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Abstract001

Process supervision, using a trained verifier to002
evaluate the intermediate steps generated by003
a reasoner, has demonstrated significant im-004
provements in multi-step problem solving. In005
this paper, to avoid the expensive effort of hu-006
man annotation on the verifier training data, we007
introduce Model-induced Process Supervision008
(MiPS), a novel method for automating data cu-009
ration. MiPS annotates an intermediate step by010
sampling completions of this solution through011
the reasoning model, and obtaining an accu-012
racy defined as the proportion of correct com-013
pletions. Inaccuracies of the reasoner would014
cause MiPS underestimating the accuracy of015
intermediate steps, therefore, we suggest and016
empirically show that verification focusing on017
high predicted scores of the verifier shall be018
preferred over that of low predicted scores, con-019
trary to prior observations on human curated020
data. Our approach significantly improves the021
performance of PaLM 2 on math and coding022
tasks (accuracy +0.67% on GSM8K, +4.16%023
on MATH, +0.92% on MBPP compared with024
an output supervision trained verifier). Addi-025
tionally, our study demonstrates that the verifier026
exhibits strong generalization ability across dif-027
ferent reasoning models.028

1 Introduction029

Multi-step problem solving (e.g., math problems030

and coding challenges) showcases the capabilities031

of machine intelligence. While researchers have032

shown that model- and data-upscaling still hold033

powerful for large language models (LLMs) on034

multi-step problem solving (Achiam et al., 2023;035

Touvron et al., 2023; Team Gemini et al., 2023;036

Huang et al., 2022; Azerbayev et al., 2023; Luo037

et al., 2023a; Yu et al., 2023b), even the state-of-the-038

art LLMs still produce easily observable mistakes.039

Furthermore, standard fine-tuning directly does not040

yield consistent and significant improvements (Luo041

et al., 2023a; Yu et al., 2023b; Ni et al., 2022).042
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The roots of a function are …
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Figure 1: An illustration of the reasoner-verifier
paradigm. The verifier predicts scores for the solutions
generated by the reasoner, and selects the solution with
the highest score.

Problem: Write a program for the Fibonacci Number.
Solution: def fibonacci(n):\n\tif n == 1:

def fibonacci(n):

  if n == 1:

    return 1

  elif n == 2:

    return 1

  return fibonacci(n - 1) + 

fibonacci(n - 2)

Pass

Completion by 
reasoner

Solution check

Correctness score = 1/3MiPS solution to train the verifier

Intermediate solution 

Figure 2: The Model-induced Process Supervision
(MiPS) data construction method we introduce in this
work. By completing an intermediate solution with a
reasoner several times, we can obtain the percentage
value of these completions being correct. These annota-
tions are used to train a process supervised verifier.

The reasoner-verifier paradigm (Fig. 1) is as 043

an inference-time technique where the goal is to 044

pick one model-generated solution among many, 045

since it is observed that there often are some 046

correctly generated solutions. In particular, self- 047

consistency (Wang et al., 2022) is a special case of 048

the verifier that picks the solutions that shares the 049

majority answer with others (e.g., math tasks where 050

the answer is a number). LLM-based verifiers are 051

more general, as they could apply to arbitrary text 052

solutions (e.g., code that implements a function) 053
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Training a verifier in a supervised fashion has054

