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Abstract

Following the introduction of Dynamic Mode Decomposition and its numerous extensions,
many neural autoencoder-based implementations of the Koopman operator have recently
been proposed. This class of methods appears to be of interest for modeling dynamical
systems, either through direct long-term prediction of the evolution of the state or as a
powerful embedding for downstream methods. In particular, a recent line of work has
developed invertible Koopman autoencoders (IKAEs), which provide an exact reconstruction
of the input state thanks to their analytically invertible encoder, based on coupling layer
normalizing flow models. We identify that the conservation of the dimension imposed by the
normalizing flows is a limitation for the IKAE models, and thus we propose to augment the
latent state with a second, non-invertible encoder network. This results in our new model:
the Augmented Invertible Koopman AutoEncoder (AIKAE). We demonstrate the relevance
of the AIKAE through a series of long-term time series forecasting experiments, on satellite
image time series as well as on a benchmark involving predictions based on a large lookback
window of observations.

1 Introduction

A longstanding question in dynamical systems theory has been the ability to characterize the behavior of
dynamical systems from which one does not have access to the equations that govern their evolution, but only
to data snapshots measured from them. With the increasing computational resources and the development
of autodifferentiation frameworks, data-driven methods, and specifically deep neural networks, have taken
an increasing importance in dynamical systems modeling.

Among these neural network methods, an increasing part has been designed based on Koopman operator
theory, which means that they seek to find a representation of the state from which the evolution through time
can be described linearly. A popular class of such models is the Koopman autoencoder (Lusch et al., 2018),
which simply consists of a neural autoencoder along with a matrix that describes the linear dynamics in the
latent space of the encoder. Many flavors of the Koopman autoencoder seek to improve the long-term stability
of the linear latent dynamics through constrained parameterizations of its governing matrix (Bevanda et al.,
2022; Fan et al., 2022; Zhang et al., 2024) or additional loss function terms (Azencot et al., 2020; Frion et al.,
2023a). Some works propose to use the representation learned by a Koopman autoencoder in a broader
computation pipeline, for example as embeddings for a Transformer model (Geneva & Zabaras, 2022; Jin
et al., 2023) or in a data assimilation framework (Frion et al., 2024; Singh et al., 2024). In the present work,
we take interest in recent advancements (Meng et al., 2024; Jin et al., 2023) consisting in implementing the
Koopman autoencoder with a coupling layer normalizing flow as the encoder and the analytical inverse of this
flow as the decoder. We show that the induced constraint on the dimension of the latent space is detrimental
to the ability of the model to find a Koopman invariant subspace. As a remedy, we propose to learn a
second encoder in order to inflate the latent dimension of the model, without changing the architecture of
the decoder. The resulting model is our Augmented Invertible Koopman AutoEncoder (AIKAE).

We perform long-term forecasting experiments with this model in two settings. First, we work on regularly-
sampled time series with no missing observations, where one has access to numerous past observations in
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order to compute a forecast. For this setting, we show that a delayed AIKAE, i.e. a AIKAE from which the
input space contains multiple consecutive observations rather than a single one, can obtain accurate results,
challenging a set of strong and recent baselines. Then, we work on satellite image time series, where there
are usually a lot of missing observations, resulting in irregularly-sampled data. In this context, we use a
pre-trained AIKAE model as a dynamical prior in a constrained variational data assimilation framework.
We show that this model performs better in this task than other Koopman autoencoder variants. The codes
associated to our experiments are temporarily available on https://github.com/42anonymous42/AIKAE.

The remainder of this paper is organized as follows: in section 2, we review Koopman operator theory and
the recent related neural network-based models. In section 3, we introduce our new architectures, including
the AIKAE architecture in subsection 3.1 and the delayed Koopman autoencoders in subsection 3.2. In
section 4, we show how an AIKAE can be used as a dynamical prior in a variational data assimilation cost.
Our experiments on long-term forecasting with a fixed lookback window and on assimilating satellite image
time series are respectively presented in sections 5 and 6. Section 7 concludes our work.

