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Abstract

Neural scaling laws suggest that the test error of large language models trained
online decreases polynomially as the model size and data size increase. However,
such scaling can be unsustainable when running out of new data. In this work,
we show that data reuse can improve existing scaling laws in linear regression.
Specifically, we derive sharp test error bounds on M -dimensional linear models
trained by multi-pass stochastic gradient descent (multi-pass SGD) on N data with
sketched features. Assuming that the data covariance has a power-law spectrum
of degree a, and that the true parameter follows a prior with an aligned power-law
spectrum of degree b — a (with a > b > 1), we show that multi-pass SGD achieves
a test error of @(leb + L(l’b)/a), where L < N%? ig the number of iterations.
In the same setting, one-pass SGD only attains a test error of (M~ 4 N (1-0)/a)
(see, e.g.,|Lin et al.}2024)). This suggests an improved scaling law via data reuse
(i.e., choosing L > N) in data-constrained regimes. Numerical simulations are
also provided to verify our theoretical findings.

1 Introduction

Empirical studies reveal that the performance of large-scale models often improves in a predictable
manner as both model size (denoted by M) and sample size (denoted by V) increase (see, e.g.,
Hoffmann et al.| 2022} |[Besiroglu et al., 2024)). These observations, known as neural scaling laws,
suggest that the population risk (denoted by R) of large models decreases following a power-law
formula, namely,

R(M,N)~R* +c1 M~ + cgN™,

where R* > 0 denotes the irreducible error—such as the intrinsic entropy of natural language in the
case of language modeling (Kaplan et al.| 2020)—and a1, as, c1, c5 are positive constants. Neural
scaling laws predict a path for improving the state-of-the-art models via scaling model and data size.

A line of recent work establishes provable scaling laws in simplified settings such as linear regression
(see, e.g., ILin et al.| [2024; Paquette et al., 2024, other related works will be discussed later in
Section [6). Specifically, they consider an infinite-dimensional linear regression problem, where
an M -dimensional linear model is trained by one-pass stochastic gradient descent (SGD) on N
Gaussian-sketched samples. Under power-law assumptions on the spectra of the data covariance and
the prior covariance, they show power-law type scaling laws in linear regression. However, their
results are limited to one-pass SGD, where each sample is used once. In particular, [Lin et al.|(2024)
attributed the nice, power-law type scaling laws to the implicit regularization effect of one-pass SGD
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(see Section 1 therein). It is unclear if scaling laws apply to other training algorithms, particularly
those involving multiple passes of the data. Indeed, the scaling laws that only apply to one-pass
methods are not sustainable in a data-constrained regime.

There is evidence that data reuse can improve existing scaling laws developed for one-pass training.
Empirically, Muennighoff et al.|(2023)) showed that with up to four passes, scaling laws approximately
hold as if the reused data is new. From a theoretical perspective, the work by [Pillaud-Vivien et al.
(2018) shows that in a class of linear regression problems, the sample complexity of one-pass SGD is
strictly suboptimal; and it can be made minimax optimal by considering multiple passes. However,
Pillaud- Vivien et al.| (2018) did not discuss the effect of model size or sketching. These results
motivate the study of scaling laws for multi-pass methods.

Contributions. In this work, we study scaling laws induced by multi-pass SGD in the same infinite-
dimensional linear regression setting considered by Lin et al.| (2024)); |Paquette et al.| (2024)). Our
results suggest that in certain regimes, the test error of models trained by multi-pass SGD scales
strictly better with respect to the number of training samples compared to one-pass SGD.

We assume that the data covariance and the prior covariance exhibit aligned power-law spectra with
exponents a and b — a, respectively (see Assumptionand (Lin et al.| |2024; |[Paquette et al.,
2024). We prove that multi-pass SGD achieves an excess test error of order O (M *~0+L(1-b)/@) when
a > b > 1 and the number of SGD iterations L. < N%/®. This improves over the © (M ~b+ N (1=b)/a)
bound for one-pass SGD (Lin et al.,|2024) when L > N. In particular, when choosing the optimal
number of iterations L ~ N®", multi-pass SGD achieves an excess test error of order © (N (1=0)/0),
in contrast to © (N (1=2)/4) for one-pass SGD in the data-constrained regime where N « M?®. Our
results thus suggest that, to a certain extent, reusing data can improve the test performance of linear
models in data-constrained regimes.

Notation. Let f(z) and g(x) be two positive-valued functions. We write f(z) < g(z) (and
f(z) = O(g(x))) if there exists some absolute constant (if not otherwise specified) ¢ > 0 such that
f(x) < cg(z) for all z. Similarly, f(z) 2 g(x) (and f(z) = Q(g(z))) means f(z) = cg(x) for
some constant ¢ > 0. We write f(z) = g(x) (and f(z) = O(g(x))) when f(z) < g(x) < f(z). We
also occasionally use O(-), ©(-) to hide logarithmic factors. In this work, log(-) denotes the base-2
logarithm. For two vectors u, v in a Hilbert space, we denote their inner product by (u, v) oru'v.
We denote the operator norm for matrices by | - || (or || - |2) and the ¢5-norm for vectors by || - |2.
For a positive semi-definite (PSD) matrix A and a vector v of compatible dimensions, we write
|v|% := v" Av. For symmetric matrices, we denote the j-th eigenvalue of A by 1;(A), and the
rank of A by r(A).

2 Setup

Let x € H denote a feature vector in a Hilbert space H (finite or countably infinite-dimensional) with
dimension d := dim(H), and y € R denote its corresponding response. In linear regression, the test
error (i.e., population risk) of the parameter w € H is measured by the mean squared error:

R(w) := Egxg)~p [(<X’ W)~ yﬂ

for some distribution P on H x R. Given samples of the form (x, y), instead of fitting a d-dimensional
linear model, we train an M -dimensional sketched linear model with M « d. Namely, we consider
linear predictors with M parameters, defined as

fr  H-R, x> (v,8x%), ey

where v € RM are the trainable parameters, and S € R *? is some fixed sketching matrix. In
this work, we consider Gaussian sketching, where the entries of S are drawn independently from
N(0,1/M). Given a set of N i.i.d. samples (x;,y;)Y.; from P, we train f, via multi-pass stochastic
gradient descent (multi-pass SGD), that is,

Vi = Vi1 — M (th71 (Xit) - yit)v"'fvtfl(xit)

(multi-pass SGD)
=V 1 —%Sxit(xZSTvt,l — Yi,)s t=1,...,L, P



where L is the number of total steps, i; 2 ynif ([N]) for t € [L], and ()£, are the stepsizes.
Without loss of generality, we assume zero initialization vg = 0. We consider a geometric decaying
stepsize scheduler (Ge et al.,[2019; |Wu et al., | 2022b; [Lin et al., [2024),

Y i=0/2" fort=1,... L, where?=|t/(L/log(L))], )

and 7y > 0 is the initial stepsize. The output of multi-pass SGD is taken as its last iterate v;,. We
emphasize that the algorithm we consider differs slightly from the standard SGD used in practice,
where the samples are shuffled at the beginning of each epoch (pass) and then processed sequentially
without replacement. In contrast, we assume that at each step, a sample is drawn independently
from the training dataset, allowing for repeated sampling within an epoch. Moreover, our analysis
applies to other stepsize schedules (such as polynomial decay), but we focus on geometric decay
since it is known to yield near minimax optimal excess test error for the last iterate of SGD in the
finite-dimensional regime (Ge et al., 2019).

Conditioned on a sketching matrix S, the risk of v, is computed as
2
Ra(vy) = R(STVL) = E[((x,STvL> — y) ],

where the expectation is over (x,y) from P. As an important component of our analysis, we also
consider the gradient descent (GD) iterates

N
5
0= 001 = D (o (xi) = 1) Vo, (xi)
i=1 (GD)
-0, , — %SXT(XSTGt_l —y), t=1,...,L,
where X = (x1,...,%xn5) .y = (Y1,---,yn) |, 0o = 0, and ()£, are the same stepsizes as in (2).

Conditioned on the sketching matrix S and the dataset (x;, ;)% ;, it can be verified by induction that
v, is an unbiased estimate of 6y, i.e., E[vy] = 01, where the expectation is over the randomness of
the indices (i)E;.

Risk decomposition. We can decompose the risk (i.e., the test error) achieved by v, the last iterate

of (multi-pass SGD)), into the sum of irreducible risk, approximation error, the excess risk of the last
iterate of (GD)), and a fluctuation error:

Ry (ve) = minR(-) + minRps(-) — minR(-) + Rar(0r) — min Rz (-) + Rar(ve) — R (01) .

Irreducible Approx Excess Fluc

3)
Compared with|[Lin et al.|(2024) (cf. Eq. 4), the decomposition in @ includes an additional fluctuation
error term arising from the randomness of the indices (it)le in multi-pass SGD (Zou et al., [2022)).

Note that the fluctuation error is non-negative by Jensen’s inequality, as v, is an unbiased estimate of
0r.

3 Main results

In this section, we present our main result, showing that under certain power-law assumptions on

the data covariance and the prior covariance, the expected risk of v, from decays
polynomially in the number of training steps L and model size M. We begin by introducing the data

assumption used throughout this work.
Assumption 1. Assume the following conditions on the data distribution P.

A. Gaussian design. The feature vector satisfies x ~ N (0, H).

B. Well-specified model. The response satisfies E[y | x,w*] = x"w*. Define 02 := E[(y —
xTw*)2].
C. Power-law spectrum. The eigenvalues of H satisfy \; = i~® for all i > 0 for some a > 1.

D. Source condition. Let (\;,V;);=0 be the eigenvalues and eigenvectors of H. Assume w* follows
a prior such that

fori # j, E[(vi, w*)}{v;,w*)] = 0; andfori> 0, E[N{v;,w*)?] =i, forsomeb > 1.



Assumptions [TA] and [TB] posit that the feature vector x follows a Gaussian distribution and that
the linear model y = (x, w*) + € is well-specified, which are standard conditions in the analysis
of linear regression. Assumptions [IC]and [TD]assume that both the covariance of x and the prior
on the true parameter w* have power-law spectra and share the same eigenspace. In particular,
the true parameter w* follows an isotropic prior when ¢ = b. These conditions are common in
theoretical analysis of scaling laws (Bordelon et al.| 20244} |Lin et al.,|2024; Paquette et al.| [2024]),
and the power-law spectrum in Assumption [[C]is also empirically observed in real-world data, such
as the frequency distribution of words in natural languages (Piantadosi, 2014). We further note that
Assumption [l|matches the conditions of Theorem 4.2 in|Lin et al.|(2024), which established scaling
laws for one-pass SGD under the same setup. This alignment allows a direct comparison between our
results and those in|Lin et al.[(2024), highlighting the benefits of data reuse in certain data-constrained
regimes. Finally, we define the number of effective steps Less := |L/log L].

Theorem 3.1 (Error bounds for multi-pass SGD). Suppose Assumption|l|holds. Consider an M -
dimensional linear predictor trained by on N samples. Recall the decomposition
in (B). Assume the initial stepsize vo = min{vy, 1/[4 max; |Sx;|3]} for some v < 1/log N and the
number of effective steps Legs < N®/~. Then with probability at least 1 — e~ M) pyer S

L. Irreducible = R(w*) = o2.
2. Eyx[Approx] =~ M10.

3. Suppose 0 = 1. The expected excess risk (Excess) admits a decomposition into a bias term (Bias)
and a variance term (Var), namely,

E[Excess] ~ Bias + ¢*Var,

where the expectation is over the randomness of w*, (x;,y;)., and (i)F_,. Moreover, when
a > b — 1, Bias and Var satisfy

Bias < max{ M~ (Lesvy) 0/},
Bias > (Leff’y)(l_b)/a when (Leff’y)l/a < M/c for some constant ¢ > 0,
Var ~ min { M, (Leffv)l/“}/N.
4. Suppose 0* = 1 and Less < NU=9)%/y for some € € (0,1]. The expected fluctuation error
E[Fluc] satisfies

(Legey)"/®
N
E[Fluc] = W(Leffy)l/“_l when Less < N /v and (Leff'y)l/“ < M/c for some constant ¢ > 0,

E[Fluc] < ylog N - [(Leff’y)l/a_l 4 ], and

where the expectation is over w*, (x;,y;) .| and (is)E ;.
In the results, the hidden constants depend only on (a,b) for part 1—3, and on (a, b, €) for part 4.

See the proof of Theorem [3.1]in Appendix[A.2.T] A few comments on Theorem [3.1]are in order.

Comparison with Lin et al.[|(2024). The results in Theorem are more general than those in
Theorem 4.1 and 4.2 of |Lin et al.|(2024])). Specifically, we derive matching upper and lower bounds
for each term in the decomposition (3)) for multi-pass SGD with an arbitrary number of steps L < N¢,
except for the lower bound on the fluctuation error, which requires L < N. In contrast, |Lin et al.
(2024) only considered one-pass SGD where L = N. When a > band L = N, our bounds match
those for one-pass SGD given in Theorems 4.1 and 4.2 of [Lin et al.|(2024) up to logarithmic factors
(see Section [3.2]for more details).

The fluctuation error. From part 4 of Theorem we see that the fluctuation error term E[Fluc]
vanishes as the stepsize v goes to zero. This is intuitive: when ~ is small, the noise from random
sampling becomes negligible and multi-pass SGD closely approximates gradient descent. Moreover,
whena > band Lesgs < N af b it can be verified that for any 7 < 1/log N, the fluctuation error
is dominated by the sum of the approximation error and excess risk of (GD), i.e., E[Fluc] <
Ew+ [Approx] + E[Excess].



Choice of the stepsize. The assumption v < 1/log N ensures that the initial stepsize vy = ~y
with high probability. However, to guarantee the convergence of GD iterates, it suffices to have

Y% ~ v < 1/|SXTXST/N|2 o 1 The additional log N factor and the assumption g =
min{y, 1/[4 max; ||Sx;|3]} are technical conditions needed for analyzing the fluctuation error term.
We leave the problem of relaxing these assumptions to future work.

Constant-stepsize SGD with iterate averaging. Similar to|Lin et al.[|(2024), the results in Theo-
rem [3.T]also hold for the average of the iterates of multi-pass SGD with a constant stepsize, with the
only modification being that L.¢s is replaced by L in the bounds. We provide simulations supporting
this claim in Section 4]

Relaxation of Assumption The Gaussian design in Assumption [IA|can be relaxed to a sub-
Gaussian design when establishing the upper bounds for Bias, Var, Approx in Theorem [3.1]and the
upper bounds in subsequent corollaries. Moreover, the exact alignment of the eigenvectors of the
prior and data covariance in Assumption can be relaxed. We refer to Appendix for more
details.

