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Abstract

Neural scaling laws suggest that the test error of large language models trained
online decreases polynomially as the model size and data size increase. However,
such scaling can be unsustainable when running out of new data. In this work,
we show that data reuse can improve existing scaling laws in linear regression.
Specifically, we derive sharp test error bounds on M -dimensional linear models
trained by multi-pass stochastic gradient descent (multi-pass SGD) on N data with
sketched features. Assuming that the data covariance has a power-law spectrum
of degree a, and that the true parameter follows a prior with an aligned power-law
spectrum of degree b´ a (with a ą b ą 1), we show that multi-pass SGD achieves
a test error of ΘpM1´b ` Lp1´bq{aq, where L À Na{b is the number of iterations.
In the same setting, one-pass SGD only attains a test error of ΘpM1´b `N p1´bq{aq

(see, e.g., Lin et al., 2024). This suggests an improved scaling law via data reuse
(i.e., choosing L ą N ) in data-constrained regimes. Numerical simulations are
also provided to verify our theoretical findings.

1 Introduction

Empirical studies reveal that the performance of large-scale models often improves in a predictable
manner as both model size (denoted by M ) and sample size (denoted by N ) increase (see, e.g.,
Hoffmann et al., 2022; Besiroglu et al., 2024). These observations, known as neural scaling laws,
suggest that the population risk (denoted by R) of large models decreases following a power-law
formula, namely,

RpM,Nq « R˚ ` c1M
´a1 ` c2N

´a2 ,

where R˚ ą 0 denotes the irreducible error—such as the intrinsic entropy of natural language in the
case of language modeling (Kaplan et al., 2020)—and a1, a2, c1, c2 are positive constants. Neural
scaling laws predict a path for improving the state-of-the-art models via scaling model and data size.

A line of recent work establishes provable scaling laws in simplified settings such as linear regression
(see, e.g., Lin et al., 2024; Paquette et al., 2024, other related works will be discussed later in
Section 6). Specifically, they consider an infinite-dimensional linear regression problem, where
an M -dimensional linear model is trained by one-pass stochastic gradient descent (SGD) on N
Gaussian-sketched samples. Under power-law assumptions on the spectra of the data covariance and
the prior covariance, they show power-law type scaling laws in linear regression. However, their
results are limited to one-pass SGD, where each sample is used once. In particular, Lin et al. (2024)
attributed the nice, power-law type scaling laws to the implicit regularization effect of one-pass SGD
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(see Section 1 therein). It is unclear if scaling laws apply to other training algorithms, particularly
those involving multiple passes of the data. Indeed, the scaling laws that only apply to one-pass
methods are not sustainable in a data-constrained regime.

There is evidence that data reuse can improve existing scaling laws developed for one-pass training.
Empirically, Muennighoff et al. (2023) showed that with up to four passes, scaling laws approximately
hold as if the reused data is new. From a theoretical perspective, the work by Pillaud-Vivien et al.
(2018) shows that in a class of linear regression problems, the sample complexity of one-pass SGD is
strictly suboptimal; and it can be made minimax optimal by considering multiple passes. However,
Pillaud-Vivien et al. (2018) did not discuss the effect of model size or sketching. These results
motivate the study of scaling laws for multi-pass methods.

Contributions. In this work, we study scaling laws induced by multi-pass SGD in the same infinite-
dimensional linear regression setting considered by Lin et al. (2024); Paquette et al. (2024). Our
results suggest that in certain regimes, the test error of models trained by multi-pass SGD scales
strictly better with respect to the number of training samples compared to one-pass SGD.

We assume that the data covariance and the prior covariance exhibit aligned power-law spectra with
exponents a and b ´ a, respectively (see Assumption 1C and 1D) (Lin et al., 2024; Paquette et al.,
2024). We prove that multi-pass SGD achieves an excess test error of order ΘpM1´b`Lp1´bq{aq when
a ą b ą 1 and the number of SGD iterations L À Na{b. This improves over the ΘpM1´b`N p1´bq{aq

bound for one-pass SGD (Lin et al., 2024) when L ą N . In particular, when choosing the optimal
number of iterations L ≂ Na{b, multi-pass SGD achieves an excess test error of order ΘpN p1´bq{bq,
in contrast to ΘpN p1´bq{aq for one-pass SGD in the data-constrained regime where N ! M b. Our
results thus suggest that, to a certain extent, reusing data can improve the test performance of linear
models in data-constrained regimes.

Notation. Let fpxq and gpxq be two positive-valued functions. We write fpxq À gpxq (and
fpxq “ Opgpxqq) if there exists some absolute constant (if not otherwise specified) c ą 0 such that
fpxq ď cgpxq for all x. Similarly, fpxq Á gpxq (and fpxq “ Ωpgpxqq) means fpxq ě cgpxq for
some constant c ą 0. We write fpxq ≂ gpxq (and fpxq “ Θpgpxqq) when fpxq À gpxq À fpxq. We
also occasionally use rOp¨q, rΘp¨q to hide logarithmic factors. In this work, logp¨q denotes the base-2
logarithm. For two vectors u,v in a Hilbert space, we denote their inner product by xu,vy or uJv.
We denote the operator norm for matrices by } ¨ } (or } ¨ }2) and the ℓ2-norm for vectors by } ¨ }2.
For a positive semi-definite (PSD) matrix A and a vector v of compatible dimensions, we write
}v}2A :“ vJAv. For symmetric matrices, we denote the j-th eigenvalue of A by µjpAq, and the
rank of A by rpAq.

2 Setup

Let x P H denote a feature vector in a Hilbert space H (finite or countably infinite-dimensional) with
dimension d :“ dimpHq, and y P R denote its corresponding response. In linear regression, the test
error (i.e., population risk) of the parameter w P H is measured by the mean squared error:

Rpwq :“ Epx,yq„P

”

`

xx,wy ´ y
˘2
ı

for some distribution P on HˆR. Given samples of the form px, yq, instead of fitting a d-dimensional
linear model, we train an M -dimensional sketched linear model with M ! d. Namely, we consider
linear predictors with M parameters, defined as

fv : H Ñ R, x ÞÑ xv,Sxy, (1)

where v P RM are the trainable parameters, and S P RMˆd is some fixed sketching matrix. In
this work, we consider Gaussian sketching, where the entries of S are drawn independently from
N p0, 1{Mq. Given a set of N i.i.d. samples pxi, yiq

N
i“1 from P , we train fv via multi-pass stochastic

gradient descent (multi-pass SGD), that is,

vt :“ vt´1 ´ γt
`

fvt´1
pxitq ´ yit

˘

∇vfvt´1
pxitq

“ vt´1 ´ γtSxitpxJ
itS

Jvt´1 ´ yitq, t “ 1, . . . , L,
(multi-pass SGD)
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where L is the number of total steps, it
iid
„ unifprN sq for t P rLs, and pγtq

L
t“1 are the stepsizes.

Without loss of generality, we assume zero initialization v0 “ 0. We consider a geometric decaying
stepsize scheduler (Ge et al., 2019; Wu et al., 2022b; Lin et al., 2024),

γt :“ γ0{2ℓ for t “ 1, . . . , L, where ℓ “ tt{pL{ logpLqqu, (2)
and γ0 ą 0 is the initial stepsize. The output of multi-pass SGD is taken as its last iterate vL. We
emphasize that the algorithm we consider differs slightly from the standard SGD used in practice,
where the samples are shuffled at the beginning of each epoch (pass) and then processed sequentially
without replacement. In contrast, we assume that at each step, a sample is drawn independently
from the training dataset, allowing for repeated sampling within an epoch. Moreover, our analysis
applies to other stepsize schedules (such as polynomial decay), but we focus on geometric decay
since it is known to yield near minimax optimal excess test error for the last iterate of SGD in the
finite-dimensional regime (Ge et al., 2019).

Conditioned on a sketching matrix S, the risk of vL is computed as

RM pvLq “ RpSJvLq “ E
”

`

xx,SJvLy ´ y
˘2
ı

,

where the expectation is over px, yq from P. As an important component of our analysis, we also
consider the gradient descent (GD) iterates

θt :“ θt´1 ´
γt
N

N
ÿ

i“1

`

fθt´1pxiq ´ yi
˘

∇vfθt´1pxiq

“ θt´1 ´
γt
N

SXJpXSJθt´1 ´ yq, t “ 1, . . . , L,

(GD)

where X “ px1, . . . ,xN qJ, y “ py1, . . . , yN qJ, θ0 “ 0, and pγtq
L
t“1 are the same stepsizes as in (2).

Conditioned on the sketching matrix S and the dataset pxi, yiq
N
i“1, it can be verified by induction that

vL is an unbiased estimate of θL, i.e., ErvLs “ θL, where the expectation is over the randomness of
the indices pitq

L
t“1.

Risk decomposition. We can decompose the risk (i.e., the test error) achieved by vL, the last iterate
of (multi-pass SGD), into the sum of irreducible risk, approximation error, the excess risk of the last
iterate of (GD), and a fluctuation error:
RM pvLq “ minRp¨q

looomooon

Irreducible

`minRM p¨q ´ minRp¨q
looooooooooooomooooooooooooon

Approx

`RM pθLq ´ minRM p¨q
looooooooooooomooooooooooooon

Excess

`RM pvLq ´ RM pθLq
looooooooooomooooooooooon

Fluc

.

(3)
Compared with Lin et al. (2024) (cf. Eq. 4), the decomposition in (3) includes an additional fluctuation
error term arising from the randomness of the indices pitq

L
t“1 in multi-pass SGD (Zou et al., 2022).

Note that the fluctuation error is non-negative by Jensen’s inequality, as vL is an unbiased estimate of
θL.

3 Main results

In this section, we present our main result, showing that under certain power-law assumptions on
the data covariance and the prior covariance, the expected risk of vL from (multi-pass SGD) decays
polynomially in the number of training steps L and model size M . We begin by introducing the data
assumption used throughout this work.
Assumption 1. Assume the following conditions on the data distribution P .

A. Gaussian design. The feature vector satisfies x „ N p0,Hq.

B. Well-specified model. The response satisfies Ery | x,w˚s “ xJw˚. Define σ2 :“ Erpy ´

xJw˚q2s.

C. Power-law spectrum. The eigenvalues of H satisfy λi ≂ i´a for all i ą 0 for some a ą 1.

D. Source condition. Let pλi,viqią0 be the eigenvalues and eigenvectors of H. Assume w˚ follows
a prior such that

for i ‰ j, Erxvi,w
˚yxvj ,w

˚ys “ 0; and for i ą 0, Erλixvi,w
˚y2s ≂ i´b, for some b ą 1.
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Assumptions 1A and 1B posit that the feature vector x follows a Gaussian distribution and that
the linear model y “ xx,w˚y ` ϵ is well-specified, which are standard conditions in the analysis
of linear regression. Assumptions 1C and 1D assume that both the covariance of x and the prior
on the true parameter w˚ have power-law spectra and share the same eigenspace. In particular,
the true parameter w˚ follows an isotropic prior when a “ b. These conditions are common in
theoretical analysis of scaling laws (Bordelon et al., 2024a; Lin et al., 2024; Paquette et al., 2024),
and the power-law spectrum in Assumption 1C is also empirically observed in real-world data, such
as the frequency distribution of words in natural languages (Piantadosi, 2014). We further note that
Assumption 1 matches the conditions of Theorem 4.2 in Lin et al. (2024), which established scaling
laws for one-pass SGD under the same setup. This alignment allows a direct comparison between our
results and those in Lin et al. (2024), highlighting the benefits of data reuse in certain data-constrained
regimes. Finally, we define the number of effective steps Leff :“ tL{ logLu.
Theorem 3.1 (Error bounds for multi-pass SGD). Suppose Assumption 1 holds. Consider an M -
dimensional linear predictor trained by (multi-pass SGD) on N samples. Recall the decomposition
in (3). Assume the initial stepsize γ0 “ mintγ, 1{r4maxi }Sxi}

2
2su for some γ À 1{ logN and the

number of effective steps Leff À Na{γ. Then with probability at least 1 ´ e´ΩpMq over S

1. Irreducible “ Rpw˚q “ σ2.

2. Ew˚ rApproxs ≂ M1´b.

3. Suppose σ2 Á 1. The expected excess risk (Excess) admits a decomposition into a bias term (Bias)
and a variance term (Var), namely,

ErExcesss ≂ Bias ` σ2Var,

where the expectation is over the randomness of w˚, pxi, yiq
N
i“1 and pitq

L
t“1. Moreover, when

a ą b ´ 1, Bias and Var satisfy

Bias À maxtM1´b, pLeffγqp1´bq{au,

Bias Á pLeffγqp1´bq{a when pLeffγq1{a ď M{c for some constant c ą 0,

Var ≂ min
␣

M, pLeffγq1{a
(

{N.

4. Suppose σ2 ≂ 1 and Leff À N p1´εqa{γ for some ε P p0, 1s. The expected fluctuation error
ErFlucs satisfies

ErFlucs À γ logN ¨
“

pLeffγq1{a´1 `
pLeffγq1{a

N

‰

, and

ErFlucs Á γpLeffγq1{a´1 when Leff À N{γ and pLeffγq1{a ď M{c for some constant c ą 0,

where the expectation is over w˚, pxi, yiq
N
i“1 and pitq

L
t“1.

In the results, the hidden constants depend only on pa, bq for part 1—3, and on pa, b, εq for part 4.

See the proof of Theorem 3.1 in Appendix A.2.1. A few comments on Theorem 3.1 are in order.

Comparison with Lin et al. (2024). The results in Theorem 3.1 are more general than those in
Theorem 4.1 and 4.2 of Lin et al. (2024). Specifically, we derive matching upper and lower bounds
for each term in the decomposition (3) for multi-pass SGD with an arbitrary number of steps L À Na,
except for the lower bound on the fluctuation error, which requires L À N . In contrast, Lin et al.
(2024) only considered one-pass SGD where L “ N . When a ě b and L “ N , our bounds match
those for one-pass SGD given in Theorems 4.1 and 4.2 of Lin et al. (2024) up to logarithmic factors
(see Section 3.2 for more details).

The fluctuation error. From part 4 of Theorem 3.1, we see that the fluctuation error term ErFlucs

vanishes as the stepsize γ goes to zero. This is intuitive: when γ is small, the noise from random
sampling becomes negligible and multi-pass SGD closely approximates gradient descent. Moreover,
when a ě b and Leff À Na{b, it can be verified that for any γ À 1{ logN , the fluctuation error
is dominated by the sum of the approximation error and excess risk of (GD), i.e., ErFlucs À

Ew˚ rApproxs ` ErExcesss.
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Choice of the stepsize. The assumption γ À 1{ logN ensures that the initial stepsize γ0 “ γ
with high probability. However, to guarantee the convergence of GD iterates, it suffices to have

γ0 « γ ď 1{}SXJXSJ{N}2
piq
≂ 1.1 The additional logN factor and the assumption γ0 “

mintγ, 1{r4maxi }Sxi}
2
2su are technical conditions needed for analyzing the fluctuation error term.

We leave the problem of relaxing these assumptions to future work.

Constant-stepsize SGD with iterate averaging. Similar to Lin et al. (2024), the results in Theo-
rem 3.1 also hold for the average of the iterates of multi-pass SGD with a constant stepsize, with the
only modification being that Leff is replaced by L in the bounds. We provide simulations supporting
this claim in Section 4.

Relaxation of Assumption 1. The Gaussian design in Assumption 1A can be relaxed to a sub-
Gaussian design when establishing the upper bounds for Bias,Var,Approx in Theorem 3.1 and the
upper bounds in subsequent corollaries. Moreover, the exact alignment of the eigenvectors of the
prior and data covariance in Assumption 1D can be relaxed. We refer to Appendix A.3 for more
details.

Next, we discuss some implications of the error bounds in Theorem 3.1.

3.1 Scaling laws for GD

To begin with, we present matching upper and lower bounds for the expected test error of the last
iterate of (GD) (denoted by ErRM pθLqs). We note that the GD iterates have strictly smaller test error
than the corresponding multi-pass SGD iterates when γ ą 0, since the GD iterates pθtq

L
t“1 are the

expectation of the multi-pass SGD iterates pvtq
L
t“1, conditioned on the sketching matrix S and the

dataset pxi, yiq
N
i“1. By combining part 1—3 of Theorem 3.1, we have

Corollary 3.2 (Scaling laws for GD). Let Assumption 1 hold and a ą b ´ 1. Consider
an M -dimensional linear predictor trained by (GD) on N samples with stepsizes γ0 “

mintγ, 1{r4 trpSXJXSJ{Nqsu for some γ À 1. Suppose σ2 ≂ 1 and Leff À Na{γ. With
probability at least 1 ´ e´ΩpMq over S, the expected risk of θL satisfies

ErRM pθLqs “ σ2 ` Θ

ˆ

1

M b´1

˙

` Θ

ˆ

1

pLeffγqpb´1q{a

˙

loooooooooooooooooooooomoooooooooooooooooooooon

Approx`Bias

`Θ

ˆ

mintM, pLeffγq1{au

N

˙

looooooooooooooomooooooooooooooon

Var

.

Here, Θp¨q hides constants that only depend on pa, bq.

See the proof of Corollary 3.2 in Appendix A.2.2. From Corollary 3.2, we see that the variance error of
GD is dominated by the sum of the approximation error and the bias error (i.e. Var À Approx`Bias)
when Leffγ À Na{b. To achieve the optimal expected test error, we may choose γ ≂ 1 and the
number of effective steps Leff ≂ mintNa{b,Mau{γ À Na. Under this choice, we have

ErRM pθLqs ´ σ2 “

$

&

%

Θ
´

1
Npb´1q{b

¯

, if N À M b,

Θ
´

1
Mb´1

¯

, if N Á M b.

