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Abstract: Modeling the nuanced, multimodal nature of human driving remains a
core challenge for autonomous systems, as existing methods often fail to capture
the diversity of plausible behaviors in complex real-world scenarios. In this work,
we introduce a novel end-to-end planner and benchmark for modeling realistic
multimodality in autonomous driving decisions. We propose a Gaussian Mixture
Model (GMM)-based diffusion model designed to explicitly capture human-like,
multimodal driving decisions in diverse contexts. Our model achieves state-of-the-
art performance on current benchmarks, but reveals weaknesses in standard eval-
uation practices which rely on single ground-truth trajectories or coarse closed-
loop metrics while also penalizing diverse yet plausible alternatives. To address
this limitation, we further develop a human-in-the-loop simulation benchmark that
enables finer-grained evaluations and measures multimodal realism in challenging
driving settings. Our code, models, and benchmark data will be released to pro-
mote more accurate and human-aligned autonomous driving models.

1 Introduction

In a typical driving scenario, there are many plausible and safe paths a human driver might take [1–
4]. For example, navigating around a stopped truck on the shoulder of the road can involve a range
of headway distances, speeds, and lateral offsets. At the same time, even a subtle difference in a pre-
dicted trajectory can distinguish safe behavior from a safety-critical outcome [5]. The combination
of variability, uncertainty, and required precision makes modeling and evaluation of realistic driving
decisions inherently challenging [6–13].

Due to the complexity in capturing the distribution of driving decisions, recent approaches for mo-
tion planning leverage powerful generative architectures, such as transformers and diffusion mod-
els [14–29]. However, while prior models demonstrate coarse multimodality, e.g., distinguishing
between major maneuvers such as turning versus going straight at intersections [9, 17, 30, 31], it
remains unclear whether finer variations observed in real-world human driving behaviors, such as
around dynamic agents, are represented by the model. Our analysis reveals such limitations, which
are addressed using a proposed higher-capacity model architecture and objective. Specifically, we
demonstrate that a well-designed model effectively outperforms all prior vision-based planners on
nuScenes [32] by a notable margin.

Beyond persistent issues in model coverage [17, 21, 33–37], evaluating multimodality remains a
significant challenge. Standard open-loop metrics typically compare predictions to a single ground-
truth trajectory, thus failing to account for the diversity of plausible alternatives [5, 7, 7, 9, 26, 28, 38–
43]. Closed-loop simulation offers a promising alternative [8, 10, 32, 44–46], but often falls short in
modeling realistic environmental dynamics, agent interactions, and subtleties of decision-making.
Moreover, it can be difficult to precisely specify safe and desirable driving via simplistic closed-loop
metrics such as time to collision or drive area compliance [6, 47]. Without direct human demonstra-
tions and feedback, such setups may yield reactive behaviors that appear safe, but lack fidelity to how
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Figure 1: Capturing Multimodality in Complex Real-World Driving Scenarios. We study mod-
eling and evaluation of intricate multimodal driving settings, including subtle interactions, e.g., ve-
hicle–vehicle and human–vehicle. As an example, we visualize collected multimodal trajectories
in two scenarios: navigating around a vehicle parked on the shoulder (left) and interacting with a
dynamic agent at an intersection (right).

humans actually drive in real-world social scenarios. We aim to improve evaluation by introducing
a benchmark that captures diverse, plausible behaviors beyond single-trajectory comparisons.

Our goal is to develop effective models for producing realistic and human-like autonomous driving
decisions. Our key contributions are twofold. First, we design an expressive diffusion-based model
for end-to-end vision-based planning that captures a richer distribution of diverse, human-like driv-
ing behaviors. Second, we demonstrate that a human-in-the-loop simulation framework combining
photorealistic 3D reconstruction with a physically-plausible kinematics model enables collection of
a realistic multimodal benchmark. By re-driving scenes, we densify annotations in existing driving
benchmarks in a cheap and scalable manner while uncovering limitations of prior evaluation pro-
tocols. Our multimodal model and benchmark thus advance safe and seamless decision-making in
autonomous driving.

