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Projection Killer: Peering through high dimensional posterior distribution
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Abstract

Many modern applications of Bayesian inference,
such as cosmology, are based on complicated for-
ward models with high-dimensional parameter
spaces. This considerably limits sampling of pos-
terior distributions conditioned on observed data.
In turn, this reduces the interpretability of poste-
riors to their one- and two-dimensional marginal
distributions, when more information is available
in the full dimensional distributions. We propose
to learn smooth and differentiable representations
of posterior distributions from their samples us-
ing normalizing flows, which we train with an
added evidence error loss term, to extend inter-
pretability in multiple ways. Motivated by prob-
lems from cosmology, we implement a robust
method to obtain one and two-dimensional pos-
terior profiles. These are obtained by optimizing,
instead of integrating, over other parameters, and
are thus less prone than marginals to so-called
projection effects. We also demonstrate how this
representation provides an accurate estimator of
the Bayesian evidence, with log error at the 0.2
level, allowing accurate model comparison. We
test our method on multi-modal mixtures of Gaus-
sians up to dimension 32 before applying it to
simulated cosmology examples.

1. Introduction
While efficient techniques (Foreman-Mackey et al., 2013;
Handley et al., 2015; Feroz et al., 2009; 2019) have been
implemented to sample Bayesian posterior distributions up
to high dimensions, interpretations are very often limited to
one- and two-dimensional marginals distributions, in part
due to the finite size of the samples. These distributions
are then typically represented as corner plots (Lewis, 2019;
Foreman-Mackey, 2016) and used to derive credible inter-
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vals on individual parameters. However, these tools may
not be sufficient to reveal the full-dimensional structure of
posterior distributions.

A first challenge comes from the so-called projection ef-
fect, i.e. the apparent distortion of the posterior when
marginalizing over subsets of parameters, such that, for
instance, marginal distributions do not necessarily peak at
the maximum-a-posteriori. This may occur when poorly
constrained or prior-limited parameters, such as nuisance
parameters or parameters modulating the amplitude of a
weak signal, are projected over significant volumes. Such
effects may hinder interpretability of models when limited
to marginals, for instance multi-probe cosmological analy-
sis (Krause et al., 2021; Joachimi et al., 2021), early dark
energy models (Murgia et al., 2021) and galaxy power spec-
trum analysis (Simon et al., 2023). A second challenge is
to evaluate the Bayesian evidence, i.e. the normalization of
the sampled posterior distribution, that even sophisticated
nested samplers sometimes fail at accurately estimating, as
shown in Lemos et al. (2023). Despite its limitations (Lemos
et al., 2020), the evidence is a useful metric used for model
comparison. A third, related challenge is the evaluation
of statistical tensions between posterior distributions ob-
tained from multiple experiments that measure the same
parameters (Leizerovich et al., 2023).

Normalizing flows (Papamakarios & Murray, 2018; Kingma
et al., 2017; Rezende & Mohamed, 2016; Papamakarios
et al., 2018; Grathwohl et al., 2018) have already been used
to learn representation of posterior distributions from their
samples, allowing, for instance, the efficient computation
of tension metrics that do not rely on assuming Gaussian
posteriors (Raveri & Doux, 2021; Dacunha et al., 2022). In
this paper, we use state-of-the-art normalizing flow models
(Papamakarios et al., 2018; Durkan et al., 2019), with an
extra loss term accounting for Bayesian evidence error, to
yield accurate Bayesian evidence estimates and to efficiently
compute posterior one- and two-dimensional posterior pro-
files.

Unlike marginal distributions, posterior profiles do not suf-
fer from projection effects as they are essentially insensi-
tive to the volume of the parameter space. Using a simple
metaphor, profiling can be thought of as observing the out-
line of the posterior landscape, whereas marginalization can
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Projection Killer: Peering through high dimensional posterior distribution

be seen as measuring its column density. As such, they
offer a highly complementary tool to analyze posterior and
models, which is gaining momentum in fields such as cos-
mology (see, e.g., Karwal et al., 2024; Ried Guachalla et al.,
2024). However, profiling requires many optimizations that
may only be performed efficiently with differentiable mod-
els, such as those provided by normalizing flows. We thus
propose an architecture, loss function and training scheme
to obtain accurate posterior density estimates and a pro-
filing methodology, all of which are implemented in the
TensorFlow Probability frameworks (Dillon et al., 2017).