Next, we discuss some implications of the error bounds in Theorem [3.1]

3.1 Scaling laws for GD

To begin with, we present matching upper and lower bounds for the expected test error of the last
iterate of (denoted by E[R/(01)]). We note that the GD iterates have strictly smaller test error
than the corresponding multi-pass SGD iterates when > 0, since the GD iterates (6;)%_; are the
expectation of the multi-pass SGD iterates (v;)~_;, conditioned on the sketching matrix S and the

dataset (x;, y;)¥ ;. By combining part 1—3 of Theorem we have

Corollary 3.2 (Scaling laws for GD). Let Assumption |I| hold and a > b — 1. Consider
an M -dimensional linear predictor trained by on N samples with stepsizes g =
min{~y, 1/[4tr(SXTXST/N)]} for some v < 1. Suppose 0> = 1 and Less < N%/vy. With

probability at least 1 — e~ *M) oyer S, the expected risk of 01, satisfies

E[Rym(0L)] =0 + @<Mll>—1> + ®(W> + G(mm{M’ (J\Lfefw)l/a}) .

Approx+Bias Var

Here, ©(-) hides constants that only depend on (a, b).

See the proof of Corollary[3.2]in Appendix From Corollary[3.2} we see that the variance error of
GD is dominated by the sum of the approximation error and the bias error (i.e. Var < Approx + Bias)

when Leesy < N%°. To achieve the optimal expected test error, we may choose v ~ 1 and the
number of effective steps Less ~ min{N a/b pfa }/v < N©. Under this choice, we have

0 W) it N < M,

E[R(01)] — 0? =

[Ras (6] o), itN At
It is worth mentioning that a decreasing stepsize schedule as in (2)) is not necessary for our analysis.
In fact, Corollary@remains valid for the last iterate of constant-stepsize GD (i.e., 7 = «y) when
replacing L.z with L in the bounds. In addition, the GD iterate 8, achieves the same expected risk
(up to logarithmic factors) as one-pass SGD when L =~ N, where the performance of one-pass SGD
is characterized in Theorem 4.2 of [Lin et al.[(2024)).

However, the computational cost of GD is substantially larger than that of one-pass SGD, since
each update requires computing gradients from all samples, resulting in a complexity of @(M N?)
compared to (5(M N) for one-pass SGD. Nevertheless, the excess test error of GD serves as an
always-valid lower bound for that of multi-pass SGD, and is also an upper bound (up to logarithmic
factors) in certain regimes where the fluctuation error is dominated by the sum of the approximation
error and the excess risk of GD.

1Step (i) follows from e.g., Theorem 4 and 5 in |Koltchinskii and Lounici (2017).



3.2 Scaling laws for multi-pass SGD

We now analyze the expected test error of the last iterate of (multi-pass SGD). By Theorem [3.1]and
Corollary [3.2] we have

Corollary 3.3 (Scaling laws for multi-pass SGD when a > b). Suppose the assumptions in Theo-
remmare in force, 2=~ 1l,anda =b> 1. For any Less < Na/b/'y, we have

with probability at least 1 — e=*M)_ Here, all hidden constants depend only on (a,b).

In contrast, Theorem 4.2 in |Lin et al,| (2024) proved that one-pass SGD with vj = 0, v{ =
VO —7Sx4(x] STv9 | —y;) for t € [N] satisfies

sttt o) 0 i)

with probability at least 1 — e~ M) where Nogs := N /log N.
Several remarks on Corollary [3.3]are listed below.

Benefits of data reuse. When a > b > 1, Corollary shows that multi-pass SGD achieves
an excess test error of order ©(M =% + (Lqz¢y)(=%/%) when the number of effective SGD steps
Less S N%/°, while one-pass SGD achieves an excess test error of order © (M0 + (Ngggy) (1 =0)/9).
Therefore, the reused data across multiple passes (epochs) can be viewed as fresh data when the
number of passes is smaller than N%/*~!. For example, when L = kN for some constant k > 1,
the test error achieved by k-pass SGD matches that of one-pass SGD trained on kN i.i.d. samples

despite the training data being reused—aligning with the empirical observations in Muennighoff et al.
(2023).

Moreover, when the number of effective steps is chose as Less ~ min{N%® M}/ and the
learning rate v ~ 1/log N, the excess test error of multi-pass SGD satisfies
E[Ru(ve)] — o = M'70 4+ NU-D/b)
while choosing v =~ 1 for one-pass SGD yields
E[Ru(v&)] — 0% = M7 4 Nege !0/
Therefore, in the data-constrained regime where N « M?, reusing data and running multi-pass SGD

for N%/*~! epochs yields an improved rate of (7)(N (1=0)/b) compared to the one-pass SGD rate of
O(N(=b/a) when a > b.

Optimal compute allocation. Given a total compute budget C' = L - M, by Corollary we
canset L = O(C(@+1)) and M = O(C"(@+1)) with stepsize v ~ 1/log L to achieve the optimal
rate O(C(1=0)/(@+1) for the excess test error E[R (v )] — o2. This matches the optimal rate for
one-pass SGD (Lin et al.}[2024)) given the same compute budget, but requires only N = O(Cb/ (a+1))
number of i.i.d. samples in contrast to N = O(C%(¢*+1)) for one-pass SGD.

Minimax optimal rate. When a > b > 2and M » N/, the improved rate O(N (1~9)/%) achieved
by multi-pass SGD matches the minimax optimal rate for a class of linear regression problems with
similar spectral conditions (Pillaud-Vivien et al.| 2018), up to sub-polynomial factors.

When a < b < a + 1, similarly, we have the following corollary from Theorem 3.1}

Corollary 3.4 (Scaling laws for multi-pass SGD when a < b < a + 1). Suppose the assumptions in
Theoremare in force and c2=<1. Whena<b<a+1, forany Less < N /7, we have

min orsy) /@
E[Ru(vi)] =0 +© L )1/a}b1)+@( {M, (Lezey)'/"}

(min{M7 (Loze N ) + E[Fluc]

“Note that this choice of Les¢ (and therefore L) is optimal as it minimizes E[R s (vz )] —o? up to logarithmic
factors for Less < N®.




with probability at least 1 — e=*M)_ ywhere the fluctuation error satisfies E[Fluc] < ~logN -
(Leff’y) 1/a_1, and E[Fluc] 2 ’y(Lefffy) 1/a-1 when (Lessy) Y < M.

Therefore, in the data-constrained regime where N « M?°, we have E[Ry(vy)] — 02 =

(:)((Leff”y)(l’b)/a + Y(Legsy)/*~1). Choosing Less ~ N and the optimal learning rate vy ~
Leff“/ =1 that balances the excess test error of GD and the fluctuation error, we obtain a rate of

O(N(1=b)/5) " This matches the bound for one-pass SGD in [Lin et al.| (2024) (up to logarithmic
factors) whena < b < a + 1.

4 Experiments

We also perform simulations to validate our theoretical findings. Namely, we train M -dimensional
sketched linear predictors (I)) via one-pass SGD and multi-pass SGD following the setup in Sec-
tion [2] and |3} and analyze how their excess test errors scale with the number of samples N and the
model size M. In each simulation, we generate N i.i.d. samples (x;,y;)~ ; from a linear model
yi = (x;, w*) + ¢;, where w* € R? is an unknown parameter vector and ¢; ~ N(0, 0?) are i.i.d.
Gaussian noise. The covariates x; are drawn from A(0, H), and the true parameter vector w*
is sampled from a Gaussian prior A/(0, HV), where H := diag{1,27%,...,d"*}/ Z?:l i~ and
HY := diag{1,2%7?,...,d* %} for some a,b > 1. We set the dimension d to be sufficiently large
relative to M so that Assumption[IC|and [ID]are approximately satisfied. For simplicity, we imple-
ment multi-pass SGD by reusing samples sequentially without replacement in each epoch, rather than

sampling i.i.d. from the empirical distribution. In all experiments, we set d = 10000, 02 = 1 and
(a,b) = (2,1.5).

Figure [T[a) compares the excess test error of one-pass SGD and multi-pass SGD with the number
of steps L ~ N%*~1. We observe that multi-pass SGD achieves better scaling in the sample
size N compared to one-pass SGD when N is relatively small (i.e., N « M?®). Moreover, the

fitted exponents are close to the theoretical predictions in Corollary G.e., 174; = —0.25 and
%b = —0.33). Similar results hold for the average of the iterates of constant-stepsize SGD, as

shown in Figure b). On the other hand, when N » M?, Figure c) shows that one-pass SGD
and multi-pass SGD achieve the same scaling in the model size M with the exponent & ~ 1 — b,
consistent with Corollary [3.3] In addition, Figure[I[d) illustrates that multi-pass SGD achieves the
same excess test error as one-pass SGD on fresh data when the number of passes is below a certain
threshold. Overall, the empirical observations align closely with our theoretical predictions.

—4— multi-pass (k=-0.36) —— multi-pass (k=-0.33) "Ny —4— multi-pass (k=-0.53) '\ —4— multi-pass
one-pass (k=-0.25) one-pass (k=-0.25) . one-pass (k=-0.50) N one-pass (k=-0.24)

w
5

5 5 5 . 5
5 5 50 N 5
= o = =
3 8 $axo N 82x10
g g g N g
10% 10% 10? 10° 104 10° 10t 10? 10° 10° 10?
Number of effective samples (Nef) Number of samples (N) Model size (M) Number of passes
(@) =0.1 by =01 )y =05 (d)y = 0.5, N = 1000

Figure 1: Multi-pass SGD versus one-pass SGD. In (a)—(c), multi-pass SGD is ran for L ~ N%/*
steps. (a), (b), (d): SGD with geometrically decaying stepsizes; (c): SGD with constant stepsizes.
We use linear functions to fit the excess test error in log-log scale. The fitted exponents (k) are close
to the theoretical predictions in Corollary [3.3] The errorbars denote the +1 standard deviation of
the expected excess test error over 100 i.i.d. samples of (S, w*). Parameters: 02 = 1, d = 10000,
(a,b) = (2,1.5). (a), (b), (d): M = 1000; (c): N = 105.



5 Proof Overview

We provide an overview of the proof of Theorem in this section. A full proof can be found
in Appendix Let v¥ = (SHST)"!SHw* and adopt the shorthand notations

& SXTXST
»:=SHS', ».=—"7"""
N
It can be verified by some basic algebra that
2
ERm(ve) = E[(<X7 STvi) —y) ] = 02 AE|STv* — w¥|f +E 0L — v +E |ve — 0L,
Irreducible Approx Excess F‘I:c

where the expectations on the R.H.S. are over w*, (x;,;), and (i;);, and we recall v,

in (multi-pass SGD)) and 6, in (GDJ)). From the above decomposition, we immediately have
1. Irreducible = R(w*) = o2

2. Eyx[Approx] = By« |STv* — w*|% =~ M'~° with probability at least 1 — e~ **) over S by
Lemma C.5 in[Lin et al.|(2024) (see also Lemma [E.7).

The excess risk of can be further decomposed into the sum of bias and variance, namely,
E[Excess] = Bias + o°Var,

where
L
Bias := EH I1 (I - %ZA))V*H; Var := E[tr(XSTV(£)EV(£)SX )]
t=1

with V() := - Hf:l(l — ~%)]/%. The bounds on the bias (Bias) and variance (Var) then
follow immediately from Lemma [B.3]and [C.2] respectively. Lastly, the bounds on the fluctuation
error follow from Lemma[D.3]

The main technical difficulty of proving Theorem [3.1] lies in bounding the bias, variance, and
fluctuation error terms. For bias and variance upper bounds, due to the non-commutativity of the

population covariance 3 and the empirical covariance 3, we apply a covariance replacement trick
(Lemma[E.T} see also Lemma 7 in Pillaud-Vivien et al| (2018)) to replace the population covariance
with the empirical covariance in the expressions of bias and variance, as well as concentration
properties of sub-Gaussian covariance to simplify their expressions. For the lower bounds, we show
that a specific function of the empirical covariance commutes with the population covariance in
expectation, and apply Von Neumann’s trace inequality.

For the fluctuation error, we follow the standard practice as in |Pillaud-Vivien et al.|(2018)) and |Aguech
et al.[(2000) to express the difference between the multi-pass SGD and GD trajectories, v; — 6 as
a stochastic process (Eq. (T8)). We then bound the fluctuation error E[|=/2 (v, — 8;)||?] through
controlling the accumulated error of the stochastic process using Lemma|[D.2]and [D.3] which involves
a novel leave-one-out argument to control the model parameters. Although several upper bounds on
the fluctuation error have been established for infinite-dimensional linear models (Pillaud-Vivien et al |
2018}, Zou et al., 2022), the interaction between the sketching matrix S and the samples (x;, yz)f\'= 1
in our setup introduces additional technical challenges (Lin et al., 2024). Moreover, we derive a
novel lower bound on the fluctuation error that matches the upper bound up to a logarithmic factor in
certain regimes by carefully controlling the accumulated variance from random sampling (i.e. the
accumulated variance induced by the random indices (i;) ;).

6 Related Works

Empirical scaling laws. Scaling laws have been extensively studied in recent years as a way
to understand and predict how model performance improves with increasing model size and data
size (Hestness et al., 2017} Rosenfeld et al., [2019; [Kaplan et al.| [2020; [Henighan et al.| [2020;
Hoffmann et al., [2022} |Zhai et al., 2022; Muennighoff et al., 2023). The seminal work by Kaplan
et al.|(2020) introduced the concept of neural scaling laws, demonstrating empirically that the test



error of large transformer models decreases predictably following a power law with respect to the
model size and data size. Subsequent works refined and extended these observations by proposing
more accurate scaling formulas (Henighan et al.| 2020; [Hoffmann et al.,2022; |/Alabdulmohsin et al.,
2022; Caballero et al., [2022; Muennighoff et al.|[2023)) and extending them to other settings (Kumar
et al., [2024; Busbridge et al.,[2025)). In particular, Hoffmann et al.| (2022) proposed the Chinchilla
scaling law, which advocates scaling the model and data size proportionally as compute budget
increases. [Muennighoff et al.|(2023) investigated the effect of data reuse and multiple training epochs,
introducing an empirically refined scaling formula that accounts for the number of training epochs.
They demonstrated that reused data can be approximately viewed as fresh data when the number of
epochs is small.

