forgets the training data slower when compared to Adam (see Fig. 2). (iv) More broadly, our findings
contribute to a deeper understanding of the optimal balance between using historical gradients and
adapting to the rapidly changing loss landscape. Our work invites further research in methods
combining old and recent gradients, beyond EMAs.

2. Related Work

Works on understanding momentum. From the seminal work of [25], many publications analyzed
the effect of gradient descent + momentum (GD+M) in both convex and non-convex settings
[4, 9, 10, 15, 30]. While the acceleration in the noise-free setting has been long theorized for convex
functions, several publications indicate this effect might not necessarily extend to stochastic settings
[15, 17, 35], emphasizing instead a link between momentum and effective learning rate. Recent work
have been seeking to understand the impact of momentum on generalization through studying the
implicit bias of momentum methods [11, 23], exposing a preference of SGD+M for lower norm
solutions. Those further exposed a link between higher momentum and higher effective learning rate
and higher variance reduction. Despite the volume of prior work on the subject, our understanding of
momentum methods in non-convex stochastic settings is still incomplete [35]. Oscillatory behaviours,
and the sometimes ambiguous effect of variance on optimization render the analysis tedious. From a
theoretical standpoint, our work raises several questions. First, given that we gain from averaging
very old gradients, what can it reveal of the loss landscape and the consistency of one batch’s
gradient during training? Second, would our approach not decrease the variance up to a point that is
harming generalization [11]? While no answer to those questions is given in this work, we provide
a toy justification which indicates that large momentums can have a positive impact in noise-free
non-convex settings (see Fig. 3)—indicating the improvement of our approach is at least partially
explainable without considering variance-reduction effects. We moreover expose a link between
momentum and forgetting the training data (see Fig. 2), which to our knowledge is novel.

Works on deep-learning optimizers. Despite the popularity of Adam and AdamW [16, 19]
in training deep neural networks, optimizer design is a rich field of research and we focus on a
few of the works most relevant to this study. Chen et al. [2] use algorithm discovery to derive the
Lion optimizer. Contrary to Adam, Lion uses a single momentum term and the sign function to
produce updates with the same magnitude across dimensions. Interestingly, Chen et al. [2] also
report better scores are obtained when using a slightly larger momentum term (β = 0.99). In this
work we show how increasing the momentum well beyond this value can still be beneficial. Recently,
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Liu et al. [18] introduced Sophia, a scalable second-order optimizer designed for LLM training.
Sophia uses a Hessian-based pre-conditioner which better normalizes the step size, penalizing
steps in high curvature direction and accelerating in low curvature directions. Understanding in
which circumstances those novel optimizers bring improvements is still being investigated [14], and
Adam’s dominance remains mostly unchallenged. Most relevant to us, Lucas et al. [20, AggMo]
also observe that using a combination of EMAs can enable the use of larger βs, and incorporates a
sum of K momentum terms into GD . They show their approach reaches similar performances as
baseline optimizers, with a faster convergence. In contrast, we modify Adam, which is the workhorse
algorithm for large-scale optimization, and introduce schedulers that are critical to reaching good
performances at larger scales. As a result, we not only converge faster, but better, and outperform
Adam by a significant margin. Finally, Szegedy et al. [32] propose a general framework to derive and
study optimizers with linear combinations of memory vectors—which encompasses EMA mixtures.

3. Our method: AdEMAMix

Setup & notations. Let Lθ : X 7→ R be a loss function parameterized by θ, and mapping inputs
x ∈ X to R. Given a sampled batch x, let g = ∇θLθ(x) be a stochastic gradient of the loss w.r.t. θ.
To minimize the empirical loss, the Adam optimizer [16] relies on first and second moments, resp.
m and ν, estimated via two EMAs parametrized by (β1, β2) ∈ [0, 1[2. A weight-decay parameter
λ ∈ R+ is often used as in Loshchilov and Hutter [19]:

m(t) = β1m
(t−1) + (1− β1)g

(t), m̂(t) = m(t)

1−βt
1

ν(t) = β2ν
(t−1) + (1− β2)g

(t)2, ν̂(t) = ν(t)

1−βt
2

θ(t) = θ(t−1) − η
(

m̂(t)
√
ν̂(t)+ϵ

+ λθ(t−1)
)
.

(AdamW)

With t > 0 being the timestep, η being the learning rate, and ϵ a small constant. Initially m(t=0) =
ν(t=0) = 0. To prevent the bias induced by the initial m(t=0) and ν(t=0), the outputs of the two
EMAs are corrected into m̂(t) and ν̂(t). Those are used to compute the final weight update, scaled
by the learning rate.

