Published as a conference paper at ICLR 2026

MEMORIZATION THROUGH THE LENS OF SAMPLE
GRADIENTS

Deepak Ravikumar!*, Efstathia Soufleri?, Abolfazl Hashemi', Kaushik Roy'
!Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
2 Archimedes, Athena Research Center, Greece

{dravikum, abolfazl, kaushik}@purdue.edu, e.soufleri@athenarc.gr

ABSTRACT

Deep neural networks are known to often memorize underrepresented, hard exam-
ples, with implications for generalization and privacy. [Feldman & Zhang| (2020)
defined a rigorous notion of memorization. However it is prohibitively expen-
sive to compute at scale because it requires training models both with and without
the data point of interest in order to calculate the memorization score. We ob-
serve that samples that are less memorized tend to be learned earlier in training,
whereas highly memorized samples are learned later. Motivated by this obser-
vation, we introduce Cumulative Sample Gradient (CSG), a computationally ef-
ficient proxy for memorization. CSG is the gradient of the loss with respect to
input samples, accumulated over the course of training. The advantage of us-
ing input gradients is that per-sample gradients can be obtained with negligible
overhead during training. The accumulation over training also reduces per-epoch
variance and enables a formal link to memorization. Theoretically, we show that
CSG is bounded by memorization and by learning time. Tracking these gradients
during training reveals a characteristic rise—peak—decline trajectory whose timing
is mirrored by the model’s weight norm. This yields an early-stopping criterion
that does not require a validation set: stop at the peak of the weight norm. This
early stopping also enables our memorization proxy, CSG, to be up to five orders
of magnitude more efficient than the memorization score from Feldman & Zhang
(2020). It is also approximately /40x and 10 x faster than the prior state-of-the-
art memorization proxies, input curvature and cumulative sample loss, while still
aligning closely with the memorization score, exhibiting high correlation. Fur-
ther, we develop Sample Gradient Assisted Loss (SGAL), a proxy that further
improves alignment with memorization and is highly efficient to compute. Fi-
nally, we show that CSG attains state-of-the-art performance on practical dataset
diagnostics, such as mislabeled-sample detection and enables bias discovery, pro-
viding a theoretically grounded toolbox for studying memorization in deep

1 INTRODUCTION

Deep learning has become the de facto standard across a wide array of machine learning tasks
from generative models (Ho et al., 2020), and classification (Krizhevsky et al., 2009; Soufleri et al.,
2024a)), to reinforcement learning (Shakya et al.| [2023). Despite their success, deep neural net-
works are prone to memorizing the training data. While some degree of memorization is needed
for achieving generalization (Feldman, 2020), it has been shown that these models are also capable
of memorizing completely random labels (Zhang et all [2017). Understanding the mechanisms of
memorization has thus emerged as a key research focus with broad implications for generalization
(Bayat et al., [2025} |Brown et al., 2021) and privacy (Ravikumar et al., 2024a).

Several methods have been proposed to measure memorization. [Feldman| (2020) offers a principled
definition with strong theoretical and empirical support (Feldman & Zhang, [2020). However, it is
computationally expensive. Their score quantifies memorization as the change in a model’s output

*Corresponding Author
'Code link: |https://github.com/DeepakTatachar/Sample-Gradient-Memorization

https://github.com/DeepakTatachar/Sample-Gradient-Memorization

Published as a conference paper at ICLR 2026

0.010 . T
= : —— Avg. Train Sample Grad o)
<
S 0.008 [Validation Loss i §
en
Q i =)
B ! 2
g‘ 0.006 /\/\lv“\ﬂ\ 6 x 10—2 2
v : 3
.§ 0.004 / i .\ E
b 0.002 b RN 4% 1072 3
Z 3
< = j =
0.000 L 10-2
7 10° 10! 102 310
. i . Epochs
(a) Lowest CSG images (b) Highest CSG images
from CIFAR-100. from CIFAR-100. (c) Average sample gradient and validation loss.

Figure 1: (a) Lowest CSG images from CIFAR-100 for 6 classes: captures examples prototypical
for the class i.e. easy examples. (b) Highest CSG images from CIFAR-100 for the same 6 classes.
(see Figure |16| for ImageNet): captures examples atypical for the class i.e. hard examples, likely
memorized. (c) Plot of average train sample gradient for ResNet18 trained on CIFAR-100 and the
corresponding validation set loss. The peak in sample gradient corresponds to the lowest validation
loss (first descent of double descent). Thus, one can early stop without needing a validation set!

when a specific training sample is removed, requiring the training of O(dataset size) models. To
address this, proxies such as model confidence (Carlini et al., 2019b), learning time
[2021) and adversarial distance (Del Grosso et al., 2022) have been proposed. Yet, critical limita-
tions persist among these alternatives. Methods relying on optimizer discrepancies
or influence functions (Pruthi et al., [2020) often incur high computational costs due to k-fold
validation and parameter-space single-sample gradients, respectively. Similarly, metrics based on
gradient variance, such as VoG (Agarwal et al.l 2022)), can misidentify consistently hard samples
and are ad hoc metrics lacking theory linking them to memorization. Leveraging training dynamics

has led to the development of further proxies, including loss sensitivity 2017), forgetting
frequency (Toneva et al [2019), the C-score 2021), and cumulative loss
2025a). Other approaches examine loss landscape sharpness (Krueger et al.,[2017) and input
loss curvature [2024), with Ravikumar et al. (2024a) establishing theoretical links to

memorization and privacy. While these proxies offer valuable insights, many fail to capture critical
properties of memorization, such as its bi-modality (Cukasik et al., [2023)). Developing a stronger
theoretical foundation is therefore essential. We observe that less-memorized samples tend to be
learned earlier in training, whereas highly memorized samples are learned later (see Fig. [2). Mo-
tivated by this, we propose a new proxy, Cumulative Sample Gradient (CSG). CSG is defined as
the gradient of the loss with respect to the input data, aggregated across training. We establish a
theoretical framework linking CSG, memorization, and learning time, and validate it experimentally
by showing that CSG is highly correlated with memorization (Feldman & Zhang, [2020).

Interestingly, the average per-sample gradient follows a rise—peak—decline trajectory (see Figure|[Ld),
a pattern mirrored by the network’s weight norm. We show this arises because the per-iteration
weight norm bounds the sample gradient. Crucially, the peak coincides with the minimum validation
loss (the first minimum of double descent, Section[4.3). This yields a simple early-stopping criterion:
stop at the peak of the weight norm. Using this property, we introduce Sample Gradient Assisted
Loss (SGAL) a proxy that further improves alignment with memorization. By early stopping, CSG
and SGAL achieve up to five orders of magnitude speedup over estimation of memorization by
(Feldman & Zhang|, 2020), and are substantially faster than prior state-of-the-art proxies, including
curvature (Garg et al.,[2024) (up to /40x) and CSL (Ravikumar et al.| 2025a)) (max /0%, avg. 5X).
Finally, we demonstrate that CSG effectively discovers dataset bias and achieves state-of-the-art
performance in identifying mislabeled samples. In summary, our contributions are:

* Theoretical foundations: We develop a theoretical framework linking CSG to memoriza-
tion and learning time, offering up to 5-orders-of-magnitude speedup over memorization
score [Feldman & Zhang| (2020), 140x and 10x speedup than previous state-of-the-art
memorization proxies such as Curvature [2024) and CSL
20254), respectively.

Published as a conference paper at ICLR 2026

* Practical impact and insights: CSG achieves state-of-the-art performance for identifying
mislabeled samples. Our experiments validate that sample gradients enable early stopping
without a validation set, and reveal biases in training data.

2 NOTATION

We denote distributions using bold capital letters V, random variables sampled from them as italic
small letters v for scalars, ¢’ for vectors, and capital letters V' for matrices. Consider a learning
problem, where the task is learning the mapping f : * — y where £ ~ X € R"andy ~ Y
X € R. Let this task be learnt using a dataset S = (z1, 25, ..., Z,,) ~ Z™ consisting m samples,
where each sample Z; = (Z;,y;) ~ Z. Our analysis also makes use of a leave one out dataset
denoted by S\t = (Z1y. oy 21, Zi41,- -+ Zm), Which is S with the i*" sample removed. In this
paper, we consider a deep neural network with g layers. Its parameters at iteration ¢ are denoted by
Wy = [zﬁt(l), 13,52), ce zﬁt@] ~ W. Here, ¢ indexes the optimization iteration, and ’LE,Ek) collects
the parameters of layer k. We use a flattened representation of the parameters. For the k-th layer
(with input dimension dj,_1 and output dimension dy,), the weights are represented as the row vector

w,ﬁ’“) = [wt(ykl)’l wt(ﬁ),Q e wggm dk—1:| , which lists the entries wgkz) j of the (unflattened) weight

matrix for ¢ = {1,...,dr} and j = {1,...,dr_1}. Let g% ~ Gg to denote the function learned
by the neural network. The neural net is trained by the application of a possibly random training
algorithm A such as SGD and p ~ P denotes the randomness of the algorithm. For example
in mini-batch SGD there are two sources of randomness, (a) the choice of mini-batch (b) model
initialization. Here, p captures (a). To evaluate model performance, we use the loss at a sample Zz;,
defined as ¢(g, Z;) = ¢(g(Z;),y;). Since the function learned at iteration ¢, gy, is fully parameterized
by Wy, we use £(W, Z;) = £(gy, Z;) interchangeably. Typically, we are interested in the loss of g over
the entire data distribution, called the population risk, which is defined as R(g) = E.[¢ (g,2)]- In
practice we evaluate the empirical risk as follows Remp(g, S) = = >, £(g, Zi), Zi € S.

3 RELATED WORK AND BACKGROUND

Understanding memorization has broad implications, ranging from generalization (Brown et al.,
2021; [Zhang et al.,|2017; 2021), unlearning (Kodge et al., [2025; |2024; Kurmanyji et al., 2023)), and
privacy (Dwork et al.| [2006; [Soufleri et al., |2024b), to identifying mislabeled and rare subpopula-
tion examples (Pleiss et al.,[2020; Maini et al., [2022; [Ravikumar et al., 2023). While many notions
of memorization exist from exact (Kandpal et al., 2022) and k-eidetic (Carlini et al., 2021) to ex-
tractable memorization (Nasr et al.,|2023)) in this paper we focus on stability-based memorization,
also referred to as counterfactual memorization, introduced by Feldman| (2020). We hereafter refer
to this as the memorization score. Formally, the memorization score of the i sample z; = (7, y;)
for a network g% trained on dataset S using algorithm A (with randomness p) is defined as:

mem(S, Z;) = Pr(g§(7;) = vi] — Prlgh,, (i) = vil (D

The term “stability-based” comes from its connection to uniform stability, a concept central to this
work. Formally, an algorithm A is S-uniform stable (Kearns & Ronl[1997) if for some 8 > 0 :

An example of such an algorithm is Stochastic Gradient Descent (SGD) (Hardt et al.,[2016)). Proofs
of its stability and convergence typically rely on a set of conditions we refer to as the SGD Con-
vergence Assumptions: p-Lipschitz continuity (Eq. [8), I',-bounded variance (Eq. [9), unbiased gra-
dients, and a decreasing learning rate 7 at each iteration ¢. Under these assumptions, SGD is
guaranteed to converge in gradient norm (Ghadimi & Lan| 2013) (see Appendix [A)). Some results
additionally require an L-bounded loss satisfying 0 < ¢ < L. While stability-based memorization
provides a principled definition, it is prohibitively expensive to compute, as previously discussed. To
overcome this, researchers have proposed proxies such as model confidence (Carlini et al., 2019b),
learning time (Jiang et al., 2021), and adversarial distance (Del Grosso et al., 2022). Other methods
leverage training dynamics such as loss sensitivity (Arpit et al.l 2017)), forgetting frequency (Toneva
et al., 2019), the C-score (Jiang et al., 2021), and cumulative loss (Ravikumar et al.} [2025a)). More
recently approaches study the loss landscape, e.g., sharpness (Krueger et al., [2017) and input loss

Published as a conference paper at ICLR 2026

! ! Hard Example, [l
‘ Learnt Late [

H
<

PR
Easy Example, 58
Learnt Early §

H
3
5,

Sample Gradient
(w.r.t input)
2

10° 10! 102

Epochs

Figure 2: Visualizing Input Gradient Norms for Peacock-Class Samples in ImageNet. We plot the
input gradient norm (for ResNet18) for one easy and one hard peacock-class training example. Solid
lines show individual sample norms; dashed shows the average for the sample over training. The
easy example is learned early, while the hard example is learned later and memorized more.

curvature (Garg et al. 2024} Ravikumar et al., 2024a). Alternative proxies relying on optimizer

discrepancies (Agiollo et al.| [2024) or influence functions (Pruthi et all, [2020) have also been pro-
posed; however, these often incur high computational costs due to requirements for k-fold validation
or parameter-space gradient calculations. Similarly, metrics based on gradient variance, such as VoG
(Agarwal et al|[2022)), focus on fluctuation rather than accumulation, which can misidentify consis-
tently hard samples. Finally, while memorization in language models has been analyzed via exact
sequence matching (Leybzon & Kervadec| [2024])), such methods often lack a theoretical framework
linking input gradient dynamics to formal memorization definitions. In contrast, our work investi-
gates sample gradients (not weight but input) across training as a theoretically grounded proxy for
memorization.