Theoretical studies of scaling laws. Although scaling laws have been observed across diverse
settings, their theoretical understanding remains relatively limited. A number of recent works have
attempted to formalize and explain the observed scaling behaviors in simplified settings (Sharma
and Kaplan, 2020} [Bahri et al., [2021; [Maloney et al., [2022; Hutter}, 2021} [Michaud et al., [2024;
Bordelon et al., [2024a; |Atanasov et al.| 2024 |Dohmatob et al., 2024; Paquette et al., 2024;|Lin et al.,
2024} Bordelon et al.,|2024b; |Ren et al., 2025)). For example, Bahri et al.|(2021) considered a linear
teacher-student model with a power-law spectrum and showed that the test error of the ordinary least
squares estimator scales following a power law in N (or M) when the other parameter goes to infinity.
Bordelon et al.| (2024a) analyzed the test error of the solution found by gradient flow in a linear
random feature model and established power-law scaling in one of N, M and T’ (training time) while
the other two parameters go to infinity. The results in these works are derived based on statistical
physics heuristics and characterize scaling in only one variable in the asymptotic regime. More
recently, [Lin et al.| (2024)) analyzed the test error of the last iterate of one-pass SGD in a sketched
linear model and showed that the test error scales as © (02 + M~ + N(1=0)/a) under the source
condition (Assumption [I). This is the first work to establish a finite-sample joint scaling law (in M
and N) for linear models that aligns with empirical observations (Kaplan et al.|[2020; Hoffmann et al.
2022). Similarly, |Ren et al.[(2025)) analyzed the complexity of one-pass SGD for learning two-layer
neural networks in a teacher-student setup, and derived joint scaling laws for the test error under
power-law assumptions on the teacher network. While previous works study the scaling behavior of
the one-pass (online) SGD solutions, our work complements them by analyzing the effect of data
reuse (i.e., multi-pass SGD) in data-constrained regimes.

Risk bounds for SGD. The generalization behavior of stochastic gradient descent (SGD), particu-
larly in linear regression, has been extensively studied across both classical and high-dimensional
regimes (Polyak and Juditskyl [1992; |Défossez and Bach, |[2015; |Dieuleveut et al.,|2017; Jain et al.,
2018, [2017; [Pillaud-Vivien et al., 2018} |Ge et al., 2019; [Dieuleveut and Bach|, 2015} [Berthier et al.|
2020; |Zou et al., |2023| [2021} [2022; 'Wu et al., [ 2022blc; |Varre et al.,|2021). For one-pass SGD, several
works have developed tight test error bounds in overparameterized linear models (Zou et al.| 2023}
Wu et al.| [2022alc)). For multi-pass SGD, early works (Lin and Rosascol 2017; Pillaud-Vivien et al.,
2018; [Miicke et al.| [2019; |Zou et al., [2022) have established test error bounds for the average of
its iterates in linear regression. Compared with prior works, our main technical contribution is to
precisely control the effect of random sketching and to refine the characterization of fluctuation error
(see Fluc in Eq.|3)) in the multi-pass setting. Under comparable regimes where the approximation
error is zero, our test error bounds match those derived in [Pillaud-Vivien et al.| (2018)), which are
minimax optimal for a specific class of linear regression problems in certain cases.

7 Conclusion

In this work, we provide a theoretical analysis of multi-pass stochastic gradient descent (multi-pass
SGD) in a sketched linear regression problem and establish refined scaling laws that characterize how
the test error scales with the model size M, sample size [V, and number of optimization steps L. Our
results show that, under suitable power-law conditions on the true parameter and data distribution,
data reuse via multi-pass SGD can improve model performance when the number of samples is
limited. This offers a theoretical explanation for the empirical benefits of multiple passes in modern
large-scale training.

Our analysis has several limitations. One limitation is the assumption that the eigenvectors of the
prior and data covariance are aligned (implied by Assumption|[ID)). While this assumption cannot be



fully removed without affecting the error rate, it would be interesting to investigate what alternative
rates are achieved when the eigenvectors are not aligned. Another limitation is that our lower bound
results require Gaussian design of the covariates (i.e., Assumption @; a next step is to extend them
to non-Gaussian design.

Beyond the limitations, many other directions remain open for future research. First, our analysis
focuses on multi-pass SGD with batch size one; it would be worthwhile to understand how the test
error scales with the batch size and to develop corresponding batch size scaling laws (see|Jain et al.,
2017). Another important direction is to study how data reuse interacts with other optimization
algorithms, such as SGD with momentum or ¢s-regularization and Adam. In addition, it is valuable
to extend our analysis to non-linear settings and classification problems, such as logistic regression,
kernel methods, and neural networks. Notably, modern large language model pretraining is based
on minimizing the cross-entropy loss for next-word prediction. Understanding the scaling behavior
in logistic regression—the simplest classification model—thus represents an important step toward
unraveling the mysteries of LLM scaling.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: A summary of our results and contributions is provided in the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: we have discussed the limitations of our work in the paper.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: it can be found from our theorem statements and the proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we have discussed all experimental details for reproducing the simulation
results in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: we do not release code and data for this paper at this time.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we have specified all the training and test details in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: we have reported error bars for all experiments in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: the simulations in this paper do not involve any large language models and can
be reproduced on a personal computer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: the authors have reviewed the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
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safety filters.
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include the full text of instructions given to participants and screenshots, if applicable, as
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¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents
A _Preliminary 20
[A.T_Comments and additional notationsl . . . . . .. ... ... ........... 20
IA.2_Proof of Theorem3.1land the coroflaries| . . . . ... ... .. ......... 21
|A.3  Relaxation of Assumption|l} . . . . . . ... ... o0 22
[BBias error] 24
IB.I "Anwupperbound| . . . .. ... 24
B2 Alowerboundl . . . . . . .. ... ... 27
B.3_Bias error under the source conditionl . . . . ... ... ... .00 29
31
IC.1 Upper and lowerbounds|. . . . . .. ... ... ... ... ... ........ 31
IC.2Vanance error under the source conditionl . . . . . . .. ... L 32
ID__Fluctuation error 33
ID.1 "Anupperbound| . . . ... ... Lo 33
D2 Alowerbound . . . . . . . .. ... .. 35
ID.3 Fluctuation error under the source conditionl . . . . . ... ... ... ... .. 37
D4 Proofof LemmalD2l. . . . . . . . .. . . 40
ID.S ProofoflemmalDJ3l. . . ... .. ... ... . ... .. ... ... ... .. 43
[EAuxiliary lemmas| 45
IE.1__General concentrationbounds| . . . . . . ... ... ... L. 45
IE.2 " Concentration bounds under power-law spectrum| . . . . . . . ... .. ... .. 46

A Preliminary

A.1 Comments and additional notations

Comments on Assumption[ID} Throughout the appendix (except for Appendix [A.3), we assume
without loss of generality that the covariance matrix H is diagonal, with diagonal entries given by the
eigenvalues (\;);>1 in non-increasing order. This reduction is justified by the rotational invariance of
the Gaussian sketching matrix S. Under this diagonalization, Assumption [ID]can be restated more
explicitly as follows:

Assumption 2 (Source condition). Suppose H = (h;;); j>1 is a diagonal matrix with non-increasing
diagonal entries. Assume that the true parameter w* satisfies:

foralli# j, E[wiw}]=0; andforalli >0, E[N\wi?]| =it forsomeb> 1.

Given that H is diagonal, we adopt the following notation. For integers 0 < k* < k' (allowing
kT = o0), define

Hyepor 1= diag{Mps 1, .., At € RO x(RT=E%)

For example,
HO:k = diag{)‘la SRR )\k}, Hk:oo = diag{)‘kJrla )\k+27 s }

Similarly, for any vector w € H, define

i T KT —k*
Wisogt 0= (Wesp1,.., Wer) €R .

In addition, we define Syx.j,+ to be the submatrix of the sketching matrix S consisting of the k* + 1-th
through k'-th columns.
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A.1.1 Assumptions on the stepsize

In the proofs of the general upper and lower bounds on the bias, variance, and fluctuation error, we
will require that the stepsize 7, v satisfy certain conditions, which are summarized in the following
assumption.

Assumption 3 (Stepsize conditions). Under the notations in Theorem and its proof, with proba-
bility at least 1 — exp(—Q(M)) over the randomness of S, we have

1. v < min{c¢/log N, ¢/[tr(2)]};
2. tr(2?) < 1

ui(2) .
3. Zz 1 pi (X)+1/(Lessy) < N/4’

4. the initial stepsize o = min{1/[4 max; |Sx;||3], v} satisfies P(vo < v/t) < N~ forall t > 1

We will show that Assumption [3]holds when the conditions in Theorem [3.T] are satisfied.

A.2 Proof of Theorem 3.1 and the corollaries

A.2.1 Proof of Theorem 3.1]
Proof of Theorem[B.1} Let v¥ = (SHST)"'SHw* and adopt the shorthand
SXTXST

FIa

Also, let D := (x;, y;))¥Y., denote the set of training samples. Then we have the decomposition

ER(v) = B[ (6, 8Tve) —9)°| = B[ (G, 8Tvi = w*) = )] = 0% + E[(x, 8Tvy, — w*)?]
=0? +E[(x,8" (v, — v¥) + STv* — w*)?]
Qo2 + B[, 8Tv* = wh)?| + E[(x, ST (v, — v¥))?]
D o2 4 E[(x,STv* — w*)?] + E[(x, ST (6L, — v¥))?] + E[(x,ST (v, — 6,))"]
= 02 +E[STV' — W[ +E 0L — VIS +E v — O[3,

Irreducible

»:.=SHST, .=

Approx Excess Fluc

where step (i) uses the fact that E[Sxx " (STv* — w*)] = E[SHSTv* — SHw*] = 0, and step (ii)
uses the fact that E[v|S,w* D] = 0.

Irreducible error. From the above decomposition, we have Irreducible = R(w*) = o2.

Approximation error. We have from Lemma C.5 in [Lin et al| (2024) that E,«Approx =
Ew||STv* — w* |2 = M'~® with probability at least 1 — e=*(™) over S.

Excess risk of (GD). Leté¢; = y; —x; STv* fori € [N] and write € = (€1, ...,éx)". It can be
verified that, conditioned on (S, w*), E[¢;] = 0 and ¢; is independent of Sx;. Moreover,
02 <52 = E[&] = 0% 4 Egs |[w* — STv¥|%
= 0% 4 By [w* THY2(I - H/2ST(SHS") 'SH/2)H/?w*]
< 0?2 + Box |W¥|f < 0%
Note that by definition of (GD), we have
0, —v* =0, v* — &SXT(XSTBt,l —y) =0, —vF %SXT(XST(Gt,l V) — @)

—(T-% )(0t 1= v+ -SXTE
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and therefore

0, —v* =[] (I - %i) (B0 — v¥) + V(2)SX T, @

t=1

where

L L L ad

~ 1 o IT-T[,T—%%)

V()= — : I—v3%) = t=11" )
(%) N;:l% i=|t+|1( o) NS

As a result, the excess risk of satifies

2 A~
o E|V(Z)SXé|%

BlEscess] ~ E16, —v* 13 @ | [ (1-28)v
=1

~ Bias + 0% Var,

where Bias := E,«[Bias(w*)] and

Bias(w*) := IEIXH ﬁ (I - %i:)v* 22 Var := E[tr(XSTV(£)EV(£)sX )],

and step (iii) follows from the fact that SX T is independent of € conditioned on S. The bounds on
the bias and variance follow immediately from Lemma[B.3]and [C.2]

Fluctuation error. It follows from Lemma and the assumption v < ¢/log N that
(Letem)®
N )
with probability at least 1 — e~ () over the randomness of S. The lower bound on E[Fluc] also
follows from Lemma

E[Fluc] < vlog N - [(Lefw)l/‘kl +

O

A.2.2  Proof of Corollary[3.2]

The proof follows immediately by combining parts 1-3 of Theorem 3.1} although we make a different
assumption on the initial stepsize yo. In Theorem we assume g = min{~, 1/[4 max; |Sx;|3]}
for some v < 1/log N, while in Corollary we assume vy = min{y, 1/[4tr(SXTXST/N)]}
for some < 1. This modification is valid because Lemmas [B.T] [B.2] and [C.T] used in the proof of
parts 1-3 of Theorem 3.1} continue to hold under the alternative choice of stepsize.

Specifically, their proofs mainly rely on three properties: (1) I — SXTXST/N > 0, (2)
P(yo < v/t) < N~ forall t > 1 and (3) claim (T3a) holds. Under the choice vy =
min{~y, 1/[4tr(SXTXST/N)]}, the first two properties are satisfied by definition and by the Hanson—
Wright inequality (see, e.g., exercise 2.17 in Wainwright (2019)). The third property follows
from a similar symmetry property for vo(I") := min{1/[4 tr(I'T' /N)],~} as used in the proof of

claim (15a).
A.2.3  Proof of Corollary 3.3 and 3.4

These two corollaries follow immediately from combining parts 1-4 of Theorem 3.1]and some basic
algebra.

A.3 Relaxation of Assumption ]

In this section, we show that some conditions in Assumption E] can be further relaxed. Concretely, we
have

(a). The exact alignment of the eigenvectors of the prior and data covariance in Assumption [ID]
is not necessary. All results in Section [3|remain valid if Assumption[ID]is replaced by
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Assumption 1D’ (Approximate source condition). Let ()\,, V;)is0 be the ezgenvalues and
eigenvectors of H and let HY = E[w w*T]. Assume cHY < HY < /HY for some
absolute constants ¢’ > ¢ > 0 and HY > 0 such that

fori # j, v;ervj = 0; andfori >0, )\iv;erv,» ~i7b forsomeb>1.

(b). To establish the upper bounds for Bias, Var, Approx in Theorem 3.1 and the upper bounds
in Corollary 3.4} Assumption [TA]can be relaxed to

Assumption 1A’ (sub-Gaussian design). x = HY2%, where E[xX"] = L, and the vector

X is zero-mean and 1-sub-Gaussian, i.e., E[X] = 0 and E[e*X¥®] < X'/ for any unit
vector v and all X € R.

We provide some justification of the two relaxations below.