2 Background and related works

Originally introduced in Koopman (1931), Koopman operator theory has known a renewed interest in the
last few decades, starting from the work of Mezić (2005). We refer the interested reader to Brunton et al.
(2021) for an extensive review of Koopman operator theory and its applications. In a few words, this
theory states that any dynamical system, regardless of its inherent complexity, can be described by a linear
operator, although at the cost of an infinite dimension in the general case. More precisely, let us introduce
a (supposedly autonomous and deterministic) dynamical system from which the state at a given time can
be described by a n-dimensional variable x ∈ X ⊂ Rn. The system is defined by a discrete-time evolution
operator F : X → X . Then, assuming that the state of the system at an integer time t is xt ∈ X , we define

xt+1 ≜ F (xt). (1)

The Koopman operator K is such that, for any measurement function g : X → R and initial condition xt,

Kg(xt) ≜ (g ◦ F )(xt) = g(xt+1). (2)

Thus, in theory, one would simply need to have access to the expression of K for the canonical measurement
functions (i.e. the projections of the full state x onto its n variables) to be able to exactly characterize
the dynamical system F . However, the infinite dimension of the space of measurement functions means
that the Koopman operator is itself infinite dimensional, and therefore often difficult to describe in practice.
For this reason, most of the data-driven methods inspired by the Koopman operator consist in finding an
approximation of this operator on a specific d-dimensional set of measurement functions (g1, ..., gd). Ideally,
one would require this set to be invariant by the Koopman operator. This would mean that, for any of the
functions gi, there would exist coefficients ki,. such that, for any initial condition xt ∈ X ,

Kgi(xt) = gi(F (xt)) =
d∑

j=1
ki,jgj(xt). (3)

In this case, the action of the Koopman operator on the subspace spanned by (g1, ..., gd) could be simply
described by a matrix K ∈ Rd×d, built with the coefficients ki,j . For linear dynamical systems, the space
spanned by the canonical measurement functions of the system (i.e. the functions constituting the state
variables) is obviously invariant by the Koopman operator. For nonlinear dynamical systems, there are
some cases in which a finite-dimensional Koopman invariant subspace containing all the state variables (in
addition to some "augmentation" variables, required to obtain the linearity) are known. Examples of such
dynamical systems are detailed in e.g. Brunton et al. (2016) and Kutz et al. (2016). However, most of
the time the Koopman invariance has to be approximated to a certain degree. Once a set of measurement
functions (g1, ..., gd) has been designed, one typically looks for the matrix K∗ that minimizes the residual
error of the multiplication by a matrix K. Formally, one can work with a set of data X = (x1, ...,xT ), with
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a time-shifted version Y = (x′
1, ...,x′

T ), where, for any index 1 ≤ t ≤ T , x′
t = F (xt). Then, we seek to find

K∗ = arg min
K∈Rd×d

||Kg(X) − g(Y)||2, (4)

where we use the notations

g(X) =

 g1(x1) g1(x2) g1(xT )
...

... · · ·
...

gd(x1) gd(x2) gd(xT )

 , g(Y) =

 g1(x′
1) g1(x′

2) g1(x′
T )

...
... · · ·

...
gd(x′

1) gd(x′
2) gd(x′

T )

 . (5)

The optimization problem of equation 4 can be solved using the well-known least-squares solution:

K∗ = g(Y)(g(X))+, (6)

where .+ denotes the Moore-Penrose pseudoinverse. It should be noted that this solution only accounts for
the advancement of one time step, i.e. one iteration of the discrete dynamics F . Hence, the obtained model
will generally perform poorly in long-term predictions. For this reason, while early Koopman-based methods
such as dynamic mode decomposition (Schmid, 2010) and extended dynamic mode decomposition (Williams
et al., 2015) compute the least-square solution of equation 6 (or a low-rank approximation of it), subsequent
neural network-based implementations generally leverage trajectories with multiple time steps in order to
train a model that produces accurate long-term predictions.