demonstrated strong performance in both coding055

and math language problems. Cobbe et al. (2021)056

showed that by simply gathering correct and incor-057

rect solutions to train a binary classification model058

and using such model to pick the highest confi-059

dence solution generated by the reasoner during060

inference time, the accuracy can be improved sig-061

nificantly. More recent studies suggest that verify-062

ing on intermediate steps could offer better guid-063

ance than training solely on the whole solutions (Li064

et al., 2022; Uesato et al., 2022; Paul et al., 2023;065

Lightman et al., 2023; Feng et al., 2023; Yu et al.,066

2023a; Liu et al., 2023a; Wang et al., 2023). As067

such, verifiers trained (and applied) on intermediate068

steps are called process supervised verifiers (PSV),069

whereas those trained on whole solutions are called070

output supervised verifiers (OSV). In prior work,071

process supervision data is either obtained by an072

ad-hoc algorithm (Li et al., 2022; Paul et al., 2023),073

or through expensive human annotations (Uesato074

et al., 2022; Lightman et al., 2023), lacking an075

automatic and generic way of constructing of anno-076

tations of intermediate solutions.077

Training verifier models require solution wise078

or step-wise labels, which is expensive to collect.079

There have been a series of work following an080

LLM-as-a-verifier approach where an off-the-shelf081

LLM is employed to judge the solutions through082

prompting (Madaan et al., 2023; Kim et al., 2023;083

Pan et al., 2023). However, while such work may084

have seen improvements on language tasks, they085

haven’t been very successful in math or coding086

problems (Huang et al., 2023; Luo et al., 2023b).087

In conclusion, to achieve optimal quality, train-088

ing data is needed for building a strong verifier089

model. On the other hand, manually collecting090

solution verification labels is expensive and non-091

scalable. In this work, we propose to use Monte092

Carlo Sampling on the completions of the inter-093

mediate solutions to obtain step-wise training an-094

notations (Fig. 2). Specifically, for each interme-095

diate solution, we complete the solution with the096

reasoner several times through a sample decoding097

mechanism, and the percentage of the completed098

solutions being correct is referred to as the cor-099

rectness of the solution. The correctness scores100

are used to train a PSV. Because of the nature101

of involving the reasoning model’s completion on102

the intermediate solutions, we call the construction103

of this data Model-induced Process Supervision104

(MiPS). While such an idea is also explored in a105

concurrent work (Wang et al., 2023), we supple- 106

ment with analysis of using MiPS constructed data. 107

We find that because the reasoner model, which 108

completes the solutions, is not perfect, the noises 109

it introduces would affect the design choices of 110

training and using the process supervised verifier: 111

• We analyzed various ways to merge step-wise 112

prediction scores to a single score value (we re- 113

fer to this process as using an aggregation func- 114

tion) when using the verifier. Prior work used 115

an aggregation function that focuses on low pre- 116

dicted scores and worked well for PSV trained on 117

noise-free human annotated data (Lightman et al., 118

2023). For the noisy MiPS data, we suggest ag- 119

gregation functions that focus on high predicted 120

scores. 121

• We re-examine the usefulness of process super- 122

vision by isolating the trained PSV and studying 123

the benefits of incorporating the predicted score 124

from each intermediate step during verification. 125

Our results reveal that (1) the verification scores 126

from later intermediate steps are indeed useful 127

even for a PSV trained on the noisy MiPS data, 128

however, the earlier step scores could hurt the ver- 129

ification; and (2) only using the PSV predicted 130

score of the last step, in similar fashion as OSV, 131

can sometimes be much better than OSV itself, 132

indicating process supervision data can regular- 133

ize OSV training. 134

• We show that verifiers trained on MiPS data gen- 135

erated by a reasoner can transfer to validate so- 136

lutions by a different (and more competent) rea- 137

soner. This indicates that MiPS would not pro- 138

duce verifiers that are overly biased towards mis- 139

takes of the reasoner that generated the data. 140

Following in this paper, we will provide a more 141

complete review of related works, a precise defi- 142

nition of our method, and empirical results of the 143

method and analysis on two math problem datasets 144

and one coding dataset. The contributions of the 145

paper are mainly (1) we propose MiPS to construct 146

process supervision data automatically for train- 147

ing process supervision verifiers; (2) we extend the 148

evaluation of problem solving verifiers to coding 149

problems; (3) we provide empirical analysis on de- 150

sign choices and properties of the trained verifier 151

from MiPS data. 152

2 Related Works 153

The advances of problem solving of LLMs can 154

be broadly characterized into two regimes, first by 155
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training a better reasoning model and the second by156