4 CUMULATIVE SAMPLE GRADIENT (CSG)

To develop intuition and motivate the introduction of CSG, we analyze how the input loss gradients
evolve during training for two samples. Consider an “easy” and a “hard” example from the same
class (peacock) in the ImageNet dataset (Russakovsky et all [2015). Figure 2] plots the norm of
the gradient of the loss w.r.t. input (sample loss gradient) vs epochs. This captures how well the
model fits each sample over training. The easy sample, learned early, shows a rapid drop in gradient
that stays low. The hard sample, by contrast, maintains a high gradient much longer. This contrast
highlights how tracking the average sample gradient during training helps distinguishing between
easy and hard examples. Traditional metrics like learning and forgetting time rely on thresholds
and can be noisy e.g., a sample may appear learned, then forgotten, then relearned. To address this,
we introduce cumulative sample gradient (CSG), which smooths such fluctuations and provides a
more reliable signal. Hard examples tend to be memorized; easy ones are likely generalized which

is captured by CSG (see Figures|lal [1b} [I6aland|16b). CSG for a sample Z; = (Z;, y;) is defined as:
p y g p Y

Trmax

CSG(E}) = Thas - ER l:”vl’ig (wR)||§] ~ Z ||v1i€(u_}t)||§ (3)
t=0

where T;,,.. 1s the total number of iterations of SG For convenience, we introduce the concept
of the sample learning condition as Er [|| V4, ¢ (Wr)|[5] < 7, thus learning time 7%, can be defined
using the sample learning condition as

T., =min {7 : Eg [| V2.0 (@r)[3] < 7} @

where the gradient is with respect to the input &;. Here, R < T is a discrete random variable
sampled non-uniformly from the set {1,2,..., T4} This borrows from the SGD convergence
result of (Ghadimi & Lan|(2013)). We interpret the definition as follows: a sample is deemed learned
when the expected sample gradient drops below a predefined threshold 7.

2Note that the approximation is justified by the law of large numbers.

Published as a conference paper at ICLR 2026

4.1 CSG AND LEARNING TIME

Before stating our main result, we recall two preliminaries. First. consider SGD with update rule
Wep1 = Wy — M Vi, £(We, Z;) , where 7 is the learning rate and V,,, £ is an unbiased stochastic
gradient estimator. Following |Ghadimi & Lan|(2013)), a decreasing step-size schedule is required
to ensure convergence, such that the sum n = Z;T:_Ol (nt — gnf) < o0, with p denoting the
Lipschitz constant (Eq.[§). Second, building on [Ravikumar et al] (2025a), we show that the input
gradient is bounded by the weight norm and the weight-gradient norm. Since the weight-gradient
norm is known to converge during training (Ghadimi & Lan, 2013), and the input norm remains
fixed, the weight norm effectively bounds the input gradient. This is a re-framed version from
Ravikumar et al.| (2025a)), but helps build towards our result. Formally we state the lemma below

Lemma 4.1. For any neural network without a skip connection at the first layer, the Frobenius norm
of the gradient of the loss € with respect to a nonzero input T; for sample Z; = (Z;,y;) is bounded
by the norm of the network weights w;:

IVa:il(@e, Z)| p < 1@l p ([Vawr 02, Z0) /1Tl (5)

The lemma also holds for a mini-batch Xj. In which case, the constant becomes 1/||Z; || » becomes
(X,)" ||r/sp where sp is the smallest singular value of P = X, (X,)* and * denotes pseudo-
inverse. Using this general version (see proof in Appendix [C.I)), we define at each iteration ¢ the

fact(ir Kl = ||| pIl(X,))Tl #/sp and kp, = max; (52)2. We are now ready to state our main
result.

Theorem 4.2 (CSG is bound by Learning Time). Consider a deep network without skip connec-
tions in the first layer, trained by SGD. Suppose the SGD convergence assumptions hold, the loss
is L-bounded and SGD is [3-stable. Then there exist constants C1,Cy > 0 such that the expected
cumulative sample gradient (CSG) and expected learning time T, of a sample Z; satisfy:

EP’Zi [CSG(E;)] < Cl Epyzi [Tzz] + 027 (6)

Sketch of Proof. The proof establishes a bound on input gradient norms by adapting convergence
results from randomized SGD but in the input space. It then connects this to the learning condition.
By leveraging leave-one-out analysis and the [-stability of SGD, we separate the memorization
term. Combining these pieces yields the final result. The proof is provided in Appendix [C.2]

Understanding the terms. In the result, 7, denotes the maximum learning rate during training,
Timax the maximum number of iterations, p the Lipschitz constant, and I',, the variance bound. With
these definitions recalled, the constants are

K2 ngpl2 Km K2 Mg Tonax p T2

[T_ mnpv]7 Cy = B | pLy
2n U 2n

the constant C; depends on the problem-defined threshold 7, which can be chosen so that C is

positive. The absolute value of 7 is not essential; rather, the role of 7 is to help provide theoretical

connection. Cf is determined by parameters related to §-stability and assumptions from SGD, and
is therefore a positive fixed quantity once the network, and data are specified.

C, =

> 0,

Interpreting the Theory. Theorem [.2] can be interpreted as follows: for any group or subset of
training samples, their CSG scores are bounded by the group’s learning time. To see this, consider
the subset U(T) = {Z; : T,, < T}, which contains all samples learned within a time threshold
T. For any randomly chosen subset U drawn from the same distribution as the full dataset, we
can define the corresponding threshold as 7' = max{T%, : Z; € U}. Since Equation [6] holds for
all such subsets, it follows that the average CSG within a subset is bounded in proportion to its
average learning time. Finally, this can be validated in theory by grouping samples and observing a
linear relationship between CSG and learning time, which is performed in Section[5.1} The theory
also predicts that large cumulative input gradients must result in either very large learning times or
samples that are never learned such as mislabeled examples. This is indeed the case, by thresholding
on CSG we achieve state-of-the-art performance in mislabeled sample detection (see Sec. [5.4).

4.2 CSG AND MEMORIZATION

Theorem 4.3 (CSG is bound by Memorization). Consider a deep network without skip connections
in the first layer, trained by SGD. Suppose the SGD convergence assumptions hold, the loss is L-

Published as a conference paper at ICLR 2026

"g x10~12 %1072 10!

s T \ T ! . . ‘

O Inp. Grad. {4.5 » Q Weight Norm 1 5 0.8

& L Valloss. § = 6.5 Log Val. Loss | -2.5 % =

= : : ‘ B

- 405 E = Eo6

= 3 5 260 \ 1305 =

§ 2 " ”I ’\M y_ 3.5 % gﬁ ! %D (:;) 04Fr— Epoch Wise

= i WWM__T > = 351 F e N - ol Epoch CSG

@ 160 200 240 280 060 120 180 240 300 0 60 120 180
Epoch Epoch Epoch

(a) (b) (©)

Figure 3: (a) Input-gradient norm over training epochs for the 100 easiest examples (lowest CSG)
in CIFAR-100. The curve closely follows the second descent in validation loss (shown in red),
highlighting their correlation. (b) Validation loss and weight norm plotted together. The first descent
in the loss aligns with the peak in weight norm, reinforcing its connection to the double-descent. (c)
Similarity between input gradients and memorization scores across epochs (blue), along with the
cumulative similarity (green). The CSG similarity (green) plateaus around the first descent point.

bounded and SGD is (B-stable. Then, memorization bounds cumulative sample gradient as

E-.[CSG(%)] = O(E:;[mem(Z;)])

)

Sketch of Proof. The proof derives both a lower and an upper bound on the learning time using
convergence properties of SGD and the learning condition. We eliminate learning time using the
two bounds, to get an quadratic in terms of the CSG, where the coefficients depend on sample
memorization. Analyzing this quadratic reveals that it’s roots provide bounds on the CSG, showing
CSG is linearly bound to memorization. Full proof is available in Appendix [C.3]

Interpreting the Theory. The coefficient for O-notation, is proportional to b/2a where a and
b are the second and first order coefficients of the quadratic (See Eq. [52)). Similar to Theorem
Theorem applies to every set U(m) = {Z; : mem(Z;) < m}, where all samples have
memorization bounded by m. For such subsets, the cumulative sample gradient (CSG) is linearly
bounded in memorization. In other words, groups or subsets with lower memorization tend to have
lower CSG, while subsets with higher memorization are likely to exhibit higher CSG.

Remark on Assumptions. Uniform stability of SGD has been demonstrated in prior work (Hardt
et al.}, 2016), lending support to our stability assumption (Eq. [2). The Lipschitz continuity assump-
tion is justified by results from |Virmaux & Scaman| (2018)), where they derive general upper bounds
on the Lipschitz constant for differentiable deep models. Assumptions on an unbiased gradient
estimator and bounded gradient variance are standard in optimization theory (Aketi et al.| 2024
Ghadimi & Lan, 2013). While we assume L-bounded loss, the proof can be potentially extended to
cross entropy loss which is unbounded using result A.4 from Ravikumar et al.|(2024a)). Additionally,
most architectures such as ViTs, ResNets and VGGs don’t have a skip connection from the input.
Key Takeaways. If the theory bounds are tight, we expect the following: (1) learning time to exhibit
a linear relationship with CSG, (2) memorization to follow a linear relation with CSG.

4.3 SGAL AND LINKS TO DOUBLE DESCENT

Peaky trajectory. Figure[Ic|shows that the average sample gradient norm rises from a low baseline,
peaks sharply, and then declines. The weight norm follows the same trend (Fig. [3b), since it upper
bounds the sample gradient (Lemma [{.I). The weight norm is shaped by two opposing forces:
performance loss pushes it upward to fit the data, while /> weight decay and SGD’s implicit bias
toward minimum-norm solutions (Park et al.,2023)) pull it downward. Interestingly we also see this
when using the Adam, AdamW, Adagrad, and RMSProp optimizers (see Appendix and Figures
[[0]and[IT). Furthermore, we demonstrate consistency across different architectures specifically ViT
(ViT-M-16/256) and ResNet50 in Figures[12a) and [I2b] respectively. These results provide evidence
that this phenomenon is robust to variations in both architecture and optimizer.