2 Related Work

Generative Models for Autonomous Driving: While there is extensive work on probabilis-
tic behavior prediction [21, 31, 48–54], most state-of-the-art motion planners remain determinis-
tic [8, 9, 25–27, 55–57]. Recently, diffusion-based generative models have shown promise in au-
tonomous driving tasks, with methods such as Diffusion Planner [19] achieving competitive results
in nuPlan [32]. However, this method relies on privileged state information, is not end-to-end, and
does not explicitly evaluates the diversity or realism of the sampled trajectories. Moreover, prior
work has shown diffusion models suffer from mode collapse [17, 33, 34, 36, 37, 58], often gen-
erating limited variations around dominant modes. DiffusionDrive [17] alleviates this issue using
guided sampling with pre-clustered anchors [59], yet relies on input anchors which are clustered
independently (e.g., via K-Means). In contrast, we propose a holistic model which optimizes for
multimodality jointly with model structure and optimization, i.e., using a GMM head. We show this
structure to outperform DiffusionDrive, despite the lower number of samples.

Real-World Planning Benchmarks and Evaluation: Real-world benchmarks for end-to-end mo-
tion planning remain limited in both trajectory diversity and evaluation methodology. Most stud-
ies leverage offline datasets (e.g., nuScenes [40], Waymo [60, 61]) to compute open-loop met-
rics [7, 9, 11, 26, 27, 29, 41, 62, 63]. However, as widely acknowledged in the robotics community,
open-loop evaluation fails to capture the sequential and reactive nature of planning policies when
deployed [39]. Critically, nearly all existing motion forecasting and planning benchmarks provide
only a single demonstration per scenario, despite the fact that multiple plausible decisions often ex-
ist in real-world contexts. This unimodal framing risks penalizing valid predictions and obscuring
unsafe behaviors that otherwise match the logged trajectory Furthermore, collecting diverse, high-
quality real-world trajectories is prohibitively expensive and potentially dangerous, creating a major
barrier to dataset scalability. Nonetheless, recent advances in scene reconstruction and photorealistic
simulation, however, offer a promising path forward, as discussed next.
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Figure 2: Our End-to-End, GMM-Based Diffusion Planner. BranchOut consists of a scene en-
coder F and a scene-aware transformer-based denoiser D. The encoder F processes multi-view
camera images and an HD map to extract scene features that condition the denoiser using multi-
head cross-attention (MHCA), with scene features as keys and values to condition the ego query.
A GMM head G, selected using high-level driving command c, takes the transformed features and
predicts K trajectory means (µm) and corresponding weights (πm), enabling the model to select
the most likely future trajectory Ŷ. We find that the simple yet effective GMM head outperforms
more complex diffusion-based models. When combined, we find complementary improvements in
multimodal plan modeling and achieve state-of-the-art results across benchmarks, including an in-
troduced multimodal decisions benchmark.

3D Reconstruction for Simulation: Recent advances in 3D scene reconstruction have enabled pho-
torealistic rendering of complex driving environments from monocular or multi-view video. Tech-
niques such as NeRF [64–68] and Gaussian Splatting [69, 70] produce high-fidelity representations
of real-world scenes, opening new possibilities for simulation without requiring handcrafted as-
sets. By enabling high-resolution re-driving in richly contextualized environments, these tools offer
a promising foundation for scalable trajectory generation—without repeated physical deployment.
However, many existing approaches exhibit artifacts, scene desegmentation in cluttered driving con-
texts, and limited generalization to out-of-view areas. NeuroNCAP [46] incorporates LiDAR-based
reconstruction into a closed-loop simulator, but focuses only on simplified, non-reactive settings
without dense traffic, dynamic pedestrians, or complex maneuvers such as overtaking and merging.
OmniRe [70] supports editing and decomposition but often suffers from object noise in real-world
datasets like nuScenes. HUGSIM [44] advances photorealistic rendering, yet the realism of the un-
derlying agent behaviors and physical responses remains unclear. In contrast, our framework is the
first to empirically demonstrate how human-in-the-loop re-driving in a reconstruction-based simu-
lator can offer a realistic augmentation of data coverage. By integrating interactive human input,
we also take a step toward scalable human-aligned collection and validation of diverse, multimodal
trajectories and enables fine-grained analysis of planning behavior in complex, reactive scenarios.