The paper is organized as follows: Section 2 introduces the
formalism of posterior profiles, its difference with marginal
distributions, and the normalizing flow architecture used
to model posteriors; Section 3 provides context in the re-
cent literature; Section 4 presents our benchmark results on
analytic multimodal distributions and our applications to
cosmology; Section 5 discusses limitations and future work.

2. Methods
2.1. Relationship between marginalization and profiling

We first discuss the relationship between marginalization
and profiling. To do so, we consider an arbitrary poste-
rior distribution P over a set of parameters partitioned as
θ = (θ1,θ2). The profile posterior for θ1 is obtained by
maximizing the joint distribution over θ2:

P̂ (θ1) ≡ max
θ2

P (θ1,θ2), (1)

and we denote θ̂2(θ1) the value of θ2 where this maximum
is reached. We then write the identity:

logP (θ1) = log P̂ (θ1) + log

∫
P (θ1,θ2)

P̂ (θ1)
dθ2 . (2)

Since the profile, for all fixed values of θ1 maximizes the
joint distribution, Equation (2) shows that:

logP (θ1)− log P̂ (θ1) ≤ log

∫
IP (θ1,θ2)>0 dθ2 (3)

≤ log V P
2 (θ1) (4)

where V P
2 (θ1) denotes the θ2-volume of the support of

the joint distribution P (θ1,θ2) at fixed θ1, and I is the
characteristic function. Note that, in general, V P

2 (θ1) only
depends on boundaries defined by the prior, Π, such that
V P
2 (θ1) ≤ V Π

2 (θ1).

If we further assume that the posterior distribution is Gaus-
sian, as it is done in (Hadzhiyska et al., 2023), we can write

with a Taylor expansion:

logP (θ1)− log P̂ (θ1) =

= +
1

2
log det

(
Σ2 − Σ21Σ

−1
1 Σ12

)
+

d2
2

log(2π) + . . .

= −1

2
log detF

(2)
P (θ1) +

d2
2

log(2π) + . . . , (5)

where Σ· denotes the blocks of the partitioned covariance
matrix, d2 the dimension of the θ2 subspace, and where we
have defined

F
(2)
P (θ1) =

1

2

∂2 logP (θ1,θ2)

∂θ2
2

∣∣∣∣
θ1,θ̂2(θ1)

, (6)

as the empirical Fisher matrix of θ2, at fixed θ1, and opti-
mum θ̂2(θ1). Note that F(2)

P is the empirical Fisher matrix
– the second derivative of the log posterior of the observed
data realization – and not the real Fisher matrix, as it is
not averaged over data realization and includes the prior.
Equation (5) can be seen as the first order term of a Laplace
expansion of the difference between the marginal and profile
distributions.

Decomposing the empirical Fisher matrix into its likelihood
(L) and prior (Π) components, we can also write the first
order term as

logP (θ1)− log P̂ (θ1)

= −1

2
log detF

(2)
L − 1

2
log detF

(2)
Π +

d2
2

log(2π)

≤ −1

2
log detF

(2)
L (θ1) + log V

(2)
Π (θ1) (7)

≤ log V P
2 (θ1)

This clarifies why projection effects arise and are known
with two different names: projection or volume effects. If, in
Equation (7), the likelihood term dominates the leading or-
der discrepancy between profile and marginal distributions,
then this means that the empirical Fisher matrix depends
on position, which is due to non-Gaussianities of the likeli-
hood, and corresponds to what is colloquially referred to as
a projection effect (Sellentin & Heavens, 2016). If, instead,
the prior term dominates, this means that the data is weakly
constraining, and marginalization suffers from prior volume
effects, i.e. differences in prior volume along the parameter
line of sight. These two cases are illustrated in Figure 1 with
a two-dimensional triangular prior and increasingly tighter
posterior distributions.

