
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

AdEMAMix: Better and Faster Training with Older Gradients

Matteo Pagliardini* MATTEO.PAGLIARDINI@EPFL.CH
EPFL

Pierre Ablin PABLIN@APPLE.COM
Apple

David Grangier D_GRANGIER@APPLE.COM

Apple

Abstract
Momentum based optimizers are central to a wide range of machine learning applications. These
typically rely on an Exponential Moving Average (EMA) of gradients, which decays exponen-
tially the present contribution of older gradients. This accounts for gradients being local linear
approximations which lose their relevance as the iterate moves along the loss landscape. This work
questions the use of a single EMA to accumulate past gradients and empirically demonstrates how
this choice can be sub-optimal: a single EMA cannot simultaneously give a high weight to the
immediate past, and a non-negligible weight to older gradients. Building on this observation, we
propose AdEMAMix, a simple modification of the Adam optimizer with a mixture of two EMAs
to better take advantage of past gradients. Our experiments on language modeling show—quite
surprisingly—that gradients can stay relevant for tens of thousands of steps. They help to converge
faster, and often to lower minima: e.g., a 1.3B parameter AdEMAMix LLM trained on 101B tokens
performs comparably to an AdamW model trained on 197B tokens (+95%). Moreover, our method
significantly slows-down model forgetting during training. Our work motivates further exploration
of different types of functions to leverage past gradients, beyond EMAs. For an extended version of
this work, see: https://arxiv.org/abs/2409.03137.

1. Introduction

With large neural networks, deep-learning has revolutionized numerous fields, such as computer
vision and natural language processing. At the heart of this paradigm lies the challenge of optimizing
complex, non-convex loss functions using noisy gradient estimates. This optimization process is
typically carried out using variants of Stochastic Gradient Descent (SGD) [28] or adaptive methods
such as Adam and AdamW [16, 19], which have become ubiquitous in training state-of-the-art
models [1, 5–8, 27, 33, 36].

A key component in many of these iterative optimization algorithms is momentum, which
has long been shown to accelerate convergence [21] and often leads to solutions with superior
generalization properties [31]. By accumulating gradient vectors over successive optimization steps,
momentum helps overcome small local variations of the loss landscape, potentially escaping shallow
local minima, and accelerate in plateau regions [12, 26, 29]. Both SGD with momentum (SGD+M)
and Adam incorporate momentum under the form of Exponential Moving Averages (EMAs) of past

* Work done while interning at Apple.

© M. Pagliardini, P. Ablin & D. Grangier.

https://arxiv.org/abs/2409.03137

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

0 256k 400k 500k

Iterations

2.8

3.0

3.2

3.4
L

os
s

AdamW trained on
{17B, 26B, 33B} tokens

AdEMAMix trained on
{17B, 26B, 33B} tokens

(a) 110M parameters.

0 256k 400k 500k

Iterations

2.5

2.6

2.7

2.8

2.9

3.0

3.1

L
os

s

AdamW trained on
{25B, 39B, 49B} tokens

AdEMAMix trained on
{25B, 39B, 49B} tokens

(b) 330M parameters.

0 256k 770k 1M

Iterations

2.3

2.4

2.5

2.6

2.7

2.8

L
os

s

AdamW 197B

AdamW trained on
{34B, 101B, 131B} tokens

AdEMAMix trained on
{34B, 101B, 131B} tokens

(c) 1.3B parameters.