Justification of (a). By checking the proof of Theorem [3.I] and its corollaries, it can
be seen that Assumption EIE is used to (1) give matching upper and lower bounds on
B | W5 18] Ews [1W} o 5, ], #1i(SHHWHST) for any k > 0 and i € [M] when control-
llng the approximation and bias error (see Lemma C.5 in|Lin et al| (2024) and Lemma [B.3)); (2)
give matching upper and lower bounds on E[|w* %] when controlling the fluctuation error (see
Lemma[D.5). Under the alternative Assumption[ID’] it is readily verified that the same bounds on
these quantities can be established up to constant factors. Concretely, supe there exists some

parameter w* with prior E[W*w* ] = HY. Then W* satisfies Assumption|ID|and

Eox [[ Wi 2] = te(HY,) =~ tr(HY,) = Ew*[uvvo;ku%],
1/2 w 1/2 1/2 1/2 ~
B [|Wi o2, ] = tr(H/2HY H,/ >~ tr(H2 HY JHY 2 ) = g [| Wi B, ],

;Ll(SHHWHST) (SHH“’HST)
E[|w*|f] = tr(H'PHVH"?) ~ tr(HPHYH"?) = Eg [| % ).

where step (i) follows from the fact that ;(A) < p;(B) for all ¢ and any 0 < A < B. Therefore,
the proof of Theorem [3.1]and its corollaries goes through under the alternative Assumption

Justification of (b). In short, for the upper bounds, the relaxation can be made since the Gaussian
assumption is mainly used to establish certain concentration bounds (e.g., Bernstein’s inequality),
which also hold for sub-Gaussian vectors. More specifically, the Gaussian design in Assumption[TA’lis
used in our proof mainly in three ways: (1) to establish concentration bounds on the sample covariance

(e.g., Eq.[T0); (2) to allow the use of technical lemmas in Appendix [E] (e.g., Lemma [E.3|and [E.4); (3)
to control the norm of sketched samples (e.g., to control B,, in Eq.[20).

Correspondingly, when x satisfies the alternative Assumption[TA’] we can show that (1) the same
concentration bounds hold on the sub-Gaussian sample covariance by e.g., Theorem 6.5 in/Wainwright
(2019); (2) all technical lemmas in Appendix [E|hold when the Gaussian sketching S is replaced by a
row-wise sub-Gaussian matrix by concentration bounds on quadratic forms of sub-Gaussian vectors
(e.g., Theorem 1 in[Hsu et al.|(2012))), and on sub-Gaussian covariance matrices (e.g., Example 1.5
in|Zhivotovskiy| (2024)); (3) the norm of sketched samples satisfy the same concentration bounds by
e.g., Theorem 6.5 in|Wainwright| (2019).

On the other hand, for the lower bounds, the Gaussian assumption is still required in order to
establish the conditional independence of & = y; — x] ST v* and Sx; given (S, w*) in the proof of
Theorem [3.1land Lemma [D.4l

In addition, we also conduct experiments to check our justification of (b). We generate data x =
(71,...,74)" from the distribution where z; are independent and

P(l‘l = 1) = ]P)(I'Z = 71) = ’L'ia/C()7 IP($1 = O) =1-2- ]P’($Z = 1),

witha = 2,b=1.5and ¢ = 2 Z?:l 1~ “. Note that x satisfies Assumptionbut not Assump-
tion|lAlwhen d = c0. We run the experiment under the same setting and choice of hyperparameters
as in Figure [I{a). Similar to the Gaussian case, in Figure 2] we observe that the excess test error
of one-pass SGD and multi-pass SGD both exhibit power-law scaling in the number of effective
samples Negs. Moreover, the fitted slopes are both close to the theoretical prediction in Corollary [3.3]
(0.34 ~ 0.33 = (1 — b)/b for multi-pass SGD and 0.26 ~ 0.25 = (1 — b)/a for one-pass SGD).
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—4— multi-pass (k=-0.34)
one-pass (k=-0.26)

Excess test error

107

102 10°
Number of effective samples (Nesf)

Figure 2: Multi-pass SGD versus one-pass SGD for non-Gaussian design. Multi-pass SGD is run
for L ~ N steps. We use linear functions to fit the excess test error in log-log scale. The fitted
exponents (k) are close to the theoretical predictions in Corollary The errorbars denote the +1

standard deviation of the expected excess test error over 100 i.i.d. samples of (S, w*). Parameters:
0? =1,d = 10000, M = 1000, v = 0.1.

B Bias error

B.1 An upper bound

Lemma B.1 (An upper bound on the GD bias term). Suppose Less < N® /v and Assumptionand
hold. Under the notation in Theoremand its proof, for any w* € H and k < M /3 such that
r(H) = k + M, the bias term

L N 2
Bias(w*) = EXH I1 (I - %E)v* 2
t=1

2

+ Bp - Wi,

_ cIwEil3 | mara(Ar)
Lessy pr (Ag)

Q(

with probability at least 1 — e=*M) over the randomness of S, where Ay, = S0 Hp:on S0 and

trz(zfc:w) 2 tr(2%:00) tr(z%:oo)

Bg := c(l + [(Lessn) + 1]( N2 *

for some constant ¢ > 0 and k = |N/ 2J

Proof of Lemma|B.1} Without loss of generality, we assume the covariance matrix H =
diag{A1, A2,...,Aq} where \; > X\, for any i > j. Let (A, A2,..., Apr) denote the eigenval-
ues of X in non-increasing order. Moreover, we introduce z1,...zy YN (0,Ip//N) and write

Z = (z1,...,zx)". It can be verified that XST/v/N £ ZXV/2 conditioned on S. Throughout
the proof, by a union bound argument, we w.l.o.g. assume the conditions (1), (2), (3) and (4) in
Assumption [3|always hold.

Define M := ]_[thl(I—’ytf])E Hthl(I—’ytf)) and recall that v¥ = (SHST)ASHW*. Substituting
SH = (So.kHo:r  Sk:coHi:0)
into v*, we have
Bias(w*) = Ex[v*"Mv*]

= Ex[w* HST(SHST) 'M(SHST) 'SHw*]
< 2T + 215,

SIfk > M then 27, := 0.
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where

T; = Ex[(wi;) "HoxSq, (SHST)T'M(SHS ) 1S, Ho.wi, ], ®)
Ty := Ex[(W} ) "Hio0S). o (SHST) T!M(SHS ") 1Sy oo Hr.oo Wi, |- (6)

We will show the following results at the end of the proof. First, with probability 1 — e ~2(*)

2
k 2 A
Tl < CHW():kHQ . ,UM/Q( k) (7a)
Legsy ,UM(AIc)
for some constant ¢ > 0. Moreover,

T> < Be - Wi, (7b)

Combining Eq. and gives Lemma[B.T]

Proof of claim (7a). By definition of T3, we have
T1 < |HoxSg,(SHS ) "'M(SHS ")~ 'So. Houx 2 - [ w3

< [M]2 - [(SHST)™'SouHouk 3 - W3-

for some constant ¢ > (0. By Eq. (23) in the proof of Lemma D.1 in|Lin et al.|(2024)), we have

_ tinrj2(Ak)
I(SHST) 'S0 Hox o < c- ZHTE ®
for some constant ¢ > 0 with probability at least 1 — e~*(™)_ Thus, it remains to show
c
Ex[|[M]l2] < ©))
x[[M]|2] Lo

for some constant ¢ > 0.

Let A > 0 be a fixed value to be specified later. Note that

t= 2 t =+ I

. L
211 Ta-®rs + A) S+ ML) S

t=1

(44) c ~
< )\ . 2 )\I 71/221/22
(e A I +am) I3,

where step (i) uses the fact that ||T — %lez < 1 by the stepsize assumption and step (ii) follows from
the stepsize assumption (2)) that v, = ~o for ¢ € [Le¢s], combined with the fact that sup (g 1,7 2(1—

yox)?Eett < /(o Lets) for some constant ¢ > 0.

Recall that we assume P(yy < v/t) < N~ for some constant ¢ > 0 and all ¢ > 1. Thus, Eq. (9)
follows immediately from choosing A = 1/(Less7) in the last display, applying Cauchy-Schwartz
inequality and Lemma and noting that (1 + Less2~? exp(—cN)) < 1for Legs < N/7.

Proof of claim (75). Let B = Ex [2*1/2 | PP 85)) >0 i e o %2)2*1/2]. By definition
of Ty in Eq. (6), we have
Ty = wk, ' HpoSl S BR128,  Hy.ow,
1/2 _ 1/2
<[Blo - |H2 S0 E Sk BY 2| - W I,
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< B2 - |wi o,
where the last line follows since
IH,/2S] 2718k HY2 |5 = [HY2 ST (S HoxS{y + sk.mes;w) 1S HYZ |2
< |HYZS] A Sk HY 2 || <
In the following, we will show that | B2 < BB, which immediately yields claim (7D).

Let X = XSTSXT/N. To compute |B||2, note that

L L—-1

H(I—’th])= H(I—W’t 1:[ ’Yt

t=1
L—-1

ey i L71
(i) | | (I—3X)— %SXT[VL I I =7 ]XST
" =

=1

SXT[Z%HH I3 ]XsT T1-C,

where step (iii) uses XS T (I—7,%) = (I—7,X)XST. Recall that XST /v/N £ ZX/2 conditioned
on S, we can thus rewrite

B=Ez[22(I-C)Z(I-C)2~?] < 21 + 2E[Z~/2CECE /2]

L-1 i L-1 i
— 21 + 2E, [ZT[ Moy [[a- %f)]ZEQZT[ My [a- th)]Z], where 3 = ZXZ7 .
i=0 t=1 i=0 =1
Introduce the shorthand Ry = Zf;ol Vi1 [Ty (@ — %X) and Ry(k) = (I — (I —
ViLos+12) ) /3 for k € [0,|log Less| — 1]. Note that |[Ry(k)|a < Lets - YhLo,+1 SinCE
Supwe[o,l/’ykLeff+1] [(1 - (1 - WkLeferlw)Leff)/x] = Les - VkLess+1- Therefore

L—-1 7 og LeffJ 1 [108} LeffJ -1
Rl = | 3 e [T, <[ 3 Raw], < Lott - Lo < 2Less,

where the last inequality follows from (2) and the definition of ~,.

We consider two cases.

Case 1: M < N/2.1In this case, we have

73?77 <5.(ZXZ7)? (10)

with probability at least 1 — e~ ™) since P(ZTZ > Ip;/5) = 1 — e *N) by concentration
of Guassian covariance matrix (see e.g. Theorem 6.1 in [Wainwright| (2019))). Moreover, since
tr(X?) <1,

Z'RIZY’Z'R1Z < ¢-Z'RI1ZZ'RIZ < ¢|Z"R,Z|3 - Ty,
< c(Lets7)*|1ZT Z5 - T
Therefore,
=2
Ez[Z'R1ZX*Z R Z] < cBz[Z' R3S R Z] + cE[(Lete7)?|Z" Z|31 27 231, s51] - I (11)
< CEz[ZTZ] + ¢(Letsy)? exp(—c'N) - Tpr < eIy

for some constant c¢,¢’ > 0, where the second line uses the fact that |[R;X|s =

[T — Hthl(I — %X)|2 < 1, concentration properties of the empirical covariance matrix
Z'Z,and Ez[Z"Z] =1 Asaresult, |B|2 <2+ 2|Ez[Z"RZZ?ZTR 1 Z]||2 < 1
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Case2: M > N/2. Let k=N /2. W.lLo.g., we assume X is a diagonal matrix with eigenvalues

Alyeeny Ay in non-increasing order. With probability at least 1 — e ~2(™¥)

Z'R\ZX’Z R Z < 22" Ry(Z ;3 Z,) ) R1Z + 2Z Ry (2,52 7] RiZ

< ZTR1(Zy; B0 i 20 0) " RaZ + 22 Ry (2, 52 Z] R, Z
< (|RU(Zg ; Zo i Z0) |3 + 127,52 2T |2)Z7Z

< c(|R1(Z 0 B 2y I3 + IRAZE + 125,37 25 [12) 27 Z,

k:00“k:00 k:00 = k:00

, we have the decomposition

where the second line use Z - Z ;. > I1/5 with probability at least 1 — e=?("), the last line follows

from a triangle inequality. Since |Ri]2 < Letsy and [R1 |2 = [T — Hthl(I — 1Y) < 1,
continuing the calculation, we obtain

Z'RIZEZRIZ < c((Lots) | Z30n T Zr 5 + 1+ |25, 22 Z] [2)Z7Z.  (12)

k:o0 k.00 k:00 " k:00 " k:o0
Since we have by Lemma[E.3|that

tr(Xs. tr(X2 )
HZ/}:OOE” z! 2 < c(”oo) + szmh A~ koo?

k:00% ;00 N N
] 22 )log(1/6)
Do e 1 /0B ) os

with probability at least 1 —4, and tr(22 ) < tr(X?) < 1, it can be verified by a standard truncation
argument that '

trz(Ekm)
N2

k:00 % k:00

(|2, .0 21 %-ZTZ]<c< o

tr(X2 )
+ B3 + —F= | L

A similar bound can be established for E[|Z;, QOE%OOZZCT_M |2]. Finally, substituting the bounds on
the expectations into Eq. (I2)), we obtain o

IBlz <2+ 2|E[Z"R,ZZ?Z R, Z] |2

tr2(3;. tr(%2 ) tr(=? )
< c(l + [(Legsy)? + 1] (% + 125005 + ]\’;'OO + A’;f’c ) .

B.2 A lower bound

Lemma B.2 (A lower bound on the GD bias term). Let Assumption[IA|and[3|hold. Define HY :=
E[w*w*] and 3, := SHHYHS'. Under the notation in Theoremand its proof, the bias
term satisfies

L N 2
By« [Bias(w*)] = EW*EH I1 (1 - %E>v* 2
t=1
> & (S
i=2t+1 ,U/z(z

with probability at least 1 — e=*M) ywwhere T := Ex [#{i € [M] : /)\\iLeff'yO > 1/4}] and (Xz)f”il
are the eigenvalues of 3.