2.2. Normalizing flow architecture, loss and training

Most performance metrics applied to generative models
have to do with marginal distributions – potentially of de-
rived parameters or quantities computed from generated
samples (Reyes-González & Torre, 2023; Coccaro et al.,

2
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Figure 1: Gaussian example: in the left column, the joint
prior (gray) and posterior (blue) distributions for different
Gaussian distributions, with increasingly strong constraints
from top to bottom. The right column shows the marginal
distribution of the posterior over θ1 (red) and the
corresponding profile (black). The difference between the
two curves decreases as the posterior is better constrained.

2023). However, for the problem at hand, we are rather con-
cerned with the accuracy of the (logarithm of the) posterior
probability density function.

2.2.1. ARCHITECTURE

To tackle this challenge, we tested various architectures that
combine two of the best-performing types of normalizing
flows (NF), namely Masked Autoregressive Flows (MAF,
Papamakarios et al., 2018) and Neural Spline Flows (Durkan
et al., 2019). In the best performing architecture, we stack a
number of MAFs that implement autoregressive affine trans-
formations, each parametrized by a unique neural network
(with masked inputs). We also insert random parameter
permutations between each MAF. In addition, we select

sequences of permutations with a low variance between pa-
rameter coordinates to maximize the mixing of coordinates
throughout the sequence of autoregressive transformations.
This architecture provides light-weight flexibility allowing
to model posterior distributions to high accuracy. We found
that adding spline flows or replacing MAFs by spline flows
resulted, on our finite samples, in overfitting and/or noisier
posterior profiles (see Section 5).

2.2.2. EVIDENCE ERROR LOSS FUNCTION

To further improve the accuracy of the estimated posterior
density, we propose to add a term to the standard normal-
izing flow loss. However, the posterior density is usually
computed from the product of the likelihood and priors, and
it normalization, given by the Bayesian evidence, is a priori
unknown. Nevertheless, this normalization constant is the
same for all available samples, motivating a loss function
that reduces the scatter of the approximate density around
an unknown mean. Denoting log q(θ) the approximate,
normalized flow density, and log P̃ (θ) the unnormalized
posterior density, we define the evidence error loss (EEL)
for a batch of samples {θi}1≤i<N drawn from the posterior
as

EEL({θi}) ≡
1

N

N∑
i=1

(
log

q(θi)

P̃ (θi)
− log Ẑ({θi})

)2

,

(8)
where

log Ẑ({θi}) ≡
1

N

N∑
i=1

log
q(θi)

P̃ (θi)
(9)

is an estimator of the (logarithm of the) evidence. We add
this term to the standard Kullback-Leibler divergence NF
loss, given by

∑N
i=1 log q(θi)/N , and use a soft adaptation

scheme (Heydari et al., 2019) to balance the two terms dur-
ing training. Once trained, we use Equation (9) to estimate
the evidence over the full posterior training sample. Similar
evidence estimator and loss functions were also recently
suggested by Polanska et al. (2024); Srinivasan et al. (2024),
although we not use it here to compute the evidence, but also
to learn accurate posterior density estimates for profiling.

2.2.3. TRAINING

In addition to the specific architecture and evidence error
loss term, we obtain more accurate and stable results by
training populations of normalizing flows and averaging
the individual density estimates (Lakshminarayanan et al.,
2016; Alsing et al., 2019).

At last, we implement a new and simple adaptive learning
rate modulation scheme as follows. At every epoch end, we
fit a line through the validation loss evaluated over the last
Nepochs epochs (by default, 25). If the slope is negative (as
expected during learning), the learning rate is unchanged; if
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Projection Killer: Peering through high dimensional posterior distribution

it is positive, then we multiply the learning rate by a factor α
(by default, 1/

√
10). We train all our models with an initial

learning rate of 10−2 and stop training when the learning
rate reaches 10−5.

2.3. Profiling

Once a population of normalizing flows has been trained, we
aim at deriving one- and two-dimensional posterior profiles.
To do so, we define, for each parameter of interest θi a
binning (typically 64 linearly spaced bins), and we optimize
over other parameters, θj ̸=i, to evaluate the profile P̂ (θi).
Our algorithm works as follows:

1. We sample the NF population (which is fast) suffi-
ciently many times such that each bin in θi contains at
least one sample.

2. Within each bin, we save the sample with the highest
density q, which already provides a noisy estimate
of the profile. Note here that the value of θi is not
necessarily located at the center of the bin.

