
Under review as a conference paper at ICLR 2024

SET-BASED NEURAL NETWORK ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an approach to neural network weight encoding for generalization per-
formance prediction that utilizes set-to-set and set-to-vector functions to efficiently
encode neural network parameters. Our approach is capable of encoding neural
networks in a modelzoo of mixed architecture and different parameter sizes as
opposed to previous approaches that require custom encoding models for different
architectures. Furthermore, our Set-based Neural network Encoder (SNE) takes
into consideration the hierarchical computational structure of neural networks by
utilizing a layer-wise encoding scheme that culminates to encoding all layer-wise
encodings to obtain the neural network encoding vector. Additionally, we introduce
a pad-chunk-encode pipeline to efficiently encode neural network layers that is
adjustable to computational and memory constraints. We also introduce two new
tasks for neural network generalization performance prediction: cross-dataset and
cross-architecture. In cross-dataset performance prediction, we evaluate how well
performance predictors generalize across modelzoos trained on different datasets
but of the same architecture. In cross-architecture performance prediction, we
evaluate how well generalization performance predictors transfer to modelzoos of
different architecture. Experimentally, we show that SNE outperforms the rele-
vant baselines on the cross-dataset task and provide the first set of results on the
cross-architecture task.

1 INTRODUCTION

Recently, deep learning methods have been applied to a wide range of fields and problems. With
this broad range of applications, large amounts of datasets are continually being made available in
the public domain together with neural networks trained on these datasets. Given this abundance
of trained neural network models, the following curiosity arises: what can we deduce about these
networks with access only to the parameter values? More generally, can we predict properties of
these networks such as generalization performance on a testset, the dataset on which the model was
trained, the choice of optimizer and learning rate, the number of training epochs, choice of model
initialization etc. through an analysis of the model parameters? The ability to infer such fundamental
properties of trained neural networks using only the parameter values has the potential to open up
new application and research paradigms.

In this work, we tackle a specific version of this problem, namely, that of predicting the generalization
performance on a testset of a neural network given access, only to the parameter values at the end of
the training process. The first approach to solving this problem, proposed by Unterthiner et al. (2020),
involves computing statistics such as the mean, standard deviation and quantiles, of each layer in
the network, concatenating them to a single vector that represents the neural network encoding, and
using this vector to predict the performance of the network. Another approach, also proposed as a
baseline in Unterthiner et al. (2020), involves flattening all the parameter values of the network into
a single vector which is then fed as input to layers of multilayer perceptrons(MLPs) to predict the
network’s performance. An immediate consequence of this approach is that it is practical only for
moderately sized neural network architectures. Additionally, this approach ignores the hierarchical
computational structure of neural networks through the weight vectorization process. The second,
and most recent approach to this problem, proposed by Zhou et al. (2023), takes a geometric approach
to the problem by building neural network weight encoding functions, termed neural functionals,
that respect symmetric properties of permutation invariance and equivariance of the hidden layers of
multilayer perceptrons under the action of an appropriately applied permutation group. While this
approach respect these fundamental properties in the parameter space, it’s application is restricted,

1

Under review as a conference paper at ICLR 2024

Figure 1: Legend: : Padding, : Set-to-Set Function, : Set-to-Vector Function, : Layer-Level Encoder,
: Layer-Type Encoder. Concept: (left) Given the weights of a layer, SNE begins by padding and chunking the

weights into chunksizes. Each chunk of the layer weight goes through a series of set-to-set and set-to-vector
functions to obtain the chunk representation vector. Layer level and layer type positional encodings are used to
inject structural information of the network at each stage of the chunk encoding process. All chunk encoding
vectors are encoded together to obtain the layer encoding. (right) All layer encodings in the neural network
are encoded to obtain the neural network encoding vector again using as series of set-to-set and set-to-vector
functions. This vector is then used to predict the generalization performance of the neural network.

strictly, to multilayer perceptrons. Also, even when relaxations are made to extend this method to
convolutional networks and combinations of convolutional layers and multilayer perceptrons, these
only work under strict conditions of equivalence in the channel size in the last convolutional layer
and the first linear layer. Hence it is clear that while the method proposed by Zhou et al. (2023)
enjoys nice theoretical properties, its application is limited to only a small subset of carefully chosen
architectures.

Moreover, both approaches (Unterthiner et al., 2020; Zhou et al., 2023) have a fundamental limitation:
their encoding methods are applicable only to a single fixed, pre chosen neural network architecture.
Once the performance predictor is trained, in the case of Unterthiner et al. (2020), and the neural
network encoder of Zhou et al. (2023) is defined, they cannot be used to predict the performance
of neural networks of different architecture. Consequently, evaluating these models on diverse
architectures is infeasible without training an new generalization performance predictor for each
architecture.

