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Abstract

Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning Large Lan-
guage Models (LLMs) with human values. However, RLHF has been continuously challenged
by its high complexity in implementation and computation consumption, specifically for on-
line sampling-based methods like Proximal Policy Optimization (PPO) and Group Relative
Policy Optimization (GRPO). Even with recent simplifications, such as Direct Preference
Optimization (DPO) that designs an offline implicit reward learning objective relying on
pre-collected preference datasets, the problems of over-fitting and training instability re-
main hindering the alignment process from the expected optimal performance. To address
the existing challenges, we propose a novel simplification of RLHF from the perspective of
variational inference, called Variational Alignment with Re-weighting (VAR). Specifically,
by directly minimizing the distribution gap between the learning LLM policy and the opti-
mal solution of RLHF, we transform the alignment objective into an offline reward-driven
re-weighted supervised fine-tuning (SFT) form, which only requires minor adjustment on
the SFT loss to obtain noticeable improvement on training stability and effectiveness. In
comprehensive evaluation benchmarks, our objective empowers LLMs to outperform offline
alignments, demonstrating superior performance in both helpfulness and harmlessness met-
rics (avg. ↑ 7.16% than DPO). Meanwhile, when compared to online sampling methods, our
method is also comparable even better while significantly reducing computational overhead
and accelerating convergence speed (over 5× faster than GRPO), suggesting our approach
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as an efficient and effective solution in bridging the gap between efficiency and performance
in LLM alignment.

1 Introduction

Large Language Models (LLMs) (OpenAI, 2024; Touvron et al., 2023a; Yang et al., 2024) have achieved
remarkable success in extensive applications of artificial intelligence (AI), including dialogue generation (Ab-
dullin et al., 2024), coding (Cobbe et al., 2021; Shao et al., 2024), logical reasoning (Suzgun et al., 2022),
AI agents(Wu et al., 2023; Hu et al., 2025a;b), and data curation (Du et al., 2025; Li et al., 2024a; 2025a).
Among the diverse LLM training techniques, Reinforcement Learning from Human Feedback (RLHF) plays
a core role in ensuring the LLM generation is helpful and harmless (Ouyang et al., 2022; Rafailov et al.,
2024).

In particular, RLHF first learns a reward model (RM) (Li et al., 2025b) from annotated human prefer-
ences, then trains LLMs within a reinforcement learning (RL) scheme via Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to optimize the expected rewards from the learned RM (Ouyang et al.,
2022). Although recognized as the mainstream solution to LLM alignment (Ouyang et al., 2022; Shao et al.,
2024; Touvron et al., 2023b; OpenAI, 2024; Yang et al., 2024), RLHF remains being challenged because of
its expensive computational resource consumption (Cheng et al., 2023; Yuan et al., 2023) and complicated
implementation (Ouyang et al., 2022; Shao et al., 2024; Yuan et al., 2023) in which multiple models (e.g.
the learning policy, the reference, the critic model, and the reward model) are required to cooperate in
the online RL training scheme. Moreover, incorporating such a complicated pipeline significantly induces
training complexity and instability, leading to the difficulty of training convergence and the high risk of
collapse (Song et al., 2023; Go et al., 2023). Although methods like GRPO (Shao et al., 2024) forego the
critic model, instead estimating the baseline from group scores and significantly reducing training resources,
its online sampling strategy still challenges the practical implementation and training speed.

Towards more stable training than online alignment, several ranking-based offline alternatives are proposed,
primarily from the perspective of enlarging the likelihood margin between preferred and rejected response
pairs in a contrastive approach. Direct Preference Optimization (DPO) (Rafailov et al., 2024) implicitly
maximizes the difference in sampling probabilities between good and bad answers. Ethayarajh et al. (Etha-
yarajh et al., 2024) introduces Kahneman-Tversky Optimization (KTO) to directly maximize the utility of
generations instead of maximizing the log-likelihood of preferences. While effective, these methods usually
rely on the collection of preferred / rejected response pairs with high quality, which introduces a substitution
data collection consumption. Instead, Advantage Leftover Launch (A-LoL) (Baheti et al., 2024) formulates
the RL process at the sequence level and derives an advantage-based offline objective that exclusively uti-
lizes preferred responses to achieve human-aligned results. However, it still relies on clipping the importance
weights to ensure training stability, which prevents the optimization from reaching the true RLHF optima.
Furthermore, approaches like DPO and ALoL could employ negative weights for potential dis-preferred re-
sponses, leading to an unstable training process due to the unbounded nature of loss landscape when negative
weights are applied (Pal et al., 2024; Yan et al., 2024).

In this paper, we address these limitations by proposing a reward-driven variational offline alignment frame-
work that eliminates the need for online sampling and clipping, and avoids the instability introduced by
negative weights. Our approach reformulates RLHF as a variational inference problem over positive mea-
sures, ensuring a stable and well-defined optimization landscape. Specifically, starting from the closed-form
optimal solution of RLHF, we directly minimize the Kullback–Leibler (KL) divergence (Kullback & Leibler,
1951) between the to-be-learned LLM and its optimal solution. The resulting loss function takes the form of
an offline reward-driven weighted supervised fine-tuning (SFT) loss, where non-negative weights are derived
through an exponential reward transformation. Furthermore, we introduce an efficient in-batch normal-
ization technique to approximate the normalization term, enabling scalable and practical implementation.
Experimental results demonstrate that our framework outperforms existing methods in both stability and
alignment performance, providing a robust alternative to the challenges of RLHF.
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2 Preliminary

Reinforcement Learning from Human Feedback is an essential approach to alignment LLMs with
human values, especially from the perspectives of helpfulness and harmlessness (Ouyang et al., 2022). We
denote the input query to LLMs as x ∈ X , and the model response y ∈ Y, where X , Y are discrete
enumerable sample spaces containing natural language sequences. RLHF first learns a reward model r(x, y)
from a given collection of human preference data Dp = {(x, yw, yl)}, where x is a user input prompt, yw, yl

are the preferred and rejected responses selected by annotators, respectively. To learn a representative RM,
following Bradley-Terry (Bradley & Terry, 1952) objective is usually utilized:

−E(x,yw,yl)∼Dp

[
log σ(r(x, yw) − r(x, yl))

]
, (1)

where σ(·) is the Sigmoid function. Intuitively, Equation 1 induces r(x, y) to assign a higher reward score
to the preferred response yw than the rejected response yl with respect to input x.

With a learned RM r(x, y), RLHF optimizes the target LLM policy πθ(y|x) by maximizing the expected
reward:

Ex∼D,y∼πθ(y|x)[r(x, y)] − βKL[πθ∥πref], (2)

where KL[πθ∥πref] is the KL divergence (Kullback & Leibler, 1951) between the training policy πθ(y|x) with
a reference model πref(y|x) to prevent πθ(y|x) from the degeneration and preserve the generation diversity.
β > 0 is a hyper-parameter to re-weight the expected reward and the KL regularization term.