How far to look into the past? A typical value for β1 is 0.9. The larger the β, the more uniform
the average is. To put this in perspective—observing that

∑∞
i=0 β

i(1− β) = 1 for β ∈ [0, 1[—the
number of successive previous steps receiving a cumulative weight of 0.5, is thalf = ln(0.5)

ln(β) − 1.
For β = 0.9, thalf ≈ 6, meaning that half of the weight is given to the previous six gradients.
This observation can also be extended to SGD with e.g. polyak or nesterov momentums [22, 25],
which typically relies on similar β values. The value of β1 is rarely increased beyond ∼ 0.9. In our
experiments with AdamW, increasing β1 further degraded the performance. Does this mean older
gradients are outdated? We show that this is not the case, rather, increasing beta is reducing the
sensitivity to recent gradients too much. We design AdEMAMix such that the sensitivity to recent
gradients is kept, while also incorporating information from much older gradients using an additional
momentum term. This allows for the use of much larger β values e.g. 0.9999. To compare, for
β = 0.9999, thalf ≈ 6,930, spreading half of the mass over the previous 6,930 past gradients.
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AdEMAMix. To keep a high sensitivity to recent gradients, while also incorporating information
from older gradients, we add a second EMA (changes compared to AdamW are in Blue):

m
(t)
1 = β1m

(t−1)
1 + (1− β1)g

(t), m̂
(t)
1 =

m
(t)
1

1−βt
1

m
(t)
2 = β3m

(t−1)
2 + (1− β3)g

(t)

ν(t) = β2ν
(t−1) + (1− β2)g

(t)2, ν̂(t) = ν(t)

1−βt
2

θ(t) = θ(t−1) − η
(m̂(t)

1 +αm
(t)
2√

ν̂(t)+ϵ
+ λθ(t−1)

)
.

(AdEMAMix)

In our experiments, while the values of β1, β2 remain similar to those of equation AdamW, we often
use β3 = 0.9999. We find α ∈ [4, 10] to work well in practice.

Tackling early training instabilities. Early training instabilities are commonplace when training
deep models, and empirically motivated the introduction of methods such as learning rate warmup
and gradient clipping. While we use learning rate warmup in all our experiments, we still noticed
AdEMAMix models using a large β3 would diverge early. This, despite not using bias correction
over m2, which lets the momentum buffer fill itself slowly. Those failed runs are characterized by
updates of large magnitudes in the early phase of training. For this reason, we progressively increase
the values of β3 and α using schedulers. For α we use a linear scheduler. A linear scheduler for
β3 would be ill-fitted as the same increment of β3 have a different impact for different values of β3.
For instance, observe that an increase of β of δβ = 0.0001 barely increases the thalf for β = 0.9,
while 0.999 → 0.999 + δβ increases the thalf of 77. For this reason, we design the β3 scheduler to
increase thalf linearly. The two schedulers are summarized below:

α(t) = fα(t, α, Tα) = min(
tα

Tα
, α), (fα)

β
(t)
3 = fβ3(t, β3, βstart, Tβ3) = min

(
exp

( ln(βstart) ln(β3)

(1− t
Tβ3

) ln(β3) +
t

Tβ3
ln(βstart)

)
, β3

)
. (fβ3)

With Tα and Tβ3 are resp. the warmup times for α(t) and β
(t)
3 to reach their final and maximal values.

In practice we always set those two to the same value: Tα = Tβ3 = Tα,β3 , and we typically use
Tα,β3 = T , with T being the total number of iterations. βstart is always set to β1 in our experiments.

Hyperparameter sensitivity. While we introduce up to four new hyperparameters: α, β3, Tα,
and Tβ3 . In practice we always set Tα = Tβ3 = Tα,β3 , and use Tα,β3 = T in most cases. While all of
our experiments on language modeling use β3 = 0.9999, other values such as 0.999 or even 0.99999
still can outperform the AdamW baseline. Overall, we find the ranges of values of α, β3 and Tα,β3

providing improvements over AdamW to be wide.

4. Results

Experimental setup. We use a transformer architecture [34]. Our experiments use sequences of
1,024 tokens. We experiment with three model sizes: 110M, 335M, and 1.3B. We use 3k warmup
steps followed by a cosine decay. We extensively tuned the hyperparameters for both AdamW and
AdEMAMix models. We use the RedPajama v2 [3] dataset for all of our experiments. We use
batch sizes of 64, 96 and 128 for respectively our 110M, 335M, and 1.3B parameter models. For
AdEMAMix, we use β3 = 0.9999 and α ∈ {5, 8, 10} depending on the model.
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Figure 2: Measuring forgetting using a held-out batch B. The top row is for AdamW, the bottom
row is for AdEMAMix. We trained one AdamW and AdEMAMix model on a RedPajama dataset
not containing the batch B, those runs are in blue. We then run multiple experiments where we
inject B in the training data at a specific timestep tB . Those runs are in orange. To inspect how
much influence B had when it is injected at tB , we can observe the evolution of the gap between
the blue and the orange curves. For both optimizers, we observe a rapid decrease of the loss on B
right after training on B. The sharpness of this decrease in loss is more pronounced for AdamW
compared to AdEMAMix. However, when using AdamW, the loss on B then increases faster, which
we interpret as the model forgetting B faster. In contrast, the curves for AdEMAMix are smoother,
the loss on B goes back up slower, and ultimately B had a bigger impact on the training when using
AdEMAMix—as can be seen by looking at the larger gap between the orange and blue curves for the
last iteration. Finally, the forgetting behaviour evolve during training, with the later training batches
being remembered better.

