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ABSTRACT

Many discrete multi-view clustering methods based on anchor graphs use the an-
chor graph decomposition or spectral clustering to obtain the final clustering la-
bels, such methods achieve good results but lack interpretability. Morever, some
of them are poorly balanced. To this end, first, we start from the perspective of
label transmission to convert labels of the anchors to the labels of the samples,
which has better interpretability. Second, we find a new and remarkable use of
the nuclear norm, i.e., maximizing the nuclear norm can ensure the balanced clus-
ters, which has the rigorous theoretical proof. Simultaneously, a novel optimisa-
tion method based on the first order Taylor expansion is proposed for the nuclear
norm. Finally, we introduce the tensor Schatten p-norm to fully exploit the spa-
tial structural and complementary information between views, which can obtain
aligned label matrices. Extensive experiments have verified the superiority of the
proposed method compared with the state-of-the-art methods.

1 INTRODUCTION

Clustering as an unsupervised machine learning method aims at classifying unlabelled data into sets
with specific meanings. This technique has been widely adopted across various fields due to its
efficiency. In the early stages, most research focused on single-view data. However, the cluster-
ing results were often suboptimal due to incomplete information about the objects. In recent years,
multi-view data, which allows obtaining object feature information from multiple perspectives, has
garnered significant attention. Multi-view data provides a more complete and comprehensive repre-
sentation of information. For example, a video can be described through text, images, voice, etc.,
and a news story can be translated into multiple languages such as Chinese, English, French, and
more. As a result, multi-view clustering has developed rapidly and is now a prominent research area.

Numerous methods have been proposed for multi-view clustering, including subspace clustering,
spectral clustering, and non-negative matrix factorization clustering. Among them, graph-based
clustering methods have experienced significant development due to their excellent performance in
capturing the spatial structure of samples, making them highly favored by researchers. The critical
step in graph-based clustering is the construction of an affinity matrix (or similarity matrix) of size
N×N , where N represents the number of samples. This matrix is used to represent the relationships
between different sample points. Since similarities must be calculated for each sample, the time
complexity of this process can reach O(N2), and the graph factorization process also has a high time
complexity of O(N3). This results in substantial memory usage and processing time, especially for
large datasets. To address this issue, some methods like Li et al. (2015) and Qiang et al. (2021)
utilize anchor graph-based clustering. The anchor graph typically has a size of N ×m, where m is
the number of anchor points, and m << N , representing the relationship between anchor points and
sample points. This approach significantly reduces the computational complexity, making it feasible
to handle large-scale datasets efficiently.

The methods for processing multiple anchor graphs in multi-view clustering have become a hot
research topic. Some approaches construct a unified graph for multi-view data instead of separate
graphs for each view (Chen et al., 2020; Lin et al., 2021), while others construct individual graphs
for each view and use multi-view learning to fuse them into a unified graph (Nie et al., 2017; Qiang
et al., 2023; Zhan et al., 2018). Although these methods achieve promising clustering results, they
rely on a unified ”global graph” for each view, assuming the same spatial structure across views. In
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reality, the hard labels and clustering results differ between views, and each view has a unique spatial
structure. These methods fail to fully explore the spatial structures and complementary information
across views.

Additionally, we observe that some graph-based or anchor graph-based methods (Kang et al., 2021;
Liang et al., 2019; Wang et al., 2021) cannot directly obtain the final clustering results, often re-
quiring post-processing methods such as k-means. These post-processing methods not only reduce
efficiency but also constrain the clustering performance, limiting the ability to achieve optimal re-
sults. Moreover, we found that many multi-view clustering methods based on anchor graphs use
the anchor graph decomposition or spectral clustering to obtain the final clustering labels, such as
Yang et al. (2024) and Qiang et al. (2021), such methods achieve good results but lack interpretabil-
ity. And, they are also unevenly balanced, making them less efficient for handling data with varied
distributions.