Connection to double descent. Double descent refers to the phenomenon where test loss decreases,
then increases, and decreases again as a function of iterations, parameters, or dataset size. Here, we
focus on iterations. This behavior is evident in Fig. where the test loss first drops, then plateaus,

Published as a conference paper at ICLR 2026

.10 CIFAR-100 0 CIFAR-100 ImageNet ImageNet
T T R e A R e 250 R 300 T
X
X 5 x
H 1.0 X 200 XXTL
o 10 5500) « 1 0 i O 200 28
12 XX 2 x A XX 2 P
) X O X O [X @) xab
0.5 i 150 22
05h i i IS {100} 2
< i i X 100 b e —— Xl
0.00.2040.60.81.0 0.0 0.2 04 0.6 0.8 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Avg. Mem Score Learning Time Avg. Mem. Score Learning Time

(@) (®) (© (@

Figure 4: (a) Plots memorization score vs CSG on CIFAR-100 for Inception model (same arch.
as |[Feldman & Zhang| (2020)) (b) Plots learning time vs CSG for CIFAR-100 (Inception) (c) Plots
memorization score vs CSG on ImageNet for ResNet50 (same arch. as|[Feldman & Zhang| (2020))
(d) Plots learning time vs CSG for ImageNet.

rises, and finally drops again. Classical double-descent studies identify the first validation-loss min-
imum as the boundary between interpolation and generalization regimes (Poggio et al.,2019; Scha-
effer et al.} 2024). We observe that average CSG gradient peak lands on that same boundary (see
Figure [Ic). Additionally, at the peak, sample gradients are maximally aligned with memorization
scores |[Feldman & Zhang| (2020) (see Figure , providing more evidence for the link.

Practical takeaway. Let’s consider what happens under strong weight penalty. Strong penalty
pushes the weight norm down immediately during training. Upon further training the performance
loss pushes it back up, and finally SGD-bias drags it down. While weight decay is plays an important
role, we found that for standard training recipes, one can stop at peak weight norm. Ideally, moni-
toring both sample gradient and weight norm is recommended (see Figures [10|and [1 1| for detailed
effect of weight decay).

SGAL. In Figure we show the similarity between the input gradients and the memorization
score across epochs (in blue), as well as the cumulative similarity up to each epoch (in green). We
observe that CSG plateaus around the first descent point, or shortly after. This suggests that we can
avoid training on the full dataset and still achieve strong similarity with memorization, significantly
lowering compute costs. Motivated by this, we introduce sample Gradient-Assisted early stopping
with accumulated Loss (SGAL), a practical proxy for memorization. SGAL accumulates sample
loss until the gradient indicates an optimal stopping point, on average allowing training to stop
after 10-30% of epochs and yielding a 3-10x efficiency gain. The theory behind SGAL’s link
to memorization is justified using the results from Ravikumar et al.| (2025a). Additionally, input
gradients also identify the second descent without a validation set, by analyzing gradients of the
easiest examples (low CSG). Figure shows this on CIFAR-100, where gradient norms of the 100
easiest examples align closely with validation loss.

5 EXPERIMENTS

5.1 VALIDATING THEORY

Experiment. Here, we examine how well our theory (i.e. Theorem and holds in prac-
tice. We conduct the experiment by training Inception (Szegedy et al.l 2016) model on CIFAR-100
(Krizhevsky et al.| |2009) and ResNet50 (He et al.l [2016) on ImageNet (Russakovsky et al.l |2015)),
same as Feldman & Zhang |[Feldman & Zhang| (2020). For memorization scores, we utilize the pre-
computed memorization scores from Feldman & Zhang|(2020). Since the theorems apply to groups
of samples (i.e. under expectation), we grouped data by the x-axis metric and calculated average
scores for each bin. We plot a binned scatter plot of these metrics (see Appendix for more
details).

Results. The results are visualized in Figures [dal Ab] [dc] and [Ad] Figures [a] and [Ac]| plots the the
memorization score from |Feldman & Zhang| (2020) against CSG for CIFAR-100 and ImageNet re-
spectively. Figures[dbland[4d|plots learning time vs CSG for CIFAR-100 and ImageNet respectively.

Takeaways. Theorem [4.2] predicts a linear bound between learning time and the sample gradient,
and Theorem also predicts a linear relationship with memorization. These predictions are sup-

Published as a conference paper at ICLR 2026

Table 1: Cosine similarity (CS) and Pearson correlation (Corr.) between CSG and baselines with
memorization (Feldman & Zhang|, 2020)), and normalized compute cost. T Computationally infeasi-
ble to scale to ImageNet.

Method Compute CIFAR-100 ImageNet
CS Corr. CS Corr
Final Sample Loss 1x 024 0.17 0.63 0.49
Forget Freq. (Toneva et al.|[2019) 1x 076 0.59 049 0.04
Loss Sensitivity |Arpit et al.|(2017) 1x 0.81 0.76 049 0.17
CSL (Ravikumar et al.[|2025a) 1x 0.87 0.79 0.79 0.64
VoG AII Ckpts (Agarwal et al.|[2022) 1x 0.80 0.67 0.60 0.23
VoG Last 5 Ckpts (Agarwal et al.[[2022) 1x 033 023 058 032
GraNd (Paul et al.|2021) 7.8% 0.81 0.36 T t
Curv. (Garg et al.|[2024) 14x 069 049 062 033
SAMIS (Agiollo et al.|[2024) 24 % 0.53 0.69 T i
TracIn (Pruthi et al.][2020) 26X 0.83 0.71 i t
SGAL (Ours) 0.1-03x 086 077 0.78 0.62
CSG (Ours) 01-03x 084 072 071 052

Table 2: Calibration results (mean =+ std) for CIFAR-100 ResNet18 checkpoints

Metric Ours Val. Loss Stop Last Epoch

Accuracy 0.6306 £ 0.0103 0.6262 £ 0.0096 0.7492 + 0.0046
ECE | 0.1382 £0.0262 0.1260 £ 0.0083 0.1017 £ 0.0031
MCE | 0.2721 £0.0458 0.2352 £0.0203 0.2794 £ 0.0149
MSCE | 0.4208 £0.1620 0.3257 £0.0355 0.4427 £+ 0.0410
UCE | 2.0821 £0.4648 1.8667 £ 0.1424 2.1839 £ 0.0840

ported by experimental results shown in Figures[da] [4b] fc| and[Ad] which empirically confirm these
trends. There is a slight deviation from the predicted linear relations at high learning-time and mem-
orization respectively. This is likely due to the theoretical assumption of a uniformly bounded loss.
In practice, the cross-entropy loss is not uniformly bounded. This issue is also discussed in detail
by Ravikumar et al.| (2024a)), where accounting for subpopulation based loss bound improved the
match between theory and practice.

5.2 SIMILARITY WITH MEMORIZATION

Experiment. We train Inception on CIFAR-100 and ResNet50 on ImageNet, computing memo-
rization proxies and comparing them to memorization scores from |[Feldman & Zhang| (2020) us-
ing cosine similarity and Pearson correlation. We also evaluate L2 adversarial distance and MIA
performance (Appendix [A.T)), relating them to both memorization scores and CSG (see Appendix
Figures[7H9b). Additional setup details are in Appendix

Results. Table[T|shows the similarity with memorization score of each of the proxies: CSG, SGAL,
CSL (Ravikumar et al.,|2025a), curvature (Garg et al.|[2024), final sample loss, loss sensitivity (Arpit
et al.,|2017), forgetting frequency (Toneva et al.,[2019), SAMIS (Agiollo et al.,[2024)), VoG (Agarwal
et al.,|[2022)), TracIn (Pruthi et al., [2020), and GraNd (Paul et al., [2021)). It also lists the normalized
compute cost for each method. Figure [7| shows that both CSG and [Feldman & Zhang| (2020)’s
memorization scores follow similar trends with adversarial distance. Additionally, Figures [9a] and
[0b] show the same using MIA performance (see Appendix [B.7for details on MIA). Additionally, we
provide the same set of results when using Adam (Kingma, 2014)), AdamW (Loshchilov & Hutter,
2019), RMProp (Hinton et al.,|2012) and Adagrad (Duchi et al., [2011]) optimizers in the Appendix
Table |6l

Takeaways. CSG and SGAL demonstrate a strong correlation with memorization and serve as
highly efficient proxies. SGAL achieves between 97-99% (Table |1) of the correlation obtained by
the best proxy (CSL) while requiring only 10%-30% of the computational cost. CSG and SGAL are
approximately 140X faster than curvature, up to 10x faster than CSL, and five orders of magnitude
faster than memorization score (see cost analysis in Appendix [B.5).

Published as a conference paper at ICLR 2026

Table 3: Mean = standard deviation of MIA performance over two runs for different stopping points.
Lower values indicate better privacy.

MIA Method AUROC | Balanced Accuracy |

Ours Val. Loss Stop Last Epoch Ours Val. Loss Stop Last Epoch
Curvature Ravikumar et al.|(2024b) 59.42 £ 5.83 60.67 £4.06 8552+045 56.55+4.16 57.41+2.84 76.63+0.26
LiRA |Carlini et al.|(2022) 5598 £5.34 5698+493 8548 +£0.18 5436+390 5509+3.70 78.05+0.24
Cal. Loss|Watson et al.|(2022) 67.02£552 68.63+523 7094+022 61.14+£3.12 6234+325 6236+0.16
MAST |Sablayrolles et al.|(2019) 70.70 £ 6.84 72.03+4.890 7856+0.25 64.10+494 65.06+3.46 68.19£0.26
Yeom et al.|Yeom et al.|[(2018) 57.57+£472 58274331 80.75+£0.16 55914383 5647270 74234023

Table 4: AUROC (mean =+ std over 3 seeds) for mislabeled-sample detection on CIFAR-10 and
CIFAR-100 at five noise levels. Best values per column are in bold.

Dataset Method 5% Noise 10% Noise 20% Noise 25% Noise 30% Noise
CL (Northcutt et al.|[2021) 0.8874 £ 0.0019 0.8551 £0.0030 0.7169 + 0.1539 0.6960 + 0.1387 0.6794 + 0.1264
In Conf. (Carlini et al.[|[2019a) 0.7254 4+ 0.0214 0.6528 + 0.0042 0.5978 + 0.0131 0.5800 + 0.0051 0.5669 + 0.0106

2, SSFT (Maini et al.|[2022) 0.9498 £ 0.0042 0.9360 £ 0.0020 0.9077 £ 0.0023 0.8910 £ 0.0050 0.8710 £ 0.0071
E Curv. (Garg et al.|[2024) 0.9800 £ 0.0003 0.9819 £ 0.0006 0.9934 £ 0.0002 0.9932 £ 0.0001 0.9932 £ 0.0006
O CSL|Ravikumar et al.|(2025a) 0.9845 + 0.0026 0.9864 + 0.0004 0.9870 + 0.0003 0.9904 £ 0.0005 0.9906 =+ 0.0003
CSG (Ours) 0.9783 £ 0.0009 0.9809 + 0.0011 0.9936 + 0.0002 0.9934 + 0.0001 0.9935 £ 0.0006

SGAL (Ours) 0.9115 £ 0.0057 0.8835 £ 0.0128 0.8664 + 0.0070 0.8553 £ 0.0145 0.8470 £ 0.0283

CL (Northcutt et al.{[2021) 0.8733 £0.0010 0.8536 £ 0.0006 0.7030 £ 0.1565 0.6833 £ 0.1427 0.6662 =+ 0.1289

- In Conf. (Carlini et al.[[2019a) 0.7069 & 0.0069 0.6884 4 0.0053 0.6493 4+ 0.0075 0.6324 + 0.0051 0.6257 + 0.0044
2. SSFT (Maini et al.|[2022) 0.8784 £ 0.0030 0.8664 £ 0.0024 0.8358 £ 0.0008 0.8203 £ 0.0016 0.8043 £ 0.0061
% Curv. (Garg et al.||2024) 0.9876 £ 0.0021 0.9892 £ 0.0012 0.9931 £ 0.0004 0.9931 £ 0.0004 0.9932 =+ 0.0002
(% CSL (Ravikumar et al.|[2025a) 0.9891 & 0.0003 0.9895 £ 0.0002 0.9902 £ 0.0002 0.9904 £ 0.0002 0.9903 4 0.0002
CSG (Ours) 0.9896 + 0.0008 0.9904 + 0.0006 0.9934 + 0.0003 0.9936 + 0.0002 0.9936 + 0.0001

SGAL (Ours) 0.9895 £ 0.0006 0.9897 £ 0.0008 0.9856 £ 0.0008 0.9863 £ 0.0009 0.9861 £ 0.0004

5.3 EARLY STOPPING

Experiment. We examine how sample gradient early stopping affects calibration and privacy in
a ResNet18 (He et all [2016) on CIFAR-100. Prior work shows early stopping improves both (Ji
et al., 2021): well-calibrated models make more reliable predictions, and reduced overfitting lowers
privacy risk. We focus on the first descent, which offers stronger privacy with reasonable gener-
alization. Calibration is measured with ECE, MCE, MSCE, and UCE (see metric definitions in
the Appendix [B.3)); privacy with LiRA (Carlini et al.| [2022), curvature (Ravikumar et al. [2024b),
and other attacks (Sablayrolles et al., 2019; Watson et al., [2022; Yeom et al.,|2018)). Appendix
provides additonal setup details.