To this end, we propose a Set-based Neural Network Encoder (SNE) for predicting the performance
of neural networks given only the model parameters that is agnostic to the network architecture.
Specifically, we treat the neural network encoding problem from a set encoding perspective by
utilising compositions of set-to-set and set-to-vector functions. However, the parameters of neural
networks are ordered. To retain this order information, we utilize positional encoding Vaswani et al.
(2017) at various stages in our model. Also, our model incorporates the hierarchical computational
structure of neural networks in the encoder design by encoding independently, layer-wise, culminating
in a final encoding stage that compresses all the layer-wise information into a single encoding vector
used to predict the network performance. To handle the issue of large and variable parameter sizes
efficiently, we incorporate a pad-chunk-encode pipeline that is parallelizable and can be used to
iteratively encode layer parameters. In terms of evaluation, we introduce two new tasks: cross-dataset
neural network performance prediction and cross-architecture neural network performance prediction.
In cross-dataset neural network performance prediction, we fix the neural network architecture
used to generate the training data and evaluate how well the performance predictors transfer to the
same architecture trained on different datasets. For cross-architecture neural network performance
prediction, we fix only the architecture for generating the training data and evaluate the performance
of the predictors on architectures unseen during training.

Our contributions are as follows:

• We develop a Set-based Neural Network Encoder (SNE) for predicting the performance of
neural networks given access only to parameter values that is capable of encoding neural
networks of arbitrary architecture and takes into account the hierarchical computational
structure of neural networks.

2

Under review as a conference paper at ICLR 2024

• We introduce the cross-dataset neural network performance prediction task where we
evaluate how well neural network performance predictors transfer across neural networks
trained on different datasets.

• We introduce the cross-architecture neural network performance prediction task where we
evaluate how well neural network performance predictors trained on a specific architecture
transfer to unseen architectures during training.

• We benchmark our method, SNE, against the relevant baselines on the cross-dataset task
and show significant improvement over the baselines.

• Finally, we provide the first set of results on the cross-architecture task using our set-based
neural network encoder, SNE.

2 RELATED WORK

Set Functions: Neural networks that operate on set structured data have recently been used in
many applications ranging from point cloud classification to set generation (Kim et al., 2021).
Set functions are required to respect symmetric properties such as permutation invariance and
equivariance. In DeepSets (Zaheer et al., 2017), a set of sum-decomposable functions are introduced
that are equivariant in the Set-to-Set applications and invariant in the Set-to-Vector applications. In Set
Transformers (Lee et al., 2019), a class of attention based Set-to-Set and Set-to-Vector functions are
introduced that are more expressive and capable of modeling pairwise and higher order interactions
between set elements. Recent works such as Bruno et al. (2021) and Willette et al. (2023) deal with
the problem of processing sets of large cardinality in the the limited memory/computational budget
regime. In this work, we utilize the class of set functions developed in Lee et al. (2019) to develop a
neural network encoder for performance prediction that is agnostic to specific architectural choices.
Our set-based formulation allows us to build such an encoder, capable of handling neural networks
weights of arbitrary parameter sizes. This is different from recent approaches to neural network
encoding for performance prediction that can encode only parameters of a single architecture.

Neural Network Performance Prediction From Weights: Predicting the performance of neural
networks given access only to the trained parameters is a relatively new topic of research introduced
by Unterthiner et al. (2020). In Unterthiner et al. (2020), two methods are proposed for predicting
the generalization performance of neural networks: the first involves flattening the weights of the
network into a single vector, processing it using multiple layers of MLPs to obtain an encoding vector
which is then used to predict the performance. The second involves computing the statistics of each
layer in the network, such as mean, variance, quantiles etc., concatenating them into a single vector
that is then used for predicting the performance of the network. The most recent approach that we
are aware of, Navon et al. (2023) and Zhou et al. (2023), proposes a neural network weight encoder
that is invariant or equivariant, depending on the application, to an appropriately applied permutation
group to the hidden layers of MLPs. Two variants of their model is provided: one which operates only
on the hidden layers, and conforms strictly to the theory of permuting MLP hidden neurons (Hecht-
Nielsen, 1990), and a relaxation that assumes that the neurons of both the input and output layers of
MLPs are permutable. Additionally, extensions are provided for convolutional layers. Our approach,
SNE, is directly comparable to these methods for the neural network performance prediction task.
However, unlike the methods of Unterthiner et al. (2020), Navon et al. (2023) and Zhou et al. (2023)
which operate only on neural networks of fixed architecture, and consequently fixed number of
parameters, SNE is capable of encoding networks of arbitrary architecture. Moreover, SNE utilizes
the hierarchical computation structure of neural networks by encoding, iteratively or in parallel,
from the input to the output layers. Furthermore, we go further than the experimental evaluation
in Unterthiner et al. (2020) and Zhou et al. (2023) by introducing two new tasks: cross-dataset and
cross-architecture neural network performance prediction. Unterthiner et al. (2020) and Zhou et al.
(2023) can only be benchmarked on the cross-dataset task where all networks in the modelzoos are
of the same architecture. Their restriction to a single fixed architecture makes cross-architecture
evaluation impossible. Our method, SNE, on the other hand can be used for both tasks.
3 SET-BASED NEURAL NETWORK ENCODING

3.1 PRELIMINARIES

We have access to a dataset D = {(x1, y2), . . . , (xn, yn)} where for each (xi, yi) pair, xi represents
the weights of a neural network architecture a, sampled from a set of architectures A and yi

3

Under review as a conference paper at ICLR 2024

corresponds to some property of xi after it has been trained on a specific dataset d. yi can be
properties such as generalization gap, training loss, the learning rate used to train xi, or even the
number of epochs, choice of weight initialization, and optimizer used to train xi. Henceforth, we
refer to D as a modelzoo. For each xi ∈ D, xi = [w0

i , . . . , w
|xi|
i] where wji represents the weights

(parameters) of the jth layer of the neural network xi, and |xi| is the total number of layers in xi.
Consequently, w0

i and w|xi|i are the input and output layers of xi respectively. Additionally, we
introduce the Flatten : xi → Rdi operation, that takes as input the weights of a neural network
and returns the flattened weights and di is the total number of parameter is xi.