3 Method

Our goal is to model realistic, human-like driving behavior that captures the diversity of plausible
decisions within each scenario. To this end, we design BranchOut, a GMM-based diffusion plan-
ner architecture that sets a new state-of-the-art in motion planning (Sec. 3.1). Next, to understand
the multimodal capabilities of our framework, we collect a novel benchmark, which incorporates
3D reconstruction, collision detection, and interactive ego-agent control to ensure immersive re-
driving (Sec 3.2). To rigorously validate the realism of the simulation and benchmark, we propose
to compare with a fully reactive digital twin with comprehensive physics simulation and rendering.
In Sec. 4, we will further compare to real-world logs to show the high realism of trajectories in
simulation. An overview of our method can be seen in Fig. 2.

3.1 BranchOut: An End-to-End, GMM-Based Diffusion Planner

Our formulation follows the standard end-to-end planning setup [26, 27]. Specifically, we assume
a scene context C, consisting of six multi-view camera images [40] and an HD map [27]. Unlike
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some prior work [9], we do not incorporate ego-status information or the vehicle’s past trajectory
in planning. We also assume access to a high-level driving command from a discrete set of M = 3
options, i.e., c ∈ {Left,Straight,Right}.

To train a probabilistic, multimodal planner from real-world data, we use driving logs that provide
the ego-vehicle’s future trajectory. Each sample is structured as Yego ∈ RTf×2, representing three
seconds of future bird’s-eye view (BEV) waypoints (i.e., Tf = 6). We train a scene encoder F to
process C, followed by a transformer-based denoiser D that predicts K future trajectory distribu-
tions. The denoiser is equipped with a GMM head G, which predicts multiple candidate trajectories
and associated mixture weights [71, 72]. We next define these functions and our training process.
Our analysis demonstrates that a GMM head contributes more significantly to multimodal predic-
tion quality than the diffusion process alone, though both components together yield the strongest
performance.

Diffusion Model: Prior work has leveraged diffusion to generate a single ego-trajectory along with
surrounding agents [19]. In contrast, we focus on predicting multiple diverse future trajectories for
the ego vehicle, enabling richer reasoning over planning modes. Given a ground-truth trajectory
Yego, we generate noisy versions for training by sampling a diffusion timestep t ∼ U(0, 1) and
Gaussian noise z ∼ N (0, I). Noisy inputs are computed as:

X(t)
ego =

√
α(t) ·Yego +

√
1− α(t) · z, X(t)

ego ∈ RM×Tf×2, (1)

where X(t)
ego contains perturbed trajectories corresponding to the M high-level commands. Following

standard diffusion formulations [15, 73], we define α(t) = 1 − σ2(t), where σ(t) determines the
noise level at timestep t. At inference time, we initialize from a pure Gaussian noise sample X(1)

ego ∼
N (0, I) and generate the final trajectory by solving the reverse diffusion ODE using a single-step
DPM-Solver++ [74, 75] method.

Scene-Aware Diffusion Transformer Model: The transformer-based denoiser D is trained to re-
construct clean trajectories Ŷego from noisy inputs X(t)

ego by leveraging scene-conditioned represen-
tations (fused via cross-attention [76]). First, we linearly project the noisy set of ego trajectories
X

(t)
ego into an embedding P ∈ RM×Np . Next, we compute a scene-aware representation:

P = [MHCA(P,Pagent,Pagent),MHCA(P,Pmap,Pmap)], (2)
where MHCA(q, k, v) computes cross-attentions between queries q, keys k, and values v [76]. The
Pagent ∈ RNa×Nd and map embeddings Pmap ∈ RNm×Nd are scene-aware embeddings computed
from a transformer-based encoder F following VAD [27]. In our experiments in Sec. 4, we leverage
the VAD-Tiny encoder architecture [27], but significantly outperform the VAD baseline due to the
GMM-based diffusion process. To incorporate the diffusion timestep information, we further scale
and shift P based on a learned function of the timestep embedding γ(t) (see our supplementary for
additional implementation details).

Branched GMM Head: The computed scene-aware feature P is inputted to a branched GMM head
G, which predicts K future trajectory distributions for each command mode:

G(P) = {(µm
k ,πm

k )}Kk=1, (3)
where µm

k ∈ RTf×2 denotes the mean trajectory of the k-th Gaussian component for the m-th
command, and πm

k denotes its associated probability (weight). Each command-specific branch in
our network comprises two separate MLPs, one for the trajectory means and one for the mixing
coefficients, i.e., µm = MLPm

µ (P) ∈ RK×Tf×2 and πm = MLPm
π (P) ∈ RK .