Results. Table[2]reports calibration for all checkpoints, with reliability diagrams in Figure[6] Lower
error indicates better calibration. We prioritize MCE and UCE in this context because real-world
data distributions often follow a long-tail or power-law distribution. As discussed by [Feldman
(2020), deep learning models rely on memorizing these rare, atypical examples to achieve gener-
alization. ECE is an expectation-based metric; it weights the calibration error of each bin by the
number of samples in that bin. Consequently, in long-tailed datasets, low-accuracy bins (the tail)
often contain fewer samples and are down weighted by ECE, masking miscalibration on difficult ex-
amples. In contrast, MCE and UCE treat calibration across the accuracy range more equally. When
the goal is trustworthy Al that performs reliably on both head and tail data, these metrics provide
a more accurate reflection of model safety. Privacy results (AUROC, balanced accuracy) are in Ta-
ble 3] where smaller values imply less training data leakage. Further low-FPR MIA results are in

Appendix [A.T]

Takeaways. The sample gradient checkpoint and has lower calibration errors compared to last
epoch checkpoint. Membership-inference performance drop for early-stopped model, indicating
noticeably less privacy risk. In short, sample gradient early stopping reproduces the benefits of
conventional validation-based early stopping without needing a separate validation set!

Published as a conference paper at ICLR 2026

Low CSG High CSG . Cali}vralion Cl:rves
TEocevofge TITTTLIARTY e o
H“Hnﬂ"" “H“ """n"ﬂm""n 0.8 [\Zl;l!.lraassearysmp //
= E Ll = - oss based early stop
- H"nﬂ,\l’\n: m .n.....n‘ . 06-: Last epoch s ||
iiPeiviing @ BRRRR W) g i
AnAAAARAAR DRaRAM M) @ 2ot -
Rkl e AR e sl o G b2 P
EEAMAAMANS TRARIBOUMAM Y S
B i L a. g A e & o /,,_"»

Y Y Y T
JAMNL AR AR AR

AeUg@mEm =g
AL AnAR = AN 2

1
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 5: Using the CSG uncovers a bias in the FM-
NIST dataset: darker clothing with lower contrast is
often identified as high CSG (i.e. harder).

Figure 6: Reliability Diagram for Inp
Grad/weight norm based, val. based
early stopping and the last checkpoint.

5.4 MISLABEL DETECTION

Experiment. We detect mislabeled samples by thresholding CSG values and compare this method
to state-of-the-art approaches on CIFAR-10/100 with ResNet18 under 5% — 30% symmetric label
noise (labels flipped uniformly to other classes). Detection is evaluated with AUROC (higher is
better). Appendix [B.6|provides setup details.

Results. The results are presented in Table 4] showcasing the performance of our method and
baselines (see Appendix [B.6.1|for details on the baseline methods) on CIFAR-10 and CIFAR-100 at
symmetric label noise levels of 5%, 10%, 20%, 25% and 30%.

Takeaways. CSG reliably detects mislabeled examples. It surpasses all baselines on CIFAR-100
and, on CIFAR-10, scales with noise matching curvature and CSL at 5-10% and surpassing them at
higher levels with significantly lower cost, CSG delivers state-of-the-art performance efficiently.

5.5 BIAS

CSG analysis uncovers hidden biases in training data. In CIFAR-100 (Figures [Ta] and [Tb), images
of boys in red shirts or red trucks consistently receive low CSG scores, indicating they are learned
earlier. This is likely due to over representation of red colored objects. This color-specific ease of
learning suggests a bias that may hinder generalization. A similar trend is observed in Fashion-
MNIST (Xiao et al.,2017), where Figure E] shows that high CSG samples, learned later in training,
tend to be darker and lower in contrast. These findings show that irrelevant features (e.g., color,
brightness, contrast) can bias learning, and CSG offers a practical way to detect them. Finally, to
ensure reproducibility, details of all the experiments are provided in Appendix [B} and the corre-
sponding code is included in the supplementary material.

6 CONCLUSION

In conclusion, we propose Cumulative Sample Gradient (CSG), a theoretically grounded and effi-
cient proxy for memorization. CSG aligns closely with memorization (Feldman & Zhang, [2020)
while being up to five orders of magnitude faster, and is 140x faster than curvature (Garg et al.,
2024)) and 5x faster than CSL (Ravikumar et al., [2025a)), two prior state-of-the-art proxies. Our
analysis establishes a theoretical connection between CSG, learning time, and memorization. Ex-
perimentally, we show that CSG enables validation-set-free early stopping and supports the develop-
ment of an additional proxy, SGAL. Further experiments demonstrate state-of-the-art performance
in mislabeled data and bias detection, positioning CSG as a scalable and interpretable tool for data-
centric deep learning.

ACKNOWLEDGMENTS

This work was supported in part by the Center for the Co-Design of Cognitive Systems (COCOSYYS),
a DARPA sponsored JUMP center, Semiconductor Research Corporation (SRC), National Science
Foundation (NSF) award DMS-2502560, and Collins Aerospace. Efstathia Soufleri has been par-

10

Published as a conference paper at ICLR 2026

tially supported by project MIS 5154714 of the National Recovery and Resilience Plan Greece 2.0
funded by the European Union under the NextGenerationEU Program.

REFERENCES

Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of
gradients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10368-10378, 2022.

Andrea Agiollo, Young In Kim, and Rajiv Khanna. Approximating memorization using loss surface
geometry for dataset pruning and summarization. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 17-28, 2024.

Sai Aparna Aketi, Abolfazl Hashemi, and Kaushik Roy. Global update tracking: A decentralized
learning algorithm for heterogeneous data. Advances in neural information processing systems,
36, 2024.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URLhttps://pytorch.org/assets/pytorch2-2.pdf.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.

233-242. PMLR, 2017.

Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
pitfalls of memorization: When memorization hurts generalization. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=vVhZh9ZpIM.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd
annual ACM SIGACT symposium on theory of computing, pp. 123—132, 2021.

Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot. Distribution density, tails, and outliers in
machine learning: Metrics and applications. arXiv preprint arXiv:1910.13427, 2019a.

Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot. Prototypical examples in deep learning:
Metrics, characteristics, and utility, 2019b.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX security symposium (USENIX Security 21), pp.
2633-2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp- 1897-1914. IEEE, 2022.

Ganesh Del Grosso, Hamid Jalalzai, Georg Pichler, Catuscia Palamidessi, and Pablo Piantanida.
Leveraging adversarial examples to quantify membership information leakage. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10399-10409, 2022.

11

https://pytorch.org/assets/pytorch2-2.pdf
https://openreview.net/forum?id=vVhZh9ZpIM
https://openreview.net/forum?id=vVhZh9ZpIM

Published as a conference paper at ICLR 2026

John Duchi, Flad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer, 2006.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 954-959, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881—
2891, 2020.

Isha Garg and Kaushik Roy. Samples with low loss curvature improve data efficiency. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20290—
20300, 2023.

Isha Garg, Deepak Ravikumar, and Kaushik Roy. Memorization through the lens of curvature of
loss function around samples. In Forty-first International Conference on Machine Learning, 2024.
URLhttps://openreview.net/forum?id=WQbDS9RydY.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225-1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Ziwei Ji, Justin Li, and Matus Telgarsky. Early-stopped neural networks are consistent. Advances
in Neural Information Processing Systems, 34:1805-1817, 2021.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural
regularities of labeled data in overparameterized models. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5034-5044. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/jiang2lk.html.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697-10707. PMLR,
2022.

Michael Kearns and Dana Ron. Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation. In Proceedings of the tenth annual conference on Computational learning the-

ory, pp. 152-162, 1997.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Sangamesh Kodge, Deepak Ravikumar, Gobinda Saha, and Kaushik Roy. Verifix: Post-training cor-

rection to improve label noise robustness with verified samples. arXiv preprint arXiv:2403.08618,
2024.

12

https://openreview.net/forum?id=WQbDS9RydY
https://proceedings.mlr.press/v139/jiang21k.html

Published as a conference paper at ICLR 2026

Sangamesh Kodge, Deepak Ravikumar, Gobinda Saha, and Kaushik Roy. Sap: Corrective machine
unlearning with scaled activation projection for label noise robustness. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(17):17930-17937, Apr. 2025. doi: 10.1609/aaai.v39il7.
33972. URL https://ojs.aaai.org/index.php/AAAI/article/view/33972.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan
Maharaj, Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don’t learn via mem-
orization. In /CLR Workshop, 2017.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in neural information processing systems, 36:1957-1987, 2023.

Danny D Leybzon and Corentin Kervadec. Learning, forgetting, remembering: Insights from track-
ing llm memorization during training. In Proceedings of the 7th BlackboxNLP Workshop: Ana-
lyzing and Interpreting Neural Networks for NLP, pp. 43-57, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCgY7.

Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Ku-
mar. What do larger image classifiers memorise? arXiv preprint arXiv:2310.05337, 2023.

Pratyush Maini, Saurabh Garg, Zachary Lipton, and J Zico Kolter. Characterizing datapoints via
second-split forgetting. Advances in Neural Information Processing Systems, 35:30044-30057,
2022.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramer, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 70:1373-1411, 2021.

Jiyoung Park, Ian Pelakh, and Stephan Wojtowytsch. Minimum norm interpolation by perceptra:
Explicit regularization and implicit bias. Advances in Neural Information Processing Systems,
36, 2023.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in neural information processing systems,
34:20596-20607, 2021.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
using the area under the margin ranking. Advances in Neural Information Processing Systems,
33:17044-17056, 2020.

Tomaso Poggio, Gil Kur, and Andrzej Banburski. Double descent in the condition number. arXiv
preprint arXiv:1912.06190, 2019.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920-19930, 2020.

Deepak Ravikumar, Sangamesh Kodge, Isha Garg, and Kaushik Roy. Intra-class mixup for out-of-
distribution detection. /IEEE Access, 11:25968-25981, 2023.

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. Unveiling privacy,
memorization, and input curvature links. In Forty-first International Conference on Machine
Learning, 2024a. URL https://openreview.net/forum?id=4dxR7awO5n.

13

https://ojs.aaai.org/index.php/AAAI/article/view/33972
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=4dxR7awO5n

Published as a conference paper at ICLR 2026

Deepak Ravikumar, Efstathia Soufleri, and Kaushik Roy. Curvature clues: Decoding deep learn-
ing privacy with input loss curvature. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b. URL https://openreview.net/forum?id=
ZEVDMQ6Mu bl

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. Towards memoriza-
tion estimation: Fast, formal and free. In Forty-second International Conference on Machine
Learning, 2025a.

Deepak Ravikumar, Efstathia Soufleri, and Kaushik Roy. Improved out-of-distribution detection
with additive angular margin loss. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2025b.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(1JCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-
box vs black-box: Bayes optimal strategies for membership inference. In International Confer-
ence on Machine Learning, pp. 5558-5567. PMLR, 2019.

Rylan Schaeffer, Zachary Robertson, Akhilan Boopathy, Mikail Khona, Kateryna Pistunova, Ja-
son William Rocks, Ila R Fiete, Andrey Gromov, and Sanmi Koyejo. Double descent demystified:
Identifying, interpreting & ablating the sources of a deep learning puzzle. In The Third Blogpost
Track at ICLR 2024, 2024. URL https://openreview.net/forum?id=muC7uLvGHr.

Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. Reinforcement learning algo-
rithms: A brief survey. Expert Systems with Applications, 231:120495, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp- 3-18. IEEE, 2017.