The neural network encoding problem is defined such that, we seek to compress xi ∈ Rdi to a
compact representation zxi ∈ Rh such that zxi can be used to predict the properties yi of xi with
h� di. In what follows, we present the details of our Set-Based Neural Network Encoding (SNE)
method capable of encoding the weights of neural networks of arbitrary architecture that takes into
account the hierarchical computational structure of the given architecture and with efficient methods
for processing weights of high dimension.

3.2 HANDLING HIGH DIMENSIONAL LAYER WEIGHTS VIA CHUNKING

For a given layer wji ∈ xi, the dimension of wji , |w
j
i | can be very large. For instance, when

considering linear layers, flattening the weights can results in a tensor that can require large compute
memory to be processable by another neural network. To resolve this issue, we resort to chunking.
Specifically, for all layers wji ∈ xi, we perform the following operations:

ŵji = Chunk(Pad(Flatten(wji), c), c) = {wj0i , . . . , w
jq
i }, (1)

where for any wjti ∈ ŵ
j
i , |wjti | ∈ Rc. Here, c is the chunksize, fixed for all layer types in the neural

network and t ∈ [0, . . . , q]. The padding operation Pad(wji , c) appends zeros, if required, to extend
wji and make its dimension a multiple of the chunksize c. To distinguish padded values from actual
weight values, each element of ŵji has a corresponding set of masks m̂j

i = {mj0
i , . . . ,m

jq
i }. Note

that with this padding and subsequent chunking operation, each element in ŵji is now small enough,
for an appropriately chosen chunksize c, to be processed. Moreover, all the elements in ŵji can be
processed in parallel.

The modelzoos we consider in the experimental section are populated by neural networks with
stacks of convolutional and linear layers. For each such layer, we apply the padding and chunking
operation differently. For a linear layer wji ∈ Rout×in, where out and in are the input and output
dimensions respectively, we apply the flattening operation on both dimensions followed by padding
and chunking. However for a convolutional layer wji ∈ Rout×in×k×k, we apply the flattening,
padding, and chunking operations only to the kernel dimensions k.

Finally we note that for layers with bias values, we apply the procedure detailed above independently
to both the weights and biases.

3.3 INDEPENDENT CHUNK ENCODING

The next stage in our Set-based Neural Network encoding pipeline involves encoding, independently,
each chunk of weight in ŵji = {wj0i , . . . , w

jt
i }. For each wjti ∈ ŵji , we treat the c elements as

members of a set. However, it is clear that wjti has order in its sequence, i.e., an ordered set. We
remedy this by providing this order information via positional encoding. Concretely, for a given
wjti ∈ Rc×1, we first model the pairwise relations between all c elements using a set-to-set function
Φθ1 to obtain:

ŵjti = Φθ1(wjti) ∈ Rc×h. (2)

That is, Φθ1 captures pair-wise correlations in wjti and projects all elements (weight values) to a new
dimension h.

Given ŵjti ∈ Rc×h, we inject two kinds of positionally encoded information. The first encodes the
layer type in a list of layers, i.e., linear or convolution for the modelzoos we experiment with, to
obtain:

ŵjti = PosEncTypeLayer(ŵ
jt
i) ∈ Rc×h. (3)

4

Under review as a conference paper at ICLR 2024

Here we abuse notation and assign the output of PosEnc(·) to ŵiti to convey the fact that ŵjti ’s are
modified in place and to simplify the notation. Also, all PosEnc(·)s are variants of the positional
encoding method introduced in Vaswani et al. (2017). Next we inject the layer level information.
Since neural networks are computationally hierarchical, starting from the input to the output layer, we
include this information to distinguish chunks, wjti s from different layers. Specifically, we compute:

ŵjti = PosEncLevelLayer(ŵ
jt
i) ∈ Rc×h, (4)

where the input to PosEncLevelLayer(·) is the output of Equation 3. We note that this approach is different
from previous neural network encoding methods (Unterthiner et al., 2020) that loose the layer/type
information by directly encoding the entire flattened weights hence disregarding the hierarchical
computational structure of neural networks. Experimentally, we find that injecting such positionally
encoded information improves the models performance.