validating the solution from the reasoning model157

at inference time.158

Pre-training/Fine-tuning Better Reasoners.159

Standard training recipes also transfer to training160

better reasoners for problem solving. During pre-161

training, larger model sizes and training compute162

yields an LLM that is more competent in multiple163

aspects (Achiam et al., 2023; Touvron et al., 2023;164

Anil et al., 2023, inter alia). Within fine-tuning, it165

is also observed that transfer learning (Azerbayev166

et al., 2023) from a pile of generic math datasets,167

training on an augmented dataset of failure168

examples or diverse statements (Huang et al., 2022;169

Luo et al., 2023a; Yu et al., 2023b; Ni et al., 2022)170

leads to improvements. Despite these approaches,171

it is apparent that (1) the state-of-the-art LLM172

still can fail at simple mistakes during multi-step173

problem solving and (2) the improvement of a174

simple verification method by majority voting175

(self-consistency (Wang et al., 2022)) is still176

significant upon fine-tuning. Therefore, the177

exploration of verifiers to validate and pick the178

solutions is necessary.179

Validating Through LLM-as-a-verifier. There180

have been numerous attempts on using the LLM181

reasoner itself to correct and validate its gener-182

ated solutions. Madaan et al. (2023); Kim et al.183

(2023) and many methods surveyed in Pan et al.184

(2023) broadly follow the strategy where the LLM185

validates and provides feedback to the generated186

solutions through prompts. Huang et al. (2023)187

and Luo et al. (2023b) revisited these methods and188

found that LLMs are not good verifiers for equally189

competent solutions, as such methods improves190

marginally on math word problems.191

Validating Through Trained Verifiers. In con-192

trast, verifiers trained on a human labelled dataset193

does show significant improvements (Cobbe et al.,194

2021; Uesato et al., 2022; Lightman et al., 2023).195

Importantly, Lightman et al. (2023) showed that on196

a challenging competition-level mathematics prob-197

lem set (Hendrycks et al., 2021), verifiers trained on198

annotated intermediate solutions (PSV) surpasses199

verifiers trained on final solutions by a large margin,200

and both substantially better than self-consistency.201

Other analysis also emphasize on the importance202

of step-wise feedback: Uesato et al. (2022) showed203

that PSV selects solutions that are more accurate204

in their reasonings and Yao et al. (2023); Feng205

et al. (2023); Liu et al. (2023b), inter alia, showed206

that during decoding, LLMs can be guided towards207

better solutions step-by-step. We believe that im- 208

proving the training of a PSV, and especially, iden- 209

tifying a scalable solution to generate the process 210

supervision data, is of imminent importance. There- 211

fore, in this work, we identify an automatic and 212

generic solution to generate process supervision 213

data (MiPS), and conducted detailed analysis cen- 214

tered on the noises of this automatic process. 215

Math-Shepherd. Coincidentally, such an auto- 216

matic process supervision data curation method 217

was studied concurrently and independently by 218

(Wang et al., 2023). We share a generally simi- 219

lar methodology with their work, with a few minor 220

design differences we highlight in later sections. 221

The empirical results of MiPS is similar on the two 222

datasets we share (GSM8K and MATH) despite 223

using different, but about competent, LLMs. Their 224

work extended training the verifier by applying it to 225

fine-tune the reasoner through reinforcement learn- 226

ing, while our work included an additional coding 227

dataset (MBPP) and provided analysis on the de- 228

sign choices of using the verifier, addressing the 229

data noises. We believe these two works compli- 230

ment each other. 231

3 Model-induced Process Supervision 232

We consider the reasoner-verifier framework where 233

we start with a fairly competent reasoner on a task, 234

generate verifier training data on a given set of prob- 235

lems with the reasoner, and train a verifier on the 236

data to validate some new generated solutions by a 237

reasoner. We first discuss Model-induced Process 238

Supervision, our data curation method that automat- 239

ically creates process supervision data. Then, we 240

discuss the details about the verification process. 241

3.1 Obtaining MiPS data 242

MiPS constructs process supervision data through 243

Monte Carlo sampling. First, we employ a reasoner 244

model rg to generate a fix number of ng solutions 245

for each problem, using temperature based decod- 246

ing with a temperature of tg. Then, for each so- 247

lution, we decompose them into individual steps 248

(we treat each line in a solution as an individual 249

step). After that, for each intermediate solution 250

containing a prefix list of steps, we employ a rea- 251

soner model rmc to generate again nmc solutions, 252

with a temperature of tmc, completing the interme- 253

diate solution. For each completed intermediate 254

solution, we calculate the percentage (out of nmc) 255

of them being correct, and these correctness val- 256

3



ues comprises the MiPS data. In all experiments257