Training Loss: We optimize our model using a loss function comprising three terms:
L = Lplan + λNLLLNLL + λcLconstraints, (4)

where Lplan is the data reconstruction loss commonly used in diffusion [19], LNLL is a negative
log-likelihood (NLL) [77] loss over predicted multimodal trajectory distribution parameters, and
Lconstraints is a safety constraint loss based on Jiang et al. [27]. The hyperparameters λNLL and λc are
set to 0.1. Complete loss term definitions implementation details are in the supplementary.
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3.2 Human-in-the-Loop Simulation and Multimodal Benchmark

As our study emphasizes multimodal decision-making in driving, we aim to assess how well model
predictions align with the diversity of human behavior. However, collecting multimodal trajectories
in real-world scenes is not feasible. Instead, we leverage a human-in-the-loop, closed-loop pho-
torealistic environment based on the state-of-the-art monocular-based HUGSIM [44] paired with a
kinematics model, as discussed below. To ensure meaningful findings, we validate the realism of
the resulting trajectories by comparing to real-world logs, i.e., how well one of the simulation tra-
jectories matches the real-world log. Given potential issues with reconstruction quality and agent
reactivity, we further compare with human-based driving in a full digital twin world, i.e., by creating
a subset of the real-world scenes in CARLA [78].

Kinematics Model: To enable scalable collection of diverse, realistic trajectories, we augment
HUGSIM [44] with a human-in-the-loop interface that is easy to set up and operate. Ego-vehicle
motion is simulated using a kinematic bicycle model [12, 57], and interactive re-driving is supported
through a fully immersive hardware setup.

Collision Feedback: To enhance realism and ensure trajectory feasibility, we employ automatic
collision detection using depth predictions from the reconstruction module. When a collision is
detected, the user is reset to the starting point and the previous path is cleared. Such collisions
provide feedback that helps participants adapt quickly in the early stages of the study.

Trajectory Collection Study: Using our reconstructed and virtual environments, we conduct a
user study to collect diverse driving trajectories. Each participant is spawned at the same starting
position and orientation in the simulation. Participants re-drive the scene five times to cover a range
of safe and plausible maneuvers. In total, 40 participants completed drives across randomly assigned
scenes. Further details on the setup and protocol are in the supplementary material.

4 Experiments

In this section, we first discuss suitable metrics for our multimodal settings (Sec. 4.1). Second,
we assess the realism of the collected diverse driving benchmark in simulation (Sec. 4.2). Third,
we evaluate the performance of our proposed end-to-end planner on nuScenes and HUGSIM, aug-
mented with our realistic annotations (Sec. 4.3). Finally, we discuss limitations of existing unimodal
evaluation metrics in capturing the inherent complexity of real-world driving behaviors and explore
more robust evaluation metrics. We include ablations in our supplementary material.

4.1 Setup and Metrics

We build on standard evaluation practices for end-to-end motion planners [17, 26]. Following prior
work [26, 79], we report L2 displacement error against the single ground-truth trajectory provided by
nuScenes. For multimodal evaluation, we leverage 16 ground-truth trajectories per scene—15 from
our benchmark and one from nuScenes—and compute the minimum Fréchet distance [80] among
the predicted motion plan and the set of ground-truth trajectories. To evaluate the quality of the
trajectory distribution and fully analyze models’ performance, we further report distribution-based
metrics: the Negative Log-Likelihood (NLL) and Jensen-Shannon Divergence (JSD) [45, 81]. As
many motion planners today are deterministic, we can compute such metrics by sampling from the
models with Monte Carlo dropout (rate = 0.1) [82]. However, we are aware of the limitations of
such techniques, i.e., compared to methods that train with sampling. For such stochastic models,
including DiffusionDrive [17] and our BranchOut, we evaluate directly over the set of generated
trajectories. For closed-loop evaluation, we follow HUGSIM [44] and compute No Collision (NC),
Drivable Area Compliance (DAC), Time to Collision (TTC), Comfort (COM), Route Completion
(Rc), and the HUGSIM Driving Score (HD-Score).
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Figure 3: Our Multimodal Benchmark Statistics with Higher Coverage and Diversity. Existing
unimodal real-world trajectories lack diversity and coverage of modes (left). The collected trajecto-
ries, validated as both diverse and realistic (Sec.3.2, Table1), enable multimodal evaluation (right).