We further model pairwise correlations in ŵjti , now infused with layer/type information, using another
set-to-set function Φθ2 :

ŵjti = Φθ2(wjti) ∈ Rc×h. (5)

The final step in the chunk encoding pipeline involves compressing all c elements in ŵjti to a compact
representation. For this, we use a set-to-vector function Γθα : Rc×h → Rh. In summary, the chunk
encoding layer computes the following function:

w̃jti = Γθα [Φθ2(PosEncLevelLayer(PosEncTypeLayer(Φθ1(wjti))))] ∈ R1×H . (6)

Note now that for each chunked layer ŵji = {wj0i , . . . , w
jq
i }, the chunk encoder, Equation 6, produces

a new set w̃ji = Concatenate[{w̃j0i , . . . , w̃
jq
i }] ∈ Rq×h, which represents all the encodings of all

chunks in a layer.

Remark Our usage of set functions Φθ1 ,Φθ2 and Γθα allows us to process layers of arbitrary sizes.
This in turn allows us to process neural networks of arbitrary architecture using a single model, a
property lacking in previous approaches to neural network encoding for generalization performance
prediction (Zhou et al., 2023; Unterthiner et al., 2020).

3.4 LAYER ENCODING

At this point, we have encoded all the chunked parameters of a given layer to obtain w̃ji . Encoding a
layer, wji , then involves defining a function Γθβ : Rq×h → R1×h for arbitrary q. In practice, this is
done by computing:

wji = Γθβ [PosEncLevelLayer(Φθ3(w̃ji))] ∈ R1×h. (7)

Again we have injected the layer level information, via positional encoding, into the encoding
processed by the set-to-set function Φθ3 . We then collect all the layer level encoding of the neural
network xi:

w̃i = Concatenate[w0
i , . . . ,w

|xi|
i] ∈ R|xi|×h. (8)

3.5 NEURAL NETWORK ENCODING

With all layers in xi encoded, we compute the neural network encoding vector zxi as follows:

zxi = Γθγ [Φθ4(PosEncLevelLayer(w̃i))] ∈ Rh. (9)

zxi compresses all the layer-wise information into a compact representation for the downstream task.
Since Γθγ is agnostic to the number of layers |xi| of network xi, the encoding mechanism can handle
networks of arbitrary layers and by extension architecture. Similar to the layer encoding pipeline, we
again re-inject the layer-level information through positional encoding before compressing with Γθγ .

Henceforth, we refer to the entire neural network encoding pipeline detailed so far as SNEΘ(xi) for
a network xi, where Θ encapsulates all the model parameters, Φθ1−4

,Γα,Γβ and Γγ .

5

Under review as a conference paper at ICLR 2024

3.6 CHOICE OF SET-TO-SET AND SET-TO-VECTOR FUNCTIONS

Now, we specify the choice of Set-to-Set and Set-to-Vector functions encapsulated by Φθ1−4
,Γα,Γβ

and Γγ that are used to implement SNE. Let X ∈ RnX×d and Y ∈ RnY ×d be arbitrary sets where
nX = |X|, nY = |Y | and d (note the abuse of notation from Section 3.1 where d is a dataset) is the
dimension of an element in both X and Y .

The MultiHead Attention Block (MAB) with parameter ω is given by:

MAB(X,Y ;ω) = LayerNorm(H + rFF(H)), where (10)

H = LayerNorm(X + MultiHead(X,Y, Y ;ω). (11)
Here, LayerNorm and rFF are Layer Normalization (Ba et al., 2016) and row-wise feedforward layers
respectively. MultiHead(X,Y, Y ;ω) is the multihead attention layer of Vaswani et al. (2017).

The Set Attention Block (Lee et al., 2019), SAB, is given by:

SAB(X) := MAB(X,X). (12)

That is, SAB computes attention between set elements and models pairwise interactions and hence is
a Set-to-Set function. Finally, the Pooling MultiHead Attention Block (Lee et al., 2019), PMAk, is
given by:

PMAk(X) = MAB(S, rFF(X)), where (13)
S ∈ Rk×d and X ∈ RnX×d. The k elements of S are termed seed vectors and when k = 1, as is
in all our experiments, PMAk pools a set of size nX to a single vector making it a Set-to-Vector
function.

All parameters encapsulated by Φθ1−4 are implemented as a stack of two SAB modules:
SAB(SAB(X)). Stacking SAB modules enables us not only to model pairwise interactions but
also higher order interactions between set elements. Finally, all of Γα,Γβ and Γγ are implemented as
a single PMA module with k = 1.

3.7 DOWNSTREAM TASK

Given (zxi , yi), we train a predictor fθ(zxi) to estimate properties of the network xi. In this work,
we focus solely on the task of predicting the generalization performance of xi, where yi is the
performance on the test set of the dataset used to train xi. The parameters of the predictor fθ and all
the parameters in the neural network encoding pipeline, Θ, are jointly optimized. In particular, we
minimize the error between fθ(zxi) and yi. For the entire modelzoo, the objective is given as:

minimize
Θ,θ

d∑
i=1

`[fθ(SNEΘ(xi)), yi], (14)

for an appropriately chosen loss function `(·). In our experiments, `(·) is the binary cross entropy
loss. The entire SNE pipeline is shown in Figure 1.

4 EXPERIMENTS

We now present experimental results on the cross-dataest and cross-architecture neural network
performance prediction tasks. Details of experimental settings, hyperparameters, model specification
etc. can be found in the Appendix.