To sum up, many practical implementations of the Koopman operator consist in finding a set g : X → Rd

of d measurement functions (g1, ..., gd), each from the state space X to R, and a matrix K ∈ Rd×d that
approximates the restriction of the Koopman operator to the subspace spanned by these functions. We have
mentioned the importance of choosing a set of measurement functions that span an (approximately) Koopman
invariant subspace. Another important aspect of these methods is the ability to faithfully reconstruct an
input state x ∈ X from its embedding g(x) ∈ Rd, and to do the same for the time-advanced embeddings
Kg(x), in order to produce predictions for the evolution of the state vector from any initial condition. Thus,
one must be able to define a (possibly approximated) function f : Rd → X such that the composition f ◦ g
is (approximately) equal to the identity function. The reconstruction abilities of the recently introduced
classes of Koopman-based methods are discussed in Jin et al. (2024). We defer a detailed discussion of older
methods to appendix A and directly discuss Koopman autoencoders (KAEs), a class of methods introduced
by Lusch et al. (2018) and extended by numerous subsequent works, e.g. Otto & Rowley (2019); Li et al.
(2019); Azencot et al. (2020); Berman et al. (2023); Frion et al. (2024) among many others. These methods
model the Koopman invariant subspace through the means of a neural autoencoder, which does not directly
include the state variables. A neural autoencoder simply consists of two neural networks, ϕ and ψ, each with
its set of trainable parameters, from which the composition is approximately equal to the identity function,
i.e. ψ ◦ ϕ(x) ≈ x. For KAE models, the encoder ϕ : Rn → Rd learns a non-trivial Koopman invariant set
of measurement functions, while the decoder ψ : Rd → Rn learns to reconstruct the state space from the
latent representation of ϕ. Depending on the implementations, the Koopman matrix K ∈ Rd×d is learned
alongside the parameters of ϕ and ψ or obtained separately through the resolution of a least squares problem
as in equation 4. The predictions of a KAE model after τ time steps are computed as:

xt+τ ≈ x̂t+τ = ψ(Kτϕ(xt)). (7)

While general neural autoencoder models were originally introduced for the purpose of reducing the dimension
of the input x (i.e. following the property d < n), in the context of finding a better representation of the
Koopman operator, it might actually be beneficial to learn a latent representation with a higher dimension
than the input (i.e. d > n). In practice, the latent dimension d should be regarded as an important parameter
for the design of a KAE model.

Although the Koopman autoencoder framework enables for a high expressivity in the search of a suitable
Koopman invariant subspace, it has the notable inconvenient that, in contrast to earlier methods, it computes
an approximated rather than an exact reconstruction of the input state. In practice, in the loss function for
training a Koopman autoencoder, one should include a reconstruction term to ensure that the components
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ϕ and ψ indeed constitute an autoencoder. This loss function term is to be minimized in conjunction with
the prediction loss term and to the linearity loss term (see e.g. Lusch et al. (2018)), which leads to a complex
loss landscape, and possibly to difficulties in adjusting the relative weights of the loss function terms. For
this reason, a recent line of work (Jin et al., 2023; Meng et al., 2024; Jin et al., 2024) has investigated the
substitution of the neural autoencoder (ϕ, ψ), by an analytically invertible ϕ with its exact inverse ϕ−1. In
this case, the predictions of the model are given by:

xt+τ ≈ x̂t+τ = ϕ−1(Kτϕ(xt)). (8)

This results in a subclass of methods which we call invertible Koopman autoencoders (IKAEs). More
specifically, they proposed to implement ϕ with coupling-layer normalizing flow models (Dinh et al., 2014;
2016; Kingma & Dhariwal, 2018). These models have several interesting properties. Notably, they indeed
have an analytical inverse transformation, enabling an exact reconstruction of an encoded state x up to
machine precision. In addition, the determinant of the Jacobian matrix corresponding to a coupling-layer
normalizing flow ϕ can be easily computed in practice, enabling to perform likelihood computations thanks
to the well known change of variable formula:

pX(x) = pY (ϕ(x))
∣∣∣∣det ∂ϕ(x)

∂x

∣∣∣∣ , (9)

where Y is defined in the latent space of the model.