Why not simply increasing AdamW’s β1? We train multiple 110M models using Adam with
large β1 ∈ {0.99, 0.999, 0.9999, 0.99999}. When we use a large β1 from the beginning of training,
we observe instabilities for larger β1 values and no β1 > 0.9 improves upon the AdamW baseline.
One can imagine this to be due to increasing β1 too early. Therefore, we also modify AdamW
and add the same scheduler on β1 as we use on AdEMAMix’s β3. β1 is now increased steadily
over the entire training duration. While this mostly stabilizes the training, none of the experiments
outperformed the baseline using β1 = 0.9. Those experiments show that simply increasing the β1
value in AdamW is not enough, which justifies our design of AdEMAMix.

Better perplexity for the same number of steps. For all model sizes, AdEMAMix always
outperforms the AdamW baseline. In Fig. 1, we show the validation loss curves for AdamW and
AdEMAMix models trained on various numbers of tokens. For 110M parameter models, training
for 256k iterations gives similar results as training an AdamW model for 500k iterations. For 1.3B
parameter models, training using 770k steps is on par with training the baseline for 1.5M iterations.
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AdEMAMix models forget the training data slower. When comparing the forgetting curves
for AdamW and AdEMAMix in Fig. 2, we see striking differences. AdamW models forget much
faster—the loss over B increases faster—than AdEMAMix models. Moreover, at the end of training,
batches processed by AdEMAMix see their loss being improved over many thousands of iterations.

5. Conclusion

In this work, we propose a novel optimizer which combines two momentum terms. A slow (large β)
momentum gathers information over many timestep, while a fast (slow β) momentum can adapt the
trajectory of the iterates to the rapidly changing loss landscape. We demonstrate the superiority of
our optimizer over AdamW through a set of experiments on text modeling. We moreover reveal how
our optimizer forgets the training data at a slower pace.
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Appendix A. Toy example
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Figure 3: Comparing Adam and AdEMAMix on the Rosenbrock function. Starting from
x(0) = [−3, 5], we minimize the Rosenbrock function f(x1, x2) = (1− x1)

2 +100(x2 − x21)
2. The

global minimum (⋆) is x⋆ = [1, 1]. We use β2 = 0.999 for Adam and (β1, β2, α) = (0.9, 0.999, 9)
for AdEMAMix (see § 3). We reduce the learning rate for AdEMAMix to compensate for the
influence of α. We do a sweep over β1 (resp. β3) for Adam (resp. for AdEMAMix). In (b), When
Adam’s β1 is small (e.g. 0.9), the iterates do not oscillate but convergence is slow. Increasing β1
makes the iterates move faster but with large oscillations. In contrast, for AdEMAMix in (c), we
observe that despite β3 being large, the iterates moves fast and without oscillations. This results in
reaching better solutions faster as can be seen in (a).

Appendix B. Deriving the β3 scheduler

Let’s consider S(t), the sum of the weights given to the last t gradients by an EMA parameterized by
β ∈ [0, 1[:

S(t) = (1− β)

t∑
i=0

βi

We want to know which timestep t would correspond to a cumulative weight of 0.5:

(1− β)
t∑

i=0

βi = 0.5 ⇔ βt+1 = 0.5 ⇔ t =
ln(0.5)

ln(β)
− 1

Let f(β) = ln(0.5)
ln(β) − 1. This function provides how many past consecutive gradients receive a

cumulative weight of 0.5.
Its inverse is:

f−1(t) = 0.5
1

t+1

We want a scheduler which increases β from βstart to βend such that f(β) increases linearly.
Given an interpolating parameter µ ∈ [0, 1], this scheduler can be written as:

β(µ) = f−1((1− µ)f(βstart) + µf(βend))
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By replacing f and f−1 by their respective formula, one can arrive to:

β(µ) = exp
( ln(βstart) ln(βend)

(1− µ) ln(βend) + µ ln(βstart)

)
By setting βend = β3 and µ = t

Tβ3
, we arrive to the β3-scheduler introduced in § 3. We show the

shape of our scheduler and compare it to a linear scheduler in Fig. 4.
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Our β-scheduler: βstart = 0.9, βend = 0.9999

Linear scheduler: βstart = 0.9, βend = 0.9999

Our β-scheduler: βstart = 0.9, βend = 0.999

Linear scheduler: βstart = 0.9, βend = 0.999

Figure 4: AdEMAMix’s β3 scheduler. We compare our scheduler to a linear scheduler for βstart =
0.9 and βend ∈ {0.999, 0.9999}. While our scheduler looks more aggressive at first glance, it
increases fast for smaller values of β, and slowly for larger ones associated. This makes sense as
the same increase of β for larger β values has a bigger impact than that same increase applied to
a smaller value of β. The two linear schedulers look practically the same, despite values of βend
differing by one order of magnitude. This is not the case with our scheduler.
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