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Abstract

This work compares seven energy-based learning algorithms, namely contrastive
learning (CL), equilibrium propagation (EP), coupled learning (CpL) and different
variants of these algorithms depending on the type of perturbation used. The
algorithms are compared on deep convolutional Hopfield networks (DCHNs) and
evaluated on five vision tasks (MNIST, Fashion-MNIST, SVHN, CIFAR-10 and
CIFAR-100). The results reveal that while all algorithms perform similarly on
the simplest task (MNIST), differences in performance become evident as task
complexity increases. Perhaps surprisingly, we find that negative perturbations
yield significantly better results than positive ones, and the centered variant of EP
emerges as the top-performing algorithm. Lastly, we report new state-of-the-art
DCHN simulations on all five datasets (both in terms of speed and accuracy),
achieving a 13.5x speedup compared to Laborieux et al. [2021].

1 Introduction

Prior to the dominance of backpropagation-based machine learning, an alternative ‘energy-based’
learning (EBL) approach was introduced by Hopfield, Hinton and co-others, in which the model
dynamics is governed through an energy function [Hopfield, 1984, Hinton et al., 1984]. One of the
earliest EBL algorithms to train such energy-based models was constrastive learning (CL)[Movellan,
1991, Baldi and Pineda, 1991]. In the machine learning literature, interest in EBL algorithms has
remained limited due to the widespread success of backpropagation running on GPUs. However,
EBL algorithms have more recently revived interest as a promising learning framework for analog
learning machines [Kendall et al., 2020, Stern et al., 2021]. Small-scale EBL-trained variable resistor
networks have been built [Dillavou et al., 2022, 2023], projecting a possible 10,000× improvement
in energy consumption compared to GPU-based training of deep neural networks [Yi et al., 2023].

In recent years, several variants of CL have been proposed, such as equilibrium propagation (EP)
[Scellier and Bengio, 2017], the centered variant of EP [Laborieux et al., 2021] and coupled learning
(CpL) [Stern et al., 2021]. These algorithms are often evaluated on different models and different
datasets without being compared to CL and to one another. Due to the lack of explicit comparison
between these algorithms, they are typically clustered under the ’contrastive learning’ umbrella name
[Dillavou et al., 2022, Stern and Murugan, 2023, Peterson and Lavin, 2022, Lillicrap et al., 2020,
Luczak et al., 2022, Høier et al., 2023] with many follow-up works indifferently selecting among
these algorithms [Dillavou et al., 2022, Wycoff et al., 2022, Stern et al., 2022, Kiraz et al., 2022, Watfa
et al., 2023, Yi et al., 2023, Dillavou et al., 2023]. One of the main issues for direct comparisons is
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the slow simulation speed of EBL algorithms. Due to this slowness, EBL algorithms have often been
used to train very small networks on very small datasets (by deep learning standards). 1

In this work, we aim to explicitly compare seven EBL algorithms, including the four above-mentioned
and three new ones. Our comparative study is conducted on deep convolutional Hopfield networks
(DCHNs) [Ernoult et al., 2019], an energy-based network for which simulation times are reasonable
and previously demonstrated to scale to tasks such as CIFAR-10 [Laborieux et al., 2021] and Imagenet
32x32 [Laborieux and Zenke, 2022]. Our study consists in training DCHNs with each algorithm on
five vision tasks: MNIST, Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100. We observe notable
behavioural differences between algorithms as task difficulty increases. We also introduce a novel
energy minimization procedure for DCHNs that significantly accelerates simulations (13.5x speedup
compared to Laborieux et al. [2021]), yielding state-of-the-art DCHN simulations with respect to the
existing litterature, both in terms of performance and speed.

Figure 1: Cartoon illustrating the seven energy-based learning (EBL) algorithms: contrastive learning
(CL), equilibrium propagation (EP), coupled learning (CpL), and their positively-perturbed (P-),
negatively-perturbed (N-) and centered (C-) variants. The desired output is y. The model prediction
is o⋆ (i.e. the output configuration minimizing the energy function). The strength of the perturbation
is β. A positive perturbation pulls the model output (oEP

β ) towards y. A negative perturbation pushes
the model output (oEP

−β) away from y. Arrows indicate the weight update: green (resp. red) arrows
decrease (resp. increase) the energy value of the corresponding configuration.