Figure 1: Comparing AdamW and AdEMAMix on language modeling. In (a,b,c), we plot
the loss obtained using AdamW and AdEMAMix (our optimizer) to train Transformer models of
various sizes on the Redpajama dataset. In (a), we train multiple baselines for 256k, 400k, and 500k
iterations, resulting in processing from 17B to 33B tokens. Two AdamW runs with different number
of iterations look very different as we use a cosine-decay for the learning rate. We compare those
baselines to training AdEMAMix for 256k iterations. We observe that our method reaches a similar
loss as an AdamW model trained on nearly twice the number of tokens. Analogous comparisons
can be derived from (b) and (c). Notably, in (c), a 1.3B parameter AdEMAMix model trained on
101B tokens performs comparably to an AdamW model trained on 197B tokens (95% more, blue
horizontal line).

gradients GT = {g(0), . . . , g(T)}:

EMA(β,GT) ≜ β · EMA(β,G(T−1)) + (1− β)g(T) =

T∑
i=0

βi(1− β)g(T−i). (EMA)

Two considerations support the use of EMAs. From a practical standpoint, the recursive formula of
EMA allows for efficient implementations, which do not require maintaining a buffer of past gradients.
From a theoretical standpoint, gradient descent with momentum leads to optimal convergence rates for
quadratics [22, 25]. However, those results do not guarantee any optimality for general non-quadratic
cases [13].

The use of momentum in optimization is grounded in the varying nature of gradients. As local
linear approximations of the loss landscape, their information can quickly become outdated as
the optimization process progresses [24]. For this reason, practitioners typically employ moderate
momentum values (i.e. β ≈ 0.8 or 0.9), effectively creating a moving average of recent gradients
while discarding older information. Selecting larger β values seems counter-intuitive, as it would
suggest that older gradients maintain their relevance over extended periods of training. While it is
tempting to see the use of small βs as a confirmation of the limited temporal relevance of gradients,
our work reveals instead that older gradients can efficiently be used. When we increase β, we
decrease the relative importance of recent gradients, and the iterate now fails to respond to local
changes in the loss landscape. We observe that a single EMA cannot both give a significant weight to
recent gradients, and give a non-negligible weight to older gradients. However, a linear combination
between a “fast-changing” (e.g. β = 0.9 or β = 0) and a “slow-changing” (e.g. β = 0.9999) EMA

2

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

allows the iterate to beneficiate from (i) the great speedup provided by the larger (slow-changing)
momentum, while (ii) still being reactive to small changes in the loss landscape (fast-changing). More
precisely, we find the following statement to convey an important intuition behind this approach:

While changing the direction of the slow momentum is difficult, any adjustment orthogonal
to that direction is easy—which favors fast progress in sinuous canyon-like landscapes.

A toy illustration of this can be seen in Fig. 3. Based on this idea, we propose AdEMAMix (Adaptive
EMA Mixture), a novel Adam based optimizer which successfully leverages very old gradients to
reach better solutions.

Contributions. Our contributions can be summarized as follows: (i) We propose AdEMAMix, a
novel optimizer which better leverages past gradients by avoiding a common pitfall of EMA-based
optimizers (see § 3). (ii) We empirically demonstrate the superiority of our method over Adam by
training Transformer language models of up to 1.3B parameters (see § 4). (iii) We show AdEMAMix
forgets the training data slower when compared to Adam (see Fig. 2). (iv) More broadly, our findings
contribute to a deeper understanding of the optimal balance between using historical gradients and
adapting to the rapidly changing loss landscape. Our work invites further research in methods
combining old and recent gradients, beyond EMAs.

2. Related Work

Works on understanding momentum. From the seminal work of [25], many publications analyzed
the effect of gradient descent + momentum (GD+M) in both convex and non-convex settings
[4, 9, 10, 15, 30]. While the acceleration in the noise-free setting has been long theorized for convex
functions, several publications indicate this effect might not necessarily extend to stochastic settings
[15, 17, 35], emphasizing instead a link between momentum and effective learning rate. Recent work
have been seeking to understand the impact of momentum on generalization through studying the
implicit bias of momentum methods [11, 23], exposing a preference of SGD+M for lower norm
solutions. Those further exposed a link between higher momentum and higher effective learning rate
and higher variance reduction. Despite the volume of prior work on the subject, our understanding of
momentum methods in non-convex stochastic settings is still incomplete [35]. Oscillatory behaviours,
and the sometimes ambiguous effect of variance on optimization render the analysis tedious. From a
theoretical standpoint, our work raises several questions. First, given that we gain from averaging
very old gradients, what can it reveal of the loss landscape and the consistency of one batch’s
gradient during training? Second, would our approach not decrease the variance up to a point that is
harming generalization [11]? While no answer to those questions is given in this work, we provide
a toy justification which indicates that large momentums can have a positive impact in noise-free
non-convex settings (see Fig. 3)—indicating the improvement of our approach is at least partially
explainable without considering variance-reduction effects. We moreover expose a link between
momentum and forgetting the training data (see Fig. 2), which to our knowledge is novel.