To solve the RLHF objective in Equation 2, Proximal Policy Optimization (PPO) (Schulman et al., 2017) has
been recognized as the mainstream optimization algorithm (Rafailov et al., 2024). However, as mentioned
in Section 1, PPO suffers from training instability and high complexity in computation and implementa-
tion (Yuan et al., 2023; Cheng et al., 2023). Therefore, many of recent works have been proposed to simplify
and improve the original PPO algorithm. Rafailov et al. (Rafailov et al., 2024) theoretically demonstrate
that Equation 2 has a closed-form solution:

π∗(y|x) = 1
Z(x)πref(y|x) exp

(
1
β

r(x, y)
)

, (3)

where Z(x) = Ey∼πref(y|x)[exp( 1
β r(x, y))] is the denominator that normalizes the conditional distribution.

Based on the relation between the optimal policy π∗(y|x) and the RM r(x, y), Rafailov et al. (Rafailov
et al., 2024) convert the RM learning objective Equation 1 to an optimal policy learning loss named Direct
Preference Optimization (DPO):

−EDp

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
. (4)

Baheti et al. (Baheti et al., 2024) adopt the PPO objective into an offline scheme by using importance
sampling and converting the expectation of πθ(y|x) to the expectation of πref(y|x), then propose Advantage-
Leftover-Lunch (A-LoL) gradient estimation:

−Ex∼D,y∼πref(y|x)

[
Âπref · πθ(y|x)

πref(y|x) · ∇θ log πθ(y|x)
]
, (5)

where Âπref is the estimated advantage value (Schulman et al., 2016) with respect to πθ̄, also calculated
offline.

Variational Methods provide a principled framework for approximating unknown probability distribu-
tions by leveraging optimization over a family of tractable parameterized distributions (Kingma & Welling,
2022). The fundamental idea of variational methods is to reformulate probabilistic inference as a functional
optimization problem. More specifically, in the domain of machine learning, the goal is to find a surrogate
distribution qθ(y) from a parameterized family Q = {qθ|θ ∈ Θ}, so that qθ(y) can best approximates the
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target unknown distribution p(y). For example, in variational inference (Blei et al., 2017), the unknown
distribution p(y) is approximated by minimizing the inverse KL divergence between qθ(y) and p(y):

min
qθ∈Q

KL[qθ(y)∥p(y)] = min
θ∈Θ

Ey∼qθ(y)[log qθ(y)
p(y) ]. (6)

Variational inference has been widely applied in various models such as variational autoencoders (VAEs) (Do-
ersch, 2016), Bayesian Neural Networks (BNNs) (Graves, 2011), and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). Besides, the forward KL divergence KL[p∥qθ] = Ey∼p(y)[log p(y)

qθ(y) ] has also been recognized
as an effective objective for variational methods, and has been applied in multiple machine learning scenar-
ios such as f-divergence optimization (Namkoong & Duchi, 2016), reinforcement learning (Schulman et al.,
2017), and Markov Chain Monte Carlo (MCMC) (Salimans et al., 2015).

3 Methodology

3.1 Variational LLM Alignment

We consider the RLHF task from a novel perspective of variational methods. Instead of optimizing the
learning policy πθ(y|x) using the objective in Equation 2, we can minimize the forward KL[π∗∥πθ] between
the optimal policy π∗(y|x) and the learning policy πθ(y|x):

KL[π∗∥πθ] = Eπ∗

[
log π∗(y|x)

πθ(y|x)

]
= −H(π∗) − Eπ∗ [log πθ(y|x)], (7)

where H(·) is the entropy of π∗ and is a constant with respect to the model parameters θ. For conciseness, we
adopt the expectation form of the KL divergence and let Eπ denote Ey∼π(y|x). As a result, the approximation
of π∗ under minimizing KL divergence can be achieved by:

min
θ

KL[π∗∥πθ] = max
θ

Eπ∗ [log πθ(y|x)]. (8)

Using importance sampling (Goertzel, 1950; Kahn & Harris, 1951; Kloek & Van Dijk, 1978), which effectively
approximates an unknown distribution with a known one, we can rearrange Equation 8 to obtain the following
objective by incorporating the closed-form solution of π∗ in Equation 3:

Eπ∗ [log πθ(y|x)] = Eπref

[
π∗(y|x)
πref(y|x) log πθ(y|x)

]
= Eπref

[ exp( 1
β r(x, y))
Z(x)︸ ︷︷ ︸

Reward-driven Weight

· log πθ(y|x)︸ ︷︷ ︸
Log-likelihood

]
=: LVAR.

This overall objective contains two parts: a reward-driven weight and the log-likelihood of πθ on the samples
from the reference πref, which reform the loss as a re-weight SFT loss. We call this novel alignment objective
as Variational Alignment with Re-weighting (VAR). However, Z(x) = Ey∼πref(y|x)[exp( 1

β r(x, y))] as the
partition function remains unknown. Therefore, in the following subsection, we discuss the estimation of
Z(x) within each training micro-batch.

3.2 Batch-wise Partition Estimation

Equation 9 implies that the key challenge in effectively approximating π∗ through a parameterized model πθ

lies in the computation of Z(x). However, estimating Z(x) involves summing over all possible outputs y for
a given x, which can be computationally expensive, as mentioned in previous work (Rafailov et al., 2024).
To avoid directly computing Z(x), some alignment methods adopt policy gradient algorithms (e.g., REIN-
FORCE (Williams, 1992) and PPO (Schulman et al., 2017)) that optimize πθ without explicitly normalizing
over all outputs. Hence, with a batch of sample pairs B = {xi, yi}B

i=1, yi ∼ πref(·|xi), we approximate each
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Algorithm 1: VAR training within a batch
Input : Batch B = {(xi, yi)}B

i=1, policy πθ(y|x), reference πref(y|x), reward model r(x, y).
1 for i← 1 to B do
2 Compute policy logit log πθ(yi|xi) for the given input–output pair.
3 Evaluate reference logits {πref(yj |xi)}B

j=1 over all candidates in the batch.
4 Obtain rewards {r(xi, yj)}B

j=1 for each candidate given xi.
5 Calculate Ẑ(xi) = 1

B

∑B

j=1 exp( 1
β

r(xi, yj)) · πref(yj |xi) as the reward-weighted normalization term.
6 Compute L̂i = 1

Ẑ(xi) exp( 1
β

r(xi, yi)) · log πθ(yi|xi) as the per-sample loss term for the i-th example.
7 end
8 Update πθ with L̂VAR(B) = 1

B

∑B

i=1 L̂i via gradient descent.