Using these properties, coupling-layer normalizing flows were originally introduced as a generative model,
enabling to link a complex probability distribution pX , supposedly corresponding to a set of observed data, to
a simple probability distribution pY , often chosen to be a standard Gaussian. Although the current existing
works on invertible Koopman autoencoders only consider deterministic settings, these properties may be
used to train invertible Koopman autoencoders in a stochastic context. For example, one may estimate the
probability distribution function of an advanced state xt+τ knowing that the state xt is observed with an
uncertainty corresponding to a Gaussian white noise with a covariance Σ ∈ Rn×n.

Another important property of coupling-layer normalizing flows is that they always preserve the dimension
of the input state, which is a necessity in order for the change of variable formula to be applicable. This may
be detrimental for IKAE models since, as previously mentioned, one often needs to inflate the dimension
of the state space in order to obtain a good approximation of the Koopman operator. To alleviate this
issue, the authors of the existing IKAE models have proposed to concatenate zeros to the state vector,
either before (Meng et al., 2024) or in-between (Jin et al., 2023) the coupling layers of the normalizing flow.
However, this approach means that the resulting model will learn a function that enables to reconstruct these
added zeros by design, while only the reconstruction of the true state variables is of interest. In addition, the
operation of concatenating zeros to the state vector prevents a direct application of the change-of-variable
formula from equation 9, hence reducing the possibilities for stochastic extensions.

3 Our proposed Koopman autoencoder architectures

3.1 Augmented invertible Koopman autoencoder

We mentioned in the previous section that the base IKAE architecture had the inconvenient of not enabling
to learn a large enough set of measurement functions to obtain a sufficiently good approximation of the
Koopman operator. Thus, in this section, we propose a revised architecture in which the invertible encoder
of these models is augmented with a second neural encoder χ, which enables to capture a richer set of
measurement functions while keeping the invertibility of the model. We call the resulting architecture
an augmented invertible Koopman autoencoder (AIKAE). This architecture is represented graphically in
figure 1. Since χ does not have to be invertible, it can be implemented with any neural network architecture.

The predictions performed by the AIKAE model over τ time steps from an observed initial condition xt can
be described as follows:

zt =
(

zi
t

za
t

)
=

(
ϕ(xt)
χ(xt)

)
(10)
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xt

zt

K

zt+1
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Figure 1: Graphical representation of the AIKAE architecture. ϕ is a coupling layer normalizing flow with
an analytical inverse ϕ−1, χ is a neural network (generally a simple multi layer perception in practice) and
K is a matrix.

zt+τ =
(

zi
t+τ

za
t+τ

)
= Kτ zt (11)

x̂t+τ = ϕ−1(zi
t+τ ) (12)

The innovation of the AIKAE model in comparison to the IKAE model is that we introduce a second
encoder χ : Rn → Rp, which we call the augmentation encoder. The latent state zt corresponding to xt is
thus obtained by concatenating an augmentation encoding za

t = χ(xt) to the invertible encoding zi
t = ϕ(xt)

produced by the unchanged normalizing flow model ϕ : Rn → Rn, as summarized in equation 10. Then,
the linear latent dynamics is defined by the multiplication of the full latent state zt by the matrix K, which
is now of size d = n + p, as summarized in equation 11. Hence, by adding an augmentation part to the
encoding, we indeed increase the number of measurement functions included in the latent space, and the
dimension of the approximated Koopman operator K as a consequence. Finally, in order to go back to the
input space after any desired number τ of iterations, one can decode the invertible part zi

t+τ of zt+τ , as
shown in equation 12. Note that, with our notations, the operations zi and za respectively correspond to
projections on the first n or the last p variables of z ∈ Rn+p.