2 Energy-based learning algorithms

In the setting of classification, an energy-based model is composed of an input variable (x), a
parameter variable (θ) a hidden variable (h) and an output variable (o). A scalar function E called
energy function assigns to each tuple (θ, x, h, o) a real number E(θ, x, h, o). Given θ and x, among
all possible configurations (h, o), the effective configuration of the model is the equilibrium state,
denoted (h⋆, o⋆), implicitly defined as a minimum of the energy function,

(h⋆, o⋆) := argmin
(h,o)

E(θ, x, h, o). (1)

The equilibrium value of output variables, o⋆, represents a prediction of the model, which we also
denote o(θ, x) = o⋆ to emphasize its dependence on the input x and the model parameter θ. The goal

1For example, Kendall et al. [2020] use SPICE to simulate the training of a one-hidden-layer network (with
100 ‘hidden nodes’) on MNIST, which takes one week for only ten epochs of training. Similarly, Stern et al.
[2021] simulate the training of disordered networks of up to 2048 nodes on a subset of 200 images of the MNIST
dataset.
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of learning is to adjust θ so that, for any input x, the model output o(θ, x) coincides with a desired
output y (the label associated to x).

2.1 Contrastive learning

Contrastive learning (CL) is the earliest energy-based learning (EBL) algorithm [Movellan, 1991].
The CL algorithm proceeds in two phases. In the first phase, input variables x are clamped, while
the hidden and output variables are free to stabilize to their equilibrium value (h⋆, o⋆) as in (1).
In the second phase, the output variables o are clamped to the desired output y (i.e., a strong
perturbation), and the hidden variables h are free to stabilize to a second energy minimum, denoted
hCL
⋆ , characterized by

hCL
⋆ := argmin

h
E(θ, x, h, y). (2)

The contrastive learning rule for the model parameters reads

∆CLθ = η

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hCL

⋆ , y
))

, (3)

where η is a learning rate.

2.2 Equilibrium propagation

Equilibrium propagation (EP) is another EBL algorithm [Scellier and Bengio, 2017]. One notable
difference in EP is that one explicitly introduces a cost function C(o, y) that represents the discrepancy
between the output o and desired output y. EP is a variant of CL which also consists of contrasting
two states. The first phase of EP is the same as in CL. In the second phase of EP however, the
output variables are only slightly perturbed (or nudged) rather than clamped to y. This is achieved by
augmenting the model’s energy by a term βC(o, y), where β ∈ R is a scalar – the nudging parameter.
The model settles to another equilibrium state, the perturbed state, characterized by

(hEP
β , oEP

β ) = argmin
(h,o)

[E(θ, x, h, o) + βC(o, y)] . (4)

The learning rule of EP is similar to CL:

∆EPθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hEP

β , oEP
β

))
. (5)

The EP learning rule (5) comes in two variants depending on whether β > 0 or β < 0. In this work,
we refer to the variant with β > 0 as positively-perturbed EP (P-EP) and the variant with β < 0 as
negatively-perturbed EP (N-EP). We also consider the centered variant of EP (C-EP) introduced by
Laborieux et al. [2021] whose learning rule reads

∆θ =
η

2β

(
∂E

∂θ

(
θ, x, hEP

−β , o
EP
−β

)
− ∂E

∂θ

(
θ, x, hEP

β , oEP
β

))
. (6)

2.3 Coupled learning

Coupled learning (CpL) is another variant of CL, also proceeding in two phases [Stern et al., 2021].
The first phase of CpL is identical to the one of CL and EP. In the second phase of CpL, output
variables are clamped to a weighted mean of o⋆ and y, and the hidden variables are allowed to
settle to equilibrium. The weighted mean of outputs, denoted oCpL