Z(xi) using Monte Carlo estimation (Salimans et al., 2015):

Z(xi) = Ey∼πref(y|xi)[exp( 1
β

r(xi, y))] =
∑
y∈Y

exp( 1
β

r(xi, y)) · πref(y|xi)

≈ 1
B

B∑
j=1

exp( 1
β

r(xi, yj)) · πref(yj |xi) =: Ẑ(xi). (9)

When the batch size B is large enough, we can collect diverse yj ∼ πref(·|xi) and assume that {yj}B
j=1

are uniformly distributed in sample space Y. With the above estimation, we can calculate the objective in
equation 9 with a batch L̂VAR(B) =

1
B

B∑
i=1

[exp( 1
β r(xi, yi))
Ẑ(xi)

· log πθ(yi|xi)
]
. (10)

In conclusion, we summarize the algorithm process of our in-batch estimation and loss computation in
Algorithm 1.

3.3 Comparison with Previous Methods

Existing preference alignment methods exhibit two fundamental limitations. First, clipping-based approaches
like PPO (Schulman et al., 2017):

Ex∼D,o∼πold(o|x)
1

|o|

|o|∑
t=1

min
[

πθ(ot|x, o<t)
πold(ot|x, o<t)

At, clip
(

πθ(ot|x, o<t)
πold(ot|x, o<t)

, 1 − ϵ, 1 + ϵ

)
At

]
, (11)

and A-LoL (Baheti et al., 2024) (ref to equation 5) bound the importance ratio πθ(y|x)/πref(y|x) within
the interval [1 − ϵ, 1 + ϵ]. This flattens the reward distinctions between responses with similar values. For
instance, when two responses have rewards R1 = 100 and R2 = 99, clipped methods assign nearly identical
probabilities (∼ 1/2), failing to resolve fine-grained preferences (detailed analysis in Appendix A.1).

Second, existing methods such as DPO and A-LoL may encounter optimization instabilities caused by
imbalanced or incorrect gradient dynamics. In particular, the gradient descent on dis-preferred responses can
become pathologically strong, leading to an unstable optimization landscape. Consider the general weighted
SFT objective:

LW-SFT = −E
[
w(x, y) log πθ(y|x)

]
. (12)

When w(x, y) takes negative values for dis-preferred responses, the loss becomes unbounded below. Min-
imizing the loss corresponds to maximizing w(x, y) log πθ(y|x). For negative weights (w < 0), this re-
duces to minimizing log πθ(y|x), creating a non-compact optimization landscape. While perfect performance
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(log πθ(y|x) → 0) is theoretically achievable, it is practically unreachable (Gao et al., 2023) (detailed analysis
in Appendix A.2).

Our key insight is that reward-driven alignment should operate in the space of positive measures. We there-
fore propose a variational method that naturally induces non-negative weights through exponential reward
transformation:

w(x, y) ∝ πref(y|x) exp(r(x, y)/β) > 0. (13)

This construction guarantees that the loss landscape has well-defined minima bounded by the reference
policy’s support. By reformulating RLHF as variational inference over positive measures, we achieve stable
optimization without artificial clipping or negative weighting.

4 Experiments

To evaluate the effectiveness of our proposed approach, we conducted experiments under two primary set-
tings: (1) the Helpful and Harmless Assistant Task (HHA) (Bai et al., 2022; Ganguli et al., 2022); and
(2) generative benchmarks, including MMLU (Hendrycks et al., 2020), HumanEval (Chen et al., 2021),
BigBench-Hard (Srivastava et al., 2023), and GSM8k (Cobbe et al., 2021).

4.1 HHA Settings

Dataset Our primary experiment utilizes the HHA dataset, which consists of user-assistant conversations
paired with model-generated responses labeled as “chosen” or “rejected” based on human preferences. This
dataset is divided into four subsets: (1) Harmless-base, containing red-teaming conversations designed to
elicit harmful responses; (2) Helpful-base, (3) Helpful-online, and (4) Helpful-rejection, which focus on advice-
and assistance-seeking interactions. We evaluate our method using the test sets of these subsets, comprising
a total of 8.2K test conversations annotated with human preference labels.

For model training, we employ the OffsetBias (Park et al., 2024) dataset, a preference dataset similar to
HHA. We utilize OffsetBias because our method explicitly relies on reward scores during training. We
observed that directly applying the HHA training set and its corresponding reward models often results in
inappropriate reward scores, such as instances where the chosen response receives a lower reward score than
the rejected response. This issue significantly compromises the effectiveness of our method. In contrast,
OffsetBias addresses six common types of biases, including length bias—where models tend to assign higher
scores to longer sequences—that can mislead reward models into assigning inaccurate reward scores. By
mitigating these biases, OffsetBias provides more robust and reliable reward scores, making it better suited
for training our model effectively. For all HHA experiments, we use the full training set of OffsetBias, which
consists of 8.5K samples.

Models To evaluate the scalability of our method, we conducted experiments on two model collections:
Llama-{1B, 3B, 8B, 13B}1 (Dubey et al., 2024) and Qwen2.5-{0.5B, 1.5B, 3B, 7B, 14B, 32B} (Yang et al.,
2024). Specifically, we benchmark our method against DPO across all models and consider two RL training
settings: 1) starting from the pre-trained (base) model; (2) starting from the SFT model. For the reward
model, we employ a popular OffsetBiasRM (Park et al., 2024) that is trained on the OffsetBias preference
dataset. OffsetBiasRM is designed to provide more accurate reward scores by addressing common biases,
making it more suitable for our experiments.

Evaluation By following previous work (Rafailov et al., 2024; Baheti et al., 2024), we adopt two popular
evaluation strategies: 1) Reward Score: A higher reward score usually indicates more useful and helpful
response with respective to the input. Specifically, we use the OffsetBiasRM reward model (Park et al., 2024)
to calculate reward scores for sequences generated by the aligned models on the HHA test set. Additionally,
we also evaluate reward scores on the split OffsetBias evaluation set to assess the in-distribution ability of
the models. 2) Pairwise Winrate Score: Following the common practice of LLM-as-a-judge, we evaluate
model outputs from the HHA test set using the GPT-4 judge with its standardized prompt template from

1To ensure the use of the most updated models, we selected Llama3.2-{1B, 3B}, Llama3.1-8B, and Llama2-13B.
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Table 1: Reward scores obtained by aligning Llama model series using the OffsetBias training set and
evaluating on the four subsets of the HHA benchmark. Additionally, we report the test reward on the split
test set of OffsetBias. “Avg. Helpful” denotes the average reward across Helpful-base, Helpful-online, and
Helpful-rejection, while “Avg. All” represents the average reward across all four subsets of HHA.