in this paper, we consider rg = rmc, namely, the258

reasoner model that is used to estimate the interme-259

diate solution’s correctness is the same model that260

generates the solution data. This is particularly the261

most challenging case for MiPS, otherwise, using262

a more capable reasoner for the completion can263

enjoy a reduction of noise in MiPS data.264

3.2 Training an Output Supervised Verifier265

To understand how well the process supervised266

verifier (PSV) trained from MiPS is, it is necessary267

to consider the vanilla output supervised verifier268

(OSV), which uses the same amount of human269

labeling resources. The training data for OSV are270

the generations from the reasoner rg with the same271

temperature value tg. The verifier itself is nothing272

different from a standard language model, apart273

that it is appended with a classification head on the274

final token of the input. This is also known as the275

solution-level verifier in Cobbe et al. (2021).276

3.3 Training a Process Supervised Verifier277

The differences of training PSV and OSV are:278

• To enable predicting a score at each step in the279

solution, we mark the last token of each step (e.g.,280

if each step is represented as a single line, the last281

token will be the new line token), and optimize282

step-wise predictions at each step at the same283

time. During inference, we would also obtain a284

score for each step in a solution.285

• While for the output supervision data, or human286

labelled process supervision data, the score is ei-287

ther 0 or 1, for MiPS data, the correctness scores288

are percentage values. The training objective289

considered in this work is to learn the exact per-290

centage values ci for the ith step in the solution291

directly. However, we note that it is possible to292

consider a different learning objective. For ex-293

ample, Wang et al. (2023) considered learning a294

binarized score:295

c̃i =

{
1, if ci > 0.0

0. otherwise.
296

In later analysis, we compare these two objec-297

tives.298

3.4 Aggregating Step-wise Predictions299

The trained verifier is used to score the solutions300

generated by the reasoner. For OSV, the verifier301

prediction can be directly used as the score for the302

Dataset GSM8K MATH MBPP
Domain math math coding
Fine-tuning # Data 2000 4000 0
Verification Training # Data 5000 8000 384
Testing # Data 1319 500 500
Average Steps 4.5 11.0 7.0

Table 1: We show the statistics of the datasets we use
in this paper. The average number of steps is depicted
with a granularity of 0.5, using PaLM 2-S for GSM8K
and MBPP, and PaLM 2-L for MATH. We note that
these are not the most standard data splits, for reasons
explained in Sec 4.2.

solution. For PSV, the verifier predictions are a 303

list of predicted probabilities p1, p2, . . . , pn, one 304

for each step in the solution. Aggregating the pre- 305

dictions into a final score is necessary. Lightman 306

et al. (2023) considered two aggregation functions: 307

min = min{p1, p2, . . . , pn},

sum_logprob =
n∑

i=1

log pi = log
n∏

i=1

pi,
308

They claimed that both are equivalently good ag- 309

gregation functions. In later analysis, we show that 310

for MiPS data, these two functions are underper- 311

forming for the trained verifier, while, 312

max = max{p1, p2, . . . , pn},

sum_logit =
n∑

i=1

log
pi

1− pi
,

mean_odd =

∑n
i=1

pi
1−pi

n
,

313

are much better. We provide an analysis with a 314

much larger set of aggregation functions and sug- 315

gest that MiPS data prefers aggregation functions 316

that focus on high prediction scores rather than 317

lower ones. 318

4 Analysis 319

4.1 Models 320

In our experiments, we consider two LLMs, 321

PaLM 2-S and PaLM 2-L (Anil et al., 2023) to con- 322

duct our experiments on. We intend to understand 323

the capability of MiPS data and analyze design 324

choices of the verifier when trained on it. A concur- 325

rent work (Wang et al., 2023) conducted a similar 326

experiment on a different set of LLMs, namely 327

LLama2, LLemma, Mixtral, and Deepseek (Tou- 328

vron et al., 2023; Azerbayev et al., 2023; Jiang 329

et al., 2024; Bi et al., 2024). Detailed experimen- 330

tal settings and hyperparameters can be found in 331

Appendix A.1. 332
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Figure 3: We apply the trained output- and process-supervised verifiers on various combinations of model and
datasets. Self-consistency scores are given as a reference, however, it would be not applicable to general multi-step
reasoning tasks (e.g., figure (d), coding). We use the default training objective that directly learns the estimated
accuracies and the max aggregation function for the process verifier. In the x-axis, we vary the number of generated
solutions to apply the verifier on, and in the y-axis we plot the performance (accuracy %). The standard deviation
is also given. As a reference, we note that the purple line, representing the average performance of the generated
solutions of the reasoner without any verification, matches the expectation to be an (almost) flat horizontal line
with decreasing standard deviation. *While the reasoner that generates MiPS data and the reasoner that the verifier
validates on is PaLM 2-L, the verifier is trained from a PaLM 2-S.