Proof of Lemma|B.2} Similar to the proof of Lemma[B.1} w.l.o.g., we assume the covariance matrix
H = diag{\1, A2, ..., A¢} where \; > \; for any ¢ > j. Let (A1, A2,. .., Ap) denote the eigen-

. . . . jid .
values of 3 in non-increasing order. Moreover, we introduce z1, ...zy ~ N (0,I5;/N) and write

Z = (21,...,zx)". It can be shown that XST /v/N £ Z%/2 conditioned on S.
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Let Cp, := HtL=1(I — ~%). By definition,
L

H (I- %ﬁ)v*

t=1

Adopt the shorthand X, for SHH"HS . Substituting the definition of v* into the expression and
noting that E[w*w*] = HY, we have

B [Bias(w*)] = Eys [v* Ex[C2Cp]v¥]
= tr(HST(SHS' ) 'Ex[C.EC.](SHST)"'SHHY)

@)
> tr(HST (SHST) 'Ex[C,|ZEx[C[](SHST) 'SHHY)

= Ex[tr(S"V2Ex[CL]ZEx[CL]Z /28128, 2 1/2)],
where step (i) uses the fact that E[Y]E[Y "] < E[YY "] for any random matrix Y. We claim that

2

Bias(w*) = Ex = v* T Ex[C,2Cp]v*. (14)
>

»Y2Ex[CL]EY? = Ex[C.], and (15a)
1
pai—iv1 (Ex[Cr]) = % (15b)

forall i € [2 + 1, M], where 7 := Ex [#{i € [M] : \;Lyo > 1/4}].
The proof of these two claims will be given momentarily. Continuing the calculation using the claims
and Von Neumann’s trace inequality, we obtain
EwsBias(w*) > Ex[tr(Ex[CL]?E2 /2%, 27Y2)]
M
> N Wi (Bx[CL]) - (2728, 2112
i=1
M M
D Mo Ex[CL]) - m(ETPELET) 2 Y (BT, BT,
i=2T+1 i=2t+1
Since pi4j+1(XY) < pir1 (X)p;41(Y) for all 4, j and any matrices X, Y of matching dimensions,
we have

poi—1(BwX 1/2) < p3i—2(Bw) < w3i(Bw)
p(BV2) T (BY2) T w(E)
Combining the last two displays yields the desued result.

Ml(z 1/22 - 1/2)

Proof of claim (T5a). Define the learning rate vo(I') = min{1/[4 max; |T". ;||3],~} for any matrix
I € RM*N and define ~;(I") for all ¢ € [L] according to ). Let 3 = UTU" be the singular
value decomposition with UUT = I, and T' = diag{\;, ..., Ay} being a diagonal matrix w1th
M > X2 > ...\ = 0. Note that SXT/VN 4 1"1/2Z—r conditioned on S and UTSU <
[''/2ZTZT'/2. Therefore

L L
Ex[Cr] = Ex[] [(T—%(SXT)E)] = UEx 1_[ (I-v(VNUTYV2ZT) U TsU)|u’
t=1 t=1
L ~ ~ ~
= UEz| [ [@ - 7(VNT2Z")D2Z7ZT'/?)|UT.
t=1

Adopt the shorthand notation U = ZT''/2 and write U = (1, ..., )" It suffices to show (note
that vy, is equal to vy up to some k-dependent constant factor)

M := Ez[y(VNUT)™ - U U)"]
is a diagonal matrix for any K > 0. Consider the kl-entry M. It can be written as the sum of terms
of the form Wiy gy Mig,ga =" Misge, jox with j1 =k, jox =1, jom = Joam+1, M € [K— 1]. When k # [,
there exists some ¢ € [IN] such that y; j, appears odd number of times in the product. Since flipping
the sign of 11; 3, does not change yo(vVNU T), and yi; ; are independent symmetric Gaussian variables,

it follows that Ez[vo(v/NU )5 i, jy tin jo - - finke jor ] = 0. Consequently, we conclude that
My, = 0 for k # [ and M is a diagonal matrix.
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Proof of claim (7b). Let 3 = UTUT be the singular value decomposition with r -
diag{A1,...,A\prpand Ay > ... = Aps. Then we have

(In — ﬁo:tﬁg;t)

L
[[@—7%%) = (I - 29E)ker = U - 296D) - UT = >
t=1

where £ := #{i € [M] : A\iLess7o > 1/4}. Here, the first inequality follows from H“Og Lore= "a—

Vebug+15) = I — 2903 since (1 — £1)(1 — o) = 1 — t; — ty for all 1, ¢ € [0,1]; the second
inequality uses (1 — z)ett > exp(—2Less) = et for € [0,1/(2Les¢)]. Therefore,

~ 1 1 ~ ~
Ex[Cr] = Ex(I—7X)r = 71M — 7]E[U0;tU(L].

Since tr(E[ﬁo:tﬁ&t]) = E[t] = 1, it follows that E[UO tUO .| has at most 2E[¢] eigenvalues greater
than 1/2. Since X > Y > 0y implies 1;(X) = p;(Y) foralli € [M], X, Y € RM*M by Weyl’s
inequality, it follows that

1
par—iv1(Ex[Cr]) = %

forall i > 2Bx[#{i € [M]: \iLyo > 1/4}] + 1

B.3 Bias error under the source condition

Lemma B.3 (Bias bounds under the source condition). Let Assumption[l|hold, a > b— 1, and assume
Less S N /’y Under the notation in Theoremand its proof, there exist some (a,b)-dependent
constants ¢, ¢’ > 0 such that when v < ¢/log N,

E# [Bias(w*)] < max{(Legey) 70/, M0},
Es [Bias(w*)] = (Legsy) 170 when (Lessy)Y® < M/

with probability at least 1 — exp(—§(M)) over the randomness of S.

Proof of Lemma The proof follows from applying Lemma [B.1|and Lemma [B.2|under Assump-
tion[I] We begin by verifying the conditions required in these two lemmas.

Verification of conditions (1)—(4) in Assumption First, by Lemma we have p; (%) =~ j ¢
with probability at least 1 — exp(—(M)) over the randomness of S. Since a > 1, it follows that
v <1 < min{l,¢/tr(X)} and tr(X?) < 1. Thus, conditions (1) and (2) in Assumptlonlare
satisfied. Moreover, when L < N¢, we have

M

pi(3)
2 (2) +1/(Letzv)

o1 Mi
< #{ie [M]: pi(2) = 1/(Leee)} + (Lete) - > 1i(3)
i (3)<1/(Letsy)

S L) + (Lezen) - ), (D) S (Lees) V™ + (Leger) - D, i

1192 (Leey) 1/ 1182 (Legey) 1/ @

< (Leff’)’)l/a < N/4,

where the last inequality follows since we may assume Loss < ¢N®/v for some constant ¢ > 0
sufficiently small. Thus, condition (3) in Assumption[3]is satisfied.

To verify condition (4) in Assumption |3} we introduce z1,...2zy YN (0,I57/N) and write Z =
(z1,...,zx)T. It can be shown that XST/v/N £ ZX1/2 conditioned on S. Therefore, we have
tr(f]) 4 tr(ZXZ"), where Z € RV*M is a Gaussian sketching matrix. When p1;(2) ~ i~ for all
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i € [M] (which happens with probability at least 1 — exp(—$(M)) over S by LemmalE.3)), we have
by Hansen-Wright inequality (see e.g., exercise 2.17 in|Wainwright| (2019)) and a union bound that

N m[% Z;.3Z] < tr(X) + |B)2 - log(N/5) + |Z]F - v/log(N/6) <1+ log(N/6).
1€

with probability at least 1 — & over the randomness of Z. Thus, there exist some a-dependent constants
¢, ¢ > 0 such that when v < ¢/log N,

P(yo < 7/t) = P(t/(4y) < max |Sx;[3) = P(t/(47) < NmaxZ; XZ[ ) < N~
for all £ > 1. Therefore, condition (4) is also satisfied.

The upper bound. By Lemmal|E.3] we have Bg in Lemma B 1]satisfies
Be<c: (14 Legs” (N2 4+ N2+ N2+ N72%)) <c- (1+ N* 29 < 1

with probability at least 1 — exp(—$2(M)), where the second inequality uses Less < N®. Moreover,

we have by Lemmathat %ﬁié) < 1 with probability at least 1 — exp(—Q(M)).

Now, choosing k = min{M /3, (Lessy)"/*} in Lemma using Assumption and taking
expectation over w* yields
max{k~0*+1 1}

Ey* [Bias(w™)] Lo
eff

A

+ k0 < max{(Legey) 0/, M0
with probability at least 1 — exp(—(M)) over the randomness of S.

The lower bound. By Lemma|[B.2] we have

Ey#Bias(w™) 2
i=2t+1
with probability at least 1 — e=*(M) where = Ex[#{i € [M] : Xi Lot 0 >i4}] and {XL,z €

[M]} are the eigenvalues of 3. Since 3 £ 777 conditioned on S by Lemma E.3| when wi(X) ~
i~ for all ¢ € [M] (which happens with probability at least 1 —exp(—Q(M)) over S by Lemma
we have by combining Lemma [E.4|and[E.3|with k = N/c that

>

Mojo1 % oy 1 (ZXZT)
< 115 (ZowBorZog) + 15 (Zsoo Shioo Lgror)

<(1+ %gﬂ/&) () + (N N+ Nhﬁg/a) L VN %Ha 1og(1/5))

< (1+ logg\lf/5)) _j_a+N_a(1+ 10g§$/5) N logg\lf/é)) (16)

for all j < k with probability at least 1 — ¢ over the randomness of Z. Therefore, it can be verified
by a standard truncation argument that

T = Ex[#{i € [M] : NiLetsvo > 1/4}] < (Lege) .

Thus, when (Legsv0)"/* < M /c for some sufficiently large constant ¢ > 0, we have

M M M . a—b
i z)w i z:w @ —
Bedintvt)z 3 Bz 3 Bz 3 Sz )
t i=c(Legey) /e " i=¢/(Loge) /o

with probability at least 1 — exp(—(M)) over the randomness of S, where the third inequality uses
Lemma [E.3] (with H replaced by HHVH).

O
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C Variance error

C.1 Upper and lower bounds

Lemma C.1 (An upper bound on the GD variance term). Suppose Assumption[IA|and[3|hold and
Less < N®/~. Under the notation in Theorem-and its proof, the variance term

~ ~ DY L
Var := E[tr(XSTV(Z)ZV(Z)SXT)] w7 and Varz —,
where

DV = Ex|#{i € [M]: NiLetero > 1/4} + (Latero) 2, A,
i:XiLeff70<1/4

D-:=Ex [(Lefﬂo)Q : Z pi(B) () + % : Z (2)1

- by
i:Xi Lessy0<1/4 i:X; Lessyo>1/4 wi(%)

and (X VM. are the eigenvalues of 5

Proof of Lemma|C.1] Note that

A~ A~

3 (Ifl_[le(]:*’)/tz))zfl
Z’Yt th_LI 7iX) = ~

Adopt the shorthand V, for T — thl (I — ). Reorganizing the terms, we have

Var = N - E[tr(V(Z)ZV(2)8)] = % Ex[tr(ZVLE V)]

Let A1, ..., Ay be the eigenvalues of S in non-increasing order, and let A > 0 be some value which

will be given later. We now derive an upper bound and a lower bound for the variance Var.

An upper bound. Continuing the calculation, we further have
tr(ZVLETIVL) = tr(VLE V(8 + ADV2[(Z + M) V2S(S + A~ V2)(S + ADV2E- 12V )
< |ZV2(E + AD V22 [tr(VE + ATV

Similar to the proof of claim in Lemma it can be verified that V, < I — (I — 2y, X)L
under the condition 7o < 1/[4max; [Sx;|2] < 1/[4tr(2)] and stepsize assumption (@). Since
(1 — (1 — yow)¥e)? < min{(wLesev0)?, 1} for 2 € [0,1/(27)] by Bernoulli’s inequality and
SUP[g,1/40)[(1 = (1 = Y02) ") /x] = Lesso, it follows that

A= (1 - 2%A )hese)? ]

tr(V2 + A8"V2) < Z[ (1= (1 = 2yohi) Fore)? + ;

s
Il
—

Mi

[ 1 + >\Leff’70) {S\iLeff’YO>1/4}

@
Il
—_

+ ()\Leff’Yo(S\iLeff’Yo) + (:\iLeff’Yo)z) : 1{j\,iLeﬁ%g1/4}]-
Choosing A = 1/(Lesy) < 1/(Lesso) yields
tr(V2 + AS"1V2)
S HHie[M]: X7‘,Leff’Y0 > 1/4} + (Leff%)2 Z Xz2 + (Leg£70) Z Xz —. DY

i:S‘iLeff"/Ogl/‘l iiX'iLeff’Yogl/‘l

S #{i € [M]: MiLetsyo > 1/4} + (Letsyo)  », A =i DV (17
i:S\q;Leff'yosl/4
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Applying Lemma and noting that tr(VZ + )\fl_lv%) < N as V[, has at most N non-zero
eigenvalues, we obtain

Ex[tr(ZV.S7VL)] < Ex [#{i € [M]: XiLesero > 1/4) + (Lesero) D Xi].
iI:\iLeff’Yo<1/4

A lower bound. Similarly, by Von-Neumann’s trace inequality, we have

S < a1 O & ,UQ(wai)+1(V%272)
r(EVLETVE) 2 D (B i (VIETY) = ) () =T
i=1 i=1 pavr—i+1(E71)

.. M ~ ~
W Z i (2) - i (B) - poar—iy+1(VEE?),
i=1

where step (i) uses pi+;+1(XY) < pi1(X)pj41(Y) for any matrices X, Y, and step (ii) uses the
fact that [IJZ(E) = 1/,“4M—i+1 (271).

Note that V;, > I — (I — %ﬁ)Leﬁ. Since f(z) = (1 — (1 — yox)%)2/2? is a decreasing
function on [0, 1/7vo] and (1) f(x) > (Lest7Y0)?/4 when Lessyor < 1/4; (2) f(x) = 1/(52%) when
Lessyox = 1/4, we have

. Leeso)? .1 >
aEv Sy s Ll e Ly m)
iZS\iLeff’yogl/ﬁl i:S\iLeff"m>1/4 Hi

Taking expectation over X yields the desired result.

C.2 Variance error under the source condition

Lemma C.2 (Variance bounds under the source condition). Let Assumption [I| hold and assume
Less < N®/~. Under the notation in Theoremand its proof;, there exists some (a,b)-dependent
constant ¢ > 0 such that when v < ¢/log N,
min{M, (Lessy)"/*}

N
with probability at least 1 — exp(—Q(M)) over the randomness of S.