Method Harmless ↑ Helpful ↑ Avg. Helpful ↑ Avg. All ↑ OffsetBias ↑base base online rejection

Llama3.2-1B

Base 37.03 20.51 24.04 21.93 22.16±1.34 25.88±1.59 21.00
DPO 45.50 44.45 47.07 45.61 45.71±0.16 45.66±0.08 37.31
VAR 52.48 57.35 60.58 59.38 59.10±0.24 57.44±0.14 56.81
SFT+DPO 56.43 64.65 64.95 65.90 65.16±0.43 62.98±0.30 59.09
SFT+VAR 60.19 65.96 68.94 68.27 67.72±0.11 65.84±0.07 61.97

Llama3.2-3B

Base 35.05 26.50 31.15 28.60 28.75±0.38 30.33±0.14 26.61
DPO 53.71 59.38 60.04 60.55 59.99±0.05 58.42±0.09 53.94
VAR 57.97 60.23 64.92 62.92 62.69±0.04 61.51±0.08 60.88
SFT+DPO 64.00 69.44 71.01 71.56 70.67±0.08 69.00±0.05 63.81
SFT+VAR 64.00 67.93 71.32 70.83 70.02±0.22 68.52±0.12 63.72

Llama3.1-8B

Base 38.73 34.74 39.96 37.30 37.33±0.65 37.68±0.46 30.42
DPO 56.17 59.89 61.02 60.86 60.59±0.02 59.48±0.03 51.38
VAR 57.18 61.13 65.57 64.33 63.68±0.20 62.06±0.11 63.91
SFT+DPO 62.38 69.16 70.00 70.61 69.93±0.07 68.04±0.11 60.88
SFT+VAR 63.24 68.13 71.13 70.78 70.01±0.47 68.32±0.51 65.75

Llama2-13B

Base 33.06 27.39 29.53 28.36 28.43±0.04 29.59±0.13 27.05
DPO 50.52 50.01 53.68 52.24 51.98±0.15 51.61±0.14 51.75
VAR 58.45 58.94 62.94 61.89 61.26±0.24 60.56±0.25 61.44
SFT+DPO 55.19 59.90 60.61 61.26 60.59±0.25 59.24±0.19 59.09
SFT+VAR 61.29 63.27 66.07 65.75 65.03±0.15 64.09±0.09 62.59

MT-Bench (Zheng et al., 2023)2. To alleviate potential positional bias, we present the responses of two
models to the judge in two different orders and compare their scores. A model is considered to win only if
it does not lose in both orderings. Specifically, we define: Wins: Outperforms in both orderings or wins in
one and ties in the other. Tie: Ties in both orderings or wins in one and loses in the other. Loses: Lags in
both orderings or ties in one and loses in the other.

Implementation Details For all comparisons, we ensure consistent settings between our method and
DPO. We select learning rates of 1e-5 and 5e-6, employing the AdamW optimizer with a cosine learning
rate scheduler. For the Winrate evaluation, we randomly sample 99 instances from each of the four subsets
of the HHA test set and conduct experiments using three different random seeds to compute the mean
and standard error. To mitigate potential positional bias in GPT-4’s preferences, we randomly shuffle the
positions of model-generated sequences and the SFT target during evaluation using gpt-4o-2024-11-20.
For the Reward evaluation, we use the entire HHA test set, evaluating across three different random seeds
to compute the mean and standard error. We employ generation parameters τ = 0.8, top_p = 0.9 and
top_k = 50 for all the generations. All models are trained on 4×A100-80GB GPUs, with Llama3-8B
and Qwen2.5-14B utilizing 8×A100-80GB. Due to resource constraints, Qwen2.5-32B is trained using 4-bit
quantization (bnb-4bit)3 across 4 nodes, each with 8×A100-80GB GPUs.

4.2 HHA Results

Reward Evaluation Table 1 present the reward scores on the HHA test sets. DPO and VAR denote
models trained directly from the Base model (pre-trained only), while SFT+ refers to models first fine-
tuned via SFT and then further fine-tuned on the SFT model. From Table 1, we observe that our method
outperforms DPO in both Avg. Helpful and Avg. All across all Llama models for the base version, as
well as for the SFT+ version, except for Llama3.2-3B, where it shows a marginal decrease of around 0.5%
compared to DPO. Additionally, our method achieves comparable results whether trained directly from the
base model or the SFT model, particularly for larger LLMs such as Llama3.1-8B and Llama2-13B, whereas
DPO struggles to achieve strong results when starting from the base model. Moreover, our method achieves
performance comparable to the RLHF objective in a single training step, resembling the simplicity and

2Note that we only adopt the MT-Bench judging protocol but do not use the MT-Bench benchmark itself.
3https://huggingface.co/docs/bitsandbytes
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Table 2: Reward scores obtained by aligning Qwen2.5 model series using the OffsetBias training set and
evaluating on the four subsets of the HHA benchmark. Additionally, we report the test reward on the split
test set of OffsetBias. “Avg. Helpful” denotes the average reward across Helpful-base, Helpful-online, and
Helpful-rejection, while “Avg. All” represents the average reward across all four subsets of HHA.

Method Harmless ↑ Helpful ↑ Avg. Helpful ↑ Avg. All ↑ OffsetBias ↑base base online rejection

Qwen2.5-0.5B

Base 33.03 25.44 30.86 26.94 27.75±0.30 29.06±0.14 40.38
DPO 55.21 55.50 56.24 56.75 56.17±0.53 55.93±0.45 53.44
VAR 55.22 58.09 62.32 60.38 60.26±0.21 59.00±0.07 59.50
SFT+DPO 56.42 58.02 60.38 59.91 59.44±0.03 58.68±0.02 55.88
SFT+VAR 58.22 61.72 63.58 63.56 62.95±0.14 61.77±0.12 60.63

Qwen2.5-1.5B

Base 35.01 26.18 32.11 28.13 28.81±0.12 30.36±0.32 26.52
DPO 53.40 57.00 57.38 57.85 57.41±0.17 56.41±0.13 56.63
VAR 61.33 64.72 68.87 68.01 67.20±0.09 65.73±0.05 64.75
SFT+DPO 54.51 61.13 61.54 62.26 61.64±0.32 59.86±0.28 57.63
SFT+VAR 62.76 66.07 69.13 68.78 67.99±0.13 66.69±0.03 65.88

Qwen2.5-3B

Base 47.07 34.27 41.86 36.61 37.58±0.14 39.96±0.18 45.06
DPO 60.58 63.37 63.84 64.90 64.03±0.53 63.17±0.51 58.97
VAR 63.30 66.29 70.07 69.32 68.56±0.08 67.24±0.05 66.06
SFT+DPO 54.61 58.45 58.69 60.19 59.11±0.17 57.98±0.17 52.63
SFT+VAR 65.15 67.86 71.24 70.78 69.96±0.06 68.75±0.05 65.63

Qwen2.5-7B

Base 42.49 42.02 47.96 44.21 44.73±0.53 44.17±0.28 54.09
DPO 61.51 66.09 66.50 67.28 66.62±0.18 65.35±0.10 65.81
VAR 64.86 66.41 70.87 69.78 69.02±0.09 67.98±0.03 65.38
SFT+DPO 60.78 62.02 61.62 62.67 62.10±0.25 61.77±0.30 56.91
SFT+VAR 64.96 66.46 69.81 69.39 68.55±0.11 67.65±0.05 65.38