3. We improve this estimate by optimizing, in each θi
bin, the flow density q over other parameters θj ̸=i

at fixed θi value (the value of the initial sample in
the bin), and denote q̂(θi) the optimum of the flow
density. This optimization is performed using gradient
descent, which is vectorized in our code (i.e. all bins
are simultaneously optimized), making it reasonably
fast.

4. The final profile is estimated by linearly interpolating
between the values of (θi, q̂(θi)).

This algorithms is easily generalized to the two-dimensional
case, with two-dimensional bins over (θi, θj) and optimiza-
tions over θk ̸=i,j . While this is in general prohibitively
expensive due to the large number of optimizations in high-
dimensional spaces, the NF flow density can be evaluated
efficiently, making it possible to obtain stable profiles within
minutes.

Finally, we make it possible to obtain profiles over derived
parameters, i.e. parameters that can be computed from the
parameters sampled during posterior inference. To do so, we
transform the flow density according to the reparametriza-
tion, using either analytic TensorFlow Probability bijectors
when the mapping is simple, or by training an additional
normalizing flow to learn it. In particular, we apply this lat-
ter functionality to obtain profiles over the effective cosmic
structure parameter σ8, which is computed by the theoret-
ical model from more fundamental parameters which are
themselves used during posterior inference (see Section 4.2).
Note that one may not, in general, simply train a flow on
derived parameters, as the posterior density P used in the

EEL loss shown in Equation (8) corresponds to a specific
choice of parameters.

3. Related works
Several previous studies have developed methods based
on machine-learning to learn the posterior distribution, but
most of them focus on obtaining accurate marginal densi-
ties (Radev et al., 2021; Raveri & Doux, 2021) or evidence
estimates (Turner & Sederberg, 2014; Srinivasan et al., 2024;
Polanska et al., 2024; Jeffrey & Wandelt, 2024). However,
we additionally aim to obtain reliable profiles of the param-
eters, which requires maximization in a high-dimensional
parameter space. This, in turn, requires accurate estimates
of posterior density values in the high-dimensional spaces
(the full dimension minus one or two). For this purpose, we
combine the standard NF loss with the evidence error loss,
which significantly improves the posterior density values.

While preparing this manuscript, Srinivasan et al. (2024)
published a study that adds a similar term to their loss func-
tion, resulting in better estimates of evidence. However,
compared to them, we use a stack of normalizing flows to
obtain a flexible and easy to optimize model. Moreover,
we train and average multiple flows to reduce the noise in
the estimate of posterior in the high dimensional space. Fi-
nally, we develop a GPU-supported optimization routine to
estimate the parameter profile for large number of param-
eter values. All these improvements are crucial to obtain
reliable parameter profiles, especially in two-dimensional
corner plots due to large number of bin combinations to es-
timate the profile maximization. In addition to applying this
architecture to analytic examples, such as mixture of Gaus-
sians, we also apply it to cosmological setting, obtaining
reliable posterior profiles. Finally, we add the functionality
to obtain profiles on the derived parameters (non-linear com-
bination of sampled parameters) which is generally useful
in cosmological examples.

4. Results
4.1. Benchmark with mixtures of Gaussians

To test the performance of our model and profiling algo-
rithm, we generate test datasets of multi-dimensional mix-
tures of Gaussian of varying dimensions d. The probability
distribution function is given by:

PMG(θ) =

ng∑
i

wi N (θ|µi,Σi), (10)

where, ng is the number of Gaussian components, wi is
the weight of i-th Gaussian such that

∑ng

i wi = 1, and µi

and Σi are the mean and covariance of i-th Gaussian. We
fix ng = 5 and generate random µi in the range (-1, 1) for
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Figure 2: Mixture of Gaussian example: Evidence accuracy (left) and error (right) estimated from different flow
architectures. MAF only uses a single standard masked auto-regressive flow, MAF+EEL additionally adds the evidence
error term (Eq. 8) to the loss function and MAF+EEL+averaging additionally averages over six flows. We see that including
these additional modifications to the architecture significantly improves the accuracy and constraints on the evidence.

each dimension, and Σi is a random non-diagonal covari-
ance matrix for each Gaussian component, drawn such that
the mixture exhibits multimodality. Since this is a normal-
ized sum of Gaussians, the evidence of this distribution is
logZMG = 0.