Table 1: Realism of Collected Trajectories in Simulation. Our simulated trajectories are multi-
modal and diverse, yet consistently include at least one mode that closely matches the real-world
reference from nuScenes, achieving low L2 error at 3s (0.79m). Low Fréchet scores further demon-
strate their realism across both photorealistic and digital twin environments.

Benchmark 3s L2 (m) ↓ Fréchet (m) ↓ NLL ↓
Driving in Photorealistic Simulation 0.79 1.46 3.48
Driving in Virtual Simulation 0.93 1.11 3.19

4.2 Driving in Simulation Produces Realistic Trajectories

It is crucial to evaluate not only trajectory diversity (e.g., Fig.3) but also realism. To assess this, we
perform quantitative comparisons between trajectories collected from our photorealistic simulation,
the original nuScenes ground truth, and our high-fidelity virtual environment. In Table1, we compare
15 trajectories per scene from each simulation setup to the single ground-truth trajectory provided
by nuScenes. A realistic simulation with sufficient coverage should produce at least one trajectory
closely matching the real-world log. For each scene, we compute minimum L2 distance, Fréchet
distance, and the NLL between the simulated and ground-truth trajectories. We omit JSD in this
evaluation, as the ground truth is unimodal and does not support distributional comparison.

Photorealistic Simulation vs. Real-World Driving: We quantify the quality of our collected tra-
jectories by directly comparing (i.e., as predictions) against the original real-world ground truth in
Table 1. While augmented trajectories from our simulation demonstrate significantly greater di-
versity, enhancing the coverage of feasible plans, we also observe low error rates, indicating the
high realism of the collected trajectories. The low minL2 (i.e., 3s L2 error) measures how closely
one of the trajectories aligns with the original driving trajectory for each sample. We note that our
evaluation set aligns with the standard real-world nuScenes motion planning benchmark, such that
these notably low error rates can be compared with planning-based metrics such as for UniAD, e.g.,
0.79m vs. 1.65m 3s L2 in [26].

Photorealistic vs Virtual: When evaluating the virtual environment trajectories, we generally ob-
serve lower errors in Table 1, though each simulation setting presents its own trade-offs. Notably,
trajectories collected from both the photorealistic and virtual environments achieve a zero collision
rate and zero curb collision rate [9], as episodes are reset upon collision. While the virtual CARLA
environment yields strong results, it requires significant manual effort to design scenes and agent be-
haviors. Moreover, crafting realistic reactive dynamics remains challenging in both environments.
Interestingly, Table 1 shows that trajectories from our rendering-based simulation achieve a lower 3s
L2 error (0.79m) compared to those from the CARLA-based virtual environment (0.93m), indicat-
ing that at least one of the collected trajectories more closely matches the real-world ground truth.
This is a remarkably low error compared to prior models on this benchmark, all exceeding 1.41m 3s
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Table 2: Planning Performance Comparison Leveraging Multimodal Ground-Truth. We com-
pare models using single-annotation from nuScenes and our multimodal annotations. Results show
notable re-ordering in multimodal metrics (e.g., VAD vs. UniAD), where unimodal L2 penalize
plausible predictions, underscoring the need for multimodal evaluation. BranchOut significantly
enhances multimodal reasoning by capturing plausible driving behaviors while preventing mode
collapse.

Method # Params (M) L2 (m) ↓ Fréchet ↓ NLL ↓ Speed JSD ↓1s 2s 3s Avg.