It is worth mentioning that a decreasing stepsize schedule as in (2) is not necessary for our analysis.
In fact, Corollary 3.2 remains valid for the last iterate of constant-stepsize GD (i.e., γt ” γ) when
replacing Leff with L in the bounds. In addition, the GD iterate θL achieves the same expected risk
(up to logarithmic factors) as one-pass SGD when L ≂ N , where the performance of one-pass SGD
is characterized in Theorem 4.2 of Lin et al. (2024).

However, the computational cost of GD is substantially larger than that of one-pass SGD, since
each update requires computing gradients from all samples, resulting in a complexity of rOpMN2q

compared to rOpMNq for one-pass SGD. Nevertheless, the excess test error of GD serves as an
always-valid lower bound for that of multi-pass SGD, and is also an upper bound (up to logarithmic
factors) in certain regimes where the fluctuation error is dominated by the sum of the approximation
error and the excess risk of GD.

1Step (i) follows from e.g., Theorem 4 and 5 in Koltchinskii and Lounici (2017).
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3.2 Scaling laws for multi-pass SGD

We now analyze the expected test error of the last iterate of (multi-pass SGD). By Theorem 3.1 and
Corollary 3.2, we have
Corollary 3.3 (Scaling laws for multi-pass SGD when a ě b). Suppose the assumptions in Theo-
rem 3.1 are in force, σ2 ≂ 1, and a ě b ą 1. For any Leff À Na{b{γ, we have

ErRM pvLqs “ σ2 ` Θ

ˆ

1

M b´1

˙

` Θ

ˆ

1

pLeffγqpb´1q{a

˙

with probability at least 1 ´ e´ΩpMq. Here, all hidden constants depend only on pa, bq.

In contrast, Theorem 4.2 in Lin et al. (2024) proved that one-pass SGD with vo
0 “ 0, vo

t “

vo
t´1 ´ γtSxtpx

J
t S

Jvo
t´1 ´ ytq for t P rN s satisfies

ErRM pvo
N qs “ σ2 ` Θ

ˆ

1

M b´1

˙

` Θ

ˆ

1

pNeffγqpb´1q{a

˙

with probability at least 1 ´ e´ΩpMq, where Neff :“ N{ logN .

Several remarks on Corollary 3.3 are listed below.

Benefits of data reuse. When a ě b ą 1, Corollary 3.3 shows that multi-pass SGD achieves
an excess test error of order ΘpM1´b ` pLeffγqp1´bq{aq when the number of effective SGD steps
Leff À Na{b, while one-pass SGD achieves an excess test error of order ΘpM1´b ` pNeffγqp1´bq{aq.
Therefore, the reused data across multiple passes (epochs) can be viewed as fresh data when the
number of passes is smaller than Na{b´1. For example, when L “ kN for some constant k ą 1,
the test error achieved by k-pass SGD matches that of one-pass SGD trained on kN i.i.d. samples
despite the training data being reused—aligning with the empirical observations in Muennighoff et al.
(2023).

Moreover, when the number of effective steps is chosen2 as Leff ≂ mintNa{b,Mau{γ and the
learning rate γ ≂ 1{ logN , the excess test error of multi-pass SGD satisfies

ErRM pvLqs ´ σ2 ≂ M1´b ` N p1´bq{b,

while choosing γ ≂ 1 for one-pass SGD yields

ErRM pvo
N qs ´ σ2 ≂ M1´b ` Neff

p1´bq{a.

Therefore, in the data-constrained regime where N ! M b, reusing data and running multi-pass SGD
for Na{b´1 epochs yields an improved rate of rOpN p1´bq{bq compared to the one-pass SGD rate of
rOpN p1´bq{aq when a ą b.

Optimal compute allocation. Given a total compute budget C “ L ¨ M , by Corollary 3.3, we
can set L “ OpCa{pa`1qq and M “ OpC1{pa`1qq with stepsize γ ≂ 1{ logL to achieve the optimal
rate rOpCp1´bq{pa`1qq for the excess test error ErRM pvLqs ´ σ2. This matches the optimal rate for
one-pass SGD (Lin et al., 2024) given the same compute budget, but requires only N “ OpCb{pa`1qq

number of i.i.d. samples in contrast to N “ OpCa{pa`1qq for one-pass SGD.

Minimax optimal rate. When a ą b ą 2 and M " N1{b, the improved rate rOpN p1´bq{bq achieved
by multi-pass SGD matches the minimax optimal rate for a class of linear regression problems with
similar spectral conditions (Pillaud-Vivien et al., 2018), up to sub-polynomial factors.

When a ă b ă a ` 1, similarly, we have the following corollary from Theorem 3.1.
Corollary 3.4 (Scaling laws for multi-pass SGD when a ă b ă a ` 1). Suppose the assumptions in
Theorem 3.1 are in force and σ2 ≂ 1. When a ă b ă a ` 1, for any Leff À N{γ, we have

ErRM pvLqs “ σ2 ` Θ

ˆ

1

mintM, pLeffγq1{aub´1

˙

` Θ

ˆ

mintM, pLeffγq1{au

N

˙

` ErFlucs

2Note that this choice of Leff (and therefore L) is optimal as it minimizes ErRM pvLqs´σ2 up to logarithmic
factors for Leff À Na.
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with probability at least 1 ´ e´ΩpMq, where the fluctuation error satisfies ErFlucs À γ logN ¨
`

Leffγ
˘1{a´1

, and ErFlucs Á γ
`

Leffγ
˘1{a´1

when pLeffγq1{a À M .

Therefore, in the data-constrained regime where N ! M b, we have ErRM pvLqs ´ σ2 “

rΘppLeffγqp1´bq{a ` γpLeffγq1{a´1q. Choosing Leff ≂ N and the optimal learning rate γ ≂
Leff

a{b´1 that balances the excess test error of GD and the fluctuation error, we obtain a rate of
rΘpN p1´bq{bq. This matches the bound for one-pass SGD in Lin et al. (2024) (up to logarithmic
factors) when a ă b ă a ` 1.

4 Experiments

We also perform simulations to validate our theoretical findings. Namely, we train M -dimensional
sketched linear predictors (1) via one-pass SGD and multi-pass SGD following the setup in Sec-
tion 2 and 3, and analyze how their excess test errors scale with the number of samples N and the
model size M . In each simulation, we generate N i.i.d. samples pxi, yiq

N
i“1 from a linear model

yi “ xxi,w
˚y ` ϵi, where w˚ P Rd is an unknown parameter vector and ϵi „ N p0, σ2q are i.i.d.

Gaussian noise. The covariates xi are drawn from N p0,Hq, and the true parameter vector w˚

is sampled from a Gaussian prior N p0,Hwq, where H :“ diagt1, 2´a, . . . , d´au{
řd

i“1 i
´a and

Hw :“ diagt1, 2a´b, . . . , da´bu for some a, b ą 1. We set the dimension d to be sufficiently large
relative to M so that Assumption 1C and 1D are approximately satisfied. For simplicity, we imple-
ment multi-pass SGD by reusing samples sequentially without replacement in each epoch, rather than
sampling i.i.d. from the empirical distribution. In all experiments, we set d “ 10000, σ2 “ 1 and
pa, bq “ p2, 1.5q.

Figure 1(a) compares the excess test error of one-pass SGD and multi-pass SGD with the number
of steps L ≂ Na{b´1. We observe that multi-pass SGD achieves better scaling in the sample
size N compared to one-pass SGD when N is relatively small (i.e., N ! M b). Moreover, the
fitted exponents are close to the theoretical predictions in Corollary 3.3 (i.e., 1´b

a “ ´0.25 and
1´b
b “ ´0.33). Similar results hold for the average of the iterates of constant-stepsize SGD, as

shown in Figure 1(b). On the other hand, when N " M b, Figure 1(c) shows that one-pass SGD
and multi-pass SGD achieve the same scaling in the model size M with the exponent k « 1 ´ b,
consistent with Corollary 3.3. In addition, Figure 1(d) illustrates that multi-pass SGD achieves the
same excess test error as one-pass SGD on fresh data when the number of passes is below a certain
threshold. Overall, the empirical observations align closely with our theoretical predictions.
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Figure 1: Multi-pass SGD versus one-pass SGD. In (a)—(c), multi-pass SGD is ran for L ≂ Na{b

steps. (a), (b), (d): SGD with geometrically decaying stepsizes; (c): SGD with constant stepsizes.
We use linear functions to fit the excess test error in log-log scale. The fitted exponents (k) are close
to the theoretical predictions in Corollary 3.3. The errorbars denote the ˘1 standard deviation of
the expected excess test error over 100 i.i.d. samples of pS,w˚q. Parameters: σ2 “ 1, d “ 10000,
pa, bq “ p2, 1.5q. (a), (b), (d): M “ 1000; (c): N “ 105.
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5 Proof Overview

We provide an overview of the proof of Theorem 3.1 in this section. A full proof can be found
in Appendix A.2.1. Let v˚ “ pSHSJq´1SHw˚ and adopt the shorthand notations

Σ :“ SHSJ, pΣ :“
SXJXSJ

N
.

It can be verified by some basic algebra that

ERM pvLq “ E
”

`

xx,SJvLy ´ y
˘2
ı

“ σ2
loomoon

Irreducible

`E }SJv˚ ´ w˚}2H
loooooooomoooooooon

Approx

`E }θL ´ v˚}2Σ
loooooomoooooon

Excess

`E }vL ´ θL}2Σ
loooooomoooooon

Fluc

,

where the expectations on the R.H.S. are over w˚, pxi, yiq
N
i“1 and pitq

L
t“1, and we recall vL

in (multi-pass SGD) and θL in (GD). From the above decomposition, we immediately have

1. Irreducible “ Rpw˚q “ σ2.

2. Ew˚ rApproxs “ Ew˚ }SJv˚ ´ w˚}2H ≂ M1´b with probability at least 1 ´ e´ΩpMq over S by
Lemma C.5 in Lin et al. (2024) (see also Lemma E.7).

The excess risk of (GD) can be further decomposed into the sum of bias and variance, namely,

ErExcesss “ Bias ` σ2Var,

where

Bias :“ E
›

›

›

L
ź

t“1

´

I ´ γt pΣ
¯

v˚
›

›

›

2

Σ
, Var :“ ErtrpXSJVppΣqΣVppΣqSXJqs

with VppΣq :“ 1
N rI ´

śL
t“1pI ´ γt pΣqs{pΣ. The bounds on the bias (Bias) and variance (Var) then

follow immediately from Lemma B.3 and C.2, respectively. Lastly, the bounds on the fluctuation
error follow from Lemma D.5.

The main technical difficulty of proving Theorem 3.1 lies in bounding the bias, variance, and
fluctuation error terms. For bias and variance upper bounds, due to the non-commutativity of the
population covariance Σ and the empirical covariance pΣ, we apply a covariance replacement trick
(Lemma E.1; see also Lemma 7 in Pillaud-Vivien et al. (2018)) to replace the population covariance
with the empirical covariance in the expressions of bias and variance, as well as concentration
properties of sub-Gaussian covariance to simplify their expressions. For the lower bounds, we show
that a specific function of the empirical covariance commutes with the population covariance in
expectation, and apply Von Neumann’s trace inequality.

For the fluctuation error, we follow the standard practice as in Pillaud-Vivien et al. (2018) and Aguech
et al. (2000) to express the difference between the multi-pass SGD and GD trajectories, vt ´ θt as
a stochastic process (Eq. (18)). We then bound the fluctuation error Er}Σ1{2pvL ´ θLq}2s through
controlling the accumulated error of the stochastic process using Lemma D.2 and D.3, which involves
a novel leave-one-out argument to control the model parameters. Although several upper bounds on
the fluctuation error have been established for infinite-dimensional linear models (Pillaud-Vivien et al.,
2018; Zou et al., 2022), the interaction between the sketching matrix S and the samples pxi, yiq

N
i“1

in our setup introduces additional technical challenges (Lin et al., 2024). Moreover, we derive a
novel lower bound on the fluctuation error that matches the upper bound up to a logarithmic factor in
certain regimes by carefully controlling the accumulated variance from random sampling (i.e. the
accumulated variance induced by the random indices pitq

L
t“1).

6 Related Works

Empirical scaling laws. Scaling laws have been extensively studied in recent years as a way
to understand and predict how model performance improves with increasing model size and data
size (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan et al., 2020; Henighan et al., 2020;
Hoffmann et al., 2022; Zhai et al., 2022; Muennighoff et al., 2023). The seminal work by Kaplan
et al. (2020) introduced the concept of neural scaling laws, demonstrating empirically that the test
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error of large transformer models decreases predictably following a power law with respect to the
model size and data size. Subsequent works refined and extended these observations by proposing
more accurate scaling formulas (Henighan et al., 2020; Hoffmann et al., 2022; Alabdulmohsin et al.,
2022; Caballero et al., 2022; Muennighoff et al., 2023) and extending them to other settings (Kumar
et al., 2024; Busbridge et al., 2025). In particular, Hoffmann et al. (2022) proposed the Chinchilla
scaling law, which advocates scaling the model and data size proportionally as compute budget
increases. Muennighoff et al. (2023) investigated the effect of data reuse and multiple training epochs,
introducing an empirically refined scaling formula that accounts for the number of training epochs.
They demonstrated that reused data can be approximately viewed as fresh data when the number of
epochs is small.

Theoretical studies of scaling laws. Although scaling laws have been observed across diverse
settings, their theoretical understanding remains relatively limited. A number of recent works have
attempted to formalize and explain the observed scaling behaviors in simplified settings (Sharma
and Kaplan, 2020; Bahri et al., 2021; Maloney et al., 2022; Hutter, 2021; Michaud et al., 2024;
Bordelon et al., 2024a; Atanasov et al., 2024; Dohmatob et al., 2024; Paquette et al., 2024; Lin et al.,
2024; Bordelon et al., 2024b; Ren et al., 2025). For example, Bahri et al. (2021) considered a linear
teacher-student model with a power-law spectrum and showed that the test error of the ordinary least
squares estimator scales following a power law in N (or M ) when the other parameter goes to infinity.
Bordelon et al. (2024a) analyzed the test error of the solution found by gradient flow in a linear
random feature model and established power-law scaling in one of N,M and T (training time) while
the other two parameters go to infinity. The results in these works are derived based on statistical
physics heuristics and characterize scaling in only one variable in the asymptotic regime. More
recently, Lin et al. (2024) analyzed the test error of the last iterate of one-pass SGD in a sketched
linear model and showed that the test error scales as Θpσ2 ` M1´b ` N p1´bq{aq under the source
condition (Assumption 1). This is the first work to establish a finite-sample joint scaling law (in M
and N ) for linear models that aligns with empirical observations (Kaplan et al., 2020; Hoffmann et al.,
2022). Similarly, Ren et al. (2025) analyzed the complexity of one-pass SGD for learning two-layer
neural networks in a teacher-student setup, and derived joint scaling laws for the test error under
power-law assumptions on the teacher network. While previous works study the scaling behavior of
the one-pass (online) SGD solutions, our work complements them by analyzing the effect of data
reuse (i.e., multi-pass SGD) in data-constrained regimes.

Risk bounds for SGD. The generalization behavior of stochastic gradient descent (SGD), particu-
larly in linear regression, has been extensively studied across both classical and high-dimensional
regimes (Polyak and Juditsky, 1992; Défossez and Bach, 2015; Dieuleveut et al., 2017; Jain et al.,
2018, 2017; Pillaud-Vivien et al., 2018; Ge et al., 2019; Dieuleveut and Bach, 2015; Berthier et al.,
2020; Zou et al., 2023, 2021, 2022; Wu et al., 2022b,c; Varre et al., 2021). For one-pass SGD, several
works have developed tight test error bounds in overparameterized linear models (Zou et al., 2023;
Wu et al., 2022a,c). For multi-pass SGD, early works (Lin and Rosasco, 2017; Pillaud-Vivien et al.,
2018; Mücke et al., 2019; Zou et al., 2022) have established test error bounds for the average of
its iterates in linear regression. Compared with prior works, our main technical contribution is to
precisely control the effect of random sketching and to refine the characterization of fluctuation error
(see Fluc in Eq. 3) in the multi-pass setting. Under comparable regimes where the approximation
error is zero, our test error bounds match those derived in Pillaud-Vivien et al. (2018), which are
minimax optimal for a specific class of linear regression problems in certain cases.

7 Conclusion

In this work, we provide a theoretical analysis of multi-pass stochastic gradient descent (multi-pass
SGD) in a sketched linear regression problem and establish refined scaling laws that characterize how
the test error scales with the model size M , sample size N , and number of optimization steps L. Our
results show that, under suitable power-law conditions on the true parameter and data distribution,
data reuse via multi-pass SGD can improve model performance when the number of samples is
limited. This offers a theoretical explanation for the empirical benefits of multiple passes in modern
large-scale training.

Our analysis has several limitations. One limitation is the assumption that the eigenvectors of the
prior and data covariance are aligned (implied by Assumption 1D). While this assumption cannot be
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fully removed without affecting the error rate, it would be interesting to investigate what alternative
rates are achieved when the eigenvectors are not aligned. Another limitation is that our lower bound
results require Gaussian design of the covariates (i.e., Assumption 1A); a next step is to extend them
to non-Gaussian design.