To address these issues, this paper uses the label transmission strategy to design the clustering model
by mining the relationship between the labels of anchors and the labels of samples, which has bet-
ter interpretability. Besides, the introduce of the nuclear norm ensures that this model can ob-
tain discrete and balanced clustering results directly, eliminating the need for time-consuming and
performance-limiting post-processing methods. In addition, the tensor Schatten p-norm used in Gao
et al. (2020); Yang et al. (2022); Lei et al. (2024); Lu et al. (2023); Li et al. (2023) explores low-rank
representations between views, which can ensure that each graph retains the spatial structural infor-
mation of its corresponding view without distortion. Our contributions are summarized as follows:

• We propose a label transmission strategy to establish the relationship between anchor points
and sample points based on an anchor graph, so that the anchor labels can be transferred to
the sample labels, which has more interpretable than previous methods.

• Different from the previous approach of minimizing the nuclear norm, we propose the
maximization of the nuclear norm to ensure the discretised and class-equilibrated in the
clustering process, which has the rigorous theoretical proof.

• For the optimization of the nuclear norm, we propose an innovative and highly efficient
optimization approach grounded in the first-order Taylor expansion.

• We introduce the tensor Schatten p-norm to fully explore the spatial complementary in-
formation between views. This can ensure that labels of samples from different views are
more likely to align, thereby enhancing clustering performance.

2 RELATED WORK

2.1 GRAPH-BASED CLUSTERING

There are a number of methods that perform weighted embedding of multiple graphs to obtain
fused graphs. Liang et al. (2019; 2022), by exploiting the consistency and inconsistency between
individual views for multi-view graph learning to obtain a unified graph common to all views, the
authors of these two methods believe that there are consistent as well as inconsistent parts between
the views, and thus design an objective function so that the model can learn the consistency between
views to obtain a common graph of fused terms. Wang et al. (2019) recognises that the importance
of the views is not consistent, and thus chooses to fuse multiple graphs by weighting them thus
obtaining a consistent representation. Qiang et al. (2023) proposed a very concise graph-based
clustering method using an objective function with only one item in order to obtain a weighted
multi-view aggregated graph with good results.

Even though these methods give good clustering results, multi-graph fusion is not always a good
choice for multi-view. Fusion of graphs involves treating the hard labels in each view as consistent,
but this is not reasonable. The clustering results of different views will often not be identical, and
methods that directly use the results of multi-graph fusion to obtain hard labels do not fully exploit
the complementary information between views and ignore the spatial structure information of each
view. At the same time, we also note that these methods use full-sample graphs, and the computa-
tional complexity of this construction process and decomposition process is O(N2) or even O(N3),
especially on large-scale data this problem is particularly significant.
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2.2 ANCHOR GRAPH-BASED CLUSTERING

In order to reduce the computational complexity, methods such as Li et al. (2015) propose an anchor
graph-based clustering approach. The number of anchor points m used to construct the anchor graph
is much smaller than the number of samples N (m << N ), which can significantly reduce the
space and time complexity of the model. Similarly, in the anchor graph-based approach, Kang et al.
(2021) proposed a framework that can be applied to both single and multiple views. They similarly
recognise that different views may play different roles and choose to weight different views, but
the key graph remains applicable across views using a uniform graph. Yang et al. (2024); Qiang
et al. (2021); Shi et al. (2021), on the other hand, weights the anchor graphs for different views
according to their importance and fuses the anchor graphs for each view to get a unified graph.
These three discrete clustering methods do not fully explore the spatial structure information and
complementary information between views. In addition, they all use matrix decomposition to obtain
the final labelling matrix, which makes the interpretability worse. Also in addition to this, these
methods above they try to make the hard labels consistent for each view clustering, this requirement
is too high and different from the actual situation, resulting in clustering results are not good.

3 METHODOLOGY

3.1 MOTIVATION AND OBJECTIVE

Before proposing our model, we introduce Theorem 3.1 first.
Theorem 3.1. Given n1 + n2 + · · · + nC = N , where nk ≥ 0 denotes the number of samples in
the k-th cluster, the optimal value of problem (1) can be obtained when n1 = n2 = · · · = nC = N

C ,
which equals

√
NC. At this point, the probability matrix U is discrete and shows a balanced class

distribution.
max

U≥0,U1=1
∥ U ∥∗, (1)

where, ∥ · ∥∗ is the matrix nuclear norm.