β , is parameterized by a parameter
β ∈ R \ {0}, like so:

hCpL
β := argmin

h
E(θ, x, h, oCpL

β ), oCpL
β := (1− β)o⋆ + βy. (7)

Similarly to CL and EP, the learning rule of CpL reads

∆CpLθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

))
. (8)

In particular, for β = 1, CpL boils down to CL. In their original formulation, Stern et al. [2021]
use β > 0 ; here we refer to this version as positively-perturbed CpL (P-CpL). We also introduce
negatively-perturbed CpL (N-CpL, with β < 0) and centered CpL (C-CpL):

∆θ =
η

2β

(
∂E

∂θ

(
θ, x, hCpL

−β , oCpL
−β

)
− ∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

))
. (9)
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2.4 Theoretical results

Theorem 1 (Contrastive learning). The contrastive learning rule (3) performs one step of gradient
descent on the so-called contrastive function J , i.e. ∆CLθ = −η ∂J

∂θ (θ, x, y), where

J(θ, x, y) := E
(
θ, x, hCL

⋆ , y
)
− E (θ, x, h⋆, o⋆) . (10)

Theorem 1 is proved in Movellan [1991]. However, it is not clear that the contrastive function J has
the desirable properties of an objective function from a machine learning perspective. The equilibrium
propagation (EP) learning rules have better properties ; the results below are adapted from Scellier
et al. [2022].
Theorem 2 (P-EP and N-EP). The learning rule (5) performs one step of gradient descent on a
surrogate function Lβ , i.e. ∆EPθ = −η

∂Lβ

∂θ (θ, x, y). The surrogate function is a lower bound of the
‘true’ cost function if β > 0 (P-EP), and an upper bound if β < 0 (N-EP), i.e.

Lβ(θ, x, y) ≤ C (o(θ, x), y) ≤ L−β(θ, x, y), ∀β > 0, (11)
where o(θ, x) := o⋆ as defined in (1). Furthermore, the surrogate function approximates the true
cost function when β → 0,

Lβ(θ, x, y) = C (o(θ, x), y) +O(β). (12)
Theorem 3 (Centered EP). The learning rule (6) of C-EP performs one step of gradient descent
on a surrogate function L−β,+β , i.e. ∆C−EPθ = −η

∂L−β,+β

∂θ (θ, x, y). Furthermore, the surrogate
function for C-EP approximates the ‘true’ cost function up to O(β2), i.e.

L−β,+β(θ, x, y) = C (o(θ, x), y) +O(β2). (13)

The analysis of coupled learning (P-CpL, N-CpL and C-CpL) is more complicated. The coupled
learning rules (8) and (9) provably do not perform gradient descent on the mean squared error (MSE).
In fact, there exist situations where the MSE increases under one step of the coupled learning rule,
for any value of β and any value of η.

3 Deep convolutional Hopfield networks

To compare the EBL algorithms presented in section 2, we consider the EBL model of Ernoult et al.
[2019], Laborieux et al. [2021], which we call here deep convolutional Hopfield network (DCHN)
model. The network has an input layer, four hidden layers, and an output layer of M units, where M
is the number of categories for the classification task considered. Successive layers are interconnected
by convolutional interactions with kernel size 3×3, padding 1, and max pooling. Except for the last
hidden layer and the output layer, which are interconnected by a dense interaction.

One novelty in our DCHN simulations is that we use an energy minimization procedure based on
‘asynchronous updates’ so as to compute the steady states (free state and perturbed states) required by
the learning algorithms. This is in contrast with the ‘synchronous update’ procedure used in other
works [Ernoult et al., 2019, Laborieux et al., 2021, Laydevant et al., 2021, Laborieux and Zenke,
2022]. We find experimentally that our asynchronous procedure requires fewer steps to converge than
the synchronous one.