IDM - 3.98 8.21 12.65 8.28 10.04 - -
Ego-MLP [9] 0.2 0.27 0.31 0.40 0.33 0.73 8.99 0.50

OccWorld [83] 58.0 0.44 1.12 2.08 1.21 2.65 12.53 0.52
UniAD [26] 55.7 0.46 0.94 1.65 1.02 2.60 10.86 0.45
VAD-Tiny [27] 39.6 0.51 1.04 1.76 1.11 2.65 7.22 0.43
VAD-Base [27] 58.1 0.46 0.98 1.69 1.04 2.50 7.72 0.41
DiffusionDrive [17] 60.0 0.31 0.82 1.58 0.90 2.41 3.95 0.39

BranchOut w/o Command 40.8 0.35 0.90 1.70 0.98 2.52 5.01 0.41
BranchOut w/o GMM 41.9 0.36 0.82 1.51 0.90 2.43 4.11 0.40
BranchOut w/o Diffusion 41.2 0.37 0.80 1.45 0.87 2.35 3.80 0.37
BranchOut w/ Classifier Guidance 41.9 0.30 0.74 1.51 0.85 2.46 4.02 0.39
BranchOut 41.9 0.31 0.76 1.41 0.83 2.29 3.72 0.36
BranchOut w/ EgoStatus 42.2 0.21 0.63 1.40 0.75 2.35 3.79 0.38
BranchOut w/ EgoHistory 42.4 0.26 0.65 1.30 0.74 2.25 3.74 0.35

L2 error (Table 2). These findings support the conclusion that reconstruction-based simulation can
serve as a viable and realistic source of human driving behavior.

4.3 Driving Policy Evaluation

We re-evaluate standard driving policy baselines using our enriched benchmark, which captures
a broader set of feasible future trajectories for each scene. This allows us to analyze how ex-
isting models perform under a more complete characterization of the multimodal decision space.
By moving beyond single ground-truth evaluation, we expose failure modes that are otherwise
masked—highlighting the limitations of conventional metrics in capturing the diversity and plau-
sibility of real-world driving behavior. All evaluations are conducted on the full nuScenes validation
split and on HUGSIM across difficulty levels, for open-loop and closed-loop respectively.

Baselines: We comprehensively evaluate the planning performance of the proposed Bran-
chOut against state-of-the-art vision-based planners, including UniAD [26], VAD [27], Occ-
World [83], and DiffusionDrive [17], as well as Ego-MLP [9], a perception-free planner. VAD-
Tiny denotes a lightweight variant of VAD-Base, with reduced BEV query counts and fewer en-
coder/decoder layers. DiffusionDrive employs a truncated diffusion policy that denoises an anchored
Gaussian distribution into a multimodal action distribution. For Ego-MLP, we follow [9] and remove
the history trajectory input from AD-MLP [7] to prevent label leakage, resulting in an ego-state-only
model that is not directly comparable to perception-based planners. We use publicly available code
and pre-trained weights for the remaining baselines. Additionally, we include the Intelligent Driver
Model (IDM), a rule-based car-following model, as a classical reactive baseline for comparison.

Revisiting Open-Loop Planner Evaluation: Table 2 revisits state-of-the-art planner performance
within a multimodal context using our enriched driving trajectory dataset. Under standard L2 error,
UniAD outperforms other unimodal planners, achieving 4.1% lower error than VAD-Base. How-
ever, the trend reverses when evaluated with multiple ground truths under Fréchet distance, where
VAD-Base surpasses UniAD by a significant margin. This demonstrates that although the predic-
tion of VAD-Base may diverge from the single ground truth (nuScenes), they remain behaviorally
plausible and better aligned with natural human driving behavior. Similarly, VAD-Tiny and Occ-
World, which show higher L2 error than UniAD by 8.8% and 18.6% in L2, achieve comparable
performance under Fréchet evaluation. These findings highlight a key limitation of unimodal evalu-
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Table 3: Closed-Loop Evaluation in HUGSIM. Results are averaged across all difficulty levels.
BranchOut demonstrates robust route completion, resulting in the best overall HD-Score.

Method NC ↑ DAC ↑ TTC ↑ COM ↑ Rc ↑ HD-Score ↑
Ego-MLP [9] 0.48 0.77 0.39 0.80 0.21 0.08

UniAD [26] 0.70 0.95 0.58 0.81 0.34 0.25
VAD-Tiny [27] 0.44 0.80 0.34 1.00 0.32 0.11
VAD-Base [27] 0.56 0.87 0.43 1.00 0.28 0.14
DiffusionDrive [17] 0.56 0.67 0.48 0.80 0.24 0.10

BranchOut 0.76 0.99 0.69 1.00 0.58 0.47

ation, which penalizes diverse yet valid predictions, and underscore the importance of incorporating
multimodality into planning evaluation to better assess trajectory quality.