Beyond the limitations, many other directions remain open for future research. First, our analysis
focuses on multi-pass SGD with batch size one; it would be worthwhile to understand how the test
error scales with the batch size and to develop corresponding batch size scaling laws (see Jain et al.,
2017). Another important direction is to study how data reuse interacts with other optimization
algorithms, such as SGD with momentum or ℓ2-regularization and Adam. In addition, it is valuable
to extend our analysis to non-linear settings and classification problems, such as logistic regression,
kernel methods, and neural networks. Notably, modern large language model pretraining is based
on minimizing the cross-entropy loss for next-word prediction. Understanding the scaling behavior
in logistic regression—the simplest classification model—thus represents an important step toward
unraveling the mysteries of LLM scaling.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: A summary of our results and contributions is provided in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we have discussed the limitations of our work in the paper.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: it can be found from our theorem statements and the proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we have discussed all experimental details for reproducing the simulation
results in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: we do not release code and data for this paper at this time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we have specified all the training and test details in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: we have reported error bars for all experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: the simulations in this paper do not involve any large language models and can
be reproduced on a personal computer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the authors have reviewed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: not applicable
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: the paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: this paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminary

A.1 Comments and additional notations

Comments on Assumption 1D. Throughout the appendix (except for Appendix A.3), we assume
without loss of generality that the covariance matrix H is diagonal, with diagonal entries given by the
eigenvalues pλiqiě1 in non-increasing order. This reduction is justified by the rotational invariance of
the Gaussian sketching matrix S. Under this diagonalization, Assumption 1D can be restated more
explicitly as follows:
Assumption 2 (Source condition). Suppose H “ phijqi,jě1 is a diagonal matrix with non-increasing
diagonal entries. Assume that the true parameter w˚ satisfies:

for all i ‰ j, Erw˚
i w

˚
j s “ 0; and for all i ą 0, Erλiw

˚2
i s ≂ i´b, for some b ą 1.

Given that H is diagonal, we adopt the following notation. For integers 0 ď k˚ ď k: (allowing
k: “ 8), define

Hk˚:k: :“ diagtλk˚`1, . . . , λk: u P Rpk:
´k˚

qˆpk:
´k˚

q.

For example,
H0:k “ diagtλ1, . . . , λku, Hk:8 “ diagtλk`1, λk`2, . . . u.

Similarly, for any vector w P H, define

wk˚:k: :“ pwk˚`1, . . . ,wk: qJ P Rk:
´k˚

.

In addition, we define Sk˚:k: to be the submatrix of the sketching matrix S consisting of the k˚ `1-th
through k:-th columns.
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A.1.1 Assumptions on the stepsize

In the proofs of the general upper and lower bounds on the bias, variance, and fluctuation error, we
will require that the stepsize γ0, γ satisfy certain conditions, which are summarized in the following
assumption.
Assumption 3 (Stepsize conditions). Under the notations in Theorem 3.1 and its proof, with proba-
bility at least 1 ´ expp´ΩpMqq over the randomness of S, we have

1. γ ď mintc{ logN, c{rtrpΣqsu;

2. trpΣ2q À 1;

3.
řM

i“1
µipΣq

µipΣq`1{pLeffγq
ď N{4;

4. the initial stepsize γ0 “ mint1{r4maxi }Sxi}
2
2s, γu satisfies Ppγ0 ă γ{tq ď N´ct for all t ě 1.

We will show that Assumption 3 holds when the conditions in Theorem 3.1 are satisfied.

A.2 Proof of Theorem 3.1 and the corollaries

A.2.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Let v˚ “ pSHSJq´1SHw˚ and adopt the shorthand

Σ :“ SHSJ, pΣ :“
SXJXSJ

N
.

Also, let D :“ pxi, yiq
N
i“1 denote the set of training samples. Then we have the decomposition

ERM pvLq “ E
”

`

xx,SJvLy ´ y
˘2
ı

“ E
”

`

xx,SJvL ´ w˚y ´ ϵ
˘2
ı

“ σ2 ` E
“

xx,SJvL ´ w˚y2
‰

“ σ2 ` E
“

xx,SJpvL ´ v˚q ` SJv˚ ´ w˚y2
‰

piq
“ σ2 ` E

“

xx,SJv˚ ´ w˚y2
‰

` E
“

xx,SJpvL ´ v˚qy2
‰

piiq
“ σ2 ` E

“

xx,SJv˚ ´ w˚y2
‰

` E
“

xx,SJpθL ´ v˚qy2
‰

` E
“

xx,SJpvL ´ θLqy2
‰

“ σ2
loomoon

Irreducible

`E }SJv˚ ´ w˚}2H
loooooooomoooooooon

Approx

`E }θL ´ v˚}2Σ
loooooomoooooon

Excess

`E }vL ´ θL}2Σ
loooooomoooooon

Fluc

,

where step (i) uses the fact that ErSxxJpSJv˚ ´ w˚qs “ ErSHSJv˚ ´ SHw˚s “ 0, and step (ii)
uses the fact that ErvL|S,w˚,Ds “ θL.

Irreducible error. From the above decomposition, we have Irreducible “ Rpw˚q “ σ2.

Approximation error. We have from Lemma C.5 in Lin et al. (2024) that Ew˚Approx “

Ew˚ }SJv˚ ´ w˚}2H ≂ M1´b with probability at least 1 ´ e´ΩpMq over S.

Excess risk of (GD). Let ϵ̃i “ yi ´ xJ
i S

Jv˚ for i P rN s and write ϵ̃ “ pϵ̃1, . . . , ϵ̃N qJ. It can be
verified that, conditioned on pS,w˚q, Erϵ̃is “ 0 and ϵ̃i is independent of Sxi. Moreover,

σ2 ď σ̃2 :“ Erϵ̃2i s “ σ2 ` Ew˚ }w˚ ´ SJv˚}2H

“ σ2 ` Ew˚ rw˚JH1{2pI ´ H1{2SJpSHSJq´1SH1{2qH1{2w˚s

ď σ2 ` Ew˚ }w˚}2H À σ2.

Note that by definition of (GD), we have

θt ´ v˚ “ θt ´ v˚ ´
γt
N

SXJpXSJθt´1 ´ yq “ θt´1 ´ v˚ ´
γt
N

SXJpXSJpθt´1 ´ v˚q ´ ϵ̃q

“

´

I ´ γt pΣ
¯

pθt´1 ´ v˚q `
γt
N

¨ SXJϵ̃,
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and therefore

θL ´ v˚ “

L
ź

t“1

´

I ´ γt pΣ
¯

pθ0 ´ v˚q ` VppΣqSXJϵ̃, (4)

where

VppΣq :“
1

N

L
ÿ

t“1

γt ¨

L
ź

i“t`1

pI ´ γi pΣq “
I ´

śL
t“1pI ´ γt pΣq

N pΣ
.

As a result, the excess risk of (GD) satifies

ErExcesss “ E}θL ´ v˚}2Σ
piiiq
“ E

›

›

›

L
ź

t“1

´

I ´ γt pΣ
¯

v˚
›

›

›

2

Σ
` E}VppΣqSXJϵ̃}2Σ

≂ Bias ` σ2Var,

where Bias :“ Ew˚ rBiaspw˚qs and

Biaspw˚q :“ EX

›

›

›

L
ź

t“1

´

I ´ γt pΣ
¯

v˚
›

›

›

2

Σ
, Var :“ ErtrpXSJVppΣqΣVppΣqSXJqs,

and step (iii) follows from the fact that SXJ is independent of ϵ̃ conditioned on S. The bounds on
the bias and variance follow immediately from Lemma B.3 and C.2.

Fluctuation error. It follows from Lemma D.5 and the assumption γ ď c{ logN that

ErFlucs À γ logN ¨ rpLeffγq1{a´1 `
pLeffγq1{a

N
s

with probability at least 1 ´ e´ΩpMq over the randomness of S. The lower bound on ErFlucs also
follows from Lemma D.5.

A.2.2 Proof of Corollary 3.2

The proof follows immediately by combining parts 1–3 of Theorem 3.1, although we make a different
assumption on the initial stepsize γ0. In Theorem 3.1, we assume γ0 “ mintγ, 1{r4maxi }Sxi}

2
2su

for some γ À 1{ logN , while in Corollary 3.2, we assume γ0 “ mintγ, 1{r4 trpSXJXSJ{Nqsu

for some γ À 1. This modification is valid because Lemmas B.1, B.2, and C.1, used in the proof of
parts 1–3 of Theorem 3.1, continue to hold under the alternative choice of stepsize.

Specifically, their proofs mainly rely on three properties: (1) I ´ γtSX
JXSJ{N ľ 0, (2)

Ppγ0 ă γ{tq ď N´ct for all t ě 1 and (3) claim (15a) holds. Under the choice γ0 “

mintγ, 1{r4 trpSXJXSJ{Nqsu, the first two properties are satisfied by definition and by the Hanson–
Wright inequality (see, e.g., exercise 2.17 in Wainwright (2019)). The third property follows
from a similar symmetry property for γ0pΓq :“ mint1{r4 trpΓΓJ{Nqs, γu as used in the proof of
claim (15a).

A.2.3 Proof of Corollary 3.3 and 3.4

These two corollaries follow immediately from combining parts 1–4 of Theorem 3.1 and some basic
algebra.

A.3 Relaxation of Assumption 1

In this section, we show that some conditions in Assumption 1 can be further relaxed. Concretely, we
have

(a). The exact alignment of the eigenvectors of the prior and data covariance in Assumption 1D
is not necessary. All results in Section 3 remain valid if Assumption 1D is replaced by
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Assumption 1D’ (Approximate source condition). Let pλi,viqią0 be the eigenvalues and
eigenvectors of H and let Hw “ Erw˚w˚Js. Assume c rHw ĺ Hw ĺ c1

rHw for some
absolute constants c1 ě c ą 0 and rHw ľ 0 such that

for i ‰ j, vJ
i
rHwvj “ 0; and for i ą 0, λiv

J
i
rHwvi ≂ i´b, for some b ą 1.

(b). To establish the upper bounds for Bias,Var,Approx in Theorem 3.1 and the upper bounds
in Corollary 3.2—3.4, Assumption 1A can be relaxed to
Assumption 1A’ (sub-Gaussian design). x “ H1{2

rx, where ErrxrxJs “ I, and the vector
rx is zero-mean and 1-sub-Gaussian, i.e., Errxs “ 0 and Ereλxv,rxys ď eλ

2
{2 for any unit

vector v and all λ P R.

We provide some justification of the two relaxations below.

Justification of (a). By checking the proof of Theorem 3.1 and its corollaries, it can
be seen that Assumption 1D is used to (1) give matching upper and lower bounds on
Ew˚ r}w˚

0:k}22s,Ew˚ r}w˚
k:8}2Hk:8

s, µipSHHwHSJq for any k ě 0 and i P rM s when control-
ling the approximation and bias error (see Lemma C.5 in Lin et al. (2024) and Lemma B.3); (2)
give matching upper and lower bounds on Er}w˚}2Hs when controlling the fluctuation error (see
Lemma D.5). Under the alternative Assumption 1D’, it is readily verified that the same bounds on
these quantities can be established up to constant factors. Concretely, suppose there exists some
parameter rw˚ with prior Errw˚

rw˚Js “ rHw. Then rw˚ satisfies Assumption 1D and

Ew˚ r}w˚
0:k}22s “ trpHw

0:kq ≂ trp rHw
0:kq “ E

rw˚ r}rw˚
0:k}22s,

Ew˚ r}w˚
k:8}2Hk:8

s “ trpH
1{2
k:8Hw

k:8H
1{2
k:8q ≂ trpH

1{2
k:8

rHw
k:8H

1{2
k:8q “ E

rw˚ r}rw˚
k:8}2Hk:8

s,

µipSHHwHSJq
piq
≂ µipSH rHwHSJq,

Er}w˚}2Hs “ trpH1{2HwH1{2q ≂ trpH1{2
rHwH1{2q “ E

rw˚ r}rw˚}2Hs,

where step (i) follows from the fact that µipAq ď µipBq for all i and any 0 ĺ A ĺ B. Therefore,
the proof of Theorem 3.1 and its corollaries goes through under the alternative Assumption 1D’.

Justification of (b). In short, for the upper bounds, the relaxation can be made since the Gaussian
assumption is mainly used to establish certain concentration bounds (e.g., Bernstein’s inequality),
which also hold for sub-Gaussian vectors. More specifically, the Gaussian design in Assumption 1A’ is
used in our proof mainly in three ways: (1) to establish concentration bounds on the sample covariance
(e.g., Eq. 10); (2) to allow the use of technical lemmas in Appendix E (e.g., Lemma E.3 and E.4); (3)
to control the norm of sketched samples (e.g., to control Bν in Eq. 20).

Correspondingly, when x satisfies the alternative Assumption 1A’, we can show that (1) the same
concentration bounds hold on the sub-Gaussian sample covariance by e.g., Theorem 6.5 in Wainwright
(2019); (2) all technical lemmas in Appendix E hold when the Gaussian sketching S is replaced by a
row-wise sub-Gaussian matrix by concentration bounds on quadratic forms of sub-Gaussian vectors
(e.g., Theorem 1 in Hsu et al. (2012)), and on sub-Gaussian covariance matrices (e.g., Example 1.5
in Zhivotovskiy (2024)); (3) the norm of sketched samples satisfy the same concentration bounds by
e.g., Theorem 6.5 in Wainwright (2019).

On the other hand, for the lower bounds, the Gaussian assumption is still required in order to
establish the conditional independence of ϵ̃i “ yi ´ xJ

i S
Jv˚ and Sxi given pS,w˚q in the proof of

Theorem 3.1 and Lemma D.4.

In addition, we also conduct experiments to check our justification of (b). We generate data x “

px1, . . . , xdqJ from the distribution where xi are independent and
Ppxi “ 1q “ Ppxi “ ´1q “ i´a{c0, Ppxi “ 0q “ 1 ´ 2 ¨ Ppxi “ 1q,

with a “ 2, b “ 1.5 and c0 “ 2
řd

i“1 i
´a. Note that x satisfies Assumption 1A’ but not Assump-

tion 1A when d “ 8. We run the experiment under the same setting and choice of hyperparameters
as in Figure 1(a). Similar to the Gaussian case, in Figure 2, we observe that the excess test error
of one-pass SGD and multi-pass SGD both exhibit power-law scaling in the number of effective
samples Neff. Moreover, the fitted slopes are both close to the theoretical prediction in Corollary 3.3
(0.34 « 0.33 “ p1 ´ bq{b for multi-pass SGD and 0.26 « 0.25 “ p1 ´ bq{a for one-pass SGD).
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Figure 2: Multi-pass SGD versus one-pass SGD for non-Gaussian design. Multi-pass SGD is run
for L ≂ Na{b steps. We use linear functions to fit the excess test error in log-log scale. The fitted
exponents (k) are close to the theoretical predictions in Corollary 3.3. The errorbars denote the ˘1
standard deviation of the expected excess test error over 100 i.i.d. samples of pS,w˚q. Parameters:
σ2 “ 1, d “ 10000, M “ 1000, γ “ 0.1.

B Bias error

B.1 An upper bound

Lemma B.1 (An upper bound on the GD bias term). Suppose Leff À Na{γ and Assumption 1A and 3
hold. Under the notation in Theorem 3.1 and its proof, for any w˚ P H and k ď M{3 such that
rpHq ě k ` M , the bias term

Biaspw˚q “ EX

›

›

›

L
ź

t“1

´

I ´ γt pΣ
¯

v˚
›

›

›

2

Σ

ď
c}w˚

0:k}22

Leffγ
¨

«

µM{2pAkq

µM pAkq

ff2

` BB ¨ }w˚
k:8}2Hk:8

with probability at least 1 ´ e´ΩpMq over the randomness of S, where Ak “ Sk:8Hk:8Sk:8 and

BB :“ c

˜

1 ` rpLeffγq2 ` 1s

´ tr2pΣk̃:8q

N2
` }Σk̃:8}22 `

trpΣ2
k̃:8

q

N
`

d

trpΣ4
k̃:8

q

N

¯

¸

for some constant c ą 0 and k̃ “ tN{2u.3

Proof of Lemma B.1. Without loss of generality, we assume the covariance matrix H “

diagtλ1, λ2, . . . , λdu where λi ě λj for any i ě j. Let pλ̃1, λ̃2, . . . , λ̃M q denote the eigenval-

ues of Σ in non-increasing order. Moreover, we introduce z1, . . . zN
iid
„ N p0, IM{Nq and write

Z “ pz1, . . . , zN qJ. It can be verified that XSJ{
?
N

d
“ ZΣ1{2 conditioned on S. Throughout

the proof, by a union bound argument, we w.l.o.g. assume the conditions (1), (2), (3) and (4) in
Assumption 3 always hold.

Define M :“
śL

t“1pI´γt pΣqΣ
śL

t“1pI´γt pΣq and recall that v˚ “
`

SHSJ
˘´1

SHw˚. Substituting

SH “ pS0:kH0:k Sk:8Hk:8q

into v˚, we have

Biaspw˚q “ EXrv˚JMv˚s

“ EXrw˚J
HSJpSHSJq´1MpSHSJq´1SHw˚s

ď 2T1 ` 2T2,

3If k̃ ą M then Σk̃:8 :“ 0.
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where

T1 :“ EXrpw˚
0:kqJH0:kS

J
0:kpSHSJq´1MpSHSJq´1S0:kH0:kw

˚
0:ks, (5)

T2 :“ EXrpw˚
k:8qJHk:8SJ

k:8pSHSJq´1MpSHSJq´1Sk:8Hk:8w˚
k:8s. (6)

We will show the following results at the end of the proof. First, with probability 1 ´ e´ΩpMq

T1 ď
c}w˚

0:k}22

Leffγ
¨

«

µM{2pAkq

µM pAkq

ff2

(7a)

for some constant c ą 0. Moreover,

T2 ď BB ¨ }w˚
k:8}2Hk:8

. (7b)

Combining Eq. (7a) and (7b) gives Lemma B.1.