4.2 Datasets333

We use two math datasets and one coding dataset334

for evaluations in this paper.335

• GSM8K (Cobbe et al., 2021) is a dataset of grade336

school math problems.337

• MATH (Hendrycks et al., 2021) is also a math338

word problems dataset. It consists of math prob-339

lems of high school math competitions.340

• MBPP is an entry-level Python programming341

dataset. The questions are coding challenges342

along with a test case that defines the function343

format and the solutions are Python code that is344

expected to solve several hidden test cases.345

Table 1 contains detailed statistics about the346

datasets, and Appendix A contains more informa-347

tion on how we split these datasets into training348

and evaluation.349

4.3 Directly Applying MiPS350

We first present the performance of the process veri-351

fier trained on MiPS data, using the default training352

objective on correctness scores directly, and the max353

aggregation function on the three datasets. For this354

experiment, we varied the number of solutions to355

be verified by the verifier from 2 to 128, to clearly356

depict the trend of the compared verifier’s perfor-357

mance. The results are shown in Fig. 3. The plots358

convey several pieces of information.359

• It is evident that using any verifier improves sig- 360

nificantly upon no verification, matching with the 361

initial assumption that verification plays a vital 362

role in multi-step problem solving. 363

• In all experiments, the verifier trained on MiPS 364

using the max aggregation function showed 365

stronger results than output verification. On 366

GSM8K, the process verification is better than 367

self-consistency. On MATH, the performance 368

lacks a bit. We note that this may be be- 369

cause we are training a less competent veri- 370

fier (PaLM 2-S) than the reasoner (PaLM 2-L). 371

Wang et al. (2023) showed improvements upon 372

self-consistency when the verifier and reasoner 373

are of the same sizes. 374

• The high performance of max may be unexpected, 375

as max seemly would be biased towards the first 376

few correct steps of an incorrect solution. In later 377

analysis, we will show that (1) max favors high 378

scores, similar to some other aggregation func- 379

tions that perform well, that is preferred on MiPS 380

data; (2) Due to higher noise in the earlier steps 381

in MiPS data, the prediction scores of the earlier 382

steps is of lower value (i.e., model confidence is 383

lower), thus showing less affect to max. 384

• In all experiments, the sum_logprob (product of 385

probabilities) and min aggregation function are 386

much worse than max or even using OSV, never- 387
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Figure 4: For each aggregation function, we show its accuracy on the MiPS data generated and the accuracy of
using it with the PSV trained. We additionally plot two lines for easier understanding of the figure, a horizontal line
corresponding to the performance of OSV and a vertical line corresponding to the maximum accuracy achievable by
the reasoner on the dataset (some problems are not solvable by the reasoner among the all solutions we generate).
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Figure 5: We plot the performance of using various aggregation functions with PSV while restricting it to predict
only the last k steps or the last p percentage of steps.

theless still providing benefits over not using a388

verifier.389

• For several verifiers, we observe that the perfor-390

mance of the verifier is on a decreasing trend391

when the number of generations is high. This is392

particularly interesting since the larger the gen-393

erations, the closer the performance should ap-394

proximate the true verification performance. This395

would indicate that the while the verifier might396

identify some correct solutions with high scores,397

it also incorrectly predicts some fewer incorrect398

solutions with even higher scores, a sign of im-399

proper generalization.400

From these results, we focus our analysis on two 401

subjects: (1) the choice of aggregation functions, 402

and (2) the effect of noise on generalization of the 403

PSV. 404

4.4 Aggregation Functions 405

To start with the analysis, we consider ten aggrega- 406

tion functions (sum and means of log probabilities, 407

probabilities, logits, and odds, and maximum and 408

minimum value over all steps). We obtain their per- 409

formance on the MiPS dataset and plot it with the 410

performance of the verifier using the aggregation 411

function on the test set (Fig. 4). We first observe 412
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Model Llemma MM-Llemma MM-Mistral
Soft + max 54.7 72.4 80.3
Soft + min 51.2 70.1 77.8
Hard + max 50.2 68.9 78.1
Hard + min 52.4 70.8 79.2