Var =<

Proof of Lemma Similar to the proof of Lemma we can verify that conditions (1)—(4) in
Assumption [3|are satisfied with probability at least 1 —exp(—€(M)) over the randomness of S. From
the expression of DY, it is straightforward to see that DY < M. Moreover, applying Lemma
Eq. (I6) in the proof of Lemma[B.3]and a truncation argument, we can show that

DY = Ex|#{i€ [M]: AiLetero > 1/4} + (Later0) D, M)
i:XiLeff70S1/4
< (Legsm) Y™ + EX[(Leff’Y) : Z /A\z] < (Lezey) e
0% (Lets )1/

with probability at least 1 — exp(—Q(M)) over the randomness of S. Thus, we have obtained
DY < min{M, (Lessy) "},

For the lower bound, when (Legsy)'/* < M /c for some sufficiently large constant ¢ > 0, conditioned
on S such that y;(X) = j~ for j € [M] (which holds with probability at least 1 — e~ (M) by
Lemma , we have by Lemmathat ;i (%) =~ j~ for j < min{M, N}/é with probability at
least 1 — e~ M) for some ¢ > 0. Therefore,

D" > Ex|(Lasr0)’- ), m(®) w(®)

i:Xi Lestyo<1/4
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2 (Lets7)? 2 itz (Leff’V)l/a;
1:92 (Letsy) /@ i<min{M,N}/é

where the last line follows since we assume (Lessy)/® < M /c for some sufficiently large constant
¢>0and (Leesy)Y* < N < Ne.

On the other hand, similarly, when (Leffq/)l/ @ > M/c for some sufficiently constant ¢ > 0,
conditioned on S such that p;(X) =~ j=° for j € [M] (which holds with probability at least

1 — e M) py Lemma, we have by Lemmathat uj(fl) ~ j~ % for j < M with probability
at least 1/2. Therefore,

> Xll_ pi(3)
5 <M /c ,ul(E)

Putting pieces together yields the desired lower bound.

1 (2
D'>Ex|;- Y m(2)

> M.
5 ()

X Lossyo>1/4 Hi

D Fluctuation error

D.1 An upper bound

Lemma D.1 (An upper bound on the fluctuation error). For each i € [N], define the leave-one-out
GD process

0" = (I—%ECNOY +~(SXTy) D, with 657 =0, (LOO-GD)
where $(—1) ;= 2z Sx;x;ST/N and (SXTy) (=1 .= 2j2i Sx;y;j/N.

Let Assumption|IA] hold and assume Lese < N°/~. Under the notation in Theorem[3.1|and
its proof, for any s € [0, 1], > 1, there exists some (s, «)-dependent constant ¢ > 0 such that the
fluctuation error satisfies

E[Fluc] = Ew*a(xivyi)ﬁvzl,it,te[l/][HEI/Z(VL —-01)|3]
< c E[F - tr(ZY)] - AV Loge /o,
with probability at least 1 — exp(—Q(M)) over the randomness of S, where

F:= I%( max(x] STv¥)? + max & + max (x; STO )2 + max Ix;ST(%-. .BA>7
1€

i€[N] i€[N] ie[N],te[L]
~ Le 2—s
Ba = aiaxggf% HSXng'R’%, and
i 1 A ~
Gmax i=  max |y +%, S0, A= . Ri= (2 + D)V + AD)V2)2.
ie[N],te[L] v 0o Lot I( ) il

Moreover, ifuj(f]) ~j %forj < r(f])for some a > 1, then
Eit,tE[L] HEl/Q(VL - 9L)Hg < CIE[F] "Yl/a[/effl/af1

for some a-dependent constant ¢’ > 0.

Proof of Lemma The proof of this lemma follows from similar ideas as in the proof of Lemma 5
in [Pillaud-Vivien et al.| (2018)), but with a more precise characterization on the magnitude of GD
outputs. We start with an overview of the proof. At a high level, to bound the fluctuation error, we
express the difference between the multi-pass SGD and GD trajectories, v; — 6;, as a stochastic
process (Eq.[I8) that fits into the framework of Lemma|[D.2] which provides an upper bound on the
fluctuation error E[|X'/2(v, — 6;)|?] under certain conditions, up to a mismatch between S and 3.
We verify that the required conditions hold with appropriate choices of parameters (Eq.[20), which
are further bounded using a leave-one-out argument (Lemma [D.3). Applying Lemma [D.2] with these
parameters and a covariance replacement trick (Eq. yields the desired bounds.
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We now proceed to the proof. Define A; := v; — 0, for t € [0,L]. Recall that v¥ =
(SHST)"'SHw* and we have y; = (Sx;)'v* + & for all i € [N] with ¢ independent
of Sx; conditioned on (S, w™*) under the Gaussian assumption in Assumption Moreover,
E[€|S,w*] = 0 and E[¢?|S,w*] < o2 + |w*|} =: 6%(W*). By the definition of v; and 6,

in and @G}, we have

Ay = (T—98xi, xS ) A1 + 7+ (€10 + &24), (18)
where
Ay =0, &= —[Sxix[ST—8[(6i1 —v¥), and &= Sx;,&, — SXTE/N, te[L].
Note that conditioned on w*, S and the dataset D = (x;, ;)Y ;, the noise terms E[£; +|S, w*, D] =
E[€2,]S, w*, D] = 0. Next, we present the following two results.

Lemma D.2 (A modified Proposition 1 of Pillaud-Vivien et al.|(2018)) for the last iterate). Consider
any recursion of the form

e =T —ry- VtVtT)IJtA +9 - &, wpmo=0, tell], (19)

where the learning rates (v;) | are as defined in Theoremand Eq @), (vi, &), e RM xRM
are independent random vectors. Assume that Elv,v) | = 2, E[&] = 0, E[v,v] v ] < B2,
E[&€]] < 0¢%,, and 0By, < 1/4. Then for any u € [0, 1], we have

B[ url3] < cof -7 tr(SY*) (Lesen) /o™

fot any a > 1 and some a-dependent constant ¢ > 0. Moreover, there exists some a-dependent
constant ¢, & > 1 such that when 11;(2,) =~ j~° for j < min{M, N /¢}, we have

E[|=52p]3] < ¢'of - y(Legey)

for any u € [0, 1] and some a-dependent constant ¢’ > 0.

See the proof of Lemma[D.2]in Section [D.4]

Lemma D.3 (A leave-one-out bound on GD iterates). Under the assumptions and notation in
Lemma for any s € [0,1], there exists some s-dependent constant ¢ > 0 such that the (GD))
updates (0;)1_, satisfies

max (x;8760,)*<c- [ max (xiTSTH)g_Z)) + max [x;ST|%-. ~BA].
€[ N],te[L] €[ N],te[L] €[N

See the proof of Lemma[D.3]in Section [D.3]
Letv, = Sx;,, & = &1,4 + &2,.. We claim that (v, &) satisfies the conditions in Lemma|D.2| with

>, =3 B, = ; 2_9 TST(0,_, — v*))2 + &2]. 2
; max ISxi]2, o¢ ie[gﬁ?\éu][(xzs (O:—1 — V™))" +&] (20)

Thus applying Lemmawith u = 0,1 to the stochastic process in (T8) and letting A =

5 yields

Ei, e |ZYV2(ve — 00) 3 S (Z + ADTVA(E + ADV22 B, e (E + ADY2 (v, — 61)]3

21
S o [(ZH+ M) T2(Z 4 AD V2 tr(BY) (Lagsy) Vo
Moreover,
07 < max(x; STv*)? + max & + max (x;S76;)?
i€[N] ie[N] ie[N].te[L]
< max(x; STv¥)2 + max &+ max  (x;STOY)? + max Ix/ST|%-. -Ba,
€[N €[N 1€[N],te[L] €[N

where the second line follows from Lemma|[D.3] Putting the last two dlsplays together and takin
expectation over (x;,y;);, w* yields the first part of Lemma The second part of Lemmaﬁl
follows from the same argument by applying the second part of Lemma[D.2]
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Proof of claim @) Conditioned on S and (xi7yi)f\i1, when choosing vy = Sx;,, we
have E[vv,] = [Sx“ X, ST] = f], and E[viv,/ vv]] < E[max;e[n |lvi|Pviv]] <
max;e[n [Sxi[3 - X = B2 - ). Thus we may let 3, =
this case, we have o B2 < 1/4 by the assumption that v <

bound o7 in (20). Note that

E[&&]] < 2E[&y, t&Tt] +2E[&s, tﬁzT,t]
< 2E[viv (0,1 — v¥) (0,1 — v¥) v | + 2]E[SX q,(Sx eZ,)T]

< 2max(x; ST (6;-1 — v¥)? B, + 2maxé? - B,
i€[N] i€[N]

S and B, = maxle[N] ISx;i[2. In
1/[4 max;e[ny | Sx;[3]. It remains to

where the second line uses Jensen’s inequality. Therefore, we can set

2 _ TQT 2 ~2
of=2_mux [6ST(01 — V) + ]

and the conditions required by Lemma[D.2]are satisfied.

D.2 A lower bound

Lemma D.4 (A lower bound on the fluctuation error). Let Assumption B hold and assume
Less < N%/v. Under the notation in Theorem and its proof, with probability at least 1 —
exp(—Q(M)) over the randomness of S,

E i i) ieqnyiente L) [FIUC] = B, ) e in el L] [[=Y2(ve — 61)3]

BevoLetso S
2 (0% + W ) By |~ - 2 a(2) - (D)),

i>t
where Bg = InaX{N*1 - 4AYOLE“B2 ,0}, B, = MaXe[n] |Sxi|2 and t := #{i € [M] :

NiLessv0 > 1/8}, and( )M are the eigenvalues of S

Proof of Lemma[D.4) Deﬁne A; := vy — 0; fort € [L]. Similar to the proof of Lemma [D.1]
conditioned on S and w*, we have

A= (I - 'ythZ,x SOA 1+ 7 (€1 + &2,0)
= Z Vi Z I—;8x;,x] ST) (€1 + &) (22)
j=i+1

where
Ag=0, & 4= f[Sx,, IsT - 2] (@,_1 — v*), and &, := Sx;,&, — SX'€/N, te[L],

and €; are i.i.d N'(0,5%(w*)) independent of Sx; conditioned on S and w*, where 52(w*) :=
o? 4 |w*|§. Let By, := max;e[n] [|Sx; 2. We claim that

Ee,)se iy Bir.terri[ (€1 + €2.0) (€1 + €2,0) ] = 67 (W*)Be - 5, (23)

and we have Bg > 1/2 when (Lessy)B2/N < 1/3. The proof of this claim is deferred to the end of
the proof.

Since &; ; and &2 ¢ are zero-mean noise, conditioned on S, w* and (x;, yi)fil, we have

Ei el Eeuep [IZ2(ve — 0L)[3]

L L L
= 37 Een e Binerg[tr( [ | (T=758%i,x/ ST)S [ (1= 8%, % ST) T (€1 + £2.0) (€ri + €2.0) )]
i=1 j=itl j=it1
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L L L
> 6*(Ww*)Be - > Vi v ltr( [ | (T— 8%, x/SNHZ [ (T —;8x;,x/87)T%)]

j=it1 j=it1

i=1
L L R
> 62 (W*)Be - Y. 77 (B [ [ (T-2v,%)),
i=1 j=it1
where the last line follows from the fact that E; [(I — v;Sx;,x/ ST)P(Z 5)(I — 7;%;,x 181 =
P(Z)(I - 2v; 3%) for any polynomial P. Continuing from the last line, we have

B, telL1E @) nerny [HEUZ(VL —01)3]

> 52 (w*)Bg - tr( Z% ﬁ I—2’yj§])2>

= J=i+1
|log L—1] SN Lo, [log L—1]
~ ~I—(I— 2’7Leffk ) Lett R
= 0—2(W*)B£ ’ Z ’y%effk+1 -tr (2 ( tl ) n (I — 2’)/Leﬁj+12)Le“ E)
k=0 27Leffk+12 j=k+1

= 5—2(W*)B£ “ Yo tr ((I — (I — QVOi)Leﬁ)(I — 4702)Leff E)’

where the last line uses | [;” k’gL (1= 2vyp,j1m)Ee = (1= dyom) b for z € [0,1/(2v0)] by the

stepsize definition (2] S1nce Piti+1(XY) < piv1(X)p;41(Y) for any ¢, j and matrices X, Y of
matching dimensions, it follows that for any 57 > 1

M]((I - (I — Qﬁoi)Leff)(I — 4»}/02)[@& E)
> pzj—2(I— (I — QZOE)Leﬁ)(I 4y B Lest /)
g (B s (B71)

= - (2) - par—i () 'Msj_g((I — (I = 2y 3) Leee ) (I — 4%2)@“).

=

by
Since f(x) = (1 — (1 — 2yoz)lett)(1 — drygx)lest /z satisfies f(z) > Lessyo/10 for x €
[0,1/(870Lete)], it follows that (I_(I_QWE)LgMI_MUE)LQH has at most ¢ = #{i € [M] :
XiLeffyo > 1/8} eigenvalues that are less than Less7/10. Therefore, we have

M
tr (L= (1= 2902) 5 ) (T = 470) 2 ) = 3 gy (1= (T = 23085 (T - dyp 5o 3)
j=1
> eff’Yo Z 1

i>t
Putting pieces together and taking expectation over (X;);e[n], We obtain
) com B [V = 03] 2 (0% By [ 22520 7 1(8) ().
>t
Proof of claim (23). By Eq. @) in the proof of Theorem 3.1 we have
0, —v=— ﬁ (I - %f:)v* +V,(2)SX e,
i=1

where

Vt(i) = ! Z% H (I—'yjfl)—IHl]\lf(zI: ’712)

Let
£ = —(Sx,x; ST — )V, 1(£)SXTé + (Sx;,&, — SXT&/N)
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t
= gl,i + £2 i (lef z, H I '71
i=1

Since E;, te[1[€;] = 0, it can be verified that

EeEi, terri[(€1,i + €2,0) (€1 + €24) ']
= EeEy, ier1) (&€

— 1A~ . _ 17t A2 N

=5 (w") - [—NN s (Sx;,x/, 8T — 2)[1 Hl‘;v% ) ](Sxitx;[ST -~ z)T]
N-1g oI = (1= 2y S)2kex .