Proof. Let σi(·) denote the i-th largest singular value of a matrix, and τi(·) denote the i-th largest
eigenvalue of a matrix, we have

∥ U ∥∗=
C∑
i=1

σi(U) =

C∑
i=1

√
τi(UTU) = tr

√
UTU, (2)

where, σ2
i (U) = τi(U

TU), and tr(UTU) =
∑C

i=1 τi(U
TU).

Thus, we can obtain the following equivalent form of problem (2):

max
U≥0,U1=1

∥ U ∥∗ ⇔ max
U≥0,U1=1

tr(UTU) = max
U≥0,U1=1

N∑
i=1

C∑
j=1

u2
ij . (3)

Since the samples in U are independent, each row is independent. The problem of the i-th row
is maxui1=1

∑C
j=1 u

2
ij , whose optimal solution is that ui has one and only one element equal to

1, with the rest of the elements being 0. Therefore, the maximum value of the problem (3) is N ,
leading to the conclusion that maximizing the nuclear norm of the probability matrix forces the
discrete label matrix.

In this case, the matrix UTU ∈ RC×C is a diagonal matrix, where the j-th element nj equals the
number of samples contained in the j-th cluster. Therefore, we have

∥ U ∥∗=
C∑

j=1

√
nj . (4)

Further, we define u = [
√
n1, . . . ,

√
nC ]

T ∈ RC×1 and q = [1, . . . , 1]T ∈ RC×1. According to the
Cauchy-Schwarz inequality, |⟨u , q⟩| ≤ ∥u∥2∥q∥2, we have

√
n1 + · · ·+√

nC ≤ √
n1 + · · ·+ nC

√
1 + · · ·+ 1 =

√
NC. (5)
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Figure 1: Construction of tensor G ∈ RN×V×C , where Ψ (j)(j ∈ {1, 2, . . . , N}) denotes the j-th
frontal slice of tensor G.

Equality in (5) holds if and only if n1 = · · · = nC = N/C.

Inspired by the method of constructing anchor graphs to reduce computational complexity, we pro-
pose a label transmission strategy. Specifically, S ∈ RN×m represents the correlation between
the sample points and the anchor points—the larger the value, the higher the correlation, with the
relationship being reciprocal. We can consider S as the similarity between anchor points and sam-
ple points, and G ∈ RN×C as the similarity between sample points and categories. We consider
Z = {zi}Ni=1 and A = {aj}mj=1 are the sets consisting of sample points and anchor points, respec-
tively. The probabilistic transmission process is considered as a weighting of similarity. The one-
step transition probability matrix T can be computed as T = (OS)−1S, where oSii =

∑N+m
j=1 sij .

Thus, the transition probability from the i-th sample to the j-th anchor point is given by Liu et al.
(2010)

t(1)(aj | zi) =
sij∑m

j′=1 sij′
= sij . (6)

Similarly, let gik denote the weight between sample point xi and class ck. The transition probability
from the i-th sample point to the k-th class is

t(1)(ck | zi) =
gik∑c

k′=1 gik′
= gik. (7)

The probability transfer process can be treated as a weighted sum of similarities. Finally, the transi-
tion probability from anchor points to categories is

t(ck | aj) = t(1)(zi | aj)t(1)(ck | zi) =
N∑
i=1

sijgik. (8)

By using a label transmission strategy with anchors, we can better handle large-scale data. Con-
sidering the multi-view clustering problem, we denote Gv ∈ RN×C as the label matrix of the v-th
view. We then let G be an indicator matrix. Thus, we propose the following model:

max
Gv∈Ind

V∑
v=1

∥ ST
v Gv ∥∗, (9)

where, Sv ∈ RN×m is the anchor graph of the v-th view. Ind refers to an indicator matrix where
only one element in each row is 1, and the remaining elements are 0. Gv denotes the v-th view of
tensor G, which is constructed as shown in Fig. 1.