Proof of claim (7a). By definition of T1, we have

T1 ď }H0:kS
J
0:kpSHSJq´1MpSHSJq´1S0:kH0:k}2 ¨ }w˚

0:k}22

ď }M}2 ¨ }pSHSJq´1S0:kH0:k}22 ¨ }w˚
0:k}22.

for some constant c ą 0. By Eq. (23) in the proof of Lemma D.1 in Lin et al. (2024), we have

}pSHSJq´1S0:kH0:k}2 ď c ¨
µM{2pAkq

µM pAkq
(8)

for some constant c ą 0 with probability at least 1 ´ e´ΩpMq. Thus, it remains to show

EXr}M}2s ď
c

Leffγ
(9)

for some constant c ą 0.

Let λ ą 0 be a fixed value to be specified later. Note that

}M}2 “

›

›

›

L
ź

t“1

pI ´ γt pΣqΣ1{2
›

›

›

2

2
“

›

›

›

L
ź

t“1

pI ´ γt pΣqppΣ ` λIM q1{2ppΣ ` λIM q´1{2Σ1{2
›

›

›

2

2

ď

›

›

›

L
ź

t“1

pI ´ γt pΣqppΣ ` λIM q1{2
›

›

›

2

2
¨ }ppΣ ` λIM q´1{2Σ1{2}22

piq
ď

´
›

›

›

L
ź

t“1

pI ´ γt pΣq2 pΣ
›

›

›

2
` λ

¯

¨ }ppΣ ` λIM q´1{2Σ1{2}22

piiq
ď

´ c

Leffγ0
` λ

¯

¨ }ppΣ ` λIM q´1{2Σ1{2}22,

where step (i) uses the fact that }I ´ γt pΣ}2 ď 1 by the stepsize assumption and step (ii) follows from
the stepsize assumption (2) that γt “ γ0 for t P rLeffs, combined with the fact that supxPr0,1{γ0s xp1´

γ0xq2Leff ď c{pγ0Leffq for some constant c ą 0.

Recall that we assume Ppγ0 ă γ{tq ď N´ct for some constant c ą 0 and all t ě 1. Thus, Eq. (9)
follows immediately from choosing λ “ 1{pLeffγq in the last display, applying Cauchy-Schwartz
inequality and Lemma E.1, and noting that p1 ` Leff

2γ2 expp´cNqq À 1 for Leff À Na{γ.

Proof of claim (7b). Let B “ EX

”

Σ´1{2
śL

t“1pI´γt pΣqΣ
śL

t“1pI´γt pΣqΣ´1{2
ı

. By definition
of T2 in Eq. (6), we have

T2 “ w˚
k:8

J
Hk:8SJ

k:8Σ´1{2BΣ´1{2Sk:8Hk:8w˚
k:8

ď }B}2 ¨ }H
1{2
k:8SJ

k:8Σ´1Sk:8H
1{2
k:8} ¨ }w˚

k:8}2Hk:8
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ď }B}2 ¨ }w˚
k:8}2Hk:8

,

where the last line follows since

}H
1{2
k:8SJ

k:8Σ´1Sk:8H
1{2
k:8}2 “ }H

1{2
k:8SJ

k:8pS0:kH0:kS
J
0:k ` Sk:8Hk:8SJ

k:8q´1Sk:8H
1{2
k:8}2

ď }H
1{2
k:8SJ

k:8A´1
k Sk:8H

1{2
k:8}2 ď 1.

In the following, we will show that }B}2 ď BB, which immediately yields claim (7b).

Let Σ “ XSJSXJ{N . To compute }B}2, note that

L
ź

t“1

pI ´ γt pΣq “

L´1
ź

t“1

pI ´ γt pΣq ´ γL pΣ
L´1
ź

t“1

pI ´ γt pΣq

piiiq
“

L´1
ź

t“1

pI ´ γt pΣq ´
1

N
SXJ

”

γL

L´1
ź

t“1

pI ´ γtΣq

ı

XSJ

“ I ´
1

N
SXJ

”

L´1
ÿ

i“0

γi`1

i
ź

t“1

pI ´ γtΣq

ı

XSJ “: I ´ C,

where step (iii) uses XSJpI´γL pΣq “ pI´γLΣqXSJ. Recall that XSJ{
?
N

d
“ ZΣ1{2 conditioned

on S, we can thus rewrite

B “ EZrΣ´1{2pI ´ CqΣpI ´ CqΣ´1{2s ĺ 2I ` 2ErΣ´1{2CΣCΣ´1{2s

“ 2I ` 2EZ

”

ZJ
”

L´1
ÿ

i“0

γi`1

i
ź

t“1

pI ´ γtΣq

ı

ZΣ2ZJ
”

L´1
ÿ

i“0

γi`1

i
ź

t“1

pI ´ γtΣq

ı

Z
ı

, where Σ “ ZΣZJ.

Introduce the shorthand R1 “
řL´1

i“0 γi`1

śi
t“1pI ´ γtΣq and R1pkq :“ pI ´ pI ´

γkLeff`1ΣqLeffq{Σ for k P r0, tlogLeffu ´ 1s. Note that }R1pkq}2 ď Leff ¨ γkLeff`1 since
supxPr0,1{γkLeff`1srp1 ´ p1 ´ γkLeff`1xqLeffq{xs “ Leff ¨ γkLeff`1. Therefore

}R1}2 “

›

›

›

L´1
ÿ

i“0

γi`1

i
ź

t“1

pI ´ γtΣq

›

›

›

2
ď

›

›

›

tlogLeffu´1
ÿ

k“0

R1pkq

›

›

›

2
ď

tlogLeffu´1
ÿ

k“0

Leff ¨ γkLeff`1 ď 2Leffγ,

where the last inequality follows from (2) and the definition of γ0.

We consider two cases.

Case 1: M ď N{2. In this case, we have

ZΣ2ZJ ĺ 5 ¨ pZΣZJq2 (10)

with probability at least 1 ´ e´ΩpNq since PpZJZ ľ IM{5q ě 1 ´ e´ΩpNq by concentration
of Guassian covariance matrix (see e.g. Theorem 6.1 in Wainwright (2019)). Moreover, since
trpΣ2q À 1,

ZJR1ZΣ
2ZJR1Z ĺ c ¨ ZJR1ZZ

JR1Z ĺ c}ZJR1Z}22 ¨ IM

ĺ cpLeffγq2}ZJZ}22 ¨ IM .

Therefore,

EZrZJR1ZΣ
2ZJR1Zs ĺ cEZrZJR1Σ

2
R1Zs ` cErpLeffγq2}ZJZ}221tZJZńIM {5us ¨ IM (11)

ĺ cEZrZJZs ` cpLeffγq2 expp´c1Nq ¨ IM ĺ cIM

for some constant c, c1 ą 0, where the second line uses the fact that }R1Σ}2 “

}I ´
śL

t“1pI ´ γtΣq}2 ď 1, concentration properties of the empirical covariance matrix
ZJZ, and EZrZJZs “ IM . As a result, }B}2 ď 2 ` 2}EZrZJR1ZΣ

2ZJR1Zs}2 À 1.

26



Case2: M ą N{2. Let k̃ “ N{2. W.l.o.g., we assume Σ is a diagonal matrix with eigenvalues
λ̃1, . . . , λ̃M in non-increasing order. With probability at least 1´e´ΩpNq, we have the decomposition

ZJR1ZΣ
2ZJR1Z ĺ 2ZJR1pZ0:k̃Σ

2
0:k̃

ZJ

0:k̃
qR1Z ` 2ZJR1pZk̃:8Σ2

k̃:8
ZJ

k̃:8
qR1Z

ĺ cZJR1pZ0:k̃Σ0:k̃Z
J

0:k̃
q2R1Z ` 2ZJR1pZk̃:8Σ2

k̃:8
ZJ

k̃:8
qR1Z

ĺ cp}R1pZ0:k̃Σ0:k̃Z
J

0:k̃
q}22 ` }Zk̃:8Σ2

k̃:8
ZJ

k̃:8
}2qZJZ

ĺ cp}R1pZk̃:8Σk̃:8ZJ

k̃:8
q}22 ` }R1Σ}22 ` }Zk̃:8Σ2

k̃:8
ZJ

k̃:8
}2qZJZ,

where the second line use ZJ

0:k̃
Z0:k̃ ľ Ik{5 with probability at least 1 ´ e´ΩpNq, the last line follows

from a triangle inequality. Since }R1}2 ď Leffγ and }R1Σ}2 “ }I ´
śL

t“1pI ´ γtΣq}2 ď 1,
continuing the calculation, we obtain

ZJR1ZΣ
2ZJR1Z ĺ c

`

pLeffγq2}Zk̃:8Σk̃:8ZJ

k̃:8
}22 ` 1 ` }Zk̃:8Σ2

k̃:8
ZJ

k̃:8
}2
˘

ZJZ. (12)

Since we have by Lemma E.3 that

}Zk̃:8Σk̃:8ZJ

k̃:8
}2 ď c

˜

trpΣk̃:8q

N
` }Σk̃:8}2 `

d

trpΣ2
k̃:8

q

N

¸

` c

˜

}Σk̃:8}2

N
log

1

δ
`

b

trpΣ2
k̃:8

q logp1{δq

N

¸

(13)

with probability at least 1´δ, and trpΣ2
k̃:8

q ď trpΣ2q À 1, it can be verified by a standard truncation
argument that

Er}Zk̃:8Σk̃:8ZJ

k̃:8
}22 ¨ ZJZs ĺ c

˜

tr2pΣk̃:8q

N2
` }Σk̃:8}22 `

trpΣ2
k̃:8

q

N

¸

¨ IM .

A similar bound can be established for Er}Zk̃:8Σ2
k̃:8

ZJ

k̃:8
}2s. Finally, substituting the bounds on

the expectations into Eq. (12), we obtain

}B}2 ď 2 ` 2}ErZJR1ZΣ
2ZJR1Zs}2

ď c

˜

1 ` rpLeffγq2 ` 1s

´ tr2pΣk̃:8q

N2
` }Σk̃:8}22 `

trpΣ2
k̃:8

q

N
`

d

trpΣ4
k̃:8

q

N

¯

¸

.

B.2 A lower bound

Lemma B.2 (A lower bound on the GD bias term). Let Assumption 1A and 3 hold. Define Hw :“
Erw˚w˚Js and Σw :“ SHHwHSJ. Under the notation in Theorem 3.1 and its proof, the bias
term satisfies

Ew˚ rBiaspw˚qs “ Ew˚E
›

›

›

L
ź

t“1

´

I ´ γt pΣ
¯

v˚
›

›

›

2

Σ

Á

M
ÿ

i“2t`1

µ3ipΣwq

µipΣq

with probability at least 1 ´ e´ΩpMq, where t :“ EXr#ti P rM s : pλiLeffγ0 ą 1{4us and ppλiq
M
i“1

are the eigenvalues of pΣ.

Proof of Lemma B.2. Similar to the proof of Lemma B.1, w.l.o.g., we assume the covariance matrix
H “ diagtλ1, λ2, . . . , λdu where λi ě λj for any i ě j. Let pλ̃1, λ̃2, . . . , λ̃M q denote the eigen-

values of Σ in non-increasing order. Moreover, we introduce z1, . . . zN
iid
„ N p0, IM{Nq and write

Z “ pz1, . . . , zN qJ. It can be shown that XSJ{
?
N

d
“ ZΣ1{2 conditioned on S.
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Let CL :“
śL

t“1pI ´ γt pΣq. By definition,

Biaspw˚q “ EX

›

›

›

›

L
ź

t“1

`

I ´ γt pΣ
˘

v˚

›

›

›

›

2

Σ

“ v˚JEXrCLΣCLsv˚. (14)

Adopt the shorthand Σw for SHHwHSJ. Substituting the definition of v˚ into the expression and
noting that Erw˚w˚Js “ Hw, we have

Ew˚ rBiaspw˚qs “ Ew˚ rv˚JEXrCLΣCLsv˚s

“ trpHSJpSHSJq´1EXrCLΣCLspSHSJq´1SHHwq

piq
ě trpHSJpSHSJq´1EXrCLsΣEXrCJ

LspSHSJq´1SHHwq

“ EXrtrpΣ´1{2EXrCLsΣEXrCJ
LsΣ´1{2Σ´1{2ΣwΣ´1{2qs,

where step (i) uses the fact that ErYsErYJs ĺ ErYYJs for any random matrix Y. We claim that

Σ´1{2EXrCLsΣ1{2 “ EXrCLs, and (15a)

µM´i`1pEXrCLsq ě
1

2e
(15b)

for all i P r2t ` 1,M s, where t :“ EXr#ti P rM s : pλiLγ0 ą 1{4us.

The proof of these two claims will be given momentarily. Continuing the calculation using the claims
and Von Neumann’s trace inequality, we obtain

Ew˚Biaspw˚q ě EXrtrpEXrCLs2Σ´1{2ΣwΣ´1{2qs

ě

M
ÿ

i“1

µ2
M´i`1pEXrCLsq ¨ µipΣ

´1{2ΣwΣ´1{2q

ě

M
ÿ

i“2t`1

µ2
M´i`1pEXrCLsq ¨ µipΣ

´1{2ΣwΣ´1{2q Á

M
ÿ

i“2t`1

µipΣ
´1{2ΣwΣ´1{2q.

Since µi`j`1pXY q ď µi`1pXqµj`1pY q for all i, j and any matrices X,Y of matching dimensions,
we have

µipΣ
´1{2ΣwΣ´1{2q ě

µ2i´1pΣwΣ´1{2q

µipΣ1{2q
ě

µ3i´2pΣwq

µ2
i pΣ1{2q

ě
µ3ipΣwq

µipΣq
.

Combining the last two displays yields the desired result.

Proof of claim (15a). Define the learning rate γ0pΓq “ mint1{r4maxj }Γ¨,j}22s, γu for any matrix
Γ P RMˆN and define γtpΓq for all t P rLs according to (2). Let Σ “ UΓ̃UJ be the singular
value decomposition with UUJ “ IM and Γ̃ “ diagtλ̃1, . . . , λ̃Mu being a diagonal matrix with
λ̃1 ě λ̃2 ě . . . λ̃M ě 0. Note that SXJ{

?
N

d
“ UΓ̃1{2ZJ conditioned on S and UJ

pΣU
d
“

Γ̃1{2ZJZΓ̃1{2. Therefore

EXrCLs “ EX

“

L
ź

t“1

pI ´ γtpSX
JqpΣq

‰

“ UEX

“

L
ź

t“1

pI ´ γtp
?
NUΓ̃1{2ZJqUJ

pΣUq
‰

UJ

“ UEZ

“

L
ź

t“1

pI ´ γtp
?
N Γ̃1{2ZJqΓ̃1{2ZJZΓ̃1{2q

‰

UJ.

Adopt the shorthand notation U “ ZΓ̃1{2 and write U “ pµ1, . . . ,µN qJ. It suffices to show (note
that γk is equal to γ0 up to some k-dependent constant factor)

M :“ EZrγ0p
?
NUJ

qK ¨ pUJUqKs

is a diagonal matrix for any K ě 0. Consider the kl-entry Mkl. It can be written as the sum of terms
of the form µi1,j1µi2,j2 ¨ ¨ ¨µi2K ,j2K with j1 “ k, j2K “ l, j2m “ j2m`1,m P rK ´1s. When k ‰ l,
there exists some i P rN s such that µi,k appears odd number of times in the product. Since flipping
the sign of µi,k does not change γ0p

?
NUJ

q, and µi,j are independent symmetric Gaussian variables,
it follows that EZrγ0p

?
NUJ

qKµi1,j1µi2,j2 ¨ ¨ ¨µi2K ,j2K s “ 0. Consequently, we conclude that
Mkl “ 0 for k ‰ l and M is a diagonal matrix.
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Proof of claim (7b). Let pΣ “ pUpΓpUJ be the singular value decomposition with pΓ “

diagtpλ1, . . . , pλMu and pλ1 ě . . . ě pλM . Then we have

L
ź

t“1

pI ´ γt pΣq ľ pI ´ 2γ0 pΣqLeff “ pUpI ´ 2γ0pΓqLeff
pUJ ľ

pIM ´ pU0:t
pUJ

0:tq

e
,

where t̃ :“ #ti P rM s : pλiLeffγ0 ą 1{4u. Here, the first inequality follows from
śtlogLeffu´1

k“0 pI ´

γkLeff`1
pΣq ľ I ´ 2γ0 pΣ since p1 ´ t1qp1 ´ t2q ě 1 ´ t1 ´ t2 for all t1, t2 P r0, 1s; the second

inequality uses p1 ´ xqLeff ě expp´2Leffxq ě e´1 for x P r0, 1{p2Leffqs. Therefore,

EXrCLs “ EXpI ´ γ0 pΣqL ľ
1

e
IM ´

1

e
ErpU0:t

pUJ
0:ts.

Since trpErpU0:t
pUJ

0:tsq “ Ert̃s “ t, it follows that ErpU0:t
pUJ

0:ts has at most 2Ert̃s eigenvalues greater
than 1{2. Since X ľ Y ľ 0M implies µipXq ě µipY q for all i P rM s, X, Y P RMˆM by Weyl’s
inequality, it follows that

µM´i`1pEXrCLsq ě
1

2e

for all i ě 2EXr#ti P rM s : pλiLγ0 ą 1{4us ` 1.