Multimodal Planner Evaluation: We evaluate the quality and diversity of predicted trajectory
distributions across planning models. As shown in Table 2, stochastic planners—such as Diffusion-
Drive and our proposed BranchOut—consistently outperform unimodal baselines across all metrics.
Notably, BranchOut achieves this with a compact sampling strategy of a single trajectory per high-
level command (three in total), whereas DiffusionDrive requires over 20 samples to reach compara-
ble performance. Under single ground-truth evaluation, BranchOut reduces L2 error by 7.8%, and
under multimodal evaluation, it improves Fréchet distance by 4.98%. Beyond geometric accuracy,
BranchOut also excels on distribution-based metrics, indicating not only greater trajectory diversity
but also better alignment with human-like behavior. Specifically, it achieves a 5.8% lower NLL and
a 7.7% reduction in Speed JSD compared to DiffusionDrive. These results underscore the effec-
tiveness of our diffusion-based framework, particularly when paired with a compact GMM head, in
generating diverse, efficient, and realistic trajectory predictions.

Closed-Loop Evaluation: As shown in Table 3, BranchOut demonstrates robustness across all met-
rics, outperforming both unimodal (e.g., UniAD) and multimodal (e.g., DiffusionDrive) baselines
in terms of safe driving and goal completion. Notably, BranchOut achieves a superior Rc, with
a 70.5% improvement over UniAD. Thus, our GMM-based diffusion modeling effectively reasons
over feasible plans in closed-loop, predicting multimodal trajectory distributions that enable adaptive
decision-making. Our findings show that BranchOut can dynamically respond to agent interactions,
sudden obstacles, and unpredictable environmental changes, achieving more robust and safe driving.

5 Conclusion

We present BranchOut, a GMM-based branched diffusion planner that explicitly models the rich
multimodality of human driving. By integrating a GMM head into a diffusion-based framework,
BranchOut efficiently generates diverse and plausible future trajectories, achieving state-of-the-art
performance across both error-based and distribution-based metrics. Beyond modeling, we identify
key limitations in current evaluation protocols, which often rely on a single ground-truth trajectory
and may penalize diverse yet plausible alternatives. Our analysis shows that incorporating multiple
ground truths from an introduced, human-aware benchmark can reverse performance trends, empha-
sizing the importance of assessing behavioral diversity in planner evaluation. To support this, we
introduce a human-in-the-loop, photorealistic simulation framework with kinematics and collision
feedback, enabling scalable collection of diverse, reactive trajectories. Our enriched benchmark
more accurately reflects real-world driving variability and reveals that standard error-based metrics
struggle to fully capture alignment with human behavior, highlighting the importance of multimodal
evaluation protocols. BranchOut demonstrates that multimodal modeling and evaluation are not only
tractable, but essential for building safe, realistic, and human-aligned autonomous driving systems.

Acknowledgments: We thank the Red Hat Collaboratory (award #2024-01-RH07, #2025-01-
RH04) and the National Science Foundation (IIS-2152077) for supporting this research.
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6 Limitations

While our work establishes a foundation for modeling and evaluating planning in multimodal con-
texts, several limitations remain.

Simulation Fidelity: Our human-in-the-loop simulation builds upon HUGSIM, utilizing agents
based on the IDM, a simplistic speed-based car-following policy. This often results in oversimplified
or unrealistic behavior, particularly in complex scenes, and can lead to scenarios where human
driving becomes infeasible. Enhancing the realism of background agents is critical for improving
simulation fidelity.

Benchmark Coverage: Although we take a significant step toward benchmarking multimodality
by augmenting real-world data through scalable human-driven collection, fully capturing the space
of plausible behaviors remains challenging. Scenarios involving nuanced human-vehicle interac-
tions or dynamic complexities in dense urban settings are particularly underrepresented and offer
promising directions for further expansion.

Planner Robustness: While BranchOut achieves robust performance across all metrics, we observe
occasional failure modes, such as aggressive driving in high-speed merge scenarios and subtle lateral
oscillations during narrow lane following. We analyze these cases in the supplementary material and
identify them as opportunities for future improvement.

Addressing these limitations is essential for advancing the development of autonomous driving sys-
tems that are both realistic and human-aligned.
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