Efstathia Soufleri, Deepak Ravikumar, and Kaushik Roy. Advancing compressed video action recog-
nition through progressive knowledge distillation. arXiv preprint arXiv:2407.02713, 2024a.

Efstathia Soufleri, Deepak Ravikumar, and Kaushik Roy. Dp-imgsyn: Dataset alignment for ob-
fuscated, differentially private image synthesis. Transactions on Machine Learning Research,
2024b.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818-2826, 2016.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BJ1xm30cKm.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Cheng Wang. Calibration in deep learning: A survey of the state-of-the-art. arXiv preprint
arXiv:2308.01222, 2023.

Lauren Watson, Chuan Guo, Graham Cormode, and Alex Sablayrolles. On the importance of dif-
ficulty calibration in membership inference attacks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3eIr1i0TwQ.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

14

https://openreview.net/forum?id=ZEVDMQ6Mu5
https://openreview.net/forum?id=ZEVDMQ6Mu5
https://openreview.net/forum?id=muC7uLvGHr
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=3eIrli0TwQ

Published as a conference paper at ICLR 2026

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268-282. IEEE, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9Ixx.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107—
115, 2021.

15

https://openreview.net/forum?id=Sy8gdB9xx

Published as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL BACKGROUND ON STOCHASTIC GRADIENT DESCENT
(SGD)

p-Lipschitz Gradient. The gradient of the loss function £ is said to be p-Lipschitz on Range(W)
if, for all w1, Wy € Range(W), there exists a constant p > 0 such that:

IV, £(01) = Vi, €(02)|| < pl[dy — 0| ®)

Bounded Gradient Variance. Let V,, ¢(w;) denote the true gradient, and let V,,, ¢(w;) be an
unbiased estimator of this gradient. The estimator is said to have variance bounded by I' if

E IV, 031) — Vo, (@) 3] < T2 ©)

In SGD, model parameters w; at iteration ¢ are updated using the gradient of the loss function
computed with a mini-batch or a single random sample 2;. The update rule is

117:&+1 =W — Utﬁw,[(u_}’t, 5;) (10)

Here, 7 is the learning rate, and @u,tﬁ (Wy, Z;) is an unbiased stochastic gradient estimator.

A.1 MEMBERSHIP INFERENCE ATTACKS (MIA)

Membership Inference Attacks (MIA) aim to determine whether a specific data point was part of a
machine learning model’s training dataset. By analyzing the model’s outputs, such as confidence
scores or loss values, attackers can infer the membership status of individual data points, posing
significant privacy concerns, especially when models are trained on sensitive information (Shokri
et al., 2017).

Curvature Clues (Ravikumar et al., 2024b). This approach leverages the curvature of the loss
function with respect to input data to distinguish between training and non-training samples. Specif-
ically, it examines the trace of the Hessian matrix (input loss curvature) of the loss function. Empir-
ical studies have shown that this curvature tends to be higher for training data points compared to
non-training ones, enabling effective membership inference even in black-box settings.

Likelihood Ratio Attack (LiRA) (Carlini et al.,[2022). LiRA is a black-box membership inference
technique that utilizes shadow models to estimate the likelihood of a data point being part of the
training set. By comparing the loss distributions of shadow models trained with and without specific
data points, LiRA computes a likelihood ratio to infer membership. This method has demonstrated
superior performance, especially at low false positive rates, compared to previous approaches.

Shadow Models are auxiliary models trained to mimic the behavior of the target model. By training
these models on known datasets, attackers can observe how the model behaves with known members
and non-members, creating a reference for inferring membership in the target model.

In our study, we employed 64 shadow models to capture a diverse range of behaviors, enhancing the
robustness and accuracy of our membership inference attacks.

B EXPERIMENTAL DETAILS

B.1 VALIDATING THEORY SETUP DETAILS

Datasets. We use CIFAR-100 (Krizhevsky et al.l [2009) and ImageNet (Russakovsky et al.l [2015))
datasets. For experiments that use memorization scores, we use the pre-computed stability-based
memorization scores from |Feldman & Zhang| (2020) which have been made publicly available by
the authors.

Architectures. Since we use the precomputed stability-based memorization scores from [Feldman
& Zhang| (2020) we use the same model architectures as [Feldman & Zhang| (2020), specifically we
use Inception |Szegedy et al.[(2016) for CIFAR-100 and ResNet50 |He et al.| (2016) for ImageNet.

16

Published as a conference paper at ICLR 2026

Mem. and CSG vs. Adversarial Distance

0.6 === 2.0
8
S 1.5
A 0.4 -1\
S)
\\ 10 g
S 0.2
5 -\ 0.5
=

0.0 0.0

0 5 10

Adpversarial Distance

Figure 7: Comparison of CSG with adversarial distance and memorization.

Training. When training on CIFAR-100 the initial learning rate was set to 0.1 and trained for 200
epochs. The learning rate is decreased by 10 at epochs 120 and 160. The batch size is set to 128.
We use stochastic gradient descent for training with momentum set to 0.9 and weight decay set to
1 x 10~*. For CIFAR-100, we used the following sequence of data augmentations for training:
resize (32 x 32), random crop, and random horizontal flip, this is followed by normalization. For
ImageNet we trained a ResNet50 with the resize random crop was set to 224 x 224.

B.2 SIMILARITY WITH MEMORIZATION SETUP DETAILS

Setup. The datasets, architectures and training for this experiment is the same as described in section

Similarity Score. For cosine similarity score we use pytorch and for Pearson correlation sklearn’s
implementation.

Effect of Architecture. The table below shows the effect of using a different architecture from
that of Feldman & Zhang|(2020) and using the proposed CSG proxy to calculate similarity with the
precomputed memorization scores from Feldman & Zhang| (2020).

Table 5: CSG similarity with FZ Memorization vs Architecture. Cosine Similarity (CS) refers to the
similarity with Feldman & Zhang|(2020) precomputed memorization scores.

Dataset Architecture Cosine Similarity (CS)
CIFAR100 Inception (Same as FZ) 0.84
CIFAR100 ResNetl8 0.77
ImageNet ResNet50 (Same as FZ) 0.78
ImageNet ResNetl8 0.68

Using MIA to test Memorization. We use the state-of-the-art membership inference attack pro-
posed by [Ravikumar et al.| (2024b) to evaluate the memorization behavior of models. Membership
inference attacks measure if a given sample was used to train the model. The success of the attacks
reveals privacy risks for training examples. To demonstrate that CSG captures similar properties to
the memorization score introduced by Feldman and Zhang |Feldman & Zhang| (2020), we plot MIA
AUROC against both the memorization score and CSG in Figures [9b| and [9a respectively. Both
plots clearly show a monotonic increase in MIA attack success as either the memorization score or
CSG increases, indicating that both metrics effectively reflect model memorization.

B.3 EARLY STOPPING DETAILS AND SETUP

Setup. For this experiment we trained a ResNet18 on CIFAR-100. The initial learning rate was set
to 0.1 and trained for 300 epochs. The learning rate is decreased by 10 at epochs 180 and 240. The

17

Published as a conference paper at ICLR

2026

£ 0.75

ool

=]
*E‘ 0.50 — Epoch Wise 7]
-g \ Epoch CSG]
5 0.25 \ '
’ 0.00 :

0 100 200 300
Epoch

Figure 8: Epoch-wise similarity for ResNet18 on CIFAR-100 (same model and trajectory) as used in
Figure[Tc] We clearly observe the same trend as in Figure[3c] Figure[3c|was included in the main pa-
per because it was obtained using the FZ Inception architecture, which is the same architecture used
to evaluate memorization scores in Feldman & Zhang|(2020). However, this result demonstrates that
our observations generalize across network architectures, provided there is sufficient parameteriza-

tion.
CSG vs Curv MIA AUROC
L0 F T R R
0.9 [\92(
[X
Q [X
8 0.8 : X
-
< 07 a
X
06 f
[X
500 1000 1500
CSG
(a) MIA AUROC vs CSG.

Figure 9: Demonstrating that CSG captures similar properties as the memorization score introduced
by Feldman and Zhang [Feldman & Zhang| (2020), we plot MIA AUROC against both the mem-
orization score and CSG in Figures [9a] and [9b] respectively. Both plots show a clear monotonic
relationship: as either memorization or CSG increases, the success rate of the MIA attack also in-

creases.

18

Mem. Score vs Curv MIA AUROC

]. L —— T TT
0 ! xi X X XX
X
09 [%X
’ X
FiX
0.8 : X
[y
07} <
EX
0.6
[X
0.00 0.25 0.50 0.75 1.00
Mem. Score

(b) MIA AUROC vs Memorization Score.

Published as a conference paper at ICLR 2026

Table 6: Comparison of Cosine Similarity (CS) and Pearson Correlation (PC) of different methods
with precomputed memorization scores from Feldman & Zhang| (2020) Experiments are performed
on the CIFAR100 dataset using the Inception model architecture (same as|Feldman & Zhang| (2020))
across Adam, AdamW, AdaGrad, and RMSProp optimizers. “Top 5k” refers to selecting the 5000
most memorized examples based on|Feldman & Zhang|(2020), and the cosine similarity and Pearson
correlation for these examples is reported.

. L Adam AdamW AdaGrad RMSProp
Method Compute Cost Dataset cs PC cs PC cs PC cs PC
SGAL (Ours) 0.1-0.3x All 0.87 079 087 0.78 085 0.74 0.87 0.78
CSL (Ravikumar et al.|{[2025b) 1x All 087 078 085 075 0.84 073 0.87 0.78
Loss Sensitivity (Arpit et al.|[2017) 1x All 0.85 077 084 075 082 0.70 0.85 0.77
CSG (Ours) 0.1-0.3x All 084 074 084 072 0.82 0.69 0.84 0.73
Forgetting Frequency (Toneva et al.|2019) 1x All 0.83 0.72 0.79 0.63 0.74 0.54 083 0.71
VoG All Ckpts (Agarwal et al.[[2022) 1x All 080 0.66 078 062 0.80 0.65 0.81 0.67
Final Sample Loss 1x All 0.09 006 004 003 045 031 0.09 0.06
VoG Last 5 Ckpts (Agarwal et al.|[2022) Ix All 022 0.14 0.12 0.08 047 031 025 0.17
TracIn (Pruthi et al.[[2020) 26x (measured) All 085 075 083 070 0.85 0.75 0.85 0.75
GraNd (Paul et al.]2021) 7.8 (measured) All 0.81 0.69 079 0.65 0.81 0.69 0.69 0.39
Loss Sensitivity (Arpit et al.|[2017) 1x TopSk 0.79 0.69 0.78 0.67 0.75 0.67 079 0.69
SGAL (Ours) 0.1-0.3x TopSk 0.83 0.73 0.82 0.72 080 0.67 083 0.73
CSL (Ravikumar et al.|{[2025b) 1x TopSk 0.83 0.73 0.81 0.69 080 0.67 083 0.73
CSG (Ours) 0.1-0.3x Top5k 0.78 0.64 0.72 056 0.71 054 078 0.64
Final Sample Loss 1x Top Sk 0.08 0.05 0.04 0.03 040 027 0.08 0.05
Forgetting Frequency (Toneva et al.|2019) 1x Top Sk 0.79 0.67 093 0.05 0.89 0.07 0.79 0.66
VoG All Ckpts (Agarwal et al.[[2022) Ix TopSk 0.75 0.60 0.73 055 0.74 057 0.76 0.60
VoG Last 5 Ckpts (Agarwal et al.[[2022) 1x Top Sk 0.19 0.12 0.11 0.08 042 027 022 0.15
TracIn (Pruthi et al.||2020) 26x (measured) TopSk 0.80 0.67 0.77 0.63 080 0.62 0.80 0.68
GraNd (Paul et al.|[2021) 7.8x (measured) Top5k 0.76 0.62 074 059 0.76 0.62 0.63 0.32

batch size is set to 128. We use stochastic gradient descent for training with momentum set to 0.9
and weight decay set to 1 x 1074,

Model calibration refers to the extent to which a model’s predicted probabilities reflect the true
likelihood of outcomes. A well-calibrated model not only makes accurate predictions but also as-
signs confidence scores that correspond closely to the observed frequencies of correct classifications.
For example, among all predictions assigned a confidence of 70%, approximately 70% should be
correct. Proper calibration is crucial in applications where decision-making depends on reliable
uncertainty estimates, such as medical diagnosis or autonomous driving.