Qwen2.5-14B

Base 39.29 32.73 39.03 35.16 35.64±0.08 36.55±0.27 45.16
DPO 55.83 55.63 59.04 57.61 57.43±0.32 57.03±0.26 62.94
VAR 64.24 65.23 69.79 68.50 67.84±0.14 66.94±0.03 65.63
SFT+DPO 66.97 67.83 68.16 68.94 68.31±0.42 67.97±0.38 67.94
SFT+VAR 66.37 67.74 71.70 71.08 70.17±0.21 69.22±0.10 66.44

Qwen2.5-32B-Int4

Base 38.80 34.36 39.13 36.78 36.77 37.27 38.97
DPO 37.09 31.38 34.58 33.04 33.00 34.02 32.38
VAR 50.03 45.36 51.77 47.77 48.30 48.73 57.69
SFT+DPO 37.95 27.70 28.63 28.16 28.16 30.61 30.23
SFT+VAR 53.18 49.07 55.66 51.90 52.21 52.45 59.09

Table 3: Winrate results for the Llama3 series instruct versions (1B, 3B, and 8B) on the HHA benchmark.

Method Harmless-base ↑ Helpful-base ↑ Helpful-online ↑ Helpful-rejection ↑ Avg. Winrate ↑
A win B win Tie A win B win Tie A win B win Tie A win B win Tie All Helpful

Llama3.2-1B DPO 20.2 59.6 20.2 49.49 32.32 18.18 12.46 71.38 16.16 34.68 47.47 17.84 29.21±0.17 32.21±0.41
VAR 55.56 34.34 10.10 72.73 16.50 10.77 48.48 42.42 9.09 69.36 19.86 10.77 61.53±0.22 63.53±0.30

Llama3.2-3B DPO 76.10 20.54 3.37 76.77 14.81 8.42 49.83 44.10 6.06 62.97 25.59 11.45 66.42±0.58 63.19±0.74
VAR 63.30 26.26 10.44 89.90 3.70 6.40 61.96 32.66 5.39 79.13 12.12 8.75 73.57±0.95 76.99±0.98

Llama3.1-8B DPO 42.42 42.42 15.15 68.69 19.19 12.12 33.33 54.21 12.46 53.20 31.65 15.15 49.41±0.17 51.74±0.11
VAR 51.52 33.67 14.81 88.55 8.08 3.37 58.59 34.34 7.07 85.86 10.44 3.70 71.13±0.34 77.67±0.30

efficiency of SFT. Table 2 further demonstrates the scalability of our method across different model sizes.
Our approach consistently outperforms DPO across all average reward scores on both HHA and OffsetBias,
even when starting from the base model. For Qwen2.5-32B, due to limited resources, we employ 4-bit
quantization for training. Nevertheless, our method maintains its advantage over DPO.

Winrate Evaluation Figure 1 presents the win rates evaluated by GPT-4o for answers generated by
aligned models compared to the SFT targets (chosen answers in the test set) for the Llama and Qwen
series. The Llama series show results consistent with the reward scores, where our method outperforms
DPO across all models except Llama2-13B, which achieves comparable results. For the Qwen series, our
method outperforms DPO across all Qwen models except Qwen2.5-14B, where it shows a slight decrease. The
Qwen series exhibit slightly different trends compared to the reward scores, with our method starting from
the base version outperforming the SFT+ version across scales from 0.5B to 14B and achieving comparable
results at 32B. These findings further demonstrate that our method can achieve the RLHF objective in a
single SFT-like step without the need for resource-intensive reinforcement learning.
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Figure 1: GPT-4 evaluation results on the HHA test set for the Llama (top) and Qwen (bottom) series,
reporting average win rates, where error bars are calculated across three different random seeds.

(a) Llama3.2-1B (b) Llama3.2-3B (c) Llama3.1-8B

Figure 2: Average validation reward during the training process for (a) Llama3.2-1B, (b) Llama3.2-3B, and
(c) Llama3.1-8B on the OffsetBias dataset, comparing DPO and our method.

Table 3 shows results on the Llama series instruct versions (i.e., models after RLHF). Our method outper-
forms DPO by a large margin across three scales (1B, 3B, and 8B) and consistently achieves higher win rates
across all subsets of the HHA benchmark. This demonstrates the robustness of our method across models at
different training stages, including those that have already undergone RLHF alignment. The results highlight
the effectiveness of our approach in further refining and aligning models with human preferences, even when
starting from pre-aligned instruct versions.

Training Stability Figure 2 illustrates the average validation reward during the training process for three
Llama model collections. Comparing our method with DPO, we observe that DPO exhibits greater volatility
and tends to decline from the early training steps. In contrast, our method demonstrates a gradual increase
in validation reward, ultimately reaching a consistent level. This indicates that our approach is more robust
over longer training steps and maintains a more stable training process compared to DPO.
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Table 4: Comparison between offline VAR and online GRPO methods on
Qwen2.5-3B and Llama3.2-3B, including training time per epoch.

Method Harmless ↑ Helpful ↑ Avg. Helpful ↑ Avg. All ↑ Train. Time ↓base base online rejection

Qwen2.5-3B 47.07 34.27 41.86 36.61 37.58 39.95 –
+GRPO 61.75 68.78 70.73 71.64 70.38 68.23 2h54min
+VAR 63.30 66.29 70.07 69.32 68.56 67.25 42min

Llama3.2-3B 33.03 25.44 30.86 26.94 27.75 29.06 –
+SFT+GRPO 56.34 59.98 62.32 62.72 61.67 60.34 3h8min
+VAR 57.97 60.23 64.92 62.92 62.69 61.51 37min

Comparison with Online
Methods We evaluate
our offline VAR method
against the online GRPO
approach (Shao et al., 2024)
using the OffsetBias training
set, with results measured
on the HHA test sets (Ta-
ble 4). Despite being an
offline method, VAR achieves
comparable performance to GRPO on Qwen2.5-3B and even outperforms it on Llama3.2-3B (where GRPO
requires SFT initialization for stable training). Notably, VAR trains approximately 5× faster per epoch
than GRPO, demonstrating its efficiency while maintaining competitive performance with significantly
fewer computational resources.

4.3 Generative Benchmark

Settings Following prior settings (Tunstall et al., 2023; Ethayarajh et al., 2024), we utilize UltraFeed-
back (Cui et al., 2023) as the training dataset. UltraFeedback is a large-scale preference dataset collected
from diverse sources, where multiple LLMs generate four distinct responses for each prompt. The dataset
comprises 64k prompts, resulting in 256k samples. Additionally, it includes GPT-4-evaluated scores for
instruction-following, truthfulness, honesty, and helpfulness. For our experiments, we sampled 10k prompts,
selecting the highest average-scored samples for training SFT, OURS, and ALoL, and using the highest-
worst score pairs for training DPO. For training, we utilize Llama2-7B and Qwen2.5-7B as the base models.
For comparison, we benchmark our method against ALoL and DPO. As for the reward model, we employ
OffsetBiasRM for both ALoL and our method, with the same setting in HHA experiments.