B.3 Bias error under the source condition

Lemma B.3 (Bias bounds under the source condition). Let Assumption 1 hold, a ą b´1, and assume
Leff À Na{γ. Under the notation in Theorem 3.1 and its proof, there exist some pa, bq-dependent
constants c, c1 ą 0 such that when γ ď c{ logN ,

Ew˚ rBiaspw˚qs À maxtpLeffγqp1´bq{a,M1´bu,

Ew˚ rBiaspw˚qs Á pLeffγqp1´bq{a when pLeffγq1{a ď M{c1.

with probability at least 1 ´ expp´ΩpMqq over the randomness of S.

Proof of Lemma B.3. The proof follows from applying Lemma B.1 and Lemma B.2 under Assump-
tion 1. We begin by verifying the conditions required in these two lemmas.

Verification of conditions (1)–(4) in Assumption 3. First, by Lemma E.5, we have µjpΣq ≂ j´a

with probability at least 1 ´ expp´ΩpMqq over the randomness of S. Since a ą 1, it follows that
γ À 1 À mint1, c{ trpΣqu and trpΣ2q À 1. Thus, conditions (1) and (2) in Assumption 3 are
satisfied. Moreover, when L À Na, we have

M
ÿ

i“1

µipΣq

µipΣq ` 1{pLeffγq

ď #ti P rM s : µipΣq ě 1{pLeffγqu ` pLeffγq ¨
ÿ

i:µipΣqă1{pLeffγq

µipΣq

À pLeffγq1{a ` pLeffγq ¨
ÿ

i:iÁpLeffγq1{a

µipΣq À pLeffγq1{a ` pLeffγq ¨
ÿ

i:iÁpLeffγq1{a

i´a

À pLeffγq1{a ď N{4,

where the last inequality follows since we may assume Leff ď c̃Na{γ for some constant c̃ ą 0
sufficiently small. Thus, condition (3) in Assumption 3 is satisfied.

To verify condition (4) in Assumption 3, we introduce z1, . . . zN
iid
„ N p0, IM{Nq and write Z “

pz1, . . . , zN qJ. It can be shown that XSJ{
?
N

d
“ ZΣ1{2 conditioned on S. Therefore, we have

trppΣq
d
“ trpZΣZJq, where Z P RNˆM is a Gaussian sketching matrix. When µipΣq ≂ i´a for all
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i P rM s (which happens with probability at least 1 ´ expp´ΩpMqq over S by Lemma E.5), we have
by Hansen-Wright inequality (see e.g., exercise 2.17 in Wainwright (2019)) and a union bound that

N max
iPrNs

Zi,¨ΣZJ
i,¨ À trpΣq ` }Σ}2 ¨ logpN{δq ` }Σ}F ¨

a

logpN{δq À 1 ` logpN{δq.

with probability at least 1´δ over the randomness of sZ. Thus, there exist some a-dependent constants
c, c1 ą 0 such that when γ ď c{ logN ,

Ppγ0 ă γ{tq “ Ppt{p4γq ă max
i

}Sxi}
2
2q “ Ppt{p4γq ă N max

i
Zi,¨ΣZJ

i,¨q ď N´c1t

for all t ě 1. Therefore, condition (4) is also satisfied.

The upper bound. By Lemma E.5, we have BB in Lemma B.1 satisfies

BB ď c ¨
`

1 ` Leff
2

¨ pN´2a ` N´2a ` N´2a ` N´2aq
˘

ď c ¨ p1 ` N2a´2aq À 1

with probability at least 1 ´ expp´ΩpMqq, where the second inequality uses Leff À Na. Moreover,
we have by Lemma E.6 that µM{2pAkq

µM pAkq
À 1 with probability at least 1 ´ expp´ΩpMqq.

Now, choosing k “ mintM{3, pLeffγq1{au in Lemma B.1, using Assumption 1D, and taking
expectation over w˚ yields

Ew˚ rBiaspw˚qs À
maxtka´b`1, 1u

Leffγ
` k1´b À maxtpLeffγqp1´bq{a,M1´bu

with probability at least 1 ´ expp´ΩpMqq over the randomness of S.

The lower bound. By Lemma B.2, we have

Ew˚Biaspw˚q Á

M
ÿ

i“2t`1

µ3ipΣwq

µipΣq
,

with probability at least 1 ´ e´ΩpMq, where t “ EXr#ti P rM s : pλiLeffγ0 ą 1{4us and tpλi, i P

rM su are the eigenvalues of pΣ. Since pΣ
d
“ ZΣZJ conditioned on S by Lemma E.3, when µipΣq ≂

i´a for all i P rM s (which happens with probability at least 1´expp´ΩpMqq over S by Lemma E.5),
we have by combining Lemma E.4 and E.3 with k “ N{c that

pλ2j´1
d
“ µ2j´1pZΣZJq

ď µjpZ0:kΣ0:kZ
J
0:kq ` µjpZk:8Σk:8ZJ

k:8q

À

´

1 `

c

k ` logp1{δq

N

¯

¨ µjpΣq `

´

N´a `
N ` logp1{δq

Na`1
`

a

N2´2a ` N1´2a logp1{δq

N

¯

À

´

1 `

c

logp1{δq

N

¯

¨ j´a ` N´a
´

1 `
logp1{δq

N
`

c

logp1{δq

N

¯

(16)

for all j ď k with probability at least 1 ´ δ over the randomness of Z. Therefore, it can be verified
by a standard truncation argument that

t “ EXr#ti P rM s : pλiLeffγ0 ą 1{4us À pLeffγq1{a.

Thus, when pLeffγ0q1{a ď M{c for some sufficiently large constant c ą 0, we have

Ew˚Biaspw˚q Á

M
ÿ

i“2t`1

µ3ipΣwq

µipΣq
Á

M
ÿ

i“c1pLeffγq1{a

µ3ipΣwq

µipΣq
Á

M
ÿ

i“c1pLeffγq1{a

i´a´b

i´a
Á pLeffγqp1´bq{a

with probability at least 1 ´ expp´ΩpMqq over the randomness of S, where the third inequality uses
Lemma E.5 (with H replaced by HHwH).
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C Variance error

C.1 Upper and lower bounds

Lemma C.1 (An upper bound on the GD variance term). Suppose Assumption 1A and 3 hold and
Leff À Na{γ. Under the notation in Theorem 3.1 and its proof, the variance term

Var :“ ErtrpXSJVppΣqΣVppΣqSXJqs À
DU

N
, and Var Á

DL

N
,

where

DU :“ EX

”

#ti P rM s : pλiLeffγ0 ą 1{4u ` pLeffγ0q
ÿ

i:pλiLeffγ0ď1{4

pλi

ı

,

DL :“ EX

«

pLeffγ0q2 ¨
ÿ

i:pλiLeffγ0ď1{4

µipΣq ¨ µippΣq `
1

5
¨

ÿ

i:pλiLeffγ0ą1{4

µipΣq

µippΣq

ff

,

and ppλiq
M
i“1 are the eigenvalues of pΣ.

Proof of Lemma C.1. Note that

VppΣq “
1

N

L
ÿ

t“1

γt ¨

L
ź

i“t`1

pI ´ γi pΣq “
pI ´

śL
t“1pI ´ γt pΣqqpΣ´1

N
.

Adopt the shorthand VL for I ´
śL

t“1pI ´ γt pΣq. Reorganizing the terms, we have

Var “ N ¨ ErtrpVppΣqΣVppΣqpΣqs “
1

N
¨ EXrtrpΣVL

pΣ´1VLqs.

Let pλ1, . . . , pλM be the eigenvalues of pΣ in non-increasing order, and let λ ą 0 be some value which
will be given later. We now derive an upper bound and a lower bound for the variance Var.

An upper bound. Continuing the calculation, we further have

trpΣVL
pΣ´1VLq “ trpVL

pΣ´1{2ppΣ ` λIq1{2rppΣ ` λIq´1{2ΣppΣ ` λIq´1{2sppΣ ` λIq1{2
pΣ´1{2VLq

ď }Σ1{2ppΣ ` λIq´1{2}22 ¨ rtrpV2
L ` λpΣ´1V2

Lqs.

Similar to the proof of claim (7b) in Lemma B.2, it can be verified that VL ĺ I ´ pI ´ 2γ0 pΣqLeff

under the condition γ0 ď 1{r4maxi }Sxi}
2
2s ď 1{r4 trppΣqs and stepsize assumption (2). Since

p1 ´ p1 ´ γ0xqLeffq2 ď mintpxLeffγ0q2, 1u for x P r0, 1{p2γ0qs by Bernoulli’s inequality and
supr0,1{γ0srp1 ´ p1 ´ γ0xqLeffq{xs “ Leffγ0, it follows that

trpV2
L ` λpΣ´1V2

Lq ď

M
ÿ

i“1

”

pp1 ´ p1 ´ 2γ0pλiq
Leffq2 `

λp1 ´ p1 ´ 2γ0pλiq
Leffq2

pλi

ı

À

M
ÿ

i“1

”

p1 ` λLeffγ0q ¨ 1
tpλiLeffγ0ą1{4u

` pλLeffγ0ppλiLeffγ0q ` ppλiLeffγ0q2q ¨ 1
tpλiLeffγ0ď1{4u

ı

.

Choosing λ “ 1{pLeffγq ď 1{pLeffγ0q yields

trpV2
L ` λpΣ´1V2

Lq

À #ti P rM s : pλiLeffγ0 ą 1{4u ` pLeffγ0q2
ÿ

i:pλiLeffγ0ď1{4

pλ2
i ` pLeffγ0q

ÿ

i:pλiLeffγ0ď1{4

pλi “: rDU

À #ti P rM s : pλiLeffγ0 ą 1{4u ` pLeffγ0q
ÿ

i:pλiLeffγ0ď1{4

pλi “: rDU (17)
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Applying Lemma E.1 and noting that trpV2
L ` λpΣ´1V2

Lq À N as VL has at most N non-zero
eigenvalues, we obtain

EXrtrpΣVL
pΣ´1VLqs À EX

”

#ti P rM s : pλiLeffγ0 ą 1{4u ` pLeffγ0q
ÿ

i:pλiLeffγ0ď1{4

pλi

ı

.

A lower bound. Similarly, by Von-Neumann’s trace inequality, we have

trpΣVL
pΣ´1VLq ě

M
ÿ

i“1

µipΣqµM´i`1pV2
L
pΣ´1q

piq
ě

M
ÿ

i“1

µipΣq
µ2pM´iq`1pV2

L
pΣ´2q

µM´i`1ppΣ´1q

piiq
“

M
ÿ

i“1

µipΣq ¨ µippΣq ¨ µ2pM´iq`1pV2
L
pΣ´2q,

where step (i) uses µi`j`1pXY q ď µi`1pXqµj`1pY q for any matrices X,Y , and step (ii) uses the
fact that µippΣq “ 1{µM´i`1ppΣ´1q.

Note that VL ľ I ´ pI ´ γ0 pΣqLeff . Since fpxq :“ p1 ´ p1 ´ γ0xqLeffq2{x2 is a decreasing
function on r0, 1{γ0s and (1) fpxq ě pLeffγ0q2{4 when Leffγ0x ď 1{4; (2) fpxq ě 1{p5x2q when
Leffγ0x ě 1{4, we have

trpΣVL
pΣ´1VLq ě

pLeffγ0q2

4
¨

ÿ

i:pλiLeffγ0ď1{4

µipΣq ¨ µippΣq `
1

5
¨

ÿ

i:pλiLeffγ0ą1{4

µipΣq

µippΣq
.

Taking expectation over X yields the desired result.

C.2 Variance error under the source condition

Lemma C.2 (Variance bounds under the source condition). Let Assumption 1 hold and assume
Leff À Na{γ. Under the notation in Theorem 3.1 and its proof, there exists some pa, bq-dependent
constant c ą 0 such that when γ ď c{ logN ,

Var ≂
mintM, pLeffγq1{au

N

with probability at least 1 ´ expp´ΩpMqq over the randomness of S.

Proof of Lemma C.2. Similar to the proof of Lemma B.3, we can verify that conditions (1)–(4) in
Assumption 3 are satisfied with probability at least 1´expp´ΩpMqq over the randomness of S. From
the expression of DU, it is straightforward to see that DU ď M . Moreover, applying Lemma C.2,
Eq. (16) in the proof of Lemma B.3 and a truncation argument, we can show that

DU “ EX

”

#ti P rM s : pλiLeffγ0 ą 1{4u ` pLeffγ0q
ÿ

i:pλiLeffγ0ď1{4

pλi

ı

À pLeffγq1{a ` EX

”

pLeffγq ¨
ÿ

i:iÁpLeffγq1{a

pλi

ı

À pLeffγq1{a

with probability at least 1 ´ expp´ΩpMqq over the randomness of S. Thus, we have obtained
DU À mintM, pLeffγq1{au.

For the lower bound, when pLeffγq1{a ď M{c for some sufficiently large constant c ą 0, conditioned
on S such that µjpΣq ≂ j´a for j P rM s (which holds with probability at least 1 ´ e´ΩpMq by
Lemma E.5), we have by Lemma E.8 that µjppΣq ≂ j´a for j ď mintM,Nu{c̃ with probability at
least 1 ´ e´ΩpMq for some c̃ ą 0. Therefore,

DL ě EX

«

pLeffγ0q2 ¨
ÿ

i:pλiLeffγ0ď1{4

µipΣq ¨ µippΣq

ff
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Á pLeffγq2 ¨
ÿ

i:iÁpLeffγq1{a,iďmintM,Nu{c̃

i´a ¨ i´a Á pLeffγq1{a,

where the last line follows since we assume pLeffγq1{a ď M{c for some sufficiently large constant
c ą 0 and pLeffγq1{a À N À N{c.

On the other hand, similarly, when pLeffγq1{a ě M{c for some sufficiently constant c ą 0,
conditioned on S such that µjpΣq ≂ j´a for j P rM s (which holds with probability at least
1 ´ e´ΩpMq by Lemma E.5), we have by Lemma E.8 that µjppΣq ≂ j´a for j ď M with probability
at least 1{2. Therefore,

DL ě EX

«

1

5
¨

ÿ

i:pλiLeffγ0ą1{4

µipΣq

µippΣq

ff

Á EX

«

1

5
¨

ÿ

i:iďM{c

µipΣq

µippΣq

ff

Á M.

Putting pieces together yields the desired lower bound.

D Fluctuation error

D.1 An upper bound

Lemma D.1 (An upper bound on the fluctuation error). For each i P rN s, define the leave-one-out
GD process

θ
p´iq
t “ pI ´ γt pΣ

p´iqqθ
p´iq
t´1 ` γtpSX

Jyqp´iq, with θ
p´iq
0 “ 0, (LOO-GD)

where pΣp´iq :“
ř

j‰i Sxjx
J
j S

J{N and pSXJyqp´iq :“
ř

j‰i Sxjyj{N .

Let Assumption 1A, 1B, 3 hold and assume Leff À Na{γ. Under the notation in Theorem 3.1 and
its proof, for any s P r0, 1s, α ą 1, there exists some ps, αq-dependent constant c ą 0 such that the
fluctuation error satisfies

ErFlucs “ Ew˚,pxi,yiqNi“1,it,tPrLsr}Σ
1{2pvL ´ θLq}22s

ď c ¨ ErF ¨ trppΣ1{αqs ¨ γ1{αLeff
1{α´1,

with probability at least 1 ´ expp´ΩpMqq over the randomness of S, where

F :“ pR
´

max
iPrNs

pxJ
i S

Jv˚q2 ` max
iPrNs

ϵ̃2i ` max
iPrNs,tPrLs

pxJ
i S

Jθ
p´iq
t q2 ` max

iPrNs
}xJ

i S
J}2Σ´s ¨ B∆

¯

,

B∆ :“ a2max ¨ max
iPrNs

}Sxi}
2
2 ¨ pR ¨

pLeffγq2´s

N2
, and

amax :“ max
iPrNs,tPrLs

|yi ` xJ
i S

Jθ
p´iq
t |, λ :“

1

Leffγ
, pR :“ }ppΣ ` λIq´1{2pΣ ` λIq1{2}22.

Moreover, if µjppΣq ≂ j´a for j ď rppΣq for some a ą 1, then

Eit,tPrLs}Σ
1{2pvL ´ θLq}22 ď c1ErFs ¨ γ1{aLeff

1{a´1

for some a-dependent constant c1 ą 0.

Proof of Lemma D.1. The proof of this lemma follows from similar ideas as in the proof of Lemma 5
in Pillaud-Vivien et al. (2018), but with a more precise characterization on the magnitude of GD
outputs. We start with an overview of the proof. At a high level, to bound the fluctuation error, we
express the difference between the multi-pass SGD and GD trajectories, vt ´ θt, as a stochastic
process (Eq. 18) that fits into the framework of Lemma D.2, which provides an upper bound on the
fluctuation error Er}Σ1{2pvt ´ θtq}2s under certain conditions, up to a mismatch between pΣ and Σ.
We verify that the required conditions hold with appropriate choices of parameters (Eq. 20), which
are further bounded using a leave-one-out argument (Lemma D.3). Applying Lemma D.2 with these
parameters and a covariance replacement trick (Eq. 21) yields the desired bounds.
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We now proceed to the proof. Define ∆t :“ vt ´ θt for t P r0, Ls. Recall that v˚ “

pSHSJq´1SHw˚ and we have yi “ pSxiq
Jv˚ ` ϵ̃i for all i P rN s with ϵ̃i independent

of Sxi conditioned on pS,w˚q under the Gaussian assumption in Assumption 1A. Moreover,
Erϵ̃i|S,w

˚s “ 0 and Erϵ̃2i |S,w˚s ď σ2 ` }w˚}2H “: σ̃2pw˚q. By the definition of vt and θt
in (multi-pass SGD) and (GD), we have

∆t “ pI ´ γtSxitx
J
itS

Jq∆t´1 ` γt ¨ pξ1,t ` ξ2,tq, (18)

where

∆0 “ 0, ξ1,t :“ ´

”

Sxitx
J
itS

J ´ pΣ
ı

pθt´1 ´ v˚q, and ξ2,t :“ Sxit ϵ̃it ´ SXJϵ̃{N, t P rLs.