We then propose a specific architecture: each flow is
composed of ⌈2 log2 d⌉+ 2 MAFs, each parametrized by
masked neural networks (Germain et al., 2015) with two
hidden layers of 2d features and using asinh activation func-
tions. In our final setup, we train six such flows that are
averaged.

We first quantify the performances of our architecture and
training methodology by measuring the evidence accuracy
and its uncertainty (Figure 2) on examples with dimensions
varying from 4 to 32. The evidence uncertainty is computed
from the standard deviation of the evidence estimate over all
samples (see Equation (9)). We first train flows composed
of a sequence of MAFs with the standard loss function,
showing that the evidence uncertainty cannot go below 0.6
for mixtures of Gaussians for d > 8, as shown on the left
panel of Figure 2 (MAF). We then demonstrate that when
adding the evidence error loss (EEL) term (Equation (8)),
this uncertainty reaches 0.4-0.5, while preserving the quality
of marginal distributions (MAF+EEL). We then train popu-
lations of flows and average their density estimates, which
allows us to reach evidence uncertainties at the 0.2 level
(MAF+EEL+averaging). Following the same procedure, we
show in the right panel of Figure 2 that adding the EEL loss
and averaging multiple flows allows us to reduce the bias

on the evidence estimate, while noting it remains within
uncertainties for all tested configurations.

In Figure 3, we show the performance of our model and
profiling algorithms in d = 16 dimensions. In the left panel
of Figure 3, we compare the performance of the models in
capturing the marginal posterior distribution for 3 of the 16
parameters in this space, finding that even a single standard
MAF captures the marginal distribution well. In the right
panel, we compare the profile posterior distribution for the
same three parameters. In this analytic example, we can ob-
tain the exact profiles by maximizing the probability density
of Equation (10), even in d = 16 dimensions, as shown by
black solid lines. We find that the posterior profiles differ
significantly from the posterior marginal distributions, due
to the multimodality of this example. We find that, in this
case, a single standard MAF fails to capture the profiles of
parameters p2 and p3 accurately, whereas training with the
extra EEL term and averaging allows us to correctly capture
this multi-modality. We also estimate the two-dimensional
profile distributions, which requires optimizations in 14
dimensions for all the 32 × 32 two-dimensional bins, for
each pair of parameters. Note that this optimization would
be computationally prohibitive without a differentiable esti-
mate of the posterior density as we have developed here. We
find similar performances in the one- and two-dimensional
profiles when training the flow with EEL term and averaging
for various dimensions up to 32.

Finally, in Figure 4, we use profiles derived from each of
the individual flows to estimate the variance of the profile

5
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Figure 3: Mixture of Gaussian example: Marginalized (left) and profile (right) posteriors of three parameters in the
16-dimensional mixture of Gaussians. We see that while all three models perform well in terms of capturing the marginal
posterior, using just a standard MAF struggles to capture the profiles posterior of some parameters. Adding EEL and
averaging significantly helps in obtaining unbiased marginal and posterior distributions.

estimated from the averaged flows, showing the result for
one parameter. We see that the averaged flow profile lies
within one standard deviation of the exact profile.

4.2. Application to cosmological simulated data

Given the good performance of our model and profiling
algorithm for multimodal, high-dimensional mixtures of
Gaussian, we now apply it to the analysis of simulated
cosmological data.

Specifically, we analyze simulated two-point correlation
functions constructed out of galaxy positions and shapes.
This is the statistics of choice of astronomical imaging sur-
veys to probe the distribution of matter in the Universe,
and constrain cosmological models of dark energy (Man-
delbaum, 2018). To do so, we use the theoretical model
described in Krause et al. (2021) to create a mock data vec-
tor (dimension 400) emulating weak lensing data from the
Dark Energy Survey (see Fig. 5 of Abbott et al., 2022). The