Table 2: We test on GSM8K the effect of different train-
ing objectives and aggregation functions (Hard & min,
the combination used in Wang et al. (2023), and Soft &
max, the combination we suggest). All 3 base models
are 7B in size, and MM denotes the MetaMath (Yu et al.,
2023b) fine-tuned version of them.

that in general, the two performances have positive413

correlations, indicating that it is possible to select414

an aggregation function on the MiPS dataset and415

use it during inference. Second, we notice that both416

min and sum_logprob have low performances not417

only during inference, but also in MiPS. This indi-418

cates that the poor performance of them likely is419

related to the construct of MiPS. Indeed, we realize420

that sum_logprob does not have a high correlation421

with a correct solution, as it naturally penalizes422

long solutions. For min, the possibility for a set of423

solutions to be wrongly verified using min is when424

the solution with the largest minimum correctness425

over all steps turns out to be wrong. This is actu-426

ally not an unlikely event to happen, particularly427

in consideration when the reasoner makes an erro-428

neous continuation to an initially correct solution.429

To clarify these better, we answer the following430

questions:431

What are common in good aggregation func-432

tions for MiPS data? We believe a rule of thumb433

of a good aggregation function is a function that434

values high scores highly. Consider two functions,435

one that values high scores (selects the solution436

with the highest high scores, e.g., max) and one that437

values the low scores (selects the solutions with the438

highest low scores, e.g., min). The first function439

is wrong only when the highest score solution is440

incorrect, in a simple case where there is only one441

observed step score for each solution, the probabil-442

ity is 1− smax, where smax is the score. Similarly,443

for min, the probability that the solution with the444

highest minimum score is wrong is 1− smin. Since445

smax ≥ smin, the first function shall be preferred.446

This is in line with the observation from Fig. 4 that447

aggregations of odds and logits are usually better448

than that of probabilities and log probabilities.449

Why did sum_logprob and min work well in450

Lightman et al. (2023) and Wang et al. (2023)?451

In Lightman et al. (2023), the dataset is constructed452

by human identifying all (earliest) incorrect steps, 453

which corresponds to a prediction of 0 for the ver- 454

ifier (i.e., following the analogy in the previous 455

discussion, this indicates that smax = smin = 1.0). 456

The min function would be correct on every in- 457

stance in the training dataset, and if the verifier 458

generalizes well, resembles human identification 459

of mistakes on the test dataset. For Wang et al. 460

(2023), we note a difference during MiPS data con- 461

struction as their training objective is to predict the 462

binary value of the correctness score, we discuss 463

this more in Sec 4.6. 464

The aggregation function analysis would indi- 465

cate that a good MiPS dataset score indicates a 466

good aggregation function. This is not completely 467

correct, since, a contradictory result is that the fi- 468

nal step score, which is used to train the output 469

supervised verifier, achieves 100% accuracy on the 470

training dataset, while not as good as the process 471

supervised verifier on the test set. This suggests 472

that the output supervised verifier might encounter 473

some generalization issues from the data, and MiPS 474

data can help relieve them. 475

4.5 Different Length Aggregations 476

To understand the generalization issue, we illustrate 477

the result of applying an aggregation function to 478

only the last k steps or last p percentage steps of 479

the solutions in Fig. 5. In the upper three plots, we 480

show the performance of an aggregation function 481

sum_logit on the three datasets with 1 ≤ k ≤ 5. 482

In the lower three plots, we show the performance 483

of three aggregation functions on MATH with 10 ≤ 484

p ≤ 100. We only conducted this analysis on the 485

MATH dataset, as it have solutions long enough 486

such that looking at a percentage number of steps 487

is sensible. 488

• For all experiments, the performance increases 489

with a few more steps considered from the end. 490

This indicates that the PSV predictions on the 491

last steps brings in increasing value, suggesting 492

that process scores indeed are beneficial. 493

• For most experiments, the performance starts 494

to drop after including some early steps. This 495

suggests that the quality of the predictions for the 496

first steps are poor. We believe this is because 497

MiPS has a poorer estimation of the first steps 498

than the last steps, since intuitively it is hard to 499

predict the correctness of a very early solution, 500

causing burden for the verifier to learn. 501

• For max, the performance does not change signif- 502

icantly across including more earlier steps. We 503
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GSM8K PaLM 2-S No Verifier Self Consistency OSV PSV w/ sum_logit
→ PaLM 2-S 61.6 78.7 89.5 90.5
→ PaLM 2-L 80.7 89.4 92.1 92.6
→ gpt-turbo-3.5 72.5 86.2 88.0 89.1
MBPP PaLM 2-S No Verifier OSV PSV w/ sum_logit PSV w/ sum_logit (last 3 steps)
→ PaLM 2-S 41.7 56.8 54.2 57.8
→ PaLM 2-L 42.4 56.6 55.0 57.4
→ gpt-turbo-3.5 66.2 67.6 67.6 68.2