Constraining the solution within a single view alone does not sufficiently guarantee that the cor-
responding samples in each view will be grouped into the same clusters. Since we are addressing
a multi-view problem, the matrices from each view form a tensor. Thus, we introduce the tensor
Schatten p-norm as a regularization term.
Definition 3.2. (Gao et al., 2020) Given a tensor M ∈ Rn1×n2×n3 , where h = min(n1, n2), the
tensor Schatten p-norm of M is defined as:

∥M∥Sp⃝ =

(
n3∑
i=1

∥M(i)∥pSp⃝

) 1
p

=

 n3∑
i=1

h∑
j=1

σj(M(i)
)p

 1
p

, (10)

where, σj(M(i)
) represents the j-th singular value of M(i)

.
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Remark 3.3. When p = 1, the tensor Schatten p-norm of M ∈ Rn1×n2×n3 becomes the tensor
nuclear norm (Gao et al., 2020), which is defined as:

∥M∥∗ =

n3∑
i=1

h∑
j=1

σj

(
M(i)

)
.

Let us take the matrix Schatten p-norm as an example. We have ∥M∥pSp⃝ = σp
1 + · · · + σp

h, where
p > 0, M ∈ Rn1×n2 , and σi denotes the i-th singular value of M. As shown in Nie et al. (2012),
limp→0 ∥M∥pSp⃝ = #{i : σi ̸= 0} = rank(M).

As illustrated in Fig. 1, for tensor G, the j-th frontal slice Ψ (j) represents the relationship between
the N samples and the j-th cluster in different views. Moreover, in practice, the structure of clusters
varies significantly across views. The Schatten p-norm constraint on G ensures that the j-th slice
Ψ (j) exhibits a spatially low-rank structure. By minimizing the Schatten p-norm, the clustering re-
sults within each view can be made more consistent, enabling better utilization of the complementary
information between views.

Thus, the problem (9) can be improved to the following form:

max
Gv∈Ind

V∑
v=1

∥ST
v Gv∥∗ − λ∥G∥pSp⃝, (11)

where, λ and p are hyperparameters.

In general, different views in multi-view data often contain various heterogeneous features, and each
view does not contribute to a specific task to the same extent. The fusion of multi-view information
has a significant impact on the effectiveness of multi-view learning, as each view contributes differ-
ently for clustering purposes. We choose to apply learnable weights, allowing the model to learn
the weights between views during the optimization process, assigning them to view-specific anchor
clustering results. The final objective function is formulated as follows:

max
Gv,αv

V∑
v=1

αr
v∥ST

v Gv∥∗ − λ∥G∥pSp⃝, s.t. Gv ∈ Ind , αv ≥ 0,

V∑
v=1

αv = 1, (12)

where, 0 ≤ αv ≤ 1 is the weight of the v-th view, and r is a hyperparameter.

3.2 OPTIMIZATION

Since the nuclear norm in (12) involves the sum of the singular values of a matrix, which is not
always a smooth function, direct optimization of problems involving nuclear norm tends to be com-
plex and difficult.

In this case, we can take f(X) = ∥ST
v Gv∥∗ = ∥X∥∗, and perform a first-order Taylor expansion at

the solution X(t) obtained in the t-th iteration, i.e.,

f(X) = f(X(t)) + ⟨∇f(X(t)),X−X(t)⟩, (13)

where, ∇f(X(t)) is the gradient of f(X) = ∥ · ∥∗ at X(t). Based on SVD and according to Zhen
et al. (2017), we have

H = ∇f(X) =
∂∥X∥∗
∂X

= UΣ−1|Σ|VT , (14)

where, X = UΣVT and Σ−1 is the Moore-Penrose pseudo-inverse of Σ. At this point, if we ignore
the constants in Eq. (13), we obtain the following form:

⟨∇f(X(t)),X⟩ = tr(∇f(X(t))TX) = tr(HTX). (15)

Up to this point, the nuclear norm in the antecedent term of model (12) gets an equivalent form. For
the Schatten p-norm in the latter term, we use the Augmented Lagrange Multiplier (ALM) method
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and introduce the auxiliary variable J , such that J = G. Model (12) then leads to the following
form:

max
αv,Gv,J

V∑
v=1

αr
vtr(HT

v S
T
v Gv)− λ∥J ∥pSp⃝ − µ

2
∥G −J +

M
µ

∥2F ,

s.t. Gv ∈ Ind , αv ≥ 0,

V∑
v=1

αv = 1,

(16)

where, M is the Lagrange multiplier and µ is the penalty parameter.

To solve this problem, we divide it into four steps.