Works on deep-learning optimizers. Despite the popularity of Adam and AdamW [16, 19]
in training deep neural networks, optimizer design is a rich field of research and we focus on a
few of the works most relevant to this study. Chen et al. [2] use algorithm discovery to derive the
Lion optimizer. Contrary to Adam, Lion uses a single momentum term and the sign function to
produce updates with the same magnitude across dimensions. Interestingly, Chen et al. [2] also
report better scores are obtained when using a slightly larger momentum term (β = 0.99). In this
work we show how increasing the momentum well beyond this value can still be beneficial. Recently,

3

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

Liu et al. [18] introduced Sophia, a scalable second-order optimizer designed for LLM training.
Sophia uses a Hessian-based pre-conditioner which better normalizes the step size, penalizing
steps in high curvature direction and accelerating in low curvature directions. Understanding in
which circumstances those novel optimizers bring improvements is still being investigated [14], and
Adam’s dominance remains mostly unchallenged. Most relevant to us, Lucas et al. [20, AggMo]
also observe that using a combination of EMAs can enable the use of larger βs, and incorporates a
sum of K momentum terms into GD . They show their approach reaches similar performances as
baseline optimizers, with a faster convergence. In contrast, we modify Adam, which is the workhorse
algorithm for large-scale optimization, and introduce schedulers that are critical to reaching good
performances at larger scales. As a result, we not only converge faster, but better, and outperform
Adam by a significant margin. Finally, Szegedy et al. [32] propose a general framework to derive and
study optimizers with linear combinations of memory vectors—which encompasses EMA mixtures.

3. Our method: AdEMAMix

Setup & notations. Let Lθ : X 7→ R be a loss function parameterized by θ, and mapping inputs
x ∈ X to R. Given a sampled batch x, let g = ∇θLθ(x) be a stochastic gradient of the loss w.r.t. θ.
To minimize the empirical loss, the Adam optimizer [16] relies on first and second moments, resp.
m and ν, estimated via two EMAs parametrized by (β1, β2) ∈ [0, 1[2. A weight-decay parameter
λ ∈ R+ is often used as in Loshchilov and Hutter [19]:

m(t) = β1m
(t−1) + (1− β1)g

(t), m̂(t) = m(t)

1−βt
1

ν(t) = β2ν
(t−1) + (1− β2)g

(t)2, ν̂(t) = ν(t)

1−βt
2

θ(t) = θ(t−1) − η
(

m̂(t)
√
ν̂(t)+ϵ

+ λθ(t−1)
)
.

(AdamW)

With t > 0 being the timestep, η being the learning rate, and ϵ a small constant. Initially m(t=0) =
ν(t=0) = 0. To prevent the bias induced by the initial m(t=0) and ν(t=0), the outputs of the two
EMAs are corrected into m̂(t) and ν̂(t). Those are used to compute the final weight update, scaled
by the learning rate.