Table 3: We train a verifier based on PaLM 2-S and data generated by PaLM 2-S and test its applicability to transfer
to validate solutions generated by two different reasoners, PaLM 2-L and gpt-turbo-3.5. A reference score of
validating solutions generated by PaLM 2-S itself is also given. We evaluate this on two tasks, GSM8K and MBPP.

examined the predicted scores and find the usu-504

ally earlier steps are smaller in value, causing it to505

contribute little to max. This is another evidence506

that PSV trained on MiPS data might suffer from507

noise in the earlier steps.508

• In all experiments, using the last-step process509

verifier predicted value is more beneficial than510

output supervision alone. Recall that this is not511

because of the problem of data quantity, as we512

upscaled the data to train the output verifier. We513

suggest that this is because the process supervi-514

sion data is of more diverse context, thus helping515

the model in generalization.516

4.6 Different Training Objectives517

The main difference in the method of ours and518

Wang et al. (2023) is the training objective of the519

verifier, where we train the verifier to directly pre-520

dict the estimated accuracies (Soft Objective), and521

they train the verifier to predict a binarized value522

(non-zeroness) of the accuracy (Hard Objective). In523

our previous analysis, we noted that since the rea-524

soner is imperfect, MiPS would provide underesti-525

mated accuracies of the intermediate steps, which526

is harmful to aggregation functions that focus on527

low values (e.g., min). In contrast, the non-zeroness528

of the accuracy would cause an overestimation of529

the accuracy, which, by the same argument, would530

be harmful to aggregation functions that focus on531

high values (e.g., max). To verify this, we conduct532

the experiments using the same language model as533

Wang et al. (2023) on the GSM8K dataset, using534

both training objectives and aggregation functions.535

The experiment setting is detailed in Ap-536

pendix A.2. The results are in Table 2. It is ob-537

served that, indeed, the max aggregation is better538

for the soft objective and the min aggregation is bet-539

ter for the hard objective. It also turns out that soft540

objective with the max aggregation consistently541

outperforms hard objective with min aggregation.542

We believe this to be a strong motivation for the543

use of the soft objective in MiPS. 544

4.7 Transferring to a Different Reasoner 545

Finally, we provide an auxiliary experiment to 546

check whether the trained verifiers would trans- 547

fer to different reasoning models. We apply the 548

verifiers trained on reasoning data generated by a 549

PaLM 2-S and use it to valid solutions generated 550

by stronger reasoners (reasoners having higher No 551

Verifier accuracy). We find the sum_logit aggrega- 552

tion function working well in this case. The result 553

is shown in Tab. 3, which shows that the trained 554

verifier transfers to different and stronger reasoners 555

with a strong validation ability, indicating that the 556

verifier is not learning something overly specific to 557

the reasoner that generates the data. 558

5 Conclusion 559

In this work, we introduce MiPS to automatically 560

annotate intermediate solutions for multi-step prob- 561

lem solving. Such data can be used to train a pro- 562

cess supervised verifier that validates solutions gen- 563

erated by a reasoner. On two math datasets and 564

one coding dataset, we demonstrated that MiPS 565

improves the ability of picking the correct solu- 566

tion over an otherwise trained output supervised 567

verifier. We conduct analysis on the aggregation 568

function used to pick the solution and suggest that 569

compared to verifiers trained on human-annotated 570

process supervision, MiPS data trained verifiers 571

prefer different aggregation functions. We also 572

showed that such verifiers do not overly emphasize 573

on the mistakes of the reasoner that produced the 574

data, and can be transferred to different reasoners. 575

Future work could explore creating a scalable way 576

to obtain MiPS data for each token in solutions to 577

train a more competent verifier and use it to tune 578

the reasoner via reinforcement learning. 579
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6 Limitation580