To evaluate calibration, reliability diagrams (also known as calibration plots) are widely used. These
plots compare predicted confidence with empirical accuracy by partitioning predictions into M bins
based on their confidence scores (e.g., intervals like [0.0, 0.1), [0.1, 0.2), ..., [0.9, 1.0]). For each bin
B,,, the accuracy acc(B,,) is the fraction of correct predictions, and the confidence conf(B,,) is
the average predicted probability. Discrepancies between these two values indicate miscalibration.

Several quantitative metrics are used to summarize calibration performance, see [Wang| (2023)) for a
detailed analysis:

M

By,
Expected Calibration Error (ECE) = Z 1B |lace(By,) — conf(Bp,)|, (11)
n
m=1
Maximum Calibration Error (MCE) = max |lace(Bp) — conf(By,)|, (12)
m=1,...,
1 & 2
Mean Squared Calibration Error (MSCE) = i Z (acc(Bp,) — conf(By,)) ", (13)
m=1
LM
Uniform Calibration Error (UCE) = - > Jace(Byn) — conf(By,)|. (14)
m=1

19

Published as a conference paper at ICLR 2026

ADAM: Input Gradient and Validation Loss ADAM: Input Gradient and Weight Norm
T T
i ’*W é) /.. IW
6 O 07 6 : / 1200
|I V 1 N
5 H 06 5 1000
- 6 » o
] y 4 = g
24 "‘j ; S L4 800 g
< b - +} 1 05 =] E
S ATk v, £ S v z
z3 W Py 3 L3 " S ok 600 5
5 MM s E G MMy =
=2 e S > =9 gadn 1 400
Y c\
\ DA M..«l“\«‘#/v'v»‘ L\ ! Mﬂ
1F _wﬁ&w‘l&i(—] 5 10 e adied Py — == 0.3 1 = iiet= P 200
—] 5 1073 " [nput Gradieént k‘r— —] 5 1073 e [nput Gradient e
ok ._ Lx10=4 I— - '|lid'ninnll P a——— = 02 0 -IE_I_xlﬂ:"_ = —_—— y{gjgpu\llmm _\T 0
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
(a) Adam: Input Gradient & Validation Loss (b) Adam: Input Gradient & Weight Norm
ADAMW: Input Gradient and Validation Loss ADAMW: Input Gradient and Weight Norm
4 4
—iX10T == Tx10 0.7] e | K~ = e 1 52 105 =
—] 1073 = Input Gradient rx1o-3 nput-Gradient— 3000
= 1x 104 === Validation Loss ——{x 1074 _ == Weight Norm
4
3 05 3 i 7 2500
= 7] = ¢ g
o Q o ’]
5 S 2 /
£ 05 L0 g 2000 2
@] = O =
< s = 1500 2
: : 2 . g
= v ToevAtmEEassEA104 5 & P
1 oG 1 P = 1000
\ ﬁ»} A o ——— PP IR Il sttty
S
) 0.3 e 500
'&q Y ’
0 0
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
(c) AdamW: Input Gradient & Validation Loss (d) AdamW: Input Gradient & Weight Norm

Figure 10: Comparison of input gradients against Validation Loss (Left column) and Weight Norm
(Right column) for Adam and AdamW.

ECE computes the weighted average of absolute errors across all bins, giving more influence to
bins with more samples. MCE captures the worst-case miscalibration observed across bins. MSCE
penalizes larger discrepancies more severely by squaring the calibration errors. UCE provides an
unweighted average of absolute differences, treating all bins equally regardless of sample size. To-
gether, these metrics offer a robust framework for assessing and improving the reliability of proba-
bilistic predictions.

where

1

1
= 1B Z 1{9; = yi}, conf(By) Z Di 5)

acc(Bpm,) =
i€Bm | Bl i€Bm

and n is the total number of samples, M the number of bins, and B,, the set of indices assigned to
bin m.

MIA Setup. For the MIA test setup we use the code, models and setup from
(2024b).

B.4 ADDITIONAL RESULTS WITH ADAM OPTIMIZER

We ran additional experiments with the Adam optimizer. For the training procedure, a ResNet18
model was trained on CIFAR100 using Adam with an initial learning rate of 1 x 10~2 and a
weight decay of 1 x 107%. We employed the standard CrossEntropyLoss function and a
MultiStepLR scheduler, which decayed the learning rate by a factor of 0.1 at 60% and 80%
of the 200 total training epochs.

20

Published as a conference paper at ICLR 2026

ADAGRAD: Input Gradient and Validation Loss ADAGRAD: Input Gradient and Weight Norm
T T
t 0.8 H
4 LMA/WM 4 p--c-ik 250
j,r“ WL 0.7 ,'A“
I
_ sl WW Y W 200
8 T - 068 5] E
3 ! \ — 1072 10 = 2 — 102 0 2
= | .y . 5 5 [- - o 150
6]) 1 10 = Input Gradient 0.5 = 6] 1x1073 w— [nput Gradient =
s 2 —] 5 107 == = Validation Loss | _g s 2 —] 5 104 === Weight Norm =2y
R | g B \ 5
= " 04 > = Yk \-;: ——————— 100
1 \\ ‘\'1 , ! 1 - dr-m=g===== et
\ Y ‘ 03 : [50
R
Yo CERSRRT A = S ——————
0 | 0.2 0 0
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
(a) Adagrad: Input Gradient & Validation Loss (b) Adagrad: Input Gradient & Weight Norm
RMSPROP: Input Gradient and Validation Loss RMSPROP: Input Gradient and Weight Norm
0.8 T
7 7 | 1400
6 0.7 6 1200
5 J 5
= i 06 2 = 1000 .
g b ' 1 S 2 £
g4 T = g4 800 2
G 0.5 S G =
6] v oyt R Aot | Bt O =
= 3 A N 1 At =} = 3)
3 7 A TR \ s 3 600 2
2. I i" Wyl CNEPy = 2. 9
I LT A 045 2 =
MK et 2 400
RIS S -
=0 § S = U 1 200
m—Tnput Gradiént’"
= = Validation Ly
ali :mvmI 08§ = 02 0 0
0 50 100 150 200
Epoch
(c) RMSProp: Input Gradient & Validation Loss (d) RMSProp: Input Gradient & Weight Norm

Figure 11: Comparison of input gradients against Validation Loss (Left column) and Weight Norm
(Right column) for Adagrad, and RMSProp.

ViT-M-16/256: Input Gradients ResNet50: Input Gradients
T T 1.0 T T 11.0
/\/\ === Input Gradients 1400 === Input Gradients
8000 N\ /\
A o~ 0.8 1200 fepeefoeey 08
2 6000 / \\ / \ 21000 I \/\/\VA /\ /o~
5 / \ 06 E | V N 06
g l \/_ 2 so0ff
2 4000 {1 © I
2 / 0.4 § 600 = 0.4
2000 |-+ o2 400 02
/ 200
0
0.0 0.0
0 20 40 60 80 0 20 40 60 80
Epoch Epoch
(a) ViT-M-16/256 Input Gradients (b) ResNet50 Input Gradients

Figure 12: Evolution of input gradients during training on ImageNet. Subfigure (a) shows the
gradients for ViT-M-16/256, while (b) shows ResNet50.

The results are reported in Table [7] These results show a gradient peaking phenomenon similar to
that observed with SGD. This potentially hints at a more general behavior of neural networks that
may be optimizer-agnostic.

21

Published as a conference paper at ICLR 2026

Val Loss
4 —— Weight Norm
' // \\ 120
3

/ 110

Validation Loss
Weight Norm

10° 10! 102
Epochs

Figure 13: Weight norm behavior on ImageNet using a modified version of the standard recipe for
training a ResNetl18. The recipe trained longer for 200 epochs (instead of 90) with larger batch
size and weight decay. The plot shows an initial decay, followed by an increase and a subsequent
decrease. The first validation loss minimum roughly coincides with the first weight norm minimum
(of by a few epochs but exaggerated here due to the log scale plot and the points are obtained once
per epoch).

H 140
2 1 =
~ :
= H130 2
g | =
< ¥ | i o0
=t e A AT A LT \ 77777777777777 =120 3
E 20 s e :
s Val Loss i \/\ 3 &
15— Weight Norm ------i---o-ooomo-oob-- 52 - 110
' i i N
100 10! 10
Epochs

Figure 14: Weight norm behavior on ImageNet using a standard recipe for training a ResNet18. The
recipe trained for 90 epochs with batch size 128 weight decay le-4, with SGD momentum of 0.9.
The plot shows the same peaky behavior as CIFAR100 from Figure[3b] where the peak of the weight
norm coincides with the minimum validation loss for the first descent.

22

Published as a conference paper at ICLR 2026

Table 7: Gradient norm values for ResNet18 trained on CIFAR100 using Adam optimizer.

Epoch Input Grad Norm

1 1.2486
10 3.4195
50 3.1032
80 3.1794
100 3.6039
120 1.0826
150 0.2104
180 0.0595

B.5 COMPUTE COST ANALYSIS

In this section, we evaluate the computational overhead associated with our proposed proxy in com-
parison to existing approaches. Let us define the cost of a single forward pass through a neural
network as F. A standard backpropagation step, involving both forward and backward passes,
therefore incurs a total cost of 3F'. With this in mind, and denoting the dataset size by m and the
number of training epochs by 7', we outline the cost incurred by different methods below.

Stability-Based Memorization. As introduced by |Feldman & Zhang|(2020), this approach involves
training between 2,000 and 10,000 models to derive memorization scores. Consequently, the compu-
tational burden scales with the number of models trained, resulting in a total cost of approximately:

10,000 -3F - T -m

Cumulative Sample Curvature. The authors of Garg et al.| (2024) propose estimating memo-
rization through average sample curvature computed throughout training. This involves applying
Hutchinson’s trace estimator, which, for each sample per epoch, requires two forward passes and
one backward pass, repeated n times. For a favorable comparison, we assume n = 2, although bet-
ter empirical performance is achieved with n = 10. The resulting cost combines standard training
and curvature estimation:

Cost=3F-T-m+4F-T-m-n (16)
=3F-T-m+4F-T -m-2 (17)
=11F-T-m (18)

If using n = 10 to match the best results reported in Tables [the cost increases to:

43F - T -m

CSG (Ours). Our proposed method, CSG, is designed to introduce minimal additional computa-
tional overhead. It utilizes gradient information that is already computed during training and only
needs to be evaluated during the initial phase—typically between 10% and 30% of total training
iterations. While computing input gradients involves an extra matrix multiplication (multiplying the
error from backpropagation by the corresponding weight matrix), this cost is negligible relative to
the overall training workload. Thus, the total cost is a fraction of standard training:

Cost=0.1-3F-T-m=03F-T-m
A comparative summary of computational costs is provided in Table([§]

B.6 MISLABELED DETECTION SETUP DETAILS

Area Under the Receiver Operating Characteristic (AUROC or simply AUC-ROC) is a perfor-
mance metric used to evaluate the discriminative ability of a binary classification model. It summa-
rizes the relationship between the True Positive Rate (TPR) and the False Positive Rate (FPR) across
all possible classification thresholds. TPR, also known as sensitivity or recall, and FPR are defined

23

Published as a conference paper at ICLR 2026

Table 8: Summary of the compute cost of the proposed metric compared to existing methods.