How far to look into the past? A typical value for β1 is 0.9. The larger the β, the more uniform
the average is. To put this in perspective—observing that

∑∞
i=0 β

i(1− β) = 1 for β ∈ [0, 1[—the
number of successive previous steps receiving a cumulative weight of 0.5, is thalf = ln(0.5)

ln(β) − 1.
For β = 0.9, thalf ≈ 6, meaning that half of the weight is given to the previous six gradients.
This observation can also be extended to SGD with e.g. polyak or nesterov momentums [22, 25],
which typically relies on similar β values. The value of β1 is rarely increased beyond ∼ 0.9. In our
experiments with AdamW, increasing β1 further degraded the performance. Does this mean older
gradients are outdated? We show that this is not the case, rather, increasing beta is reducing the
sensitivity to recent gradients too much. We design AdEMAMix such that the sensitivity to recent
gradients is kept, while also incorporating information from much older gradients using an additional
momentum term. This allows for the use of much larger β values e.g. 0.9999. To compare, for
β = 0.9999, thalf ≈ 6,930, spreading half of the mass over the previous 6,930 past gradients.

4

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

AdEMAMix. To keep a high sensitivity to recent gradients, while also incorporating information
from older gradients, we add a second EMA (changes compared to AdamW are in Blue):

m
(t)
1 = β1m

(t−1)
1 + (1− β1)g

(t), m̂
(t)
1 =

m
(t)
1

1−βt
1

m
(t)
2 = β3m

(t−1)
2 + (1− β3)g

(t)

ν(t) = β2ν
(t−1) + (1− β2)g

(t)2, ν̂(t) = ν(t)

1−βt
2

θ(t) = θ(t−1) − η
(m̂(t)

1 +αm
(t)
2√

ν̂(t)+ϵ
+ λθ(t−1)

)
.

(AdEMAMix)

In our experiments, while the values of β1, β2 remain similar to those of equation AdamW, we often
use β3 = 0.9999. We find α ∈ [4, 10] to work well in practice.

Tackling early training instabilities. Early training instabilities are commonplace when training
deep models, and empirically motivated the introduction of methods such as learning rate warmup
and gradient clipping. While we use learning rate warmup in all our experiments, we still noticed
AdEMAMix models using a large β3 would diverge early. This, despite not using bias correction
over m2, which lets the momentum buffer fill itself slowly. Those failed runs are characterized by
updates of large magnitudes in the early phase of training. For this reason, we progressively increase
the values of β3 and α using schedulers. For α we use a linear scheduler. A linear scheduler for
β3 would be ill-fitted as the same increment of β3 have a different impact for different values of β3.
For instance, observe that an increase of β of δβ = 0.0001 barely increases the thalf for β = 0.9,
while 0.999 → 0.999 + δβ increases the thalf of 77. For this reason, we design the β3 scheduler to
increase thalf linearly. The two schedulers are summarized below:

α(t) = fα(t, α, Tα) = min(
tα

Tα
, α), (fα)

β
(t)
3 = fβ3(t, β3, βstart, Tβ3) = min

(
exp

(ln(βstart) ln(β3)

(1− t
Tβ3

) ln(β3) +
t

Tβ3
ln(βstart)

)
, β3

)
. (fβ3)

With Tα and Tβ3 are resp. the warmup times for α(t) and β
(t)
3 to reach their final and maximal values.

In practice we always set those two to the same value: Tα = Tβ3 = Tα,β3 , and we typically use
Tα,β3 = T , with T being the total number of iterations. βstart is always set to β1 in our experiments.

Hyperparameter sensitivity. While we introduce up to four new hyperparameters: α, β3, Tα,
and Tβ3 . In practice we always set Tα = Tβ3 = Tα,β3 , and use Tα,β3 = T in most cases. While all of
our experiments on language modeling use β3 = 0.9999, other values such as 0.999 or even 0.99999
still can outperform the AdamW baseline. Overall, we find the ranges of values of α, β3 and Tα,β3

providing improvements over AdamW to be wide.

4. Results

Experimental setup. We use a transformer architecture [34]. Our experiments use sequences of
1,024 tokens. We experiment with three model sizes: 110M, 335M, and 1.3B. We use 3k warmup
steps followed by a cosine decay. We extensively tuned the hyperparameters for both AdamW and
AdEMAMix models. We use the RedPajama v2 [3] dataset for all of our experiments. We use
batch sizes of 64, 96 and 128 for respectively our 110M, 335M, and 1.3B parameter models. For
AdEMAMix, we use β3 = 0.9999 and α ∈ {5, 8, 10} depending on the model.