Note that conditioned on w˚, S and the dataset D “ pxi, yiq
N
i“1, the noise terms Erξ1,t|S,w

˚,Ds “

Erξ2,t|S,w
˚,Ds “ 0. Next, we present the following two results.

Lemma D.2 (A modified Proposition 1 of Pillaud-Vivien et al. (2018) for the last iterate). Consider
any recursion of the form

µt “ pI ´ γt ¨ νtν
J
t qµt´1 ` γt ¨ ξt, µ0 “ 0, t P rLs, (19)

where the learning rates pγtq
L
t“1 are as defined in Theorem 3.1 and Eq. (2), pνt, ξtq

L
t“1 P RM ˆ RM

are independent random vectors. Assume that Erνtν
J
t s “ Σν , Erξts “ 0, Erνtν

J
t νtν

J
t s ĺ B2

νΣν ,
Erξtξ

J
t s ĺ σ2

ξΣν , and γ0B
2
ν ď 1{4. Then for any u P r0, 1s, we have

Er}Σu{2
ν µL}22s ď cσ2

ξ ¨ γ trpΣ1{α
ν qpLeffγq1{α´u

fot any α ą 1 and some α-dependent constant c ą 0. Moreover, there exists some a-dependent
constant c1, c̃ ą 1 such that when µjpΣνq ≂ j´a for j ď mintM,N{c̃u, we have

Er}Σu{2
ν µL}22s ď c1σ2

ξ ¨ γpLeffγq1{a´u

for any u P r0, 1s and some a-dependent constant c1 ą 0.

See the proof of Lemma D.2 in Section D.4.

Lemma D.3 (A leave-one-out bound on GD iterates). Under the assumptions and notation in
Lemma D.1, for any s P r0, 1s, there exists some s-dependent constant c ą 0 such that the (GD)
updates pθtq

L
t“1 satisfies

max
iPrNs,tPrLs

pxJ
i S

Jθtq
2 ď c ¨

”

max
iPrNs,tPrLs

pxJ
i S

Jθ
p´iq
t q2 ` max

iPrNs
}xJ

i S
J}2Σ´s ¨ B∆

ı

.

See the proof of Lemma D.3 in Section D.5.

Let νt “ Sxit , ξt “ ξ1,t ` ξ2,t. We claim that pνt, ξtq satisfies the conditions in Lemma D.2 with

Σν “ pΣ, Bν “ max
iPrNs

}Sxi}2, σ2
ξ “ 2 max

iPrNs,tPrLs
rpxJ

i S
Jpθt´1 ´ v˚qq2 ` ϵ̃2i s. (20)

Thus applying Lemma D.2 with u “ 0, 1 to the stochastic process in (18) and letting λ “ 1
Leffγ

yields

Eit,tPrLs}Σ
1{2pvL ´ θLq}22 À }ppΣ ` λIq´1{2pΣ ` λIq1{2}2 ¨ Eit,tPrLs}ppΣ ` λIq1{2pvL ´ θLq}22

(21)

À σ2
ξ ¨ }ppΣ ` λIq´1{2pΣ ` λIq1{2}2 ¨ γ trppΣ1{αqpLeffγq1{α´1.

Moreover,

σ2
ξ À max

iPrNs
pxJ

i S
Jv˚q2 ` max

iPrNs
ϵ̃2i ` max

iPrNs,tPrLs
pxJ

i S
Jθtq

2

À max
iPrNs

pxJ
i S

Jv˚q2 ` max
iPrNs

ϵ̃2i ` max
iPrNs,tPrLs

pxJ
i S

Jθ
p´iq
t q2 ` max

iPrNs
}xJ

i S
J}2Σ´s ¨ B∆,

where the second line follows from Lemma D.3. Putting the last two displays together and taking
expectation over pxi, yiq

N
i“1,w

˚ yields the first part of Lemma D.1. The second part of Lemma D.1
follows from the same argument by applying the second part of Lemma D.2.
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Proof of claim (20). Conditioned on S and pxi, yiq
N
i“1, when choosing νt “ Sxit , we

have Erνtν
J
t s “ ErSxitx

J
it
SJs “ pΣ, and Erνtν

J
t νtν

J
t s ď ErmaxiPrNs }νi}

2νiν
J
i s ĺ

maxiPrNs }Sxi}
2
2 ¨ pΣ “ B2

ν ¨ pΣ. Thus we may let Σν “ pΣ and Bν “ maxiPrNs }Sxi}2. In
this case, we have γ0B

2
ν ď 1{4 by the assumption that γ0 ď 1{r4maxiPrNs }Sxi}

2
2s. It remains to

bound σ2
ξ in (20). Note that

Erξtξ
J
t s ĺ 2Erξ1,tξ

J
1,ts ` 2Erξ2,tξ

J
2,ts

ĺ 2Erνiν
J
i pθt´1 ´ v˚qpθt´1 ´ v˚qJνiν

J
i s ` 2ErSxJ

it ϵ̃itpSxJ
it ϵ̃itqJs

ĺ 2 max
iPrNs

pxJ
i S

Jpθt´1 ´ v˚qq2 ¨ Σν ` 2 max
iPrNs

ϵ̃2i ¨ Σν ,

where the second line uses Jensen’s inequality. Therefore, we can set

σ2
ξ “ 2 max

iPrNs,tPrLs
rpxJ

i S
Jpθt´1 ´ v˚qq2 ` ϵ̃2i s

and the conditions required by Lemma D.2 are satisfied.

D.2 A lower bound

Lemma D.4 (A lower bound on the fluctuation error). Let Assumption 1A, 1B, 3 hold and assume
Leff À Na{γ. Under the notation in Theorem 3.1 and its proof, with probability at least 1 ´

expp´ΩpMqq over the randomness of S,

Epxi,yiqiPrNs,it,tPrLsrFlucs “ Epxi,yiqiPrNs,it,tPrLsr}Σ
1{2pvL ´ θLq}22s

Á pσ2 ` }w˚}2Hq ¨ EpxiqiPrNs

”Bξγ0Leffγ0
10

¨
ÿ

iąt̃

µippΣq ¨ µipΣq

ı

,

where Bξ :“ maxtN´1
N ´

4γ0Leff

N B2
ν , 0u, Bν :“ maxiPrNs }Sxi}2 and t̃ :“ #ti P rM s :

pλiLeffγ0 ą 1{8u, and ppλiq
M
i“1 are the eigenvalues of pΣ.

Proof of Lemma D.4. Define ∆t :“ vt ´ θt for t P rLs. Similar to the proof of Lemma D.1,
conditioned on S and w˚, we have

∆t “ pI ´ γtSxitx
J
itS

Jq∆t´1 ` γt ¨ pξ1,t ` ξ2,tq

“

L
ÿ

i“1

γi ¨

L
ÿ

j“i`1

pI ´ γjSxijx
J
ijS

JqJpξ1,i ` ξ2,iq (22)

where

∆0 “ 0, ξ1,t :“ ´

”

Sxitx
J
itS

J ´ pΣ
ı

pθt´1 ´ v˚q, and ξ2,t :“ Sxit ϵ̃it ´ SXJϵ̃{N, t P rLs,

and ϵ̃i are i.i.d N p0, σ̃2pw˚qq independent of Sxi conditioned on S and w˚, where σ̃2pw˚q :“
σ2 ` }w˚}2H. Let Bν :“ maxiPrNs }Sxi}2. We claim that

Epϵ̃iqiPrNs
Eit,tPrLsrpξ1,i ` ξ2,iqpξ1,i ` ξ2,iq

Js ľ σ̃2pw˚qBξ ¨ pΣ, (23)

and we have Bξ ě 1{2 when pLeffγqB2
ν{N ď 1{3. The proof of this claim is deferred to the end of

the proof.

Since ξ1,t and ξ2,t are zero-mean noise, conditioned on S,w˚ and pxi, yiq
N
i“1, we have

Eit,tPrLsEpϵ̃kqkPrNs
r}Σ1{2pvL ´ θLq}22s

“

L
ÿ

i“1

γ2
i ¨ Epϵ̃kqkPrNs

Eit,tPrLsrtrp
L
ź

j“i`1

pI ´ γjSxijx
J
ijS

JqΣ
L
ź

j“i`1

pI ´ γjSxijx
J
ijS

JqJpξ1,i ` ξ2,iqpξ1,i ` ξ2,iq
Jqs
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ľ σ̃2pw˚qBξ ¨

L
ÿ

i“1

γ2
i Eit,tPrLsrtrp

L
ź

j“i`1

pI ´ γjSxijx
J
ijS

JqΣ
L
ź

j“i`1

pI ´ γjSxijx
J
ijS

JqJ
pΣqs

ľ σ̃2pw˚qBξ ¨

L
ÿ

i“1

γ2
i trpΣ

pΣ
L
ź

j“i`1

pI ´ 2γj pΣqq,

where the last line follows from the fact that Eij rpI ´ γjSxijx
J
ij
SJqP ppΣqpI ´ γjSxijx

J
ij
SJqs ľ

P ppΣqpI ´ 2γj pΣq for any polynomial P . Continuing from the last line, we have

Eit,tPrLsEpϵ̃kqkPrNs
r}Σ1{2pvL ´ θLq}22s

ľ σ̃2pw˚qBξ ¨ tr
´

pΣ
L
ÿ

i“1

γ2
i

L
ź

j“i`1

pI ´ 2γj pΣqΣ
¯

“ σ̃2pw˚qBξ ¨

tlogL´1u
ÿ

k“0

γ2
Leffk`1 ¨ tr

´

pΣ
I ´ pI ´ 2γLeffk`1

pΣqLeff

2γLeffk`1
pΣ

tlogL´1u
ź

j“k`1

pI ´ 2γLeffj`1
pΣqLeff Σ

¯

ľ σ̃2pw˚qBξ ¨ γ0 tr
´

pI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff Σ
¯

,

where the last line uses
śtlogL´1u

j“0 p1´ 2γLeffj`1xqLeff ě p1´ 4γ0xqLeff for x P r0, 1{p2γ0qs by the
stepsize definition (2). Since µi`j`1pXY q ď µi`1pXqµj`1pY q for any i, j and matrices X,Y of
matching dimensions, it follows that for any j ě 1

µjppI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff Σq

ě
µ3j´2ppI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff{pΣq

µjppΣ´1qµjpΣ´1q

“ µM´jppΣq ¨ µM´jpΣq ¨ µ3j´2

´

pI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff

pΣ

¯

.

Since fpxq “ p1 ´ p1 ´ 2γ0xqLeffqp1 ´ 4γ0xqLeff{x satisfies fpxq ě Leffγ0{10 for x P

r0, 1{p8γ0Leffqs, it follows that pI´pI´2γ0
pΣq

Leff qpI´4γ0
pΣq

Leff

pΣ
has at most t̃ “ #ti P rM s :

pλiLeffγ0 ą 1{8u eigenvalues that are less than Leffγ0{10. Therefore, we have

tr
´

pI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff Σ
¯

“

M
ÿ

j“1

µj

´

pI ´ pI ´ 2γ0 pΣqLeffqpI ´ 4γ0 pΣqLeff Σ
¯

ě
Leffγ0
10

¨
ÿ

iąt̃

µippΣq ¨ µipΣq.

Putting pieces together and taking expectation over pxiqiPrNs, we obtain

EpxiqiPrNs
Epϵ̃kqkPrNs

r}Σ1{2pvL ´ θLq}22s Á σ̃2pw˚q ¨ EpxiqiPrNs

”Bξγ0Leffγ0
10

¨
ÿ

iąt̃

µippΣq ¨ µipΣq

ı

.

Proof of claim (23). By Eq. (4) in the proof of Theorem 3.1, we have

θt ´ v “ ´

t
ź

i“1

´

I ´ γi pΣ
¯

v˚ ` VtppΣqSXJϵ̃,

where

VtppΣq :“
1

N

t
ÿ

i“1

γi ¨

t
ź

j“i`1

pI ´ γj pΣq “
I ´

śt
i“1pI ´ γi pΣq

N pΣ
.

Let

ξsi :“ ´pSxitx
J
itS

J ´ pΣqVt´1ppΣqSXJϵ̃ ` pSxit ϵ̃it ´ SXJϵ̃{Nq
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“ ξ1,i ` ξ2,i ` pSxitx
J
itS

J ´ pΣq

t
ź

i“1

pI ´ γi pΣqv˚.

Since Eit,tPrLsrξ
s
i s “ 0, it can be verified that

Eϵ̃Eit,tPrLsrpξ1,i ` ξ2,iqpξ1,i ` ξ2,iq
Js

ě Eϵ̃Eit,tPrLsrξ
s
i ξ

sJ
i s

ľ σ̃2pw˚q ¨

”N ´ 1

N
pΣ ´ pSxitx

J
itS

J ´ pΣq

”I ´
śt

i“1pI ´ γi pΣq2

N pΣ

ı

pSxitx
J
itS

J ´ pΣqJ
ı

ľ σ̃2pw˚q ¨

”N ´ 1

N
pΣ ´ pSxitx

J
itS

J ´ pΣq

”I ´ pI ´ 2γ0 pΣq2Leff

N pΣ

ı

pSxitx
J
itS

J ´ pΣqJ
ı

.

Since supxPr0,1{p2γ̃qsp1 ´ p1 ´ 2γ̃xq2Leffq{x ď 4γ̃Leff and EitrpSxitx
J
it
SJ ´ pΣq2s ĺ

EitrpSxitx
J
it
SJq2s ĺ B2

ν
pΣ, we further have

Eϵ̃Eit,tPrLsrpξ1,i ` ξ2,iqpξ1,i ` ξ2,iq
Js ľ σ̃2pw˚q ¨

”N ´ 1

N
pΣ ´

4γ0Leff

N
EitrpSxitx

J
itS

J ´ pΣq2s

ı

ľ σ̃2pw˚q ¨

´N ´ 1

N
´

4γ0Leff

N
B2

ν

¯

pΣ

ľ σ̃2pw˚q ¨ pΣ{2

when pLeffγqB2
ν{N ď 1{3.

D.3 Fluctuation error under the source condition

Lemma D.5 (Fluctuation error under the source condition). Under the notation and assumptions
in Theorem 3.1 and suppose that Leff À N p1´εqa{γ for some small constant ε P p0, 1s. For any
s P r0, 1 ´ 1{aq, there exists some ps, ε, aq-dependent constant c ą 0 such that the (multi-pass SGD)
process satisfies

ErFlucs ď cγ logN ¨

”

1 `
log2 NpLeffγq2´s

N2

ı

pLeffγq1{a´1.

with probability at least 1 ´ expp´ΩpMqq over the randomness of S. Consequently, choosing
s “ 1 ´ 1{pap1 ´ ε{2qq yields

ErFlucs À γ logN ¨

”

1 `
log2 NpLeffγq1{pap1´ε{2qq`1

N2

ı

pLeffγq1{a´1

ď c1 ¨ γ logN ¨

”

pLeffγq1{a´1 `
pLeffγq1{a

N

ı

for some pε, aq-dependent constant c1 ą 0 with probability at least 1 ´ expp´ΩpMqq.

Moreover, assume in addition that Leff À N{γ. Then with probability at least 1 ´ expp´ΩpMqq

over the randomness of S, we have

ErFlucs ě c2γpLeffγq1{a´1

for some a-dependent constant c2 ą 0.

Proof of Lemma D.5. The proof follows from instantiating Lemma D.1 and D.4 under the source
condition. We start by establishing concentration bounds on some quantities that appear in the bounds
in Lemma D.1 and D.4.

First, note that we have for any s P r0, 1 ´ 1{aq, conditioned on S and w˚, with probability at least
1 ´ δ over pxi, yiq

N
i“1,

max
iPrNs

pxJ
i S

Jv˚q2 À }w˚}2H logpN{δq, (24a)
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max
iPrNs

ϵ̃2i À pσ2 ` }w˚}2Hq logpN{δq, (24b)

max
iPrNs

}xJ
i S

J}2Σ´s À trpΣ1´sq ` logpN{δq `
a

trpΣ2´2sq logpN{δq À logpN{δq, (24c)

where Eq. (24a) and (24b) follow from a union bound on concentration inequalities for Gaussian
random variables; Eq. (24c) uses Hanson-Wright inequality and Lemma E.5.