4 Simulations

4.1 Comparative study of EBL algorithms

We compare with simulations the seven EBL algorithms of section 2 on the deep convolutional
Hopfield network (DCHN) of section 3. To do this, we train a DCHN on MNIST, Fashion-MNIST,
SVHN, CIFAR-10 and CIFAR-100 using each of the seven EBL algorithms. For each simulation, the
DCHN is trained for 100 epochs. Each run is performed on a single A100 GPU. A run on MNIST
and FashionMNIST takes 3 hours 30 minutes ; a run on SVHN takes 4 hours 45 minutes ; and a
run on CIFAR-10 and CIFAR-100 takes 3 hours. All these simulations are performed with the same
network using the same initialization scheme and the same hyperparameters. 2

We draw several lessons from Table 1.
2The code is available at https://github.com/rain-neuromorphics/energy-based-learning
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Table 1: Results obtained by training the deep convolutional Hopfield network (DCHN) of Section 3
with the seven EBL algorithms of Section 2. We also report two baselines: truncated backpropagation
(TBP) and recurrent backpropagation (RBP) [Almeida, 1987, Pineda, 1987]. For each of these 45
experiments, we perform three runs and report the mean test error rate in %.

MNIST Fashion-MNIST SVHN CIFAR-10 CIFAR-100

TBP 0.42 6.12 3.76 10.1 33.4
RBP 0.44 6.28 3.87 10.7 34.4

CL 0.61 10.10 6.1 31.4 71.4
P-EP 1.66 90.00 83.9 72.6 89.4
N-EP 0.42 6.22 80.4 11.9 44.7
C-EP 0.44 6.47 3.51 11.1 37.0

P-CpL 0.66 64.70 40.1 46.9 77.9
N-CpL 0.50 6.86 80.4 13.5 51.9
C-CpL 0.44 6.91 4.23 14.9 46.5

Algorithms perform alike on MNIST. Little difference is observed in the test performance of
the algorithms on MNIST, ranging from 0.42% to 0.66% test error rate for six of the seven EBL
algorithms.

Weak positive perturbations perform worse than strong ones. P-EP fails on most datasets
(Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100). P-CpL performs better than P-EP on all tasks,
but also yields poor results in general. It is noteworthy that CL, which employs a strong positive
perturbation, performs better than P-CpL and P-EP (which employ weak positive perturbations) on
all tasks, sometimes by a very large margin (Fashion-MNIST and SVHN).

Negative perturbations yield better results than positive ones. On Fashion-MNIST, CIFAR-
10 and CIFAR-100, the N-EP and N-CpL algorithms (employing negative perturbations) perform
significantly better than CL, P-CpL and P-EP (employing positive perturbations). This can be partly
explained by Theorem 2, which shows that N-EP optimizes an upper bound of the cost function,
whereas P-EP optimizes a lower bound. 3

Two-sided perturbations yield better results than one-sided perturbations. While there is little
difference between centered algorithms (C-EP and C-CpL) and negatively-perturbed algorithms
(N-EP and N-CpL) on MNIST, FashionMNIST and CIFAR-10, the centered algorithms significantly
improve the test error rate on CIFAR-100 and unlock training on SVHN. This can be partly explained
by Theorems 2 and 3, which show that the loss function of C-EP better approximates the cost function
(up to O(β2)) than the loss function L−β of N-EP (up to O(β)).

The EP perturbation method yields better results than the one of CpL. C-EP outperforms
C-CpL on all tasks, sometimes by a significant margin (CIFAR-10 and CIFAR-100). Similarly, N-EP
outperforms N-CpL on all tasks. 4

4.2 State-of-the-art DCHN simulations (performance and speed)

The comparative study conducted in the previous subsection highlights C-EP as the best EBL
algorithm among those considered in this work. Using C-EP, we then perform additional simulations
on MNIST, CIFAR-10 and CIFAR-100, where we optimize the hyperparameters of training (weight
initialization, initial learning rates, number of iterations, value of the nudging parameter and weight
decay) to yield the best performance. We report the results in Table 2.