5

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

90k 256k
2.8

2.9

3.0

3.1

3.2
L

os
s

on
b

at
ch

B

90k 256k
2.8

2.9

3.0

3.1

3.2

L
o
ss

on
b

a
tc

h
B

(a) tB = 90k.

70k 170k 256k

70k 170k 256k

(b) tB = 170k.

70k 190k 256k

70k 190k 256k

(c) tB = 190k.

70k 230k

AdamW training
without B

AdamW training
using B at t = tB

tB

70k 230k

AdEMAMix training
without B

AdEMAMix training
using B at t = tB

tB

(d) tB = 230k.

Figure 2: Measuring forgetting using a held-out batch B. The top row is for AdamW, the bottom
row is for AdEMAMix. We trained one AdamW and AdEMAMix model on a RedPajama dataset
not containing the batch B, those runs are in blue. We then run multiple experiments where we
inject B in the training data at a specific timestep tB . Those runs are in orange. To inspect how
much influence B had when it is injected at tB , we can observe the evolution of the gap between
the blue and the orange curves. For both optimizers, we observe a rapid decrease of the loss on B
right after training on B. The sharpness of this decrease in loss is more pronounced for AdamW
compared to AdEMAMix. However, when using AdamW, the loss on B then increases faster, which
we interpret as the model forgetting B faster. In contrast, the curves for AdEMAMix are smoother,
the loss on B goes back up slower, and ultimately B had a bigger impact on the training when using
AdEMAMix—as can be seen by looking at the larger gap between the orange and blue curves for the
last iteration. Finally, the forgetting behaviour evolve during training, with the later training batches
being remembered better.

Why not simply increasing AdamW’s β1? We train multiple 110M models using Adam with
large β1 ∈ {0.99, 0.999, 0.9999, 0.99999}. When we use a large β1 from the beginning of training,
we observe instabilities for larger β1 values and no β1 > 0.9 improves upon the AdamW baseline.
One can imagine this to be due to increasing β1 too early. Therefore, we also modify AdamW
and add the same scheduler on β1 as we use on AdEMAMix’s β3. β1 is now increased steadily
over the entire training duration. While this mostly stabilizes the training, none of the experiments
outperformed the baseline using β1 = 0.9. Those experiments show that simply increasing the β1
value in AdamW is not enough, which justifies our design of AdEMAMix.

Better perplexity for the same number of steps. For all model sizes, AdEMAMix always
outperforms the AdamW baseline. In Fig. 1, we show the validation loss curves for AdamW and
AdEMAMix models trained on various numbers of tokens. For 110M parameter models, training
for 256k iterations gives similar results as training an AdamW model for 500k iterations. For 1.3B
parameter models, training using 770k steps is on par with training the baseline for 1.5M iterations.

6

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

AdEMAMix models forget the training data slower. When comparing the forgetting curves
for AdamW and AdEMAMix in Fig. 2, we see striking differences. AdamW models forget much
faster—the loss over B increases faster—than AdEMAMix models. Moreover, at the end of training,
batches processed by AdEMAMix see their loss being improved over many thousands of iterations.

5. Conclusion

In this work, we propose a novel optimizer which combines two momentum terms. A slow (large β)
momentum gathers information over many timestep, while a fast (slow β) momentum can adapt the
trajectory of the iterates to the rapidly changing loss landscape. We demonstrate the superiority of
our optimizer over AdamW through a set of experiments on text modeling. We moreover reveal how
our optimizer forgets the training data at a slower pace.

References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

[2] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of
optimization algorithms. In NeurIPS, 2023.

[3] Together Computer. Redpajama: an open dataset for training large language models, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

[4] Aaron Defazio. Understanding the role of momentum in non-convex optimization: Practical
insights from a lyapunov analysis. CoRR, abs/2010.00406, 2020. URL https://arxiv.
org/abs/2010.00406.