Moreover, we will show that conditioned on S,w˚ and θ
p´iq
t , xJ

i S
Jθ

p´iq
t is a zero-mean random

Gaussian variable with covariance

ErpxJ
i S

Jθ
p´iq
t q2 | S,w˚,θ

p´iq
t s “ θ

p´iqJ

t Σθ
p´iq
t À pTB ` TVq ¨ pσ2 ` }w˚}2Hq, (25)

where

TB :“

"

1 ` logp1{δq{N ` tpδq ¨ pLeffγq2 ¨ p1 ` logp1{δq{Nq2 when M ď N{2,

BB ¨ p1 ` logp1{δq{Nq2 ` 1 when M ą N{2,

TV :“ max
iPrNs

}ppΣp´iq ` λIq´1{2pΣ ` λIq1{2}2 ¨ max
iPrNs

ϵ̃2i ¨ rDU{N

with BB defined in Lemma B.1, rDU defined in Eq. (17), and tpδq :“ 1tlogp1{δqÁNu. Thus, we have
by a union bound that

max
iPrNs,tPrLs

pxJ
i S

Jθ
p´iq
t q2 À max

iPrNs,tPrLs
θ

p´iqJ

t Σθ
p´iq
t ¨ logpNL{δq

À pTB ` TVq ¨ pσ2 ` }w˚}2Hq ¨ logpN{δq (26)

with probability at least 1´δ over the randomness of pxi, yiq
N
i“1 conditioned on S and w˚. Moreover,

we note that µjpΣq ≂ j´a for j P rM s with probability at least 1 ´ expp´ΩpMqq by Lemma E.5,
and conditioned on S and w˚, we have µjppΣq ≂ j´a for j ď mintM,N{cu and µjppΣq À j´a

otherwise with probability at least 1 ´ expp´ΩpNqq by Lemma E.8.

Proof of the upper bound. Therefore, substituting Eq. (24a)—(24c) and (26) into the expression
in amax,B∆ and F, applying Eq. (16) to bound rDU (and trppΣ1{αq for some α “ a ` ε ą a), using
part 2 of Lemma D.14 and taking expectation w.r.t. pxi, yiq

N
i“1 conditioned on S and w˚, it can be

verified that

ErFluc | S,w˚s À pσ2 ` }w˚}2Hq ¨ γ logN ¨

”

1 `
log2 NpLeffγq2´s

N2

ı

¨ pLeffγq1{a´1.

Taking expectation w.r.t. w˚ yields the desired result.

Proof of the lower bound. Setting s “ 0 in Eq. (24c), we have Bξ ě 1{2 when γLeffBξ{N ě 1{3,
which happens with probability at least 1 ´ N´c1{c2 for some constant c1 ą 0 when γ ď c2{ logN

for some c2 ą 0. Moreover, by the concentration properties on µjppΣq and µjpΣq in the previous
discussion, the assumptions on γ, and a union bound, conditioned on S such that µjpΣq ≂ j´a for
j P rM s (which happens with probability at least 1 ´ e´ΩpMq), we have with probability at least 1{2
over the randomness of pxi, yiq

N
i“1 that

µjppΣq ≂ j´a for j ď mintM,N{cu, and

t̃ À pLeffγq1{a, Bξ ě 1{2, γ0 “ γ.

Thus, when pLeffγq1{a ď M{c̃ ď mintM,N{cu for some c̃, c ą 0 sufficiently large, we have by
Lemma D.4 that

ErFlucs Á EpxiqiPrNs

”Bξγ0Leffγ0
10

¨
ÿ

iąt̃

µippΣq ¨ µipΣq

ı

4More specifically, we apply part 2 of Lemma D.1 on the event with probability at least 1 ´ expp´ΩpNqq

where conditions on pΣ specified in Lemma E.8 hold, and apply part 1 of Lemma D.1 for some α “ a ` ε ą 1
otherwise.
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Á Leffγ
2 ¨

mintM,N{cu
ÿ

i“t̃`1

i´2a

Á Leffγ
2 ¨ t̃1´2a Á γpLeffγq1{a´1

with probability at least 1 ´ e´ΩpMq over the randomness of S.

Proof of claim (25). Note that

θ
p´iqJ

t Σθ
p´iq
t À v˚JΣv˚ ` pθ

p´iq
t ´ v˚qJΣpθ

p´iq
t ´ v˚q

piq

À }v˚}2Σ ` }

t
ź

i“1

pI ´ γi pΣ
p´iqqv˚}2Σ ` }VppΣp´iqqpSXJϵ̃qp´iq}2Σ.

where step (i) follows from the decomposition

θ
p´iq
t ´ v˚ “

t
ź

t“1

´

I ´ γt pΣ
p´iq

¯

pθ0 ´ v˚q ` VppΣp´iqqpSXJϵ̃qp´iq

“ ´

t
ź

t“1

´

I ´ γt pΣ
p´iq

¯

v˚ ` VppΣp´iqqpSXJϵ̃qp´iq

as similar to Eq. (4), where pSXJϵ̃qp´iq :“
ř

j‰i Sxj ϵ̃j{N and

VppΣp´iqq :“
1

N

t
ÿ

i“1

γi ¨

t
ź

j“i`1

pI ´ γj pΣ
p´iqq “

I ´
śt

i“1pI ´ γi pΣ
p´iqq

N pΣp´iq
.

Let sw˚ :“ Σ1{2v˚. Note that pθ
p´iq
t qLt“1 can be viewed as a (GD) process on pxj , yjqj‰i with

stepsize pN ´ 1qγt{N .

Following the proof of Lemma B.1 (Eq. 11 and 12), it can be verified that, conditioned on S and w˚,

}

t
ź

i“1

pI ´ γi pΣ
p´iqqv˚}2Σ À

#

BF,1
d
“ }Zsw˚}22 ` pLeffγq2}ZJZ}221tZJZńIM {5u ¨ }sw˚}22 when M ď N{2,

BF,2
d
“ BF,3 ¨ }Zsw˚}22 ` }sw˚}22 when M ą N{2,

where Z P RpN´1qˆM has i.i.d N p0, 1{Nq entries and

BF,3 :“ pLeffγq2}Zk̃:8Σk̃:8ZJ

k̃:8
}22 ` 1 ` }Zk̃:8Σ2

k̃:8
ZJ

k̃:8
}2

with k̃ “ N{2. In addition, we have }sw˚}22 ď }v˚}2Σ ď }w˚}2H and }Zsw˚}22 ď }v˚}2Σ ¨ p2 `

logp1{δq{Nq with probability at least 1 ´ δ by concentration properties of chi-squared random
variables. Therefore, putting pieces together, applying Lemma E.5, Eq. (13) and concentration
properties of Gaussian covariance matrices (see e.g., Theorem 6.1 in Wainwright (2019)), we obtain
with probability at least 1 ´ δ conditioned on S and w˚,

}

t
ź

i“1

pI ´ γi pΣ
p´iqqv˚}2Σ

À

"

}w˚}2H ¨ p2 ` logp1{δq{N ` tpδq ¨ pLeffγq2 ¨ p2 ` logp1{δq{Nq2q when M ď N{2,

}w˚}2H ¨ pBB ¨ p1 ` logp1{δq{Nq2 ` 1q when M ą N{2,

(27)

where tpδq :“ 1tlogp1{δqÁNu and BB is defined in Lemma B.1, with probability at least 1 ´ e´ΩpMq

over the randomness of S.

Adopt the shorthand V
p´iq
t for I ´

śL
t“1pI ´ γt pΣq and Ri for }ppΣp´iq ` λIq´1{2pΣp´iq ` λIq1{2}2.

Similarly, following the proof of the upper bound in Lemma C.1, we have (choosing λ “ 1{pLeffγq)

}VppΣp´iqqpSXJϵ̃qp´iq}2Σ
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À
maxiPrNs ϵ̃

2
i ¨

N
¨ trpV

p´iq
t ΣV

p´iq
t

pΣ´1q

ď Ri ¨
maxiPrNs ϵ̃

2
i ¨

N
¨ trpV

p´iq,2
t ` λpΣ´1V

p´iq,2
t q

piiq

À
Ri

N
¨ max
iPrNs

ϵ̃2i ¨ rDU
i

piiiq

À
Ri

N
¨ max
iPrNs

ϵ̃2i ¨ rDU (28)

where rDU is defined in Eq. (17) and

rDU
i :“ #tj P rM s : pλ

p´iq
j Leffγ0 ą 1{4u ` pLeffγ0q

ÿ

j:pλ
p´iq

j Leffγ0ď1{4

pλ
p´iq
j ,

and pλ
p´iq
j is the j-th largest eigenvalue of pΣp´iq. Here, step (ii) uses Eq. (17) and step (iii) uses the

fact that pλp´iq
j ď pλj for all j P rM s since pΣp´iq ĺ pΣ.

D.4 Proof of Lemma D.2

The proof of Lemma D.2 follows from similar ideas as in the proof of Proposition 1 of Pillaud-
Vivien et al. (2018). We first state a few lemmas that contribute to the proof. These lemmas are
modified versions of the lemmas in Pillaud-Vivien et al. (2018), but we provide their proofs here for
completeness.
Lemma D.6 (Semi-stochastic SGD; Lemma 1 in Pillaud-Vivien et al. (2018)). Under the notation
and assumptions in Lemma D.2, consider any stochastic process rµt “ pI´ γtΣνqrµt´1 ` γt ¨ rξt with
rµ0 “ 0, t P rLs and prξtq

L
t“1 such that Errξts “ 0 and Errξt rξ

J
t s ĺ rσ2

ξΣν . Then for any u P r0, 1s, we
have

Er}Σu{2
ν rµL}22s ď c ¨ rσ2

ξγ0 trpΣ
1{α
ν q ¨ pLeffγ0q1{α´u

for any α ą 1 and some α-dependent constant c ą 0. Moreover, there exists some a-dependent
constant c1, c̃ ą 1 such that when µjpΣνq ≂ j´a for j ď mintM,N{c̃u, we have

Er}Σu{2
ν rµL}22s ď c1

rσ2
ξ ¨ γ0pLeffγ0q1{a´u

for any u P r0, 1s.

See the proof of Lemma D.6 in Section D.4.1.

Following the ideas in (Pillaud-Vivien et al., 2018; Aguech et al., 2000), we introduce a sequence of
stochastic processes prµk

t qLt“0 that connects the SGD process in (19) to the semi-stochastic SGD in
Lemma D.6. Namely, for k ě 0, we define

rµk
t “ pI ´ γtΣνqrµk

t´1 ` γt ¨ ξkt , rµk
0 “ 0, t P rLs, (29)

where ξ0t :“ ξt and ξkt :“ pΣν ´ νtν
J
t qrµk´1

t´1 for k ě 1. It can be verified that

µt ´

k
ÿ

i“0

rµi
t “ pI ´ γtνtν

J
t q

´

µt´1 ´

k´1
ÿ

i“0

rµi
t´1

¯

` γt ¨ ξk`1
t .

Lemma D.7 (Bounds on the covariance; Lemma 2 in Pillaud-Vivien et al. (2018)). Under the notation
and assumptions in Lemma D.2 and its proof, for any k ě 0, we have

Erξkt ξ
kJ
t s ĺ σ2

ξγ
k
0B

2k
ν ¨ Σν and Errµk

t rµ
kJ
t s ĺ σ2

ξγ
k`1
0 B2k

ν ¨ I.

See the proof of Lemma D.7 in Section D.4.2.
Lemma D.8 (SGD recursion; Lemma 3 in Pillaud-Vivien et al. (2018)). Under the notation and
assumptions in Lemma D.2, consider any stochastic process pµt “ pI ´ γtνtν

J
t qpµt´1 ` γt ¨ pξt, with

pµ0 “ 0, t P rLs and ppξtq
L
t“1 such that Erpξts “ 0 and Erpξt pξ

J
t s ĺ pσ2

ξΣν . Then

Er}Σu{2
ν pµL}22s ď 2pσ2

ξ ¨ γ2
0B

2u
ν trpΣνqLeff.

for any u P r0, 1s.
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See the proof of Lemma D.8 in Section D.4.3.

With these lemmas at hand, we are ready to prove Lemma D.2. Performing a decomposition
as in the proof of Proposition 1 in Pillaud-Vivien et al. (2018) and using Lemma D.6 on rµi

t for
i P r0, ks and D.8 on µL ´

řk
i“0 rµ

i
L, we find

pEr}Σu{2
ν µL}22sq1{2

ď

k
ÿ

i“0

pEr}Σu{2
ν rµi

L}22sq1{2 ` pEr}Σu{2
ν pµL ´

k
ÿ

i“0

rµi
Lq}22sq1{2

À

k
ÿ

i“0

pσ2
ξγ

i
0B

2i
ν ¨ γ0 trpΣ

1{α
ν qLeff

1{α´u
q1{2 ` pσ2

ξγ
k`1
0 B2k`2`2u

ν ¨ γ2
0 trpΣνqLeffq1{2

ď pσ2
ξ ¨ γ0 trpΣ

1{α
ν qpLeffγ0q1{α´uq1{2 ¨

k
ÿ

i“0

pγ0B
2
νqi{2 ` pσ2

ξγ
k`3
0 B2k`2`2u

ν ¨ trpΣνqLeffq1{2

ď 2pσ2
ξ ¨ γ0 trpΣ

1{α
ν qpLeffγ0q1{α´uq1{2 ` pσ2

ξγ
k`3
0 B2k`2`2u

ν ¨ trpΣνqLeffq1{2,

where the last inequality follows as γ0B2
ν ď 1{4 by the assumption in Lemma D.2. Finally, letting

k Ñ 8 and noting that σ2
ξγ

k`3
0 B2k`2`2u

ν ¨ trpΣνqLeff
kÑ8
ÝÑ 0, we obtain the desired result. The

second part of Lemma D.2 follows from similar arguments and therefore we omit the proof.

D.4.1 Proof of Lemma D.6

By definition of rµt, we have

rµL “

L
ÿ

t“1

γt ¨

L
ź

i“t`1

pI ´ γiΣνqξt.

Thus,

Er}Σu{2
ν rµL}22s

“ Er}Σu{2
ν

L
ÿ

t“1

γt ¨

L
ź

i“t`1

pI ´ γiΣνqξt}
2
2s “

L
ÿ

t“1

γ2
t ¨ trpErΣu

ν

L
ź

i“t`1

pI ´ γiΣνq2ξtξ
J
t sq

ď rσ2
ξ ¨

L
ÿ

t“1

γ2
t ¨ trp

L
ź

i“t`1

pI ´ γiΣνq2Σ1`u
ν q

“ rσ2
ξ ¨

tlogLu´1
ÿ

k“0

γ2
Leffk`1 ¨ tr

˜

Σ1`u
ν ¨

I ´ pI ´ γLeffk`1Σνq2Leff

2γLeffk`1Σν ´ pγLeffk`1Σνq2
¨

tlogLu´1
ź

j“k`1

pI ´ γLeffj`1Σνq2Leff

¸

ď rσ2
ξ ¨

tlogLu´2
ÿ

k“0

γLeffk`1 trpΣ
u
ν ¨ pI ´ pI ´ γLeffk`1Σνq2LeffqpI ´ γLeffpk`1q`1Σνq2Leffq

` trprσ2
ξ ¨

γ0
L
Σu

ν ¨ pI ´ pI ´ γ0Σν{Lq2Leffqq, (30)

where the first inequality uses Erξtξ
J
t s ĺ rσ2

ξΣν .

Part 1 of Lemma D.6. Comtinuing the calculation in Eq. (30), we have

Er}Σu{2
ν rµL}22s

ď rσ2
ξ ¨ tr

”

tlogLu´2
ÿ

k“0

γLeffk`1

p2γLeffpk`1q`1Leffqu
¨ pI ´ pI ´ γLeffk`1Σνq2Leffq `

γ0
L
Σν ¨ pI ´ pI ´ γ0Σν{Lq2Leffq

ı

À rσ2
ξ ¨

”

tlogLu´2
ÿ

k“0

γ1´u
Leffk`1

Leff
u ¨ trppγLeffk`1LeffΣνq1{αq `

γ0
L

¨ trppγ0Σνq1{αq

ı
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À rσ2
ξ ¨ γ

1´u`1{α
0 trpΣ1{α

ν qLeff
1{α´u

À rσ2
ξ ¨ γ0 trpΣ

1{α
ν qpLeffγ0q1{α´u,

where the first inequality uses supxPr0,1{γ0s x
up1 ´ γ0xq2Leff ď 1{r2γ0Leffsu for any u P r0, 1s, the

second inequality follows from 1´ p1´γ0xq2Leff ď p2γ0Leffxq1{α for any α ą 1 and x P r0, 1{γ0s

by Bernoulli’s inequality, and the last inequality follows from the stepsize definition (2). This gives
the first part of Lemma D.6.

Part 2 of Lemma D.6. Similarly, continuing the calculation in Eq. (30) and noting that
supxPr0,1{γsr1 ´ p1 ´ γxq2Leffs{x ď 2γLeff, we obtain

Er}Σu{2
ν rµL}22s ď rσ2

ξ ¨ tr
”

tlogLu´2
ÿ

k“0

2Leffγ
2
Leffk`1Σ

1`u
ν ¨ pI ´ γLeffpk`1q`1Σνq2Leff `

2γ2
0

L
Σ1`u

ν

ı

.

(31)

Denote the eigenvalues of Σν by pλ1 ě pλ2 ě . . . ě pλN (let pλj “ 0 for j ą M ). Choose
ι “ pLeffγq1{a. When M ď N{c̃, we have µjpΣνq ≂ j´a for j ď M and otherwise 0. When
M ą N{c̃, we have ι ď N{c̃, pλj ≂ j´a for j ď N{c̃ and otherwise pλj À j´a by monotonicity of
pλj . In both cases, we have pλj ≂ j´a (or pλj “ 0) for j ď ι and pλj À j´a for j ą ι.