Method Absolute Cost Relative Cost
Stability-Based (Feldman & Zhang|[2020) 6000FT'm — 30,000FTm 2,000 x — 30,000 x
Input Curvature (Garg et al.|2024) 11FTm — 43FTm 3.6 x —14.33 x
CSG (Ours) 0.3FTm 0.1 x —0.3 %
as:
TP
TPR = ———— 19
TP + FN’ (19)
FP
FPR = ———— 20
FP + TN’ 20

where TP, FN, FP, and TN refer to true positives, false negatives, false positives, and true negatives,
respectively. The ROC curve is generated by plotting TPR against FPR as the classification threshold
is varied from O to 1. The area under this curve (AUROC) provides a single scalar value representing
the model’s ability to distinguish between the two classes. An AUROC of 1.0 indicates perfect class
separation, while a value of 0.5 suggests the model performs no better than random guessing. Low
AUROC values close to 0.5 imply poor model performance, whereas values closer to 1.0 indicate
strong predictive capability.

Setup. Setup. We trained a ResNet-18 model on the CIFAR-10 and CIFAR-100 datasets. The
initial learning rate was set to 0.1, and training was conducted for 300 epochs. The learning rate
was reduced by a factor of 10 at epochs 180 and 240. A batch size of 128 was used. Training was
performed using stochastic gradient descent (SGD) with a momentum of 0.9 and a weight decay
of 1 x 10~*. The CSG circulations spanned the entire 300 training epochs, yielding a speedup of
approximately 14x over curvature-based methods. To introduce label noise, a specified percentage
of the training set was randomly selected and had their labels reassigned to incorrect classes. For
instance, in the 5% noise setting, 5% of the 50,000 training examples were randomly chosen and
their labels were flipped to another classes. No validation split was used; the model was trained on
the full noisy training set, and performance metrics were evaluated on the standard test set.

B.6.1 BASELINE METHODS

Next, we elaborate on the experimental setup used for identifying mislabeled data points.

Threshold Based Learning Time. This refers to the first epoch during which a train-
ing sample is correctly classified. For instance, if the prediction sequence over epochs is
[0,0,0,1,1,0,1,1,0,1,1,1], the learning time is recorded as epoch 3, the first occurrence of a
correct prediction.

In Confidence. As defined in Carlini et al.|(2019al), the in-confidence score is computed as 1 — p,
where p is the predicted probability assigned to the true label.

Confident Learning. We implemented confident learning following the approach of Northcutt et al.
(2021), using the cleanlab package (https://github.com/cleanlab/cleanlab). To en-
sure reliable predictions, we employed 3-fold cross-validation to estimate out-of-sample class prob-
abilities, which were then used with cleanlab to identify likely label errors.

Second Split Forgetting Time (SSFT). (Maini et al., |2022) is computed by training the model
sequentially on two disjoint subsets, Set 1 followed by Set 2. The forgetting time corresponds to
how quickly samples from the first set become misclassified during fine-tuning on the second. This
procedure is reversed to cover the complete dataset, with forgetting times tracked symmetrically for
both splits.

Curvature. To measure the curvature of individual training samples, we followed the method pro-
posed in |Garg et al.| (2024)), using hyperparameters n = 10 and A = 0.001, in line with their
experimental setup.

Compute Cost. Compared to alternative methods, some approaches introduce considerable compu-
tational overhead. For instance, Confidence Learning (CL) involves training multiple models using

24

https://github.com/cleanlab/cleanlab

Published as a conference paper at ICLR 2026

49529 23947 38675 10968 39325 31128 17688 16646
Porcupine Seal Bridge Snake Crocodile Seal Seal Mouse

s T

33638 31828 23175 41874 34187 43843 47636 46752
Otter Shrew Snake Otter Shark Shrew Worm Worm

‘0.
N 2
Y -

30418 9012 18461 25748 47806 8393 36874 21899
Spider Snake Tiger Crab Girl Baby Seal

Gzl o] o]®

46418 5392 29704 38817 26150 12075 45690 12946
Willow Worm Train Couch Palm Wolf Sea Apple

C LT P

Figure 15: Visualization of the 32 highest CSG-scoring images from CIFAR-100, annotated with
their class labels and PyTorch image indices. Notably, image indices 23947 and 33638 appear
to be identical images but are assigned different labels. All such duplicate pairs in the figure are
highlighted. Additional pairs were discovered using this technique, including one for image index
31487 (not shown here), which is labeled as a ‘whale’.

(a) Lowest CSG images from ImageNet. (b) Highest CSG images from ImageNet.

Figure 16: (a) Lowest CSG images from ImageNet (first few classes). Captures examples prototyp-
ical for the class i.e. easy examples. (b) Highest CSG images from ImageNet (for the same first few
classes). High CSG captures examples atypical for the class i.e. hard examples, likely memorized.

a k-fold strategy (three in this case) which substantially raises the computational burden. Similarly,
SSFT necessitates training on at least two distinct subsets of the dataset, effectively doubling the
training effort compared to a standard setup. Other techniques, such as those relying on input loss
curvature, are even more resource-intensive, demanding over an order of magnitude more computa-
tional power. CSG offers comparable training costs to vanilla training with minimal overhead (one
extra matrix multiplication). Overall, this highlights the trade-offs between computational efficiency
and performance when selecting among existing methods.

25

Published as a conference paper at ICLR 2026

B.7 MIA EXPERIMENTS

Additional Results We present the results of membership inference attack (MIA) detection on early-
stopped models, using our proposed technique, validation loss, and the final epoch. These results
supplement the main paper by providing true positive rates (TPR) at very low false positive rates
(FPR), complementing the previously reported AUROC and balanced accuracy metrics.

Table 9: Mean + standard deviation of True Positive Rates (TPR in %) at different False Positive
Rates (FPR) for various methods and stopping points.

Method Ours Val. Loss Last Epoch

FPR le-4 le-3 le-2 le-4 le-3 le-2 le-4 le-3 le-2
Curvature[Ravikumar et al.|(2024b] 0.34 £0.35 1.54+1.79 4.51+3.39 0.22+0.17 1.97+1.90 5.03+2.67 15.94+£0.28 18.994+0.22 25.88+1.21
LiRA Carlini et al.|(2022] 0.03+0.01 0.584+0.62 1.69+0.77 0.034+0.04 0434040 2.10+1.17 0.30+0.05 1.00£0.25 22.77+0.36
Yeom et al.|Yeom et al.[(2018) 0.01£0.01 0.10+£0.03 1.15+0.08 0.01£0.01 0.10+£0.02 1.10+0.05 0.01+0.00 0.15 4+ 0.01 1.42 4+ 0.08
MAST|Sablayrolles et al.|[(2019) 0.64+0.75 1944199 7.78+485 0544039 2.08+1.65 888+4.07 3.18+1.44 8.22+£1.27 1824+045
Cal. Loss|Watson et al.|(2022} 034+£045 1.32+1.36 6.18+4.02 049+0.55 1.60+£129 7.02+3.54 2.11+0.72 573+£0.76 13.63+0.29

C PROOFS

C.1 PROOF FOR LEMMA [4.1]

The proof for this lemma build on the result from Ravikumar et al.|(2025a), which states the follow-
ing.

Lemma For any neural network without a skip connection at the first layer, and a given mini-batch
of inputs Zy, = (X4, Y}), the Frobenius norm of the gradient of the loss { with respect to the input is
bounded by the norm of the gradient with respect to the network’s weights ;. Specifically:

|V x, (W, Zy)||F < kg|| Ve L(We, Zy)|| 7 (1)
W e 1) e

sp
where * denotes pseudo-inverse.

where kg = and sp denotes the smallest singular value of P = X,| (X,])",

Ravikumar et al.| (2025a) provide the proof for the above result. This forms the basis of the general
result. To obtain the form stated in Lemma[4.1] consider a single-sample mini-batch, in which case
Z; is a column vector. In this case, the norm of the pseudoinverse is the reciprocal of its norm. Since
Z; is a column vector, the smallest singular value is 1.

To see this, Let X € R™*! be a column vector. Then X | € R*" is a row vector, whose Moore—

Penrose pseudoinverse is given by (X)" = X R™*1, Theref
p)T = IX|P € . Therefore,

X XX x>
XXz X

P=X"(Xx"H)t=xT 1.

Since P is the 1 x 1 matrix [1], its only singular value is 1, and thus the smallest singular value
of P is also 1. Substituting these results into the above lemma, i.e. Z, = Z; = (Z;,y), Xp =
7, (X)) |7 = 1/||i|| . we obtain the form of Lemmal4. 1}

[Vail(@e, Z3) || p < el o [V, €0, Z3) || o / |7l T
C.2 PROOF OF THEOREM[4.2]

Proof of Theorem [4.2]

Assumptions. Throughout this proof we assume:

* The loss function ¢ is p-Lipschitz smooth.

* The stochastic gradient estimator is unbiased: F; [%e(wt)] = Vo l(Wy).

* The gradient variance is bounded: E [H%wﬂ(iﬁt) — Vo, L(0;)||3]| <T2.

26

Published as a conference paper at ICLR 2026

* The gradient noise is uncorrelated with the true gradient: E;[(V ., £(W;), 6¢)] = 0.
* Assume S-stability of SGD.
* Assume L-bounded loss.

From the input gradient convergence result from Ravikumar et al.[(2025a)) (Eq. 57), for any mini-
batch X; we have
’imnsprg

Er[IVx (@] < 7 (Bide(h) — dain)]) + =3

Please note, T represents some iteration step, while R < T is a discrete random variable, sampled
non-uniformly from the set {1,2,--- , T} (i.e. support of size T'). This distinction is a key aspect of
the proof strategy, adapted from the convergence analysis of SGD (randomized stochastic gradient)
from |Ghadimi & Lan| (2013)). The proof establishes a guarantee on the expected performance of a
non-uniformly sampled iterate R, rather than the final iterate 7.

(22)

Consider the case where the mini-batch X} to contains only a single training example z;. This choice
removes dependence on the SGD batch size (though it affects «,,, but is still a constant), yielding

En[IVe £m)I3] < 75 (Edld(o) — e(n)]) + FmlsPTy.

5 (23)

Let o, represent the global optima, replacing ¢(wr) by the optimal value £(,), since by definition
0(Wy) < (W) gives the more interpretable bound

mT]s qu;
(Et [0(5o) — é(w*)]) T %. (24)

R m

Tn

Er[[| Ve, {(@0R)|3] <

Observe that the left-hand side of Eq. [24]is exactly the term appearing in the learning condition. If
we denote the worst-case bound by 7, then for some T" we have

Km . ., KmnNspl'?
T = E(Et[e(wo) — {(@.)]) + B, (25)
For a sample Z;, this 7" = T7,,. Rearranging yields
T Rpnspl2 B B
AT

We expand the right-hand side to separate the memorization component:

Nt Emnspls

T..
ko 2

= B, [((Wo, 2;) — £\ (Wa, 2:)] + Bz, [0\ (Wi, 2i) — L(Ws, 25)]. (27)

The second term is exactly the memorization quantity mem(z;), scaled by L, see Ravikumar et al.
(2024a). Taking expectation with respect to the sampling distribution p gives

T Kmnspl? . o
Ep[T:,] % - 772/)1 =Ktz p [f(wo, 2i) — A (W, 21)] + E¢ 2, [L mem(z;)]. (28)

Using the definition of 3-stability (Eq. [2), yields

N Kmlsply

T.
Ep[z] Ko 2

] Z Et,p[E(wo) — E(U_}’*)] =+ Et727' [L mem(zl)] — 6 (29)

Now consider Eq. let T = Typaz, We get

Km . . KEms 1“3
Er (Ve ()] < - (B [0(0) — £(.)]) + =755 (30)
m sTmaz 1—‘12)
LB, [0SG (=) < Bi) — ((ah)] + =222t @)
Rm sTmaz F12] N =
"L [CSG(z,)] — 2t < gy [6(iTo) — (()] (32)

Published as a conference paper at ICLR 2026

Combining Eq. 29| this with the inequality above yields

T Kmnspl? KmNsTmaxpl'
Byl |1 = 0Pt | 2 By [Lmem(a)] + - By o [0SG(zy)] — == — g
(33)
Finally, noting that mem(z;) > 0, and set
2 S F2 m 2 sTmax F2
C1={T—Kmnpv]7 szﬁﬁ—i-ﬁmn vaO,
2n n 2n

Since the choice of learning threshold 7 is arbitrary, we can choose
KNsPLy
> R
2n
Thus C; > 0. All constants in C5 are positive thus C'; > 0. Rearranging the terms, we conclude

[Er.=[CSG(2)] < C1 By [T2] +Co | W (34)

C.3 PROOF OF THEOREM[4.3]
Assumptions. We assume:

* The loss function ¢ is p-Lipschitz smooth.