[5] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Car-
los Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van
Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine
Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader
Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran,
Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil
Houlsby. Scaling vision transformers to 22 billion parameters. In ICML, volume 202 of
Proceedings of Machine Learning Research, pages 7480–7512. PMLR, 2023.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In NAACL-HLT (1), pages
4171–4186. Association for Computational Linguistics, 2019.

7

https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2010.00406
https://arxiv.org/abs/2010.00406

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net, 2021.

[8] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong,
Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna
Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, and Kevin
Stone. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

[9] Nicolas Flammarion and Francis R. Bach. From averaging to acceleration, there is only a step-
size. In COLT, volume 40 of JMLR Workshop and Conference Proceedings, pages 658–695.
JMLR.org, 2015.

[10] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence
of the heavy-ball method for convex optimization. In ECC, pages 310–315. IEEE, 2015.

[11] Avrajit Ghosh, He Lyu, Xitong Zhang, and Rongrong Wang. Implicit regularization in heavy-
ball momentum accelerated stochastic gradient descent. In ICLR. OpenReview.net, 2023.

[12] Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

[13] Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Provable non-accelerations of the
heavy-ball method. arXiv preprint arXiv:2307.11291, 2023.

[14] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train
no gain: Revisiting efficient training algorithms for transformer-based language models. In
NeurIPS, 2023.

[15] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the insufficiency
of existing momentum schemes for stochastic optimization. In ICLR. OpenReview.net, 2018.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

8

http://distill.pub/2017/momentum

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

[17] Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. CoRR,
abs/2002.10376, 2020.

[18] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. CoRR, abs/2305.14342, 2023.

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR (Poster).
OpenReview.net, 2019.

[20] James Lucas, Shengyang Sun, Richard S. Zemel, and Roger B. Grosse. Aggregated momentum:
Stability through passive damping. In ICLR (Poster). OpenReview.net, 2019.

[21] Arkaddii S Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization.
USSR Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

[22] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate
of convergence o(1/k2). In Doklady Akademii Nauk SSSR, 1983. URL https://api.
semanticscholar.org/CorpusID:202149403.

[23] Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to un-
derstand momentum when training diagonal linear networks. In AISTATS, volume 238 of
Proceedings of Machine Learning Research, pages 3556–3564. PMLR, 2024.

[24] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In ICML (3), volume 28 of JMLR Workshop and Conference Proceedings,
pages 1310–1318. JMLR.org, 2013.

[25] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 3(4):864–878, 1964. ISSN 0041-5553. doi:
https://doi.org/10.1016/0041-5553(63)90382-3. URL https://www.sciencedirect.
com/science/article/pii/0041555363903823.

[26] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-6080(98)
00116-6. URL https://www.sciencedirect.com/science/article/pii/
S0893608098001166.

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
volume 139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR, 2021.

[28] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[29] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[30] Othmane Sebbouh, Robert M. Gower, and Aaron Defazio. Almost sure convergence rates for
stochastic gradient descent and stochastic heavy ball. In COLT, volume 134 of Proceedings of
Machine Learning Research, pages 3935–3971. PMLR, 2021.

9

https://api.semanticscholar.org/CorpusID:202149403
https://api.semanticscholar.org/CorpusID:202149403
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

[31] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/sutskever13.
html.

[32] Balázs Szegedy, Domonkos Czifra, and Péter Kőrösi-Szabó. Dynamic memory based adaptive
optimization, 2024. URL https://arxiv.org/abs/2402.15262.

[33] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008,
2017.

[35] Kun Yuan, Bicheng Ying, and Ali H. Sayed. On the influence of momentum acceleration
on online learning. Journal of Machine Learning Research, 17(192):1–66, 2016. URL
http://jmlr.org/papers/v17/16-157.html.

[36] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-
formers. In CVPR, pages 1204–1213. IEEE, 2022.