• Solve G with fixed J . The model (12) becomes:

max
Gv∈Ind

V∑
v=1

αr
v tr(H

T
v S

T
v Gv)−

µ

2

V∑
v=1

∥Gv − Jv +
Mv

µ
∥2F . (17)

Expanding the posterior term and ignoring constants, we obtain the following form:

max
Gv∈Ind

V∑
v=1

tr
(
GT

v (αr
vSvHv + µJv −Mv)

)
. (18)

Since the views are independent, within each view, Gv is updated by:

Gib =

{
1, argmax

i
(αr

vSvHv + µJv −Mv)i,

0, otherwise,
(19)

where, i = 1, 2, . . . , N and b = 1, 2, . . . , C.
• Solve J with fixed G. The model (12) becomes:

min
J

λ∥J ∥pSp⃝ +
µ

2
∥G −J +

M
µ

∥2F . (20)

This problem has a closed-form solution as presented in Theorem 3.4 from Gao et al.
(2020).
Theorem 3.4. Let A ∈ Rn1×n2×n3 have a t-SVD A = U ∗ S ∗ VT . For the model:

argmin
X

1

2
∥X −A∥2F + τ∥X∥pSp⃝, (21)

the global optimal solution is given by:

X ∗ = Γτ (A) = U ∗ ifft(Pτ (Ā)) ∗ VT , (22)

where, Pτ (Ā) ∈ Rn1×n2×n3 is obtained by the General Shrinkage Thresholding algo-
rithm, Ā is the Fourier transform of A, and Γτ (A) is the t-SVD of A.

Thus, the solution to problem (20) is:

J ∗ = Γλ
µ

(
G +

M
µ

)
. (23)

• Solve α with fixed G and J . The model (12) becomes:

max
αv

V∑
v=1

αr
v tr(H

T
v S

T
v Gv), s.t. αv ≥ 0,

V∑
v=1

αv = 1. (24)

Using the method of Lagrange multipliers, we define the following Lagrange function:

L(α1, α2, . . . , αv, γ) =

V∑
v=1

αr
vNv + γ

(
1−

V∑
v=1

αv

)
+

V∑
v=1

µv(−αv), (25)
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where, µv and γ are the Lagrange multipliers, and Nv = tr(HT
v S

T
v Gv). The optimal

solution to problem (25) is given by Lu et al. (2023):

αv =
N

1
1−r
v∑V

v=1 N
1

1−r
v

, (26)

where, Nv = tr(HT
v S

T
v Gv).

• Update µ and M.
The penalty parameter µ is updated by

µ = min(ρµ, µmax), (27)

where ρ = 1.1 and µmax = 109. The Lagrange multiplier M is updated by

M = M+ µ(G −J ). (28)

The pseudo-code for the entire optimization algorithm is summarized as Algorithm 3.1.

Algorithm 3.1 Optimization to problem (12)

1: Input Data matrixes{D(v)}Vv=1 ∈ RN×dv , anchor rate θ.
2: Initialize p, λ, r, G, J = M = 0, S, αv = 1

V
, (v = 1, . . . , V ), ρ = 1.1, µ = 10−5, µmax = 109.

3: Contrust the anchor graph S by Xia et al. (2022).
4: while not convergence do
5: Update G by (19);
6: Update J by (23);
7: Update M by M = M+ µ(G −J );
8: Update αv by (26), (v = 1, . . . , V );
9: Update µ by µ = min(ρµ, µmax);

10: end while
11: Output indicator matrix {Gv}Vv=1 ∈ Ind.

4 EXPERIMENTS

In this section, we compare the proposed anchor graph-based multi-view clustering algorithm with
nine state-of-the-art multi-view clustering methods.

4.1 DATASETS

We conducted experiments on some real-world datasets: MSRC (Winn & Jojic, 2005), HandWritten
(Asuncion et al., 2007), Mnist (Deng, 2012), Scene (Oliva & Torralba, 2001), NoisyMnist (Wang
et al., 2015), and NUS-WIDE (Chua et al., 2009). The relevant information for each dataset is shown
in Table 2 in the Appendix.