4.1 CROSS-DATASET NEURAL NETWORK PERFORMANCE PREDICTION

For this task, we train neural network performance predictors on 4 homogeneous modelzoos, of the
same architecture, with each modelzoo specialized to a single dataset.

Datasets and Neural Network Architecture: Each modelzoo is trained on one of the following
datasets: MNIST (Deng, 2012), FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky, 2009)
and SVHN (Netzer et al., 2018). We use the modelzoos provided by Unterthiner et al. (2020). To
create each modelzoo, 30K different hyperparameter configurations were sampled. The hyperparam-
eters include the learning rate, regularization coefficient, dropout rate, the variance and choice of
initialization, activation functions etc. A thorough description of the modelzoo generation process

6

Under review as a conference paper at ICLR 2024

Table 1: Cross-Dataset Neural Network Performance Prediction. We benchmark how well each method transfers
across multiple datasets. In the first column, A→ B implies that a model trained on a homogeneous modelzoo
of dataset A is evaluated on a homogeneous modelzoo of dataset B. In the last row, we report the averaged
performance of all methods across the cross-dataset task. For each row, the best model is shown in red and the
second best in blue. Models are evaluated in terms of Kendall’s τ coefficient.

MLP STATNN NFNNP NFNHNP SNE(ours)

MNIST→MNIST 0.878±0.001 0.926±0.000 0.937±0.000 0.942±0.001 0.941±0.000
MNIST→ FashionMNIST 0.486±0.019 0.756±0.006 0.726±0.005 0.690±0.008 0.773±0.009
MNIST→ CIFAR10 0.562±0.024 0.773±0.005 0.756±0.010 0.758±0.000 0.792±0.008
MNIST→ SVHN 0.544±0.005 0.698±0.005 0.702±0.005 0.710±0.010 0.721±0.001
FashionMNIST→ FashionMNIST 0.874±0.001 0.915±0.000 0.922±0.001 0.935±0.000 0.928±0.001
FashionMNIST→MNIST 0.507±0.007 0.667±0.010 0.755±0.018 0.617±0.012 0.722±0.005
FashionMNIST→ CIFAR10 0.515±0.007 0.698±0.029 0.733±0.007 0.695±0.032 0.745±0.008
FashionMNIST→ SVHN 0.554±0.006 0.502±0.043 0.663±0.014 0.662±0.003 0.664±0.003
CIFAR10→ CIFAR10 0.880±0.000 0.912±0.001 0.924±0.002 0.931±0.000 0.927±0.000
CIFAR10→MNIST 0.552±0.003 0.656±0.005 0.674±0.018 0.600±0.025 0.648±0.006
CIFAR10→ FashionMNIST 0.514±0.005 0.677±0.004 0.629±0.031 0.526±0.038 0.643±0.006
CIFAR10→ SVHN 0.578±0.005 0.728±0.004 0.697±0.006 0.662±0.004 0.753±0.007
SVHN→ SVHN 0.809±0.003 0.844±0.000 0.855±0.001 0.862±0.002 0.858±0.003
SVHN→MNIST 0.545±0.025 0.630±0.009 0.674±0.008 0.647±0.016 0.647±0.001
SVHN→ FashionMNIST 0.523±0.026 0.616±0.007 0.567±0.014 0.494±0.023 0.655±0.003
SVHN→ CIFAR10 0.540±0.027 0.746±0.002 0.725±0.007 0.547±0.039 0.760±0.006
Average 0.616±0.143 0.734±0.115 0.746±0.106 0.705±0.140 0.761±0.101

MNIST FashionMNIST CIFAR10 SVHN

(a) MLP (b) STATNN (c) NFNNP (d) NFNHNP (e) SNE(ours)

Figure 2: TSNE Visualization of Neural Network Encoding. We train neural network performance prediction
methods on a combination of the MNIST, FashionMNIST, CIFAR10 and SVHN modelzoos of Unterthiner et al.
(2020). We present 3 views of the resulting 3-D plots showing how neural networks from each modelzoo are
embedded/encoded by the corresponding models. Zoom in for better viewing.

can be found in Appendix A.2 of Unterthiner et al. (2020). The single architecture used to general
the modelzoos consists of 3 convolutional layers each with 16 filters, a global average pooling layer
and linear classification layer. Each modelzoo is split into a training, testing and validation splits.

Task: In this task, we consider cross-dataset neural network performance prediction where we
evaluate the prediction performance on the testset of the modelzoo on which the predictors were
trained on. Additionally, we evaluate how well each predictor transfers to the other modelzoos. To the

7

Under review as a conference paper at ICLR 2024

best of our knowledge, this is the first such empirical analysis of how well neural network performance
predictors transfer to different datasets. We evaluate all models using Kendall’s τ (Kendall, 1938), a
rank correlation measure.

Baselines: We compare SNE with the following baselines:

• MLP: This model flattens all the weights and biases of each neural network into a single
vector which is then fed to a stack of MLPs with ReLU activation and finally a Sigmoid
activation function for predicting the performance of the neural network.

• STATNN (Unterthiner et al., 2020): Given neural network weights, this model computes
statistics of each layer, including their means, variance and quantiles, concatenates them
into a single vector which is then used as input to a stack of MLPs with ReLU activation and
a final layer with Sigmoid activation that outputs the performance of the neural network.