Implementation Details For all experiments, we use 4 × 8 A100-80GB GPUs, training with a learning
rate of 5e-6 and the AdamW optimizer combined with a cosine learning rate scheduler for exactly two
epochs. We evaluate the aligned models using the OpenCompass (Contributors, 2023) toolkit, with the
following benchmarks: GSM8K (4-shot), MMLU (0-shot), HumanEval (0-shot), and BBH (3-shot chain-of-
thought), following the default settings from OpenCompass. For GSM8K, MMLU, and BBH, we use exact
match (EM) as the evaluation metric, while for HumanEval, we use pass@1.

Generative Benchmark Results Table 5 presents the results of different methods on Llama2-7B and
Qwen2.5-7B models across four benchmarks: MMLU, GSM8k, HumanEval, and BBH. For Llama2-7B, our
method consistently outperforms both DPO and ALoL across most benchmarks, achieving the highest aver-
age results. On Qwen2.5-7B, our method also demonstrates strong results, achieving the best performance
on multiple benchmarks while maintaining competitive results on others, highlighting the robustness and
effectiveness across various settings.

Table 6: Conversational benchmark
results on AlpacaEval 2.0 and Arena-
Hard 0.1.

Method AlpacaEval 2.0 ↑ Arena-Hard 0.1 ↑

LC (%) WR (%) WR (%)

Base 4.01 3.73 8.4
DPO 8.73 4.78 8.6
VAR 8.26 4.29 10.8

To further assess general conversational ability, we also evaluate the
models on AlpacaEval 2.0 and Arena-Hard 0.1. The results are pre-
sented in Table 6. On the AlpacaEval 2.0 benchmark, DPO shows
a slight advantage, achieving a 4.78% win rate (WR) and an 8.73%
length-controlled (LC) win rate, compared to 4.29% and 8.26% for
VAR, respectively. However, on the more challenging Arena-Hard
0.1 benchmark, our VAR method clearly outperforms DPO, scoring
10.8% to DPO’s 8.6%. This suggests that the two methods may have
different strengths across various conversational benchmarks.

4.4 Output Sequence Length Analysis

We calculate the average output sequence lengths for models aligned on Llama3.1-8B across the four subsets
of HHA, as shown in Figure 3. Starting from the base models, DPO generates longer sequences than our
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Table 5: Benchmark comparison of different alignment
methods on Llama2-7B and Qwen2.5-7B models. Re-
sults are shown for MMLU, GSM8K, HumanEval, and
BBH, along with the average score across all bench-
marks. Best results for each model are bolded.

Method MMLU GSM8k HumanEval BBH Avg. ↑EM ↑ EM ↑ pass@1 ↑ EM ↑

Llama2-7B
Base 37.46 1.90 3.05 12.77 13.79
DPO 32.45 4.55 7.32 39.10 20.86
ALoL 35.78 4.09 12.80 38.16 22.71
VAR 38.57 6.67 14.02 37.56 24.20

Qwen2.5-7B
Base 67.13 86.13 64.63 29.30 61.80
DPO 68.64 74.53 33.54 53.06 57.44
ALoL 68.62 64.97 54.88 61.14 62.40
VAR 69.11 74.30 68.90 61.35 68.42

Figure 3: Distribution of output sequence lengths
for aligned Llama3.1-8B on the HHA test set.

method. When starting from SFT, our models maintain output sequence lengths similar to the SFT version,
while DPO produces sequences approximately twice as long as ours and the SFT version. Longer sequences
tend to achieve higher reward scores and GPT-based scores (Baheti et al., 2024; Ethayarajh et al., 2024).
Despite this, our method outperforms DPO in most reward evaluations and winrate evaluations.

4.5 Ablation Study

Table 7: Ablation study of different batch sizes B on
Qwen2.5-7B model and πref sampled alternative (8∗).

B
MMLU GSM8k HumanEval BBH Avg. ↑EM ↑ EM ↑ pass@1 ↑ EM ↑

2 69.59 72.55 65.24 62.57 67.49
4 69.09 75.44 68.29 60.32 68.28
8 69.11 74.30 68.90 61.35 68.42
8∗ 67.83 75.97 65.85 63.66 68.32

As in Equation 9, we estimate Z(xi) with a micro
batch, making batch size B crucial for training. We
conduct an ablation study using batch sizes 2, 4, and
8 under the settings in Section 4.3, with UltraFeed-
back as the training set. Table 7 shows the impact
of different B values on model performance. The
model performs best at B = 8, but the improve-
ment over B = 4 is just 0.14%, suggesting that a
larger B can slightly boost performance. Thus, we use B = 8 for all experiments. However, our method
is also robust to batch-size changes, which gives satisfactory results even at B = 2, showing stability and
suitability for resource-constrained situations.4

Furthermore, we compare our in-batch (offline) estimator to an alternative strategy, πref sampled (B = 8),
which estimates Ẑ(x) using dedicated candidates pre-sampled from πref for each prompt. As shown in the
last row of Table 7, this alternative approach is not only significantly more costly (requiring a separate,
large-scale pre-sampling process) but also results in slightly lower performance (68.32 Avg. vs. 68.42 Avg.).
This result validates our choice of the more efficient and effective in-batch estimation strategy.

4.6 Analyses of Z(x) Estimation

The stability of our VAR method depends heavily on getting a good estimate for the partition function Z(x).
Our approach uses an efficient Monte Carlo estimation based on the samples already available in the training
micro-batch (as described in Equation 9 and Algorithm 1). A fair question is how reliable this estimate is,
and specifically, how the micro-batch size B affects its variance.

To investigate this, we ran an analysis, shown in Figure 4. We compare the variance of Ẑ(x) under two
different estimation strategies: (1) Offline (In-Batch) Estimation (Figure 4 (a)): This is the method
we use in this work; it leverages the B samples already in the micro-batch to calculate Ẑ(xi) for each xi in
that batch. The plot clearly shows that the variance drops sharply as B increases from 2 to 8. This confirms
that even a modest batch size (like B = 8, which we used in our experiments ) provides a significantly more
stable estimate than a very small one. (2) Online Sample Estimation (Figure 4 (b)): For comparison,

4We provide case study in Appendix C, from which we can observe our method effectively produce more comprehensive and
helpful response with higher quality compared to the baseline methods.
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(a) Offline (In-Batch) Estimation (b) Online Sample Estimation

Figure 4: The variance of the partition function estimate Ẑ(x) versus the micro-batch size B.

we simulated an “online” approach. Here, for each xi, we would need to actively sample B new responses
from the reference policy πref to compute Ẑ(xi).