We achieve better simulation results than existing works on DCHNs on all three datasets, both in
terms of performance and speed. For instance, our 100-epoch simulations on CIFAR-10 take 3 hours

3We note that on SVHN, the results obtained with N-EP and N-CpL are much worse than CL. However,
further simulations with a different weight initialization scheme show that N-EP and N-CpL generally perform
better than CL, P-EP and P-CpL, supporting our conclusion.

4Interestingly, we note however that P-EP performs worse than P-CpL on all tasks.
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Table 2: We achieve state-of-the-art results with C-EP-trained DCHNs on MNIST, CIFAR-10
and CIFAR-100. For each dataset, we report the test error rate (in %) averaged over 3 runs, after
100 epochs of training, and after 300 epochs, and we compare with the existing literature on deep
convolutional Hopfield networks (DCHNs)

MNIST CIFAR-10 CIFAR-100

Ernoult et al. [2019] 1.02
Laborieux et al. [2021] 11.68
Laydevant et al. [2021] 0.85 13.78

Luczak et al. [2022] 20.03
Laborieux and Zenke [2022] 11.4 38.4

This work (100 epochs) 0.44 10.40 34.2
This work (300 epochs) 9.70 31.6

18 minutes, which is 7 times faster than those reported in [Laborieux and Zenke, 2022] (1 day), and
36 times faster than those reported in Laydevant et al. [2021] (5 days), and our 300-epoch simulations
on CIFAR-10 yield 9.70% test error rate, which is significantly lower than [Laborieux and Zenke,
2022] (11.4%). Since no earlier work on DCHNs has performed simulations on Fashion-MNIST and
SVHN, our results reported in Table 1 are state-of-the-art on these datasets as well.

Our important speedup comes from our novel energy-minimization procedure based on “asynchronous
updates”, combined with 60 iterations at inference (free phase) and the use of 16-bit precision ;
in comparison, Laborieux et al. [2021] used “synchronous updates” with 250 iterations and 32-bit
precision. These changes result in a 13.5x speedup on the same device (a A100 GPU) without
degrading the performance.

5 Conclusion

Our comparative study of energy-based learning (EBL) algorithms delivers a few key take-aways: 1)
while all EBL algorithms work equally well on MNIST, more difficult tasks magnify small algorithmic
differences, 2) negative perturbations yield better results than positive ones, 3) two-sided (centered)
perturbations perform better than one-sided perturbations, and 4) the perturbation technique of
equilibrium propagation yields better results than the one of coupled learning. Our results highlight
the centered variant of equilibrium propagation (C-EP) as the best EBL algorithm among those
considered in the present work.

Our work also establishes new state-of-the-art results for deep convolutional Hopfield networks
(DCHNs) on all five datasets, both in terms of performance (accuracy) and speed. In particular, thanks
to the use of a novel “asynchronous” energy-minimization procedure for DCHNs, we manage to
reduce the number of iterations required to converge to equilibrium from 250 to 60. Combined with
the use of 16-bit precision (instead of 32-bit), this leads our simulations to be 13.5 times faster than
those of Laborieux et al. [2021] when run on the same hardware.

Ultimately, while we have conducted our comparative study on simulations of Hopfield networks, the
potential of EBL algorithms is for the training of analog machines, e.g. nonlinear resistive networks
[Kendall et al., 2020]. We believe that our findings can inform the design of analog learning machines
[Dillavou et al., 2022, 2023, Yi et al., 2023], and simulations of these machines [Kendall et al.,
2020, Stern et al., 2021]. Finally, our theoretical insights (Section 2.4) also apply to novel EBL
algorithms [Scellier et al., 2022, Anisetti et al., 2022, Laborieux and Zenke, 2022, Hexner, 2023,
Anisetti et al., 2023], and more generally to bi-level optimization problems [Zucchet and Sacramento,
2022], including the training of Lagrangian systems [Kendall, 2021, Scellier, 2021], meta-learning
[Zucchet et al., 2022, Park and Simeone, 2022], as well as predictive coding [Whittington and Bogacz,
2019, Millidge et al., 2022]. We think that our insights and experimental findings can also guide the
development of better learning algorithms in these settings as well.
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