• NFNHNP and NFNNP (Zhou et al., 2023): These two models termed Neural Functionals(NF),
developed mainly for MLPs, are designed to be permutation invariant or equivariant to an
appropriately applied permutation group to the hidden layers of the neural networks. HNP,
hidden neural permutation, is applied only to the hidden layers of each network since the
output and input layers of MLPs are not invariant/equivariant to the action of a permutation
group on the neurons. NP, neural permutation, makes a strong assumption that both the input
and output layers are also invariant/equivariant under the action of a permutation group.

Results: We present the results of the cross-dataset neural network performance prediction task in
Table 1. For each row in Table 1, the first column shows the cross-dataset evalutation direction. For
instance, MNIST→CIFAR10 implies that a model trained on a modelzoo of neural networks trained
on MNIST is cross evaluated on a modelzoo populated by neural networks trained on CIFAR10.
We note that the A→A setting, e.g. MNIST→MNIST, corresponds to the evaluation settings of
Unterthiner et al. (2020) and Zhou et al. (2023). Also in Table 1 we show the best model in red and
the second best model in blue.

As show in Table 1, SNE is always either the best model or the second best model in the cross-dataset
task. Especially, SNE is particularly good in the A→B performance prediction task compared to
the next competitive baselines, NFNNP and NFNHNP. The MLP baseline, as expected, performs the
worse since concatenating all weight values in a single vector looses information such as the network
structure. STATNN (Unterthiner et al., 2020) performs relatively better than the MLP baseline
suggesting that the statistics of each layer indeed captures enough information to do moderately well
on the neural network performance prediction task. NFNNP and NFNHNP perform much better than
STATNN and MLP and NFNHNP in particular shows good results in the A→A setting. Interestingly,
NFNNP is a much better cross-dataset performance prediction model than NFNHNP. However, across
the entire cross-dataset neural network performance prediction task, SNE significantly outperforms
all the baselines as shown in the last row of Table 1.

Also, as stated in Section 3.3, positional encoding of layer and level information provides perfor-
mance boost. For instance, removing all such encoding from SNE reduces the performance on
CIFAR10→CIFAR10 from 0.928 to 0.918.

Qualitative Analysis: To further understand how SNE transfers well across modelzoos, we generate
TSNE (Van der Maaten and Hinton, 2008) plots for the neural network encoding of all the compared
models for all four homogeneous modelzoos in Figure 2. We provide 3 different views of each models
embeddings to better illustrate the encoding pattern. In Figures 2c and 2d, we observe that NFNNP
and NFNHNP have very clear separation boundaries between the networks from each modelzoo. This
may explain NFNHNP’s good performance in the A→A cross-dataset neural network encoding task in
Table 1. In Figures 2a and 2b, MLP and STATNN, respectively show similar patterns with small
continuous string of modelzoo specific groupings. However, these separations are not as defined
as those of NFNNP and NFNHNP. The embedding patter of SNE on the other hand is completely
different. In Figure 2e, all networks from all the modelzoos are embedded almost uniformly close
to each other. This may suggest why SNE performs much better on the cross-dataset performance
prediction task since it is much easier to interpolate between the neural network encodings generated
by SNE across modelzoos.

4.2 CROSS-ARCHITECTURE NEURAL NETWORK PERFORMANCE PREDICTION

8

Under review as a conference paper at ICLR 2024

Table 2: Cross-Architecture Neural Network
Performance Prediction. We compare how
SNE transfers across architectures.

Arch1 → Arch2 SNE

MNIST→MNIST 0.452±0.021
MNIST→ CIFAR10 0.478±0.010
MNIST→ SVHN 0.582±0.016
CIFAR10→ CIFAR10 0.511±0.020
CIFAR10→MNIST 0.467±0.020
CIFAR10→ SVHN 0.594±0.029
SVHN→ SVHN 0.621±0.013
SVHN→MNIST 0.418±0.096
SVHN→ CIFAR10 0.481±0.055

For this tasks, we train SNE on 3 homogeneous modelzoos
of the same architecture and test it on 3 other homogeneous
modelzoos of a different architecture than the modelzoo
used for training. The cross-architecture task demonstrates
SNE’s agnosticism to particular architectural choices since
training and testing are done on modelzoos of different
architectures.

Datasets and Neural Network Architectures: For cross
architecture evaluation, we utilize 3 datasets: MNIST, CI-
FAR10 and SVHN. Since the modelzoos of Unterthiner
et al. (2020) consist of a single architecture, we refer to
them as Arch1. We use all modelzoos of Arch1 only for
training the neural network performance predictors. We
create another set of MNIST, CIFAR10 and SVHN modelzoos using a different architecture Arch2.
Arch2 consists of 3 convolutional layers followed by two linear layers. Exact architectural specifi-
cations are detailed in the Appendix. We generate the modelzoos of Arch2 following the routine
described in Appendix A.2 of Unterthiner et al. (2020). All modelzoos of Arch2 are used only
for testing the cross-architecture neural network performance prediction of predictors trained on
modelzoos of Arch1 and are not used during training.