This analysis confirms our design choice. The online method is not only computationally expensive (requiring
B extra sampling steps per instance) but also shows a higher and less consistent variance at small batch
sizes. Our in-batch (offline) method is significantly more efficient and yields a stable, low-variance estimate
as the batch size increases.

4.7 Computational Overhead Analysis

Table 8: Computational profile comparison for
a single training epoch (Llama3.2-3B, B = 8,
4×A100-80GB).

Method Wall Clock Throughput Peak GPU
Time/Epoch ↓ Tokens/s ↑ Mem./GPU ↓

SFT ∼28min ∼2945 ∼31 GB
DPO ∼32min ∼2577 ∼39 GB
VAR ∼37min ∼2228 ∼38 GB

Our method is structured to avoid adding significant over-
head to the main training loop. We achieve this by inte-
grating the costliest parts of the Ẑ(x) estimation into the
data preprocessing step: (1) Preparation: Before
the main training loop starts, we pre-shuffle the train-
ing data and split it into the exact micro-batches (e.g.,
B = 8) that will be used for training. (2) Reward Cal-
culation: We then calculate the reward r(xi, yj) for each
in-batch pair and store these values on disk.

Therefore, during training, we only need to perform one major extra step compared to standard SFT: a
forward pass through the reference model (πref) to obtain the logits necessary to compute Ẑ(x) (using
the pre-calculated rewards). However, the most time-consuming part of training LLMs is the backward
pass (gradient computation). Since our training loop does not involve running the backward pass on
the reference model (πref is frozen), the minimal extra cost incurred by the single forward pass is negligible
when amortized over the entire training process.

We provide a direct comparison of SFT, DPO, and VAR in Table 8, run under identical settings (Llama3.2-
3B, 4×A100-80GB GPUs, B = 8). The results confirm our approach is highly efficient. As shown in the table,
the wall clock time per epoch for VAR (37min) is close to SFT (28min) and DPO (32min). This minimal
time difference is reflected in a slight reduction in throughput. For peak memory, VAR is comparable to
DPO, as both must load the πref .

5 Related Work

Aligning LLMs with human preferences has evolved from studies on RLHF, aiming to achieve human-aligned
outcomes (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022; Lee et al., 2023). The RLHF process
typically begins with SFT, followed by further fine-tuning to maximize expected reward scores. This requires
the construction of a reward model based on the Maximum Likelihood Estimation (MLE) of the BT model to
provide such reward scores. This fine-tuning process is referred to as RLHF, with the PPO algorithm being
the most widely applied (Schulman et al., 2017). A series of works focus on self-training, where the workflow
involves sampling online data from the model and training it using a two-player min-max game between
two policies (Rosset et al., 2024; Swamy et al., 2024; Chen et al., 2024). However, the use of online data in
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the learning process presents significant challenges, as it requires substantial computational resources and
limits training efficiency. To address these challenges, researchers have shifted their focus to offline preference
alignment learning algorithms. These methods operate in a single stage and directly optimize a designed loss
function to achieve optimal preference alignment based on pairwise datasets (Zhao et al., 2023; Rafailov et al.,
2024; Azar et al., 2024; Ethayarajh et al., 2024; Xu et al., 2024). However, standard offline methods like DPO
often rely on a fixed reference model, which can lead to optimization instability. To mitigate this, recent
alternatives have proposed eliminating the reference-policy mismatch via reference-free objectives (Meng
et al., 2024) or minimizing the divergence by learning a better reference model (Gorbatovski et al., 2024).
Separately, to alleviate the resource-intensive nature of training, Remax (Li et al., 2024b) introduces a
variance reduction method for LLMs. Most closely related to our work is ALoL (Baheti et al., 2024), which
formulates the reinforcement learning process at the sequence level and derives its advantage-based offline
objective. This sequence-level perspective is further supported by recent theoretical analysis linking SFT
generalization to reward rectification (Wu et al., 2025), reinforcing the motivation for formulating RLHF
within a supervised framework. However, unlike ALoL which relies on heuristic clipping, or methods like
SimPO that discard the reference model, we formulate our approach by directly approximating the optimal
solution of RLHF via variational inference, thereby achieving a more precise and stable solution.

6 Conclusion

This paper proposed a reward-driven variational alignment framework to address the limitations of existing
RLHF methods, such as instability from negative weights and suboptimal performance due to clipping.
By reformulating RLHF as a variational problem over positive measures, our approach ensures a stable
optimization landscape and derives a reward-driven weighted SFT loss through KL divergence minimization.
The introduction of an efficient in-batch normalization technique further enables scalable and practical
implementation. Experimental results demonstrate improved alignment performance and training stability,
offering a effective solution for preference alignment in LLM.

Impact Statement

The Variational Alignment with Re-weighting (VAR) method has a significant impact on LLM alignment,
providing an efficient and stable alternative to complex RLHF pipelines. While our focus is on improving
alignment performance and training stability, we recognize the broader societal implications, including the
risks of bias amplification, misuse of generative capabilities, and ethical concerns surrounding the automation
of human-like decision-making. We emphasize the need for ongoing research to address these challenges and
ensure responsible deployment of RLHF advancements.
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A Theoretical Analysis

A.1 Analysis of Clip Operator and Policy Distinction

The clip operator in PPO is:
clip(r(θ, ref), 1 − ϵ, 1 + ϵ),

commonly used in methods like ALoL to stailize training, bounds the importance ratio r(θ, ref) = πθ(yi|x)
πref(yi|x)

within [1 − ϵ, 1 + ϵ]. While effective in controlling gradient variance, clipping introduces bias by flattening
reward distinctions between responses with similar values.

For instance, suppose for a given instruction x, we have a set of answers {y1, y2, ..., yn}, and the loss function
of R-LoL (R-LoL used here as a simple example; the only difference between A-LoL and R-LoL is replacing
r(x, y) in R-LoL to A(x, y) = r(x, y) − V (x)) with clipping is:

LR-LoL =
n∑

i=1
(R(x, yi) · clip(r(θ, ref), 1 − ϵ, 1 + ϵ) log πθ(y|x) − β log πθ(yi|x)) (14)

=
n∑

i=1
(R(x, yi) · clip(r(θ, ref), 1 − ϵ, 1 + ϵ) − β) log πθ(yi|x). (15)
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When ϵ is small, we assume that the parameter θ in the function r(θ, ref) is frozen when we do the update
of the policy model πθ, i.e., the loss function becomes:

n∑
i=1

(R(x, yi) · clip(r(θ1, ref), 1 − ϵ, 1 + ϵ) − β) log πθ(yi|x), (16)

and we first update θ, then when we do the next iteration we set θ1 = θ. We denote ηi = R(x, yi) ·
clip(r(θ1, ref), 1 − ϵ, 1 + ϵ) − β and we can see that ηi ≈ R(x, yi) when ϵ, β are small.