Since fpxq ą fp0q for any x P r0, 1{γ̃s and fpxq “ x1`up1 ´ γ̃x{2q2Leff for any u P r0, 1s, to
obtain an upper bound on trpΣ1`u

ν ¨ pI ´ γ̃Σν{2q2Leffq, we can w.l.o.g. assume pλj ≂ j´a for j ď ι

and pλj À j´a for j ą ι. Under this assumption, for any γ̃ P r0, 1{p4pλ1qs,

trpΣ1`u
ν ¨ pI ´ γ̃Σν{2q2Leffq

À

N
ÿ

j“1

pλ1`u
j ¨ pI ´ γ̃pλj{2q2Leff

À
ÿ

jąι

pλ1`u
j ¨ pI ´ γ̃pλj{2q2Leff `

8
ÿ

k“0

ÿ

jPrι{2k`1,ι{2kq

pλ1`u
j ¨ pI ´ γ̃pλj{2q2Leff

À ι1´p1`uqa `

tlog ιu`1
ÿ

k“0

ÿ

jPrι{2k`1,ι{2kq

pλ1`u
j ¨ p1 ´

2ka

2Leff

q2Leff

À ι1´p1`uqa `

8
ÿ

k“0

pι{2kq1´p1`uqa ¨ e´2ka

À ι1´p1`uqa ¨ p1 `

8
ÿ

k“0

2kpp1`uqa´1qe´2ka

q

À ι1´p1`uqa “ pLeffγ̃q1´p1`uqa, (32)

and γ2
0 trpΣ

1`u
ν q{L À γ2{Leff. Substituting these into Eq. (31) yields

Er}Σu{2
ν rµL}22s À rσ2

ξ ¨

”

tlogLu´2
ÿ

k“0

Leffγ
2
Leffk`1 ¨ pLeffγLeffk`1q1{a´u´1 ` γ2

0{Leff

ı

À rσ2
ξ ¨ γ0 ¨ pLeffγ0q1{a´u.

D.4.2 Proof of Lemma D.7

We prove this lemma by induction. When k “ 0, we have Erξ0t ξ
0J
t s “ Erξtξ

J
t s ĺ σ2

ξΣν and

Errµ0
t rµ

0J
t s “

t
ÿ

i“1

γ2
i

t
ź

j“i`1

pI ´ γjΣνqErξiξ
J
i s

t
ź

j“i`1

pI ´ γjΣνq

ĺ σ2
ξγ0

t
ÿ

i“1

γt ¨

t
ź

j“i`1

pI ´ γjΣνqΣν ĺ σ2
ξγ0

´

I ´

t
ź

i“1

pI ´ γiΣνq

¯

À σ2
ξγ0I.

Now, assume the lemma holds for some k ě 0, we show that it also holds for k ` 1. For ξk`1
t , we

have

Erξk`1
t ξk`1J

t s ĺ ErpΣν ´ νtν
J
t qErrµk

t´1rµ
kJ
t´1spΣν ´ νtν

J
t qs ĺ σ2

ξγ
k`1
0 B2k

ν ¨ ErpΣν ´ νtν
J
t q2s
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ĺ σ2
ξγ

k`1
0 B2k

ν ¨ Erνtν
J
t νtν

J
t s ĺ σ2

ξγ
k`1
0 B2pk`1q

ν ¨ Σν .

For rµk`1
t , we have

Errµk`1
t rµk`1J

t s “

t
ÿ

i“1

γ2
i

t
ź

j“i`1

pI ´ γjΣνqErξk`1
i ξk`1J

i s

t
ź

j“i`1

pI ´ γjΣνq

ĺ σ2
ξγ

k`2
0 B2pk`1q

ν

t
ÿ

i“1

γt ¨

t
ź

j“i`1

pI ´ γjΣνqΣν ĺ σ2
ξγ

k`2
0 B2pk`1q

ν ¨ I.

This completes the induction.

D.4.3 Proof of Lemma D.8

By definition of pµt, we have

Er}Σu{2
ν pµL}22s “ Er}Σu{2

ν

L
ÿ

t“1

γt ¨

L
ź

i“t`1

pI ´ γiνiν
J
i qpξt}

2
2s

“

L
ÿ

t“1

γ2
t ¨ tr

´

E
”

Σu
ν

L
ź

i“t`1

pI ´ γiνiν
J
i qpξt pξ

J
t

L
ź

i“t`1

pI ´ γiνiν
J
i q

ı¯

ď pσ2
ξ

L
ÿ

t“1

γ2
t ¨ tr

´

Σu
ν

L
ź

i“t`1

pI ´ γiνiν
J
i qΣν

L
ź

i“t`1

pI ´ γiνiν
J
i q

¯

ď pσ2
ξ ¨

L
ÿ

t“1

γ2
t trpΣνq}Σν}u2 ď 2pσ2

ξB
2u
ν ¨ γ2

0 trpΣνqLeff,

where the last inequality follows since Σ2
ν ĺ Erνtν

J
t νtν

J
t s ĺ B2

νΣν and
řL

t“1 γ
2
t ď 2Leffγ

2
0 .

D.5 Proof of Lemma D.3

Let ∆p´iq
t :“ θt ´ θ

p´iq
t . For any i P rN s, t P rLs, we have

pxJ
i S

Jθtq
2 À 2pxJ

i S
Jθ

p´iq
t q2 ` 2pxJ

i S
J∆

p´iq
t q2 ď 2pxJ

i S
Jθ

p´iq
t q2 ` 2}xJ

i S
J}2Σ´s ¨ }∆

p´iq
t }2Σs

À max
iPrNs,tPrLs

pxJ
i S

Jθ
p´iq
t q2 ` max

iPrNs
}xJ

i S
J}2Σ´s ¨ max

iPrNs,tPrLs
}∆

p´iq
t }2Σs

It remains to bound maxiPrNs,tPrLs }∆
p´iq
t }2Σs . Adopt the shorthand notation a

p´iq
t :“ yi `

xJ
i S

Jθ
p´iq
t´1 and recell amax “ maxiPrNs,tPrLs |a

p´iq
t |. By taking the difference between the (GD)

process and the (LOO-GD) process, we have

∆
p´iq
t “ pI ´ γt pΣq∆

p´iq
t´1 `

γta
p´iq
t

N
Sxi “

”

t
ÿ

i“1

γia
p´iq
t

N
¨

t
ź

j“i`1

pI ´ γj pΣq

ı

looooooooooooooooooomooooooooooooooooooon

:“Vi,t

Sxi.

Therefore, for λ “ 1{pLeffγq,

}∆
p´iq
t }2Σs “ trpxJ

i S
JVi,tΣ

sVJ
i,tSxiq

“ trpxJ
i S

JVi,tΣ
srΣ ` λIs1{2rΣ ` λIs´1{2ΣsrΣ ` λIs´1{2rΣ ` λIs1{2Vi,tSxiq

ď sup
xě0

xs

x ` λ
¨ trpxJ

i S
JVi,tpΣ ` λIqVi,tSxiq

À λs´1 ¨ }ppΣ ` λIq´1{2pΣ ` λIq1{2}2 ¨ trpxJ
i S

JVi,tppΣ ` λIqVi,tSxiq.

Note that

Vi,tppΣ ` λIqVi,t ĺ VmaxppΣ ` λIqVmax,
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where

Vmax :“
t
ÿ

i“1

γiamax

N
¨

t
ź

j“i`1

pI ´ γj pΣq “ amax ¨
I ´

śt
i“1pI ´ γi pΣq

N pΣ
.

Adopt the shorthand notation Vt “ I ´
śt

i“1pI ´ γi pΣq. Choosing λ “ 1{pLeffγq in the last display
and taking the supremum over t P rLs, i P rN s, we obtain

max
iPrNs,tPrLs

}∆
p´iq
t }2Σs À

}ppΣ ` λIq´1{2pΣ ` λIq1{2}2

pLeffγqs´1
¨
a2max

N2
¨ trpxJ

i S
J
pΣ´1VtppΣ ` λIqVt

pΣ´1Sxiq

À
}ppΣ ` λIq´1{2pΣ ` λIq1{2}2

pLeffγqs´1
¨
a2max

N2
¨ max
iPrNs

}Sxi}
2
2 ¨ }pΣ´1VtppΣ ` λIqVt

pΣ´1}2.

Moreover, we have

}pΣ´1VtppΣ ` λIqVt
pΣ´1} ď }V2

t
pΣ´1} ` λ ¨ }pΣ´1Vt}

2
piq
ď Leffγ,

where step (i) follows from }Vt} ď 1 and supxPr0,1{γsp1 ´
śt

i“1p1 ´ γixqq À Leffγ by the stepsize
definition (2). Combining the last two displays, we find

max
iPrNs,tPrLs

}∆
p´iq
t }2Σs À a2max ¨ max

iPrNs
}Sxi}

2
2 ¨ }ppΣ ` λIq´1{2pΣ ` λIq1{2}2 ¨

pLeffγq2´s

N2
.

This completes the proof.
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E Auxiliary lemmas

In this section, we provide some auxiliary lemmas that are used in the proofs.

E.1 General concentration bounds

Lemma E.1. Let ν1,ν2, . . . ,νN be i.i.d. samples from N p0,Σq for some Σ P Rpˆp. Let pΣ “
řN

i“1 νiν
J
i {N . Assume that

řp
i“1

µipΣq

µipΣq`λ ď N{4. Then with probability at least 1 ´ e´ΩpNq

}ppΣ ` λIpq´1{2Σ1{2}2 ď }ppΣ ` λIpq´1{2pΣ ` λIpq1{2}2 ď 3.

Moreover, the expectation E}ppΣ ` λIpq´1{2pΣ ` λIpq1{2}42 ď 100 ` expp´cNq}Σ}22{λ2 for some
constant c ą 0.

Proof of Lemma E.1. Adopt the shorthand notation Σλ “ Σ ` λIp, pΣλ “ pΣ ` λIp. By some basic
algebra, we have

}ppΣ ` λIpq´1{2Σ1{2}22 ď }ppΣ ` λIpq´1{2pΣ ` λIpq1{2}22 “ }Σ
1{2
λ

pΣ´1
λ Σ

1{2
λ }2

“}pIp ´ Σ
´1{2
λ pΣ ´ pΣqΣ

´1{2
λ q´1}2. (33)

Let B “ Σ
´1{2
λ Σ1{2. Then we have }B}2 ď 1 and trpBBJq “

řp
i“1

µipΣq

µipΣq`λ ď N{4 by assump-
tion. Therefore, by Theorem 4 and 5 in Koltchinskii and Lounici (2017)

}Σ
´1{2
λ pΣ ´ pΣqΣ

´1{2
λ }2 ď }B}22 ¨ max

!

c

trpBBJq

N
,
trpBBJq

N

)

` c

c

t

N
¨ }B}22

ď

c

trpBBJq

N
` c

c

t

N
ď

1

2
` c

c

t

N
.

with probability at least 1 ´ e´t for any t P r1, N s. Choosing t “ N{c1 for some sufficiently
large constant c1 ą 0 yields }Σ

´1{2
λ pΣ ´ pΣqΣ

´1{2
λ }2 ď 2{3 with probability at least 1 ´ e´ΩpNq.

Combining this with Eq. (33) yields the first part of Lemma E.1.

To establish the bound in expectation, we first use Eq. (33) to obtain an always-valid upper bound

}ppΣ ` λIpq´1{2pΣ ` λIpq1{2}22 ď
1

µminpIp ´ Σ
´1{2
λ ΣΣ

´1{2
λ q

“
λ ` }Σ}2

λ
.

Combining this with the first part of Lemma E.1, we obtain

E}ppΣ ` λIpq´1{2pΣ ` λIpq1{2}42 ď 100 `
expp´cNq

λ2
¨ }Σ}22

for some constant c ą 0.

In the next three lemmas, we let pλiq
d
i“1 denote the eigenvalues of H in non-increasing order.

Lemma E.2 (Lemma G.1 in Lin et al. (2024)). Let S P RMˆd be a random sketching matrix with
i.i.d. entries Sij „ N p0, 1{Mq.5 Then there exists some absolute constant c ą 1 such that for any
M ě 1 and 0 ď k ď M , with probability at least 1 ´ e´ΩpMq ´ e´Ωpkq, we have

for every j ď M,

ˇ

ˇ

ˇ

ˇ

λ̃j ´

ˆ

λj `

ř

iąk λi

M

˙ˇ

ˇ

ˇ

ˇ

ď c

˜

c

k

M
λj ` λk`1 `

c

ř

iąk λ
2
i

M

¸

.

Consequently, if k ď M{c2, then

for every j ď M,

ˇ

ˇ

ˇ

ˇ

λ̃j ´

ˆ

λj `

ř

iąk λi

M

˙
ˇ

ˇ

ˇ

ˇ

ď
1

2

ˆ

λj `

ř

iąk λi

M

˙

` c1λk`1,

where c1 “ c ` 2c2.
5d can be `8.
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Lemma E.3 (Tail concentration; Lemma G.2 in Lin et al. (2024) and Lemma 26 in Bartlett et al.
(2020)). Let S P RMˆd be a random sketching matrix with i.i.d. entries Sij „ N p0, 1{Mq. For any
k ě 0, with probability at least 1 ´ δ, we have
›

›

›

›

Sk:8Hk:8SJ
k:8 ´

ř

iąk λi

M
¨ IM

›

›

›

›

2

À
1

M

˜

λk`1

ˆ

M ` log
1

δ

˙

`

d

ÿ

iąk

λ2
i

ˆ

M ` log
1

δ

˙

¸

.

In particular, with probability at least 1 ´ e´ΩpMq, we have
›

›

›

›

Sk:8Hk:8SJ
k:8 ´

ř

iąk λi

M
¨ IM

›

›

›

›

2

À λk`1 `

c

ř

iąk λ
2
i

M
.

Furthermore, the minimum eigenvalue of Sk:8Hk:8SJ
k:8 satisfies

µmin

`

Sk:8Hk:8SJ
k:8

˘

Á λk`2M

with probability at least 1 ´ e´ΩpMq.

Lemma E.4 (Head concentration; Lemma G.3 in Lin et al. (2024)). Let S P RMˆd be a random
sketching matrix with i.i.d. entries Sij „ N p0, 1{Mq. For any k ě 1, with probability at least 1 ´ δ,
we have

for every j ď k,
ˇ

ˇµj

`

S0:kH0:kS
J
0:k

˘

´ λj

ˇ

ˇ À

c

k ` logp1{δq

M
λj .

In particular, with probability at least 1 ´ e´Ωpkq,

for every j ď k,
ˇ

ˇµj

`

S0:kH0:kS
J
0:k

˘

´ λj

ˇ

ˇ À

c

k

M
λj .

E.2 Concentration bounds under power-law spectrum

Lemma E.5 (Eigenvalues of SHSJ under power-law spectrum; Lemma G.4 in Lin et al. (2024)).
Let Assumption 1C hold. There exist some a-dependent constants c2 ą c1 ą 0 such that

c1j
´a ď µjpSHSJq ď c2j

´a

with probability at least 1 ´ e´ΩpMq.

Lemma E.6 (Ratio of eigenvalues of Sk:8Hk:8SJ
k:8 under power-law spectrum; Lemma G.5 in Lin

et al. (2024)). Let Assumption 1C hold. There exists some a-dependent constant c ą 0 such that for
any k ě 0, the ratio between the M{2-th and M -th eigenvalues of Sk:8Hk:8SJ

k:8 satisfies

µM{2pSk:8Hk:8SJ
k:8q

µM pSk:8Hk:8SJ
k:8q

ď c

with probability at least 1 ´ e´ΩpMq.

Lemma E.7 (Bounds on Approx under the source condition; Lemma C.5 in Lin et al. (2024)).
Suppose Assumption 1 is in force. Then with probability at least 1 ´ e´ΩpMq over S,

M1´b À Ew˚ rApproxs À M1´b.

Here, the hidden constants only depend on pa, bq in Assumption 1.

Lemma E.8 (Eigenvalues of pΣ under power-law spectrum). Suppose Σ “ SHSJ satisfies µjpΣq ≂
j´a for j P rM s. Then for some a-dependent constants c, c1, c2 ą 0, pΣ “ 1

N

řN
i“1 Sxix

J
i S

J

satisfies

c1j
´a ď µjppΣq ď c2j

´a for all j ď mintM,N{cu, and

µjppΣq ď c2j
´a for all j P pmintM,N{cu,mintM,Nus

with probability at least 1 ´ e´ΩpNq over the randomness of pxiq
N
i“1 conditioned on S.
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Proof of Lemma E.8. Note that SXJ{
?
N

d
“ Σ1{2ZJ, where Z P RMˆN has i.i.d. entries Zij „

N p0, 1{Nq conditioned on S. Thus, µjppΣq “ µjpZΣZJq for j ď mintM,Nu. Let ppλiq
N
i“1 denote

the eigenvalues of ZΣZJ in non-increasing order. Using Lemma E.2 with k “ N{c for some
sufficiently large constant c and noting that

ř

iąk i
´a À k1´a, we have

1

2
¨ pj´a ` c̃1N

´aq ´ c̃2 ¨ N´a ď pλj ď
3

2
¨ pj´a ` c̃1N

´aq ` c̃2 ¨ N´a

for every j ď mintM,N{cu for some constants c̃i, i P r2s with probability at least 1 ´ e´ΩpNq.
Therefore, for all j ď mintM,N{c̃u for some sufficiently large constant c̃ ą 1, we have

pλj P rc̃3j
´a, c̃4j

´as

with probability at least 1 ´ e´ΩpNq for some constants c̃3, c̃4 ą 0. For j P

pmintM,N{c̃u,mintM,Nus, by monotonicity of the eigenvalues, we have

pλj ď pλtmintM,N{c̃uu ď c̃4

´Y

mintM,N{c̃u
]¯´a

ď c̃5 mintM,Nu´a ď c̃5j
´a

for some sufficiently large constant c̃5 ą c̃4 with probability at least 1 ´ e´ΩpNq.
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