* The stochastic gradient estimator is unbiased: B[V, £(17;)] = Vo £(15;).
* The gradient variance is bounded: E[H%wtf(u"}t) — Vo, L(6) 3] < T2

* The gradient noise is uncorrelated with the true gradient: E¢[(V,,,¢(@:), d¢)] = 0. (Same
as Assumption 1 from|Ghadimi & Lan|(2013).

* Assume f-stability of SGD.
¢ Assume L-bounded loss.

From Equation24] we have

Hmﬂspfﬁ

> (35)

K
Er[| Ve, ((dr)|3] < ﬁ(f(ﬁo) — () +
Please note, T represents some iteration step, while R < T is a discrete random variable, sampled
non-uniformly from the set {1,2,-- , T} (i.e. support of size T'). This distinction is a key aspect of
the proof strategy, adapted from the convergence analysis of SGD (randomized stochastic gradient)
from |Ghadimi & Lan| (2013)). The proof establishes a guarantee on the expected performance of a
non-uniformly sampled iterate R, rather than the final iterate 7". Multiplying by T7,,, gives

T Br[IVa @R)IE) < 7 (o) — () + AR (36)
Using the definition of CSG, (Eq[3), we have,
T—X CSG(%) < %’” (€(@o) — £(.)) + 7“’””5232@ . (37)
Taking expectation over z; and training randomness p:
ey | g CSG(E)] < B [t 2) - 0% 0., 5)
T B [(0, 5) — 0., 2)] + e B[]

28

Published as a conference paper at ICLR 2026

Next using the memorization result from |Ravikumar et al.| (2024a) (Eq. 32):

T, . Km L. L
Eip {ICSG(ZZ-) < TEt,zi,p [é(wo,zi) — (v (w*,zi)}

Tmax
Fom KmNspLy Bz, p [T,
+ 7 B [Lmem(5)] + e EaLE) (39)
T, N Km L 5 "fmnsprg
E..p {T —CSG(z)| < E., [mem(z;) + 1] + TEZ'MP[TZ'L]' (40)

We need to separate the two terms within the expectation, for which we use the following result

Ela(2)b(2)] = Ela(2)] E[b(2)] + Cov(a(2),b(2)) (41)
. anﬂsprﬁ o
By choosing 7 > — 5, = C4 > 0, and by Theorem 4.2| we know Cov(CSG(%;),T,,) > 0.
n
Thus, it follows that
T, o . KmnNspl'2
E-, [T} E.,»| CSG(%)] < TE% [mem(Z;) + 1] + %Em [T..]. (42)
Thus,
KmL

T(E.,[mem(Z;)] + 1)

TII]B,X 2
For the division performed in Eq. 3] we require the denominator to be strictly positive
- - =0 44
Tinax 2 = (44)
which implies
2Ep,z Z,
¢ 2B, [CSG(E)] .

Tmaxﬁmprg

The sign of the denominator is determined by the learning rate, 7, (since 75 is max learning rate
over training). A sufficiently small positive learning rate can be chosen to ensure the denominator is
positive.

Substituting into Equation[33]in Eq. #7] yields

CaEn[Tn] > LE.[mem(%)]+ = ., [CSG(2)] - Ci. (46)
Equivalently,
mL -
nn (E:,[mem(Z;)] + 1) .
C, > —E,. [CSG(Z)] — C., 47
By aCSGE] el =~ o o[O5C(E) @
7"IHZB‘X 2
where
5 Fz 'Tmax FQ
Co= T Emllie g, = Bmleimadllo 4 g G, = Cy — LK, [mem(Z)]

Km, 2 2

For the above division (EqH7) to hold, we need C;; > 0 and denominator > 0, we have already

shown a sufficiently small positive learning rate can be chosen to ensure the denominator is positive.
Next about C,, since the learning threshold 7 is arbitrary we choose 7 so that, C;; > 0. This is true
2 2
K r
if 7> Sy
2n

29

Published as a conference paper at ICLR 2026

Rearranging Eq. [#7]as a quadratic we have

nns o . Cen nnspl'? o N Mskmpl 20,
_rs AV d Ik _ , J IsmiTm v e 4
2 [OSG(E)] - | o+ T By [OSG(E)] + T (48)
< CofimL (Ez, [mem(Z;)] + 1)
(49)

Note 7 is a function of 7,,,,. Normally for dominant term analysis we can assume 1 X v/ Iqz-
Let

Ep..[CSG()]

X = 50
j_'IIla,X ()
Then the inequality takes quadratic form
aX?+bX +c¢ <0, (51
with
s Cen | m°nspl; MskmpLaCe CatimL .
= — = — _— = — . i 1 .
“ Rm ’ b (TI%B.X * 2,-Tmax ’ ¢ 2T‘max Tmax (EZL [mem(Zl)] +)
(52)
By the quadratic formula, the inequality holds if
r1 < X < 7o, (53)
where 71, ro are the roots.
Since C, x 1, C; x E.,[mem(Z;)], and typically i o< /Tax, We have
b o(Eabmem@)] Ve _ (B fmem(Z)]) 5
2a vV Tmax 2a Y Tmax
Thus the dominant contribution is linear, yielding
Ep,z [CSG(%)] = O(E, [mem(%)] V TmaX)- (55)
Often T, 1s fixed thus we can write the results as
Ep,=[CSG(%)] = O(E-, [mem(Z)]). (56)

, — it
2

For b> — 4ac > 0 we need ¢ < 0. This is true if C, < 0 or if C. > 0 then, we know from the

quadratic

2
Conditon for real roots. Note from Ghadimi & Lan|(2013) we have ZZ:OI (77 pnt) =n2>0.

skmpl2C, CukmL .
c= 1 s Fomp — (E., [mem(Z;)] + 1) (57)

2Tm(1£E Tmaz
c<0 (58)
1 NstimplyCe nT EmNspLy)| KmL >
— v - mET v . D]+ 1 5
ST L 2| Ty Bslmem(Z)] 1) (59)
KmpL5Ce | K UL L(Ez, [mem(%)] + 1)] _ 07 L(E.; [mem(Z)] +1) 60)
Gl T 2 s = Tonas

1 [mnpLy Ce + ki pU'5 L(E=, [mem(2;)] + 1)] < 297 L(Ez, [mem(Z)] +1) (61)
Thus we have
0s [£mnplyCe + K7, pU L(Ez, [mem(Z;)] + 1)] < 297 L(E., [mem(Z)] +1) (62)
2n7L(E,, [mem(Zz;)] + 1)
rmnpl5Ce + K5, PTG L(Ez; [mem(Z)] + 1)]
27L(E,,[mem(Z;)] 4+ 1)

o % [Ce 25 (5 fmem()] + 1)

Ns < [(63)

(64)

Ns <

30

Published as a conference paper at ICLR 2026

Final Learning Rate condition. For a sufficiently small positive learning rate, the condition b? —
4ac > 0 will hold true. Therefore, a suitable choice of 7; exists, given by combination of results

from Eq. #5]|and Eq|[64]

27 L(E., Z)] + 1 = [CSG(Z;
0 <n < /s < min T (EL[Tem(z)H) ,\/QE;”[(FZ)] (65)
RT3 | Co+ 2L (B [mem(2)] + 1)| V- Tonastion LG
Conclusion. This completes the proof. That is,
Ep,=[CSG(Z)] = O(E., [mem()]), (66)

subject to the step-size constraints above.

D LICENSES FOR ASSETS USED

For each of the assets used we present the licenses below we also have provided the correct citation
in the main paper as well as here for convenience.

1. ImageNet (Russakovsky et al, 2015): Terms of access available at https://
image-net.org/download.php

2. CIFARI10 (Krizhevsky et al.|[2009): Unknown / No license provided
3. CIFAR100 (Krizhevsky et al.,|2009): Unknown / No license provided

4. Pre-trained ImageNet models and code: We used pre-trained ImageNet mod-
els from (Feldman & Zhang| [2020) which is licensed under Apache 2.0 https:
//github.com/google—-research/heldout—-influence—estimation/
blob/master/LICENSEL

5. Baseline methods: We re-implemented the baseline methods hence is provided with along
with our code which is distributed under the MIT License.

6. Pytorch (Ansel et al.| [2024): Custom BSD-style license available athttps://github.
com/pytorch/pytorch/blob/main/LICENSE.

7. ResNet Model Architecture (He et al., 2016): MIT license available at https://
github.com/kuangliu/pytorch-cifar/blob/master/LICENSE

E COMPUTE RESOURCES

All of the experiments were performed on a heterogeneous compute cluster consisting of 9 1080Ti’s,
62080Ti’s and 4 A40 NVIDIA GPUs, with a total of 100 CPU cores and a combined 1.2 TB of main
system memory. However, the results can be replicated with a single GPU with as minimal as 8GB
of VRAM.

F LLM USAGE

The use of LLMs was limited to grammar and spelling fixes. LLMs were not used for any other part
of the research project.

G LIMITATIONS

Compared to other memorization proxies, the limitations of CSG are minimal. Its primary con-
straint is access to the training process. This is not unique, and is shared by other proxies such
as curvature |Garg & Roy| (2023)), loss sensitivity |Arpit et al.| (2017), and forgetting events [Toneva
et al[(2019). This requirement is also common among methods for identifying mislabeled exam-
ples Maini et al.|(2022)); Northcutt et al.| (2021)).

31

https://image-net.org/download.php
https://image-net.org/download.php
https://github.com/google-research/heldout-influence-estimation/blob/master/LICENSE
https://github.com/google-research/heldout-influence-estimation/blob/master/LICENSE
https://github.com/google-research/heldout-influence-estimation/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/kuangliu/pytorch-cifar/blob/master/LICENSE
https://github.com/kuangliu/pytorch-cifar/blob/master/LICENSE

Published as a conference paper at ICLR 2026

H BROADER IMPACT

This work introduces CSG, an extremely efficient proxy for per-example memorization in deep
networks that matches stability-based scores while being up to 5 orders of magnitude cheaper to
compute. Because CSG can be gathered during training and aligns with memorization, learning
time, and input curvature, it becomes a practical lens through which practitioners and, potentially,
regulators can watch how modern models absorb, remember, and sometimes over-fit their data.

* Better generalization and safer deployment. By flagging the exact examples that a
model memorizes, CSG helps teams diagnose over-fitting before deployment and choose
an early-stopping point without a validation set, cutting training epochs.

* Higher-quality, fairer datasets. The method surfaces mislabeled, duplicate, and
biased samples achieving state-of-the-art detection accuracy on CIFAR-10/100 and
Fashion-MNIST. Removing or relabeling such data can reduce spurious correlations, im-
proving fairness for under-represented sub-populations.

* Privacy auditing and mitigation. CSG strongly correlates with membership-inference
success and adversarial distance. Early-stopping at the CSG peak reduces a suite
of membership-inference attacks relative to the final checkpoint, making CSG both a
privacy-risk indicator and a knob for mitigating leakage without extra noise injection.

32

	Introduction
	Notation
	Related Work and Background
	Cumulative Sample Gradient (CSG)
	CSG and Learning Time
	CSG and Memorization
	SGAL and Links to Double Descent

	Experiments
	Validating Theory
	Similarity with Memorization
	Early Stopping
	Mislabel Detection
	Bias

	Conclusion
	Additional Background on Stochastic Gradient Descent (SGD)
	Membership Inference Attacks (MIA)

	Experimental Details
	Validating Theory Setup Details
	Similarity with Memorization Setup Details
	Early Stopping Details and Setup
	Additional Results with Adam Optimizer
	Compute Cost Analysis
	Mislabeled Detection Setup Details
	Baseline Methods

	MIA Experiments

	Proofs
	Proof for Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Licenses for Assets Used
	Compute Resources
	LLM Usage
	Limitations
	Broader Impact