Task: For this task, we seek to explore the following question: Does neural network performance
predictors trained on modelzoos of Arch1 transfer or generalize on modelzoos of Arch2? Also,
we perform cross dataset evaluation on this task. However, this is different from the cross dataset
evaluation in Section 4.1 since the cross evaluation is with respect to modelzoos of Arch2.

Baselines: As we already remarked, none of the baselines used in the cross dataset task of Section 4.1
are applicable to this task. The MLP, STATNN, NFNNP and NFNHNP baselines all depend on
the architecture of the modelzoo used for training and require modelzoos to be homogeneous
architecturally. SNE on the other hand is agnostic to architectural choices and hence can be evaluated
cross-architecture. Consequently, we provide the first set of results, to the best of our knowledge, on
the cross-architecture neural network performance prediction task.

Results: We report the quantitative evaluation on the cross-architecture task in Table 2. The first
column, Arch1 → Arch2 shows the direction of transfer, where we train using modelzoos of Arch1

and test on modelzoos of Arch2. Additionally, A→B, e.g. MNIST→CIFAR10 shows the cross-dataset
transfer as in Section 4.1. However, the transfer is now across architectures. We evaluate SNE in
terms of Kendall’s τ .

From Table 2, it can be seen that SNE transfers well across architectures. Interestingly, the SVHN
modelzoo, the most challenging modelzoo in the cross-dataset task, shows very good transfer across
architectures. Alluding to the qualitative analysis in Section 4.1, we infer that SNE transfers well
across architectures due to it’s spread out neural network encoding pattern that allows for much easier
interpolation even across unseen architectures as shown in Table 2.

5 CONCLUSION

In this work, we tackled the problem of predicting neural network generalization performance given
access only to the trained parameter values. We presented a Set-based Neural Network Encoder (SNE)
that reformulates the neural network encoding problem as a set encoding problem. Using a sequence
of set-to-set and set-to-vector functions, SNE utilizes a pad-chunk-encode pipeline to encode each
network layer independently; a sequence of operations that is parallelizable across chunked layer
parameter values. SNE also utilizes the computational structure of neural networks by injecting
positionally encoder layer type/level information in the encoding pipeline. As a result, SNE is capable
of encoding neural networks of different architectures as opposed to previous methods that only work
on a fixed architecture. Experimentally, we introduced the cross-dataset and cross-architecture neural
network generalization performance prediction tasks. We demonstrated SNE’s ability to transfer well
across modelzoos of the same architecture but with networks trained on different datasets on the
cross-dataset task. On the cross-architecture task, we demonstrated SNE’s agnosticism to architectural
choices and provided the first set of experimental results for this task.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Andreis Bruno, Jeffrey Willette, Juho Lee, and Sung Ju Hwang. Mini-batch consistent slot set encoder
for scalable set encoding. Advances in Neural Information Processing Systems, 34:21365–21374,
2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced
Neural Computers, pages 129–135. Elsevier, 1990.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. Setvae: Learning hierarchical composi-
tion for generative modeling of set-structured data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15059–15068, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pages 3744–3753. PMLR, 2019.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. arXiv preprint arXiv:2301.12780, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and A Ng. The street view
house numbers (svhn) dataset. Technical report, Technical report, Accessed 2016-08-01.[Online],
2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
neural network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jeffrey Willette, Seanie Lee, Bruno Andreis, Kenji Kawaguchi, Juho Lee, and Sung Ju Hwang.
Scalable set encoding with universal mini-batch consistency and unbiased full set gradient approxi-
mation, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Allan Zhou, Kaien Yang, Kaylee Burns, Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea
Finn. Permutation equivariant neural functionals. arXiv preprint arXiv:2302.14040, 2023.

10

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2024

A ORGANIZATION

In Section B we provide some limitations and future directions for the neural network encoding task.
In Section C, we specify all the model architectures used for generating the modelzoos of Arch1 and
Arch2 used for the cross-dataset and cross-architecture tasks. In Section D we provide details of the
train/validation/test splits. In Section E, we detail all the hyperparameters used for all experiments.
Finally in we provide SNE implementation details is Section F.

B LIMITATIONS & FUTURE WORK

In this work, we focused solely on the task of predicting the properties, specifically generalization
performance, of neural networks given access only to the model parameters. While the task of
encoding neural network weights is a relatively new topic of research with very few baselines, we
anticipate new applications/research directions where the neural network encoding vector is used
for tasks such as neural network generation or neural network retrieval. These tasks and potential
applications are out of the scope of this paper and we leave it for future works.

C ARCHITECTURES FOR GENERATING MODELZOOS

We specify the architectures for generating the modelzoos of Arch1 and Arch2. For the modelzoos
of Arch1 in Table 3, all datasets with with 3 channel images (CIFAR10 and SVHN) are converted
to grayscale. This is in accordance with the setup of both Unterthiner et al. (2020) and Zhou et al.
(2023) and allows us to evaluate both methods in the cross-dataset task for this set of homogeneous
modelzoos. For modelzoos of Arch2 in Tables 4 & 5, we maintain the original channels of the
datasets. The cross-architecture transfer task is from Arch1 to Arch2. Note also that for the same
dataset, i.e., CIFAR10, the cross-architecture evaluation is also from models trained grayscale to RGB
images. All modelzoos were generated using the prodcedure outlined in the Appendix of Unterthiner
et al. (2020).