=5t (w*) | S8 - (Sxix 8T - 3)| ( N;;) ) |(sxi,xST =)

Since sup,efo,1/25))(1 — (1 — 272)*7#)/x < 49Less and E; [(Sx;x/ST — %) <
Ei, [(Sxi,x/ ST)?] < B23, we further have

b

N—-1g4 4vwLe 2
- SR, [(Sxi,x) ST - 87|
N

[ N
—1  4yoLe -
> 62w (S - B
> 52 (w*) - 2/2

when (Lessy)B2/N < 1/3.

D.3 Fluctuation error under the source condition

Lemma D.5 (Fluctuation error under the source condition) Under the notation and assumptions
in Theorem 3.1 and suppose that Less < N1 =9/ for some small constant € € (0,1]. For any
€ [0,1 — 1/a), there exists some (s, €, a)-dependent constant ¢ > 0 such that the (multi-pass SGD)

process satisfies

log® N(Legsv)?~* a
E[Fluc] < ¢ylog N - [1 + (N;f ) ](Leff’Y)l/ g

with probability at least 1 — exp(—Q(M)) over the randomness of S. Consequently, choosing
s=1—-1/(a(l —€/2)) yields

log2 N L. 1/(a(l—€/2))+1
E[Fluc] < vylog N - [1 + 2% ( ff:]y\;z ](Leff’Y)l/a_l

L )1/a
<. ) a1, (Lessy
<cd -vylogN [(Lefw) + I ]

Sor some (g, a)-dependent constant ¢’ > 0 with probability at least 1 — exp(—Q(M)).

Moreover, assume in addition that Less < N /7. Then with probability at least 1 — exp(—Q(M))
over the randomness of S, we have

E[Fluc] = ¢"y(Leey) /¢!
Sfor some a-dependent constant ¢ > 0.
Proof of Lemma|D.3] The proof follows from instantiating Lemma and under the source

condition. We start by establishing concentration bounds on some quantities that appear in the bounds

in Lemmal[D.Iland[D.4

First, note that we have for any s € [0,1 — 1/a), conditioned on S and w*, with probability at least
1 — 3§ over (x;,4:)N 4,

l,fn[al\;i(xiTSTV*)Q < [w*[f log(N/4), (24a)
1€
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max & < (0 + |w*|3) log(N/6), (24b)
1€

m[z}\?ﬁ Ix[ST|Z4-. < tr(Z17°) + log(N/8) + 1/tr(X2-25) log(N/5) < log(N/9), (24¢)
1€

where Eq. and (24b) follow from a union bound on concentration inequalities for Gaussian
random variables; Eq. uses Hanson-Wright inequality and Lemma [E3]

Moreover, we will show that conditioned on S, w* and Gt(ﬂ), XZTSTB,gﬂ) is a zero-mean random
Gaussian variable with covariance

E[(x/ 876 ")? | 8,w*,6{ ] = 07267 < (Te + V) - (o + [W*[}), (29
where
Tg = {1 +10g(1/8)/N +t(6) - (Legey)? - (1 + log(1/0)/N)? when M < N/2,
Bg - (1 +1log(1/8)/N)>+1 when M > N/2,
Ty = max (£ + AI)"V2( + AD V2|2 m[%e .DY/N

€[N

with Bg defined in Lemma DV defined in Eq. (7)., and t(9) := 1iog(1/5) n}- Thus, we have
by a union bound that

TgTe(—1)y2 (=) T g9
;S0 < 0 36, 7 -log(NL/§
e (870, T)7 s max 6 i - log(NL/5)
S (Ts +1v) - (07 + [w*z) - log(N/9) (26)
with probability at least 1 — & over the randomness of (x;, y;)Y; conditioned on S and w*. Moreover,
we note that p;(X) = j~* for j € [M] with probability at least 1 — exp(—Q(M)) by Lemma

and conditioned on S and w*, we have pj(ﬁ) ~ j~* for j < min{M, N/c} and uj(ﬁ) R
otherwise with probability at least 1 — exp(—£(N)) by LemmalE.g]

Proof of the upper bound. Therefore, substituting Eq. (24a)—(24c) and (26) into the expression

in @max, Ba and F, applying Eq. (T6) to bound DV (and tr(El/“) for some o = a + & > a), using
part 2 of Lemma@and taking expectation w.r.t. (x;,;)~ ; conditioned on S and w*, it can be
verified that

10g2 N(Leff’}/)2_
N2

E[Fluc | S, w*] < (0% + |w*|3) - ylog N - [1 + ] (Legsy) 1.

Taking expectation w.r.t. w* yields the desired result.

Proof of the lower bound. Setting s = 0in Eq. (24c), we have B¢ > 1/2 when yLess B¢ /N > 1/3,
which happens with probability at least 1 — N~ Cl/ 2 for some constant ¢; > 0 when v < ¢o/log N

for some ¢, > 0. Moreover, by the concentration properties on f; (f]) and y;(X) in the previous
discussion, the assumptions on 7y, and a union bound, conditioned on S such that y; (X) = j—* for

j € [M] (which happens with probability at least 1 — e~*(™)), we have with probability at least 1/2
over the randomness of (x;,y;)Y | that

,uj(f)) ~j ¢ for j<min{M,N/c}, and
S (Leeem)'®, Be=1/2, 70 ="7.

Thus, when (Lesey)'/* < M/é < min{M, N /c} for some &,c > 0 sufficiently large, we have by
Lemma[D4 that

BeyoLessvo &
E[Fluc] 2 Ege,),n, [5170” () w(E)]

i>t

“More specifically, we apply part 2 of Lemmaon the event with probability at least 1 — exp(—Q(NV))

where conditions on 3 specified in Lemmahold and apply part 1 of Lemma forsomea=a+¢>1
otherwise.
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min{M,N/c}

Z Leff72 : Z i_2a
i=t+1
2 Lessy? 177 2 ’Y(Leff’Y)l/a_l

QM)

with probability at least 1 — e~ over the randomness of S.

Proof of claim (23). Note that
0. z0, " <viTEv 4 () —v*)TE(6, " — v¥)

(@) : -
S VIR + 1T JA-7S00)v¥)% + [VEC))8XTe )3,
i=1
where step (i) follows from the decomposition
t
0,7 —v* = T (1= %B) (8 —v¥) + V(E)(SX g
1

- 11 (I - %2““)\/* +V(ECED)SXTe) )

as similar to Eq. (@), where (SXT€)(-9) .= 2j4i Sx;€;/N and

. 1< ¢ I-J],(I—720D)
VE) = =Dy H (I—~,200) = =1 i ,
N4 NS

Let w* := XU/2v*  Note that (8 ”)L, can be viewed as a (GD) process on (x;,y;);i with
stepsize (IV — 1)%/N

Following the proof of Lemma (Eq.|11}and , it can be verified that, conditioned on S and w*,

t d \ry— _
H H(I S < {BF,l S NZwW* |3 + (Lets7)?|Z7 Z)31 (77 231,55y - [W*[|3 when M < N/2,

Bep 2L Brs - |Zw*|3 + |[W*[3 when M > N/2,

where Z € RV=D>M hagiid A(0,1/N) entries and
Bes = (Lot |25, S5 20, B+ 1+ |2, 5227,

k:o0™ k00 k:00 " k00 ko0

with k& = N/2. In addition, we have [W*|3 < |[v*|%& < |w*|} and |Zw*[3 < |[v*|%& - (2 +
log(1/8)/N) with probability at least 1 — § by concentration properties of chi-squared random
variables. Therefore, putting pieces together, applying Lemma [E5] Eq. (I3) and concentration
properties of Gaussian covariance matrices (see e.g., Theorem 6.1 in Wainwright| (2019)), we obtain
with probability at least 1 — § conditioned on S and w*,

T
< {2 (VN ) (L) 2 B(/5/NP) e 21 <
[w*(% - (Bg - (1 +1log(1/§)/N)? +1) when M > N/2,
27

where t(9) := L{10g(1/5)> N} and Bp is defined in LemmaE Wlth probability at least 1 — Q(M)
over the randomness of S.

Adopt the shorthand V{ ™ for T — [T"_, (I — %) and R; for | (£ + AI)~V/2(2(9 4 AT)1/2|2,
Similarly, following the proof of the upper bound in Lemma we have (choosing A\ = 1/(Lesgs7))

IV(ECD)(SXTe) )%
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~2
maxie[N] €5

tr(VIT)mviTIs

~ N
< Ry NS U (V2 SV
(Z) G gl[al\?iﬁ DU (%Z) if 212[%6 .DY (28)
where DV is defined in Eq. and
= #{j e [M]: /)\‘E‘_i)Leff'VO > 1/4} + (Lez£0) Z X(_i)y

G A Lagsyo<1/4

and Xg-_iiis Fhe j-Ath largest eigenvalue of gl(—i). Heire, step (ii) uses Eq. and step (iii) uses the
fact that )\g—z) < \j forall j € [M] since 29 < 3.
O

D.4 Proof of Lemma[D.2]

The proof of Lemma follows from similar ideas as in the proof of Proposition 1 of [Pillaud
Vivien et al.| (2018)). We first state a few lemmas that contribute to the proof. These lemmas are
modified versions of the lemmas in |Pillaud- Vivien et al.| (2018]), but we provide their proofs here for
completeness.

Lemma D.6 (Semi-stochastic SGD; Lemma 1 in |Pillaud-Vivien et al.| (2018)). Under the notatlon
and assumptions in Lemma consider any stochastic process iy = (I —v2, ) fe—1 + 7 - £t with
fio = 0.t € [L] and (&)=, such that E[£;] = 0 and E[£,€]] < GZ%,. Then for any u € [0,1], we
have

E[|Zy 2L ]3] < ¢ 5370 tr(2)/) - (Lesyo) />

for any o > 1 and some a-dependent constant ¢ > 0. Moreover, there exists some a-dependent
constant ¢, ¢ > 1 such that when 11;(2,) = j~° for j < min{M, N /¢}, we have

B[I%/ i 13] < €58 - t0(Letero) /"
3

forany u € [0,1].

See the proof of Lemma|[D.6]in Section[D.4.1]

Following the ideas in (Pillaud-Vivien et al., 2018} |Aguech et al., [2000), we introduce a sequence of
stochastic processes (fif );—, that connects the SGD process in (19) to the semi-stochastic SGD in
Lemma|[D.6] Namely, for k£ > 0, we define

iy = (L= D)ty + v &, fig =0, te[L], (29)
where &Y := & and £F := (2, — vy )i~} for k > 1. Tt can be verified that
Zut = (I -y, )(ut 1— Z iy 1) + oy €5
=0

Lemma D.7 (Bounds on the covariance; Lemma 2 in P111aud-V1v1en et al.[(2018)). Under the notation
and assumptions in Lemma[D.2|and its proof, for any k = 0, we have

E[¢felT] < 02 B2 - B, and E[EEENT] < o2t B L
See the proof of Lemma|D.7]in Section[D.4.2]
Lemma D.8 (SGD recursion; Lemma 3 in |Pillaud-Vivien et al.|(2018))). Under the notation and

assumptions in LemmaAlDZI consider any stochastic process ﬁt =(I- ’ytVtVtT ) D1+ vt - &, with

fip = 0,t € [L] and (&)E_ such thatE[ﬁt] = 0and E[ﬁtﬁt | <625, Then
E[|252AL)3] < 262 13 B}" tr(Sy) Less.
Sorany u € [0,1].
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See the proof of Lemma|[D.8]in Section[D.4.3]

With these lemmas at hand, we are ready to prove Lemma [D.2] Performing a decomposition
as in the proof of Proposition 1 in [Pillaud-Vivien et al.| (2018) and using Lemma on fiy for

i€ [0,k] andon Bwr — Zf:o [, we find
(E[I=5 uc|3D?

k
E[| =A% 130" + BIIZy (pr — Z N2

k
k
2 (0296 BE - 90 tr(BY*) Logs V)2 4 (0275 T BIH2T2 A8 tr(2, ) Legs) /2

k
< (08 70 tr(B/*) (Legsy0) V)2 - Y (00 BR) 2 + (075 P BRI AR - 1Sy Legs) 2
i=0
<2(07 - Y0 tr(ZY ) (Legs70) V¥ )2 + (076 2B t1(By) Lege) /2,
where the last inequality follows as o B2 < 1/4 by the assumption in Lemma Finally, letting

k — o and noting that o2~y5 T3 B2F+2+24 . t1(3,)) Logs *2% (), we obtain the desired result. The
second part of Lemma follows from similar arguments and therefore we omit the proof.

D.4.1 Proof of Lemma[D.6

By definition of fi;, we have

NL*Z% H I—7%,)&.

i=t+1
Thus,
[HEU/% 3]
L L L
= E[ ||2“/2th [] @=vZn)el3] Z B[y [ T—7Z0)’6E )
1=t+1 t=1 1=t+1
< 5 ny tr( H I—~%,)2ml)
i=t+1
|log L|—1 oL |log L]—1
~ I — (T — Yigeek+130) 7
2 2 1+u etf K+ 2L
=0¢- VLoss “tr 21) ’ ’ I_fYLeff. 13,) 7
¢ ch:lO Fesehtd ( 27Leffk3+121—’ - (’YLeffk-FlZl’)z j=1:i[kl ( 7 )
|log L|—
< 5? ' Z VLotek+1 tI‘(E (I - (I - ’yLefkarlEV)QLeﬁ)(I - ,YLeff(k+1)+12V)2Leff)
k=0
(@2 2B (1= (1= 7% /L)P), (30)

where the first inequality uses E[£:£, ] < 522,,.