6.1 Underperformance on the MATH dataset581

In our work, we did not manage to conduct all ex-582

periments using the same, large model. Especially583

for the MATH dataset, we had to train a smaller ver-584

ifier to compensate of the long sequence length and585

data size. This probably led to us finding a lower586

performance of process and output verifier than587

the straightforward self-consistency. We believe588

in general that this is not true, as Lightman et al.589

(2023) and Wang et al. (2023) both showed that pro-590

cess/output verifier should output self-consistency591

on the MATH dataset.592

6.2 Efficiency593

MiPS, while automatic, requires a non-trivial594

amount of computation effort in generating the595

dataset to train the verifier. We did not attempt596

to reduce the computational effort, as we’d like to597

show the most direct comparison with no verifiers598

and output supervised verifiers. We do believe it599

is very possible to reduce the computation costs,600

for example, by avoiding creating data on every601

intermediate solutions, and we suggest future work602

to explore this direction.603
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A Datasets 748

• GSM8K (Cobbe et al., 2021) is a dataset of grade 749

school math problems. The solution is given 750

in a one-line-per-step format with an exact nu- 751

merical answer in the last line in the format of 752

####{answer}. To enforce the reasoner fol- 753

lowing this format, we use the first 2000 in- 754

stances in its training set to fine-tune the reasoner 755

model to follow such a format. The solutions to 756

fine-tune are from the training set. We use the 757

coming 5000 data to train the verifier and eval- 758

uate the verifier on solutions generated by the 759

reasoner on the test set. 760

• MATH (Hendrycks et al., 2021) is also a math 761

word problems dataset. It consists of math prob- 762

lems of high school math competitions. The so- 763

lutions are given in a format that mixes latex 764

code and natural language. A dedicated solution 765

checker was developed (Hendrycks et al., 2021; 766

Lightman et al., 2023). While the dataset itself 767

does not resemble steps into different lines, we 768

prompted GPT-4 to break down the reference so- 769

lutions into one step per line, and fine-tuned the 770

reasoner on the line separated dataset to make it 771

follow the format. We use the test split suggested 772

in Lightman et al. (2023). 773

• MBPP is an entry-level Python programming 774

dataset. The questions are coding challenges 775

along with a test case that defines the function 776

format and the solutions are Python code that is 777

expected to solve several hidden test cases. We 778

treat each individual line in the generated code as 779

a step. For languages like Python, this resembles 780

one statement per step. Due to the small dataset 781

size, we can not afford to fine-tune the reasoner 782

model, and decide to use 3 prompts in the valida- 783

tion split as in context examples to make sure the 784

model generates code in the expected format. 785

A.1 Settings 786

Throughout the paper, we choose to use a temper- 787

ature value of rg = rmc = 0.7 for both construct- 788

ing MiPS and generating solutions on the test set. 789

The number of generations for constructing MiPS 790

ng is set to 32 for GSM8K and MBPP, and 8 for 791

MATH. The number of completions nmc is also 792
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32 for GSM8K and MBPP, and 8 for MATH. For793

GSM8K, we experiment with both PaLM 2-S and794

PaLM 2-L in the reasoner-verifier framework. For795

MATH, due to compute constraints, the reasoner796

we use is the PaLM 2-L, and the verifier trained is797

the PaLM 2-S. For MBPP, we find marginal dif-798

ferences in performance between using PaLM 2-S799

and PaLM 2-L as the reasoner, therefore we exper-800

iment only with the PaLM 2-S. During generation,801

all models are 8-bit quantized, and during training,802

we use a bfloat16 precision. Since MiPS contains803

an annotation for each intermediate step in the solu-804

tion, it is naturally the number of steps times larger805

than output supervision. Therefore, we additionally806

generate more data to train the OSV. For training,807

we follow standard reward model training recipes,808

with an exception on the training epochs. Similar809

to Lightman et al. (2023), we also find it better810

to train the OSV for 1 epoch and the PSV for 2811

epochs. For the OSV on MATH data, we find that812

training with a small 0.2 epochs (essentially train-813

ing on less data) is better than training longer. For814

all experiments, we report the results of the average815

of 5 independently trained verifiers with different816

random seeds.817

A.2 Settings of the Objective Experiment818

To reduce the cost, when conducting the experi-819

ment to compare the two training objectives, we820

scaled down the experiment. On GSM8K, we used821

2000 data points for verification training data gen-822

eration, and ng = nmc = 8.823
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