We write αi = ηi∑n

j=1
ηj

, and since the denominator is independent of x, we just need to optimize

LR-LoL =
n∑

i=1
αi log πθ(yi|x), (17)

and
∑

αi = 1. By using the Lagrange’s method, construct (for simplicity, write zi = πθ(yi|x))

F (z1, z2, ..., zn, β) =
n∑

i=1
αi log zi − β(

n∑
i=1

zi − 1), (18)

and the partial derivatives are
∂F

∂zi
= αi

zi
− β,

∂F

∂β
= −(

n∑
i=1

zi − 1). (19)

Hence we can see that the optimal solution of the A-LoL loss is: (BY solving the partial derivatives the
optimal solution must have the same distribution as αi)

π∗(yi|x)/π∗({y1, ..., yn}|x) = R(x, yi) · clip(r(θ1, ref), 1 − ϵ, 1 + ϵ) − β∑n
j=1(R(x, yj) · clip(r(θ1, ref), 1 − ϵ, 1 + ϵ) − β) . (20)

So we can see that for close rewards responses, this optimal solution will not distinguish their distributions.
For example, if we have two responses y1, y2 with R1, R2 as their rewards, then the A-LoL method will give

R1
R1+R2

and R2
R1+R2

as the optimal solution and could be closed to 1/2 if R1/R2 is closed to 1 (e.g. R1 =
100, R2 = 99). However, for our method, it will distinguished by exp(R1 − R2), i.e. for R1 = 100, R2 = 99,
our method gives us e

e+1 and 1
e+1 , which seems better.

A.2 Loss Bound Analysis

Lower Bound of Positive Weighted Loss
Theorem 1. For any policy πθ(y|x) satisfying

∑
y πθ(y|x) = 1 and weights w(x, y) > 0, the weighted SFT

loss satisfies:

L(θ) = −Ex,y

[
w(x, y) log πθ(y|x)

]
≥ 0, (21)

with equality if and only if πθ(y|x) = δy=y∗ where δy=y∗ is the optimal policy when y∗ = arg maxy w(x, y).

Proof. Using the inequality log z ≤ z − 1 for z > 0:

L(θ) = −E[w log πθ] (22)
≥ −E[w(πθ − 1)] (since log πθ ≤ πθ − 1) (23)
= E[w(1 − πθ)] (24)
≥ 0 (since w > 0 and πθ ≤ 1). (25)

The equality holds when πθ(y|x) = 1 for the y maximizing w(x, y).
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B Limitations and Future Work

Limited by training resources, the effectiveness of our method can only be validated on Qwen2.5-32B-Int4
at maximum, rather than on LLMs with higher precision or larger scales. Additionally, during experiments,
we observed some inconsistent performance in LLMs after alignment with our method.

In the future, we will explore several promising directions to further enhance our framework. First, we aim
to develop an online version of our method, enabling real-time interaction for calculating Z(x) and updating
the policy πθ dynamically. Second, we plan to conduct extensive experiments across a broader range of tasks,
such as multi-turn dialogue and long-form text generation, to validate the generalizability of our approach.
Finally, scaling our framework to larger models and testing on more diverse and noisy preference datasets
will provide deeper insights into its scalability and robustness.

C Case Study

Table 9 compares responses from SFT, SFT+VAR, SFT+DPO, Base+VAR, and Base+DPO, along with
their corresponding reward scores. Notably, the SFT+DPO response is excessively verbose and includes
irrelevant details, yet it receives the highest reward score. This highlights a tendency of the reward model to
favor longer sequences, even when the content is less helpful or accurate. In contrast, SFT+VAR provides a
concise and accurate answer, demonstrating the effectiveness of our method in balancing response quality and
length. Additionally, Base+DPO generates a highly structured but overly complex and repetitive response,
while Base+VAR delivers a clear and straightforward answer. Importantly, Base+VAR achieves performance
comparable to SFT+VAR, showing that our method can effectively align models even when starting from
the base (pre-trained only) version, without the need for SFT.
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Table 9: Sample generations from different aligned versions of Llama3.1-8B for a prompt about checking a
car’s gas tank capacity.

Prompt How can I look up how much gas my car can hold? Reward

SFT You can find out how much fuel your vehicle holds by checking the owner’s manual
or looking on the door jamb (where some vehicles display this information). You
may also be able to use an online resource, such as Edmunds.com, which has detailed
specifications for most cars.

31.36

SFT+VAR You can find out how much gas your car can hold by looking at the vehicle’s owner’s
manual or contacting the manufacturer. The amount of gas your car can hold will
vary depending on the make and model, as well as any modifications that have been
made to it.

31.69

SFT+DPO The total amount of gas that a car can hold will depend on the type and size of
the car, as well as local environmental conditions and safety regulations. To find
out exactly how much gas a specific car can hold, it is best to check with the car
manufacturer or local fuel suppliers.
In general, larger cars such as 4x4s and vans can store more gas than smaller cars
like compact and economy cars. Most modern vehicles have a fuel tank capacity of
between 50-120 litres (depending on vehicle size), but some heavy-duty vehicles may
have larger tanks of 120-130L or more.
It’s also important to note that many countries have limits on how much LPG or
CNG a vehicle can store due to safety concerns - for example, most countries limit
the storage of LPG to no more than 20kg, while CNG is usually limited to 70m3 (for
light duty vehicles) and 100 m3 (for heavy duty vehicles). If you’re not sure what
these limits are in your country, please check with the relevant authorities or consult
the car manufacturer. In addition, certain areas may restrict the use of alternative
fuels such as LPG and CNG during air pollution season or other times when air
quality is deemed unhealthy ...

60.75

Base+VAR You can lookup the capacity of your car’s fuel tank by consulting your vehicle’s manual
or by contacting the manufacturer. Alternatively, you can estimate the capacity based
on the size and shape of the fuel tank.

28.58

Base+DPO Sure, there is an easy way to look this up:
1. Look up the cars make and model - This will give us its total capacity
2. Find its fuel tank size - This will tell us what type of vehicle it is
3. Check if it has any additional tanks or containers that may be used for gas
4. Calculate the vehicles maximum capacity
5. Add up any additional tanks or containers that may be used for gas
6. Subtract from the maxiumum capacity anything not yet accounted for
7. Finally, we’ll add back any additional tanks or containers that were previously
subtracted from
8. Finally, we’ll add back any additional tanks or containers that were previously
subtracted from
9. Finally, we’ll calculate the final maximum capacity
10. We’ll now want to check that our calculated maximum capacity makes sense.
Let’s go through each step:
1: Make and model - To find out the vehicle’s make and model (and year), let’s run
a Google search.
The results should include the following information about the vehicle:
- Make/model/trim level
- Fuel economy
- Transmission
- Cargo volume
- Total width
- Wheelbase
- Ground clearance ...

52.33
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