4.2 IMPLEMENTATIONS

All experiments were performed on an Intel Xeon Platinum 8168 CPU running the Windows 10 op-
erating system, using MATLAB R2020b. For the anchor rate when constructing the anchor graphs,
we adjusted it from 0.1 to 1 in steps of 0.1 for all datasets except the two largest ones. For the
parameter p in the tensor Schatten p-norm, we similarly varied it from 0.1 to 1 in steps of 0.1. The
weights λ of the tensor Schatten p-norm were divided into two parts, adjusted from 0.1 to 1 in steps
of 0.1, and from 2 to 20 in steps of 1. The parameter r for the weights of the views αv was also
divided into two parts: adjusted from 0.1 to 0.9 in steps of 0.1, and from 2 to 20 in steps of 1.

4.3 RESULTS AND ANALYSIS

Comparative algorithms

7
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Table 1: Clustering performance of different method on real world datasets.

Dataset MSRC HW Mnist Scene NoisyMnist NUS-WIDE
Metric ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
SMSC 0.766 0.717 0.804 0.742 0.781 0.759 0.913 0.789 0.913 0.508 0.535 0.576 OM OM OM OM OM OM
SwMC 0.776 0.774 0.805 0.758 0.833 0.792 0.914 0.799 0.912 - - - OM OM OM - - -

LMVSC 0.814 0.717 0.814 0.904 0.831 0.940 0.892 0.726 0.892 0.561 0.512 0.581 0.388 0.344 0.434 0.133 0.110 0.167
FPMVS-CAG 0.843 0.738 0.843 0.850 0.787 0.850 0.887 0.719 0.887 0.541 0.584 0.541 0.554 0.513 0.567 0.174 0.128 0.210

CSMSC 0.682 0.767 0.862 0.806 0.793 0.867 0.643 0.601 0.728 0.576 0.574 0.629 OM OM OM OM OM OM
GMC 0.895 0.809 0.895 0.879 0.882 0.879 0.921 0.807 0.921 0.409 0.430 0.417 - - - - - -

ETLMSC 0.962 0.937 0.962 0.938 0.894 0.938 0.934 0.847 0.934 0.218 0.166 0.221 OM OM OM OM OM OM
MSC-BG 0.981 0.960 0.981 0.889 0.922 0.889 0.938 0.861 0.938 0.519 0.602 0.562 - - - - - -
Orth-NTF 0.990 0.978 0.990 0.985 0.969 0.985 0.977 0.926 0.977 0.758 0.804 0.759 0.605 0.593 0.627 0.355 0.544 0.465

Ours 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.988 0.977 0.988 0.740 0.792 0.793 0.528 0.554 0.528

• SMSC (Hu et al., 2020): Combines non-negative embedding and spectral embedding. Non-
negative embedding is learned to obtain the final clustering results directly, avoiding per-
formance degradation due to post-processing.

• SwMC (Nie et al., 2017): A unified graph is obtained by weighted fusion of different views,
minimizing the difference between a common indication matrix and the similarity matrix.

• LMVSE (Kang et al., 2020): Fuses the graphs of all views to get a unified graph and uses
spectral clustering for the final result.

• FPMVS-CAG (Wang et al., 2021): Unifies anchor learning with anchor graph construction,
optimizing jointly with linear time complexity, followed by post-processing to obtain the
final clustering results.

• CSMSC (Luo et al., 2018): The self-representation matrix is divided into consistent and
exclusive parts, with the former reflecting low-rank results and the latter highlighting the
unique variations of each view.

• GMC (Wang et al., 2019): Fuses multiple graphs by weighting them to obtain a consistent
representation.

• ETLMSC (Wu et al., 2019): Constructs a probability matrix from the tensor, with spectral
clustering providing the final result.

• MSC-BG (Yang et al., 2022): Constrains two-part graphs using tensor Schatten p-norms to
efficiently capture spatial structure and complementary information between views.

• Orth-NTF (Li et al., 2024): Applies orthogonal non-negative tensor factorization with ten-
sor Schatten p-norm constraints.

The experimental results of the nine comparison algorithms on six datasets are shown in Table 1.
Our method consistently achieves promising results across all datasets, validating its effectiveness.

• In summary, our proposed model outperforms the comparison algorithms in most cases.
• Additionally, we obtain clustering results directly without post-processing, outperform-

ing algorithms such as SMSC, LMVSE, FPMVS-CAG, and ETLMSC that rely on post-
processing for final results. This demonstrates better stability compared to methods requir-
ing post-processing.