Table 3: Arch1 for MNIST, FashionMNIST, CIFAR10 and SVHN.

Output Size Layers

1× 32× 32 Input Image
16× 30× 30 Conv2d(in_channels=1 , out_channels=16, kernel_size=3), ReLU
16× 28× 28 Conv2d(in_channels=16, out_channels=16, kernel_size=3), ReLU
16× 26× 26 Conv2d(in_channels=16, out_channels=16, kernel_size=3), ReLU
16× 1× 1 AdaptiveAvgPool2d(output_size=(1, 1))
16 Flatten
10 Linear(in_features=16, out_features=10)

Table 4: Arch2 for MNIST.

Output Size Layers

1× 28× 28 Input Image
8× 24× 24 Conv2d(in_channels=1 , out_channels=8, kernel_size=5)
8× 12× 12 MaxPool2d(kernel_size=2, stride=2), ReLU
6× 8× 8 Conv2d(in_channels=8 , out_channels=6, kernel_size=5)
6× 4× 4 MaxPool2d(kernel_size=2, stride=2), ReLU
4× 3× 3 Conv2d(in_channels=6 , out_channels=4, kernel_size=2), ReLU
36 Flatten
20 Linear(in_features=36, out_features=20), ReLU
10 Linear(in_features=20, out_features=10)

11

Under review as a conference paper at ICLR 2024

Table 5: Arch2 for CIFAR10 and SVHN.

Output Size Layers

3× 28× 28 Input Image
8× 24× 24 Conv2d(in_channels=3 , out_channels=8, kernel_size=5)
8× 12× 12 MaxPool2d(kernel_size=2, stride=2), ReLU
6× 8× 8 Conv2d(in_channels=8 , out_channels=6, kernel_size=5)
6× 4× 4 MaxPool2d(kernel_size=2, stride=2), ReLU
4× 3× 3 Conv2d(in_channels=6 , out_channels=4, kernel_size=2), ReLU
36 Flatten
20 Linear(in_features=36, out_features=20), ReLU
10 Linear(in_features=20, out_features=10)

D DATASET DETAILS

Dataset splits for modelzoos of Arch1 is given in Table 6. For the cross-architecture task, we generate
modelzoos of with 750 neural networks of Arch2 for testing.

Table 6: Dataset splits for modelzoos of Arch1.

Modelzoo Train set Validation set Test set

MNIST 11998 3000 14999
FashionMNIST 12000 3000 15000
CIFAR10 12000 3000 15000
SVHN 11995 2999 14994

E HYPERPARAMETERS

We elaborate all the hyperparameters used for all experiments in Table 7.

Table 7: Hyperparameters for all experiments.

Hyperparameter Value

LR 1e− 4
Optimizer Adam
Scheduler Multistep
Batchsize 64
Epochs 300
Metric Binary Cross Entropy
NN Encoding Size 1024
SAB Hidden Size 512
PMA Seed Size 1024
SAB Blocks 2
chunksize 32
SAB LayerNorm False

F IMPLEMENTATION DETAILS

SNE is implemented using Pytorch (Paszke et al., 2019). The SNE model consists of 4 sub-modules:

• Layer Chunk Encoder: This consists of two SAB modules where each SAB module is as
stack of two SAB layers, followed by a single PMA layer. The layer chunk encoder encodes
all the chunks of a given layer independently.

• Layer Encoder: This module encodes all the encoded chunks of a layer and consists of two
SAB modules and a single PMA layer.

12

Under review as a conference paper at ICLR 2024

• Separated Layer Encoder: This module encodes all the encodings of a layer, for instance
the weights and biases, into a single layer encoding vector. It also consists of two SAB
modules and a single PMA layer.

• NN Encoding Layer: This module takes as input all the layer encodings and compresses
them to obtain the neural network encoding which is used for the downstream task of
predicting the neural network generalization performance. It also consists of two SAB
modules and a single PMA layer.

In addition to the sub-modules above, the layer/level positional encoders are applied to each sub-
module when required (see Section 3). The neural network performance predictor, which takes as
input the neural network encoding vector from SNE and predicts the performance is detailed in
Table 8.

Table 8: Generalization Performance Predictor.

Output Size Layers

1000 Linear(in_features=1024, out_features=1000), ReLU
1000 Linear(in_features=1000, out_features=1000), ReLU
1 Linear(in_features=1000, out_features=1), Sigmoid

13

	Introduction
	Related Work
	Set-based Neural Network Encoding
	Preliminaries
	Handling High Dimensional Layer Weights via Chunking
	Independent Chunk Encoding
	Layer Encoding
	Neural Network Encoding
	Choice of Set-to-Set and Set-to-Vector Functions
	Downstream Task

	Experiments
	Cross-Dataset Neural Network Performance Prediction
	Cross-Architecture Neural Network Performance Prediction

	Conclusion
	Organization
	Limitations & Future Work
	Architectures for Generating Modelzoos
	Dataset Details
	Hyperparameters
	Implementation Details