Part 1 of Lemma[D.6} Comtinuing the calculation in Eq. (30), we have

E[|=}/ AL 3]
|log L|—2

~ VLessk+1 2L, 70 2L
<#-u| (T (= Y1 Z0)25) + 228, - (L= (I = 508, /L)% )
¢ ;;0 (Q’YLeff(k+1)+lLeff)u ( ( Thessktd ) ) L ( ( 0 / ) )

[log L|—-2 1—u

~ 7 « [e3%
<o Y L (ki Lo D)) + 2 tr((305,) )
k=0 Leff L
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<2 T (BY ) Legs VT < 52 - 70 tr(BY*) (Legeno) V0

where the first inequality uses Sup¢[o,1/~,1 (1 — yow)Hett < 1/[270 Legs " for any u € [0, 1], the

second inequality follows from 1 — (1 — yox)?Fe# < (29 Legzz)'/® forany a > 1 and x € [0, 1 /]
by Bernoulli’s inequality, and the last inequality follows from the stepsize definition (Z). This gives
the first part of Lemma[D.6

Part 2 of Lemma [D.6] Similarly, continuing the calculation in Eq. (30) and noting that
SUDyefo,1/4][1 — (1 — 72)?5] /o < 2yLess, we obtain

|log L]—2

E[|Zy ]3] < 52 - tr[ D 2Leee i k1 T (L= Ve (1)1 50) 25 + Tozllfr ]
k=0

(3D

Denote the eigenvalues of 3, by 3\1 > Xg > .. XN (letx = 0 for j > M). Choose

t = (Lessy)Y®. When M < N/c we have 1, (%, ) ~ j~® for j < M and otherwise 0. When
M > N/é¢, we have ¢ < N/c )\ ~j*forj < N /¢ and otherwise /\ < 7~ by monotonicity of
)\ In both cases, wehave/\ ~j e (or/\ =0)forj < Land/\J < j %forj > ..

Since f(z) > f(0) for any = € [0,1/9] and f(z) = x'T%(1 — Fx/2)?L=* for rany u € [0,1],
obtain an upper bound on tr(X1+t% - (I — X, /2)%F), we can w.l.o. ).g. assume )\ ~j eforj<.
and )\ < 7~ for j > ¢. Under this assumption, for any ¥ € [0, 1/(4)\1)]

(EL - (=53, /2)2)

N
S DA (T = A 2) e
j=1

a0
< Z )\;-%u (I— '~y)\j/2)2Leff + Z 2 )\jl+u (I— ,3,)\j/2)2Leff
Jj>u k=0 je[i/2k+1,,/2k)

logL +1 R 2ka
1 (14+u)a + Z Z )\JlJru . (1 _ o7 )2Leff
k=0 je[o/2k+1,0/2%) eff

oe]
A= (1+u)a + Z L/Qk —(14u)a | 6—2’““ < Ll—(1+u)a . (1 + Z 2k((1+u)a—1)e—2ka)
k=0
g A0 - (Lem) e, (32)
and 3 tr(XLT*)/L < 72/ Less. Substituting these into Eq. (BT) yields
|log L|—2

]E[HEZ/QFLLHg] < 5? : [ Z Leff’Y%efka : (Leff’YLeﬁk-s-l)l/a_u_l + VS/Leff]
k=0

<3 - (Lot y0) /"7
D.4.2 Proof of Lemma[D.7]
We prove this lemma by induction. When k = 0, we have E[¢0€)T] = E[£:£/] < 072, and

t

B[] =Y 77 [] @-%Z0)EEE ] ] T-%3)

i=1  j=i+l J=i+1
t t t
<oty v [[ T=7%Z0)E < oy (I -[Ja- %‘Eu)) < o¢yl.
i=1 Jj=i+1 i=1

Now, assume the lemma holds for some &£ > 0, we show that it also holds for k£ + 1. For &; k“, we
have

E[& &) < E[(Sy — v )E[E 1 At (S0 — viv))] < oy ™ BZE - E[(S0 — v )?]
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< 0?76”1312,]“ Elpw v < 0?75“33“”” X,

For fif 1, we have

t

t t
E[ﬁk+1~k+1T Z 1_[ I . ’YJ [€?+1€f+1T] H (I _ ’}/jzu)

j=itl

t t
<0 2 k+2BQ(k+1 Z H I ,Y] k+2Bz(k+1) 1

j=it1

This completes the induction.

D.4.3 Proof of Lemma[D.§

By definition of fi;, we have

L
B[Sy A3 = HE“/QZ% [T = wwDEl3)

i=t+1
L L ~ o7 L
=97 -tr (E[Eﬁ [] @—vv)ég! [] a- %‘ViViT)])
i=1 i=t+1 i=t+1
L L
<3§Z’yt2'tr<2ﬁ [T @)=, ]_[ (I— v, )

1=t+1 i=t+1

=1
L
<82 ) A (B)|Bu s < 20282 - 45 tr(20) Less,

where the last inequality follows since 32 < E[v,v vyv) | < B2, and 31 7?2 < 2Lege3.

D.5 Proof of Lemma[D.3]
Let Ag_i) =0, — O,S_i). For any i € [N],t € [L], we have
(x/870,)? < 2(x]STO{ )2 + 2(x] STA[))? < 2(x 870, ") + 2/ ST |3 . - [AT |3

< max (x]S70/7))? —l—max Ix/ST|%-. - max, HA( D)2
i€[N],te[L] €[N €[ N],te[

>s

It remams to bound max;e[ny erz] |A st Adopt the shorthand notation affi) = y; +

x; ST6 ™" and recell ayay = Max;e[N],te[ |at ")|. By taking the difference between the
process and the (COO-GD) process, we have

(—i) t ¢ R
AT = (I- Al 4 %Sxi - [Z 7";\] 11 (I—%-z)] Sx;.
i=1 j=it1

Therefore, for A = 1/(Lezs7),

1A%, = tr(x] STV, 2V 1Sx;)
= r(xiTSTVi,tZS[Z FAY2[E + MY (2 + A Y2[2 + ALY2V, 4 Sx;)
<sup tr(x; STV, (2 + AI)V, +Sx;)
SN (E+AD) TS 4 ADY2? - tr(x] STV, (2 + AV, ,Sx;).
Note that

Vit (B + ADVis < Vinax(E + ADVina,
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where

t t t S
YiGmax S I- H':l(I - rylz)
anx = — ar I-v3%)= max L = .
: ; i sz]_L( %%) =a 5

Adopt the shorthand notation V; = T — [ '_, (I — ;). Choosing A = 1/(Lege) in the last display
and taking the supremum over ¢ € [L],i € [N], we obtain

i SHAD V(S + ADV22 a2, ey o
L (A, 5 IEED LT S T STE V(S AV )

_IEFA)TAE4AD22 a2

max Sx; |2 - [E7V(Z + AV, S,
~ (Leff'}/)s_l N2 II?[% H X HQ H t( + ) t H2

Moreover, we have

~ ~ ~ - IS (@)
[STVHE + ANV ST < VEETH + A [ETVe? < Lesey,

where step (i) follows from [[V¢|| < 1 and sup,¢q,1/47(1 — [T._,(1 —7ix)) < Loz by the stepsize
definition (Z). Combining the last two displays, we find

(Lessy)*™*

max ||A£7i) | N2

i€[N],te[L]

B S e S35 (824 A7V 4 AR
S

This completes the proof.
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E Auxiliary lemmas

In this section, we provide some auxiliary lemmas that are used in the proofs.

E.1 General concentration bounds

Lemma E.1. Let vy, vs, ..., vy be iid. samples from N(0,X) for some ¥ € RP*P. Let S =

va Vv /N. Assume that ZZ 1 M’L(lz()zl/\ N /4. Then with probability at least 1 — e~ ()

[+ ML) 72825 < (5 4+ AL,) TS 4 AL,) o < 3.
Moreover; the expectation E||(3 + AL,)~/2( + AL,) 2|4 < 100 + exp(—cN)|[S|2/A2 for some

constant ¢ > (.
Proof of Lemmal|E.I} Adopt the shorthand notation Xy = ¥ + A, Sy=3+ AL,. By some basic

algebra, we have

- — « 28 2
|5+ AL,) 7221213 < (2 + ML) V28 + AL) 23 = 1275712

=L, - =2 (= - D)) . (33)
Let B = £, /212 Then we have | B|, < 1and tr(BBT) = 3¥_, #”(lz()zll\ < N/4 by assump-
tion. Therefore, by Theorem 4 and 5 in |Koltchinskii and Lounici| (2017)
—1/2 $—1/2 tr(BBT) tr BBT
5332 = £)23 e < | BJ - max =113

s

with probability at least 1 — et for any ¢ € [1, N]. Choosing t = N /¢’ for some sufficiently

large constant ¢’ > 0 yields HZ;lﬂ(Z ) ;1/2H2 < 2/3 with probability at least 1 — e=*(V),
Combining this with Eq. yields the first part of Lemmal[E.T]

To establish the bound in expectation, we first use Eq. (33)) to obtain an always-valid upper bound
1 _ A+ [Z]2
—1/2 —1/2y ’

fomin (Ip — 2y / A / ) A

Combining this with the first part of Lemma[E.I] we obtain

[(2 4+ AL) V22 + ML) 23 <

E|(S + AL,) " V2(S + AL) Y24 < 100+% 122

for some constant ¢ > 0. O

In the next three lemmas, we let (\;)%_, denote the eigenvalues of H in non-increasing order.

Lemma E.2 (Lemma G.1 in|Lin et al. (2024)). Let S € RM*4 pe g random sketching matrix with
i.i.d. entries S;j ~ N(0,1/M)P|Then there exists some absolute constant ¢ > 1 such that for any

M > 1and 0 < k < M, with probability at least 1 — e~ M) — =) ye have

f\j—</\j+z’>’“ )‘ <\/>A o+ App1 + 4/ SR 1>’“ )

Consequently, if k < M /c?, then
Yy
()\j + z:zjwk) + 1 ka1,

forevery j < M,

forevery j < M,

where ¢; = ¢ + 2c2.

3d can be 400.
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Lemma E.3 (Tail concentration; Lemma G.2 in|Lin et al.|(2024) and Lemma 26 in [Bartlett et al.
(2020)). Let S € RM*4 pe a random sketching matrix with i.i.d. entries S;; ~ N'(0,1/M). For any
k = 0, with probability at least 1 — 0, we have

1 1 1
< — M + log = 2( M +1log = )
‘ M2~M</\k+1< +og6>+ Z>\Z< +0g6)>

ey
Sk:oon’:ocS;—;oc - Z:Z>7k |

M i>k
In particular, with probability at least 1 — e=*M) | we have
SN S A
Skioo Hi:ooS e — % Y , < A1+ %

Furthermore, the minimum eigenvalue of Sk:oon:ooS;m satisfies
T
fimin (SkiooHiiooShin) 2 Aktanm

with probability at least 1 — e =M,
Lemma E.4 (Head concentration; Lemma G.3 in [Lin et al. (2024)). Let S € RM*4 pe a random
sketching matrix with i.i.d. entries S;; ~ N'(0,1/M). For any k > 1, with probability at least 1 — 6,
we have

k +log(1/9)

foreveryj <k, |pmj (SoxHoxSgi) — Aj| < TAJ-.
In particular, with probability at least 1 — e~ (%),
) T k
forevery j <k, |u; (SoaxHoxSg.r) — Aj| < MAJ'-

E.2 Concentration bounds under power-law spectrum

Lemma E.5 (Eigenvalues of SHST under power-law spectrum; Lemma G.4 in |Lin et al.[(2024)).
Let Assumption hold. There exist some a-dependent constants co > c1 > 0 such that

1" < pj(SHST) < o™

with probability at least 1 — e=2(M)

Lemma E.6 (Ratio of eigenvalues of S kakmS; -, under power-law spectrum; Lemma G.5 in|Lin
et al] (2024)). Let Assumption[IQhold. There exists some a-dependent constant ¢ > 0 such that for
any k = 0, the ratio between the M /2-th and M -th eigenvalues Ofsk:oon:ooS;;w satisfies

MM/Q(Sk?OOHk?OOS—krioo)
,U/M(Sk:OOHk:OOS—kI—:CO)

with probability at least 1 — e=2(M)

~x

Lemma E.7 (Bounds on Approx under the source condition; Lemma C.5 in |[Lin et al.| (2024)).
Suppose Assumption is in force. Then with probability at least 1 — e=*(M) gyer S,

M=% < By« [Approx] < M.
Here, the hidden constants only depend on (a,b) in Assumption

Lemma E.8 (Eigenvalues of 3 under power-law spectrum). Suppose X = SHS satisfies wi(X) =~
j~® for j € [M]. Then for some a-dependent constants c,cy,co > 0, 3 = % Zf\il Sx;x,]ST
satisfies

‘—a

i < ,uj(ﬁ) < coj “forall j < min{M,N/c}, and
uj(fl) < coj “forall j € (min{M, N/c}, min{M, N}]|

AN

with probability at least 1 — e~* over the randomness of (x;)_, conditioned on S.
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Proof of Lemma[E-8) Note that SXT/v/N £ 1277 where Z € RM*N has i.i.d. entries Z;; ~
N(0,1/N) conditioned on S. Thus, ;(X) = u;(ZXZ") for j < min{M, N}. Let (\;)¥, denote
the eigenvalues of ZXZ " in non-increasing order. Using Lemma with & = N/c for some
sufficiently large constant c and noting that > ,_, i~ < k'~ we have

1 ~ 3
*'(j_a"‘v‘élN_a)—EQ'N_aﬁ)\jﬁi

2
for every j < min{M, N/c} for some constants &, i € [2] with probability at least 1 — e~2(V),
Therefore, for all j < min{M, N /¢} for some sufficiently large constant ¢ > 1, we have

(T +51N_a) + ¢y - N7°

Aj€[esg™ " caj™"]
with probability at least 1 — e (V) for some constants ¢é3,é4 > 0. For j €
(min{M, N/¢}, min{M, N'}], by monotonicity of the eigenvalues, we have

Nj < Amin{a,N/)] < 54([miﬂ{M, N/E}J)i < Gmin{M, N} < é&j ¢

for some sufficiently large constant &5 > &, with probability at least 1 — e~2(V), O

47



	Introduction
	Setup
	Main results
	Scaling laws for GD
	Scaling laws for multi-pass SGD

	Experiments
	Proof Overview
	Related Works
	Conclusion
	Bibliography
	Appendix
	 Appendix
	Preliminary
	Comments and additional notations
	Assumptions on the stepsize

	Proof of Theorem 3.1 and the corollaries
	Proof of Theorem 3.1
	Proof of Corollary 3.2
	Proof of Corollary 3.3 and 3.4

	Relaxation of Assumption 1

	Bias error
	An upper bound
	A lower bound
	Bias error under the source condition

	Variance error
	Upper and lower bounds
	Variance error under the source condition

	Fluctuation error
	An upper bound
	A lower bound
	Fluctuation error under the source condition
	Proof of Lemma D.2
	Proof of Lemma D.6
	Proof of Lemma D.7
	Proof of Lemma D.8

	Proof of Lemma D.3

	Auxiliary lemmas
	General concentration bounds
	Concentration bounds under power-law spectrum