• Compared to methods like SwMC, LMVSE, and GMC, which fuse views into a unified
common graph, our method preserves the anchor graph for each view, fully leveraging
spatial structure and complementary information using tensor Schatten p-norms, resulting
in improved performance.

• Although MSC-BG also employs tensor Schatten p-norm constraints, our approach ac-
counts for the uniqueness of different views by preserving each view’s individual graph.

• While Orth-NTF uses non-negative matrix factorization with tensor Schatten p-norm con-
straints, our approach leverages anchor graphs to explore the spatial structure relationship
between anchor and sample points more effectively.

4.4 PARAMETER SENSITIVITY ANALYSIS

Effect of anchor rate: To evaluate the influence of the anchor rate on clustering performance,
we used multiple clustering metrics and conducted experiments on several datasets. The results are
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Figure 2: The performance of the proposed method with different anchor rates
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Figure 3: The performance of the proposed method with different p

visualized in Fig. 2. As described earlier, we varied the anchor rate from 0.1 to 1 in increments of 0.1.
Except for the MSRC dataset, the clustering performance did not show a consistent improvement as
the anchor rate increased. Furthermore, the results remained relatively stable despite changes in the
anchor rate.

Effect of tensor Schatten p-norm: We investigated the effect of the parameters of the tensor
Schatten p-norm on the clustering results across multiple datasets. As mentioned above, we varied
p from 0.1 to 1 in increments of 0.1 and observed Acc, NMI, and Purity for each dataset, which we
visualized as a histogram in Fig. 3. It can be seen that the parameter p does not have a significant
impact on individual datasets.

Effect of λ: The histogram depicting the clustering performance with varying λ is presented in
Fig. 4. We adjusted λ over two segments and displayed the results for one range of [0.1, 0.5, 1, 5,
10, 15, 20]. Except for the Mnist dataset, it can be observed that the clustering performance improves
progressively with increasing λ. This parameter aims to balance the contributions of the two terms
in the objective function, which generally do not equalize at the same value across different datasets.

Effect of r: Fig. 5 shows a histogram of the clustering results as a function of the hyperparameter
r. We tested one series r = [−1, 0.001, 0.01, 0.1, 0.5, 0.9, 2, 5, 10, 20]. Except for the Mnist dataset,
the best clustering results were achieved with smaller values of r. This is because, at larger values of
r, an exponential explosion occurs, making the weights nearly zero and leading to poorer results.
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Figure 4: The performance of the proposed method with different λ
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Figure 5: The performance of the proposed method with different r
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Figure 6: The convergence of the proposed method

4.5 CONVERGENCE STUDY

Fig. 6 presents the curve of the clustering effect and the convergence discriminant condition with
increasing iterations. The discriminant used is the reconstruction error (i.e., ∥G − J ∥∞), while
the clustering effect is measured by Acc. It can be observed that our algorithm generally converges
within 150 iterations.

5 CONCLUSION

In this paper, we propose a multi-view clustering method based on anchor graphs, which directly
obtains the final clustering results. Specifically, the label transmission strategy is proposed to cap-
ture the relationship between samples and anchors, which has better interpretability. Moreover,
maximizing the nuclear norm can ensure the balanced clusters, followed by a novel optimization
method. In addition, by utilizing tensor Schatten p-norm, it fully exploits the spatial structural infor-
mation and the complementary information between views to enhance clustering performance. The
contribution of each view is reassessed, and individual views are weighted according to their signif-
icance. Experiments conducted on four standard datasets and two large-scale datasets demonstrate
the excellent performance of the proposed algorithm, affirming its superiority. Additionally, a series
of parametric and convergence analysis experiments are presented to illustrate the robustness and
effectiveness of the method.
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A APPENDIX

A.1 MORE DETIALS OF EXPERIMENTS

Table 2: Statistics of real world datasets

Dataset Instances Views Classes Dimension
MSRC 210 5 7 24/576/512/256/254

HW 2000 4 10 76/216/47/6
Mnist 4000 3 4 30/9/30
Scene 4485 3 15 1800/1180/1240

NoisyMnist 50000 2 10 784/784
NUS-WIDE 30000 5 31 64/225/144/73/128
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