10

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/2402.15262
https://arxiv.org/abs/2307.09288
http://jmlr.org/papers/v17/16-157.html

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

Appendix A. Toy example

0 2000 4000

Iterations

10−3

10−2

10−1

100

101

102

103

D
is

ta
n

ce
to

so
lu

ti
on

Adam β2 = 0.999
β1 ∈ {0.9, 0.99, 0.999, 0.9999}
AdEMAMix β1, β2 = 0.9, 0.999
α = 9, β3 ∈ {0.999, 0.9999}

(a) ∥x(t) − x⋆∥2.

start

Adam β1 = 0.9

Adam β1 = 0.99

Adam β1 = 0.999

Adam β1 = 0.9999

(b) Adam trajectories.

start

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

(c) AdEMAMix trajectories.

Figure 3: Comparing Adam and AdEMAMix on the Rosenbrock function. Starting from
x(0) = [−3, 5], we minimize the Rosenbrock function f(x1, x2) = (1− x1)

2 +100(x2 − x21)
2. The

global minimum (⋆) is x⋆ = [1, 1]. We use β2 = 0.999 for Adam and (β1, β2, α) = (0.9, 0.999, 9)
for AdEMAMix (see § 3). We reduce the learning rate for AdEMAMix to compensate for the
influence of α. We do a sweep over β1 (resp. β3) for Adam (resp. for AdEMAMix). In (b), When
Adam’s β1 is small (e.g. 0.9), the iterates do not oscillate but convergence is slow. Increasing β1
makes the iterates move faster but with large oscillations. In contrast, for AdEMAMix in (c), we
observe that despite β3 being large, the iterates moves fast and without oscillations. This results in
reaching better solutions faster as can be seen in (a).

Appendix B. Deriving the β3 scheduler

Let’s consider S(t), the sum of the weights given to the last t gradients by an EMA parameterized by
β ∈ [0, 1[:

S(t) = (1− β)

t∑
i=0

βi

We want to know which timestep t would correspond to a cumulative weight of 0.5:

(1− β)
t∑

i=0

βi = 0.5 ⇔ βt+1 = 0.5 ⇔ t =
ln(0.5)

ln(β)
− 1

Let f(β) = ln(0.5)
ln(β) − 1. This function provides how many past consecutive gradients receive a

cumulative weight of 0.5.
Its inverse is:

f−1(t) = 0.5
1

t+1

We want a scheduler which increases β from βstart to βend such that f(β) increases linearly.
Given an interpolating parameter µ ∈ [0, 1], this scheduler can be written as:

β(µ) = f−1((1− µ)f(βstart) + µf(βend))

11

ADEMAMIX: BETTER AND FASTER TRAINING WITH OLDER GRADIENTS

By replacing f and f−1 by their respective formula, one can arrive to:

β(µ) = exp
(ln(βstart) ln(βend)

(1− µ) ln(βend) + µ ln(βstart)

)
By setting βend = β3 and µ = t

Tβ3
, we arrive to the β3-scheduler introduced in § 3. We show the

shape of our scheduler and compare it to a linear scheduler in Fig. 4.

0.0 0.2 0.4 0.6 0.8 1.0

µ

0.90

0.92

0.94

0.96

0.98

1.00

β
(µ

)

Our β-scheduler: βstart = 0.9, βend = 0.9999

Linear scheduler: βstart = 0.9, βend = 0.9999

Our β-scheduler: βstart = 0.9, βend = 0.999

Linear scheduler: βstart = 0.9, βend = 0.999

Figure 4: AdEMAMix’s β3 scheduler. We compare our scheduler to a linear scheduler for βstart =
0.9 and βend ∈ {0.999, 0.9999}. While our scheduler looks more aggressive at first glance, it
increases fast for smaller values of β, and slowly for larger ones associated. This makes sense as
the same increase of β for larger β values has a bigger impact than that same increase applied to
a smaller value of β. The two linear schedulers look practically the same, despite values of βend
differing by one order of magnitude. This is not the case with our scheduler.

12

	Introduction
	Related Work
	Our method: AdEMAMix
	Results
	Conclusion
	Toy example
	Deriving the 3 scheduler