model has 19 parameters, which includes six cosmological
parameters as well as five astrophysical and eight observa-
tional systematics parameters. Using the same theoretical
model and the covariance matrix of Krause et al. (2021),
we then sample the posterior distribution for this simulated
data vector. To do so, we use a nested sampling algorithm,
PolyChord (Handley et al., 2015), set to high accuracy to
obtain 0.5 million samples. While this is highly sufficient
to estimate the one- and two-dimensional marginal poste-
rior distributions, it is inadequate for profiling. Finally, we
use this sample to train the normalizing flow architecture
described above and learn a smooth representation of the
19-dimensional posterior. Figure 5 shows the marginal dis-
tributions for cosmological and astrophysical parameters
derived from the PolyChord sample and the trained flow.
This figure illustrates the non-Gaussianity of this posterior,
which arises from both the non-linearity of the theoretical
model and prior volume effects, all well-captured by the
flow.
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Figure 4: Mixture of Gaussian example: the red band
shows the mean profile estimated from averaging six flows,
as well as its uncertainty computed from the variance of the
profiles estimated for each flow individually. The exact
profile, calculated from maximizing the analytic density, is
consistent with the flow profile, within one standard
deviation.
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Figure 5: Cosmology example: We show the marginalized
distribution of posterior for various parameter combinations
as estimate from the true chain and from normalizing flow
(MAF+EEL+averaging). We see that the flow can capture
various non-Gaussian features accurately.

In Figure 6, we compare the marginal distributions and pro-
files for two cosmological parameters of interest, out of 19.
We show the constraints on the matter density of the Uni-
verse (Ωm) and the amplitude of primordial fluctuations As

on the left. On the right, we additionally show the profiles
of Ωm and a derived parameter, σ8, which measures the
amplitude of late time matter density fluctuations, and is
computed from the theoretical model as a non-linear func-
tion of the other cosmological parameters. We also show the
true value used to create the mock data vector with dashed
lines (the maximum a-posteriori, MAP value). We see that,
as expected, the marginalized posteriors peak at different
values compared to the true MAP value, whereas the profile
posteriors peak at the true values. Additionally, the left
panel shows that the parameter As is, according to its pro-
file, only weakly constrained by the data, unlike what is
suggested by the peaked marginal distribution.

5. Discussion and future work
One- and two-dimensional marginal distributions are often
insufficient to capture the properties of high-dimensional
posterior distributions derived from complex data and model.
These most notably suffer from so-called projection effects,
due to integrating the posterior along unconstrained param-
eter directions, unlike posterior profiles, obtained my maxi-
mization. However, obtaining posterior profiles requires an
accurate estimate of the actual posterior values, which stan-
dard normalizing flows fail to capture. In this paper, we thus
provide a normalizing flow architecture and simultaneously
minimize the standard Kullback-Leibler divergence loss and
an extra term, the evidence error loss, which dramatically
improves the quality of posterior profiles, and provides an
estimate of the Bayesian evidence as a by-product. We
validate our method on analytic examples using mixtures
of Gaussians up to dimension 32, and then apply it to a
simulated data analysis from cosmology. We note here that
obtaining stable profiles also required training an ensemble
of flows using an adaptive loss weighting scheme and a new
adaptive learning rate scheduler.

In the future, we aim to improve the accuracy and stability
of the profiles. In particular, neural spline flows offer a
promising avenue in terms of flexibility. However, our tests
with spline flows resulted in overfitting, likely due to the
large yet finite size of our posterior samples, and inaccurate
profiles. We could curtail this effect by constraining the
underlying spline parameters, thus limiting fluctuations in
the Jacobian entering the log density evaluation. Another
promising avenue, though, consists in merging the posterior
sampling and flow training steps using an iterative method,
as suggested by multiple studies (Rezende & Mohamed,
2015; Gao et al., 2020; Gabrié et al., 2022; Grumitt et al.,
2022; Karamanis et al., 2022; Wong et al., 2023). This
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Figure 6: Cosmology example: Left: We show the application of our flow architecture to estimate the profile and marginals
of two cosmological parameters within a 19 dimensional parameter space. Right: We additionally show the constraints on a
derived parameter, σ8, which is inferred from other cosmological parameters. In this case, the mapping from the original
sampling space is learned as well.

would alleviate accuracy issues related to limited samples,
and our profiling methodology could be readily applied.
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