From studying these equations, one can see that the augmentation part za
t of the initial latent state has

no influence on the direct reconstruction x̂t (i.e. the case where τ = 0), which is still exact up to machine
precision thanks to the analytical inverse ϕ−1 of ϕ. However, za

t influences the subsequent invertible parts
of the encoding through the multiplications by K, as long as the upper-right block of K is nonzero. In
fact, should the last p columns of K be zero, then the augmentation part za

t would have no influence on the
predictions in the state space, which means that the whole model would be equivalent to a non-augmented
IKAE model. Thus, we have the intuitive result that the AIKAE architecture is a generalization of the
IKAE architecture. In addition, one may interpret the invertible and augmentation parts of an encoding
zt as a disentanglement between the "static features" and the "dynamical features". This interpretation is
particularly interesting when performing data assimilation using the methods of section 4. In practice, the
output size p of χ determines the latent size d = n+p of an AIKAE, making it an important hyperparameter,
similarly to the latent dimension d itself for non-invertible KAE models.

In order to characterize the predictions by an AIKAE in a more compact way, we introduce the global encoder
Φ : Rn → Rd which corresponds to the concatenation of the invertible encoder ϕ and the augmentation
encoder χ, i.e. zt = Φ(xt). Correspondingly, we have that the global decoder Φ−1 : Rd → Rn consists in the
application of ϕ−1 on the invertible part (i.e. the first n variables) of a latent vector. Thus, equations 10
to 12 can now be summarized as

x̂t+τ = Φ−1(Kτ Φ(xt)). (13)

As the notations suggest, Φ−1 is still an analytical left inverse of Φ, as Φ−1 ◦ Φ corresponds to the identity
function. One should however be aware that the reversed composition Φ ◦ Φ−1 is not an identity function
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since the information on the augmentation part of the encoding is dismissed when computing Φ−1. Thus,
Φ−1 is not a right inverse of Φ.

3.2 Delayed Koopman autoencoders

We now discuss delayed Koopman autoencoders, which simply consist in KAE models that take as their
input state a concatenation of m consecutive observed states from a dynamical system rather than a state
vector corresponding to a specific time index. We refer to this approach as a delay embedding. Formally,
when observing a long time series (x0, ...,xT ) ∈ X T +1, rather than directly using a state xt ∈ Rn as the
input to a KAE, one may alternatively use

yt =

 xtm

...
xtm+m−1

 ∈ Rd (14)

as the input to the model. Then, the dimension of the input space of the model will be d = nm. Thus,
in order to avoid manipulating a very high-dimensional input state (taking into account the fact that the
latent space should be at least as big as the input space in order for the encoder to be invertible), it is more
convenient to do so when the original dimension n of the input space X is small. In this regard, the case of
univariate time series (i.e. n = 1) is of particular interest.

In practice, using such a delay embedding of the state may increase the predictability when the knowledge of
a single observation xt is not sufficient to predict the subsequent states, i.e. in cases where xt is not actually
the state variable of a dynamical system. The use of delay embedding is commonplace in data-driven signal
processing, as the well-known Takens theorem (Takens, 1981), guarantees an increased predictability of the
system when the size of the delay embedding increases.

In particular, the use of delay embedding for DMD was proposed by Tu et al. (2014). Along with the subse-
quent works of e.g. Le Clainche & Vega (2017); Kamb et al. (2020); Yuan et al. (2021), they demonstrated the
ability to model a higher number of Koopman modes, and an increased robustness to noise in the observed
data. However, to the best of our knowledge, our work is the first to propose using a large delay embedding
for a neural network-based implementation of the Koopman operator. Experiments involving this approach
are presented in section 5.

4 AIKAE as a variational data assimilation prior

Variational data assimiliation consists in inferring the full state of a system over time, by leveraging a
set of partial and noisy observations as well as some prior knowledge on the dynamical behavior of the
system, often in the form of a dynamical model. Concretely, the assimilated state is obtained by solving
a variational cost that comprises a term of fidelity to the observed data and a term of fidelity to the
prior knowledge. This cost is minimized using some form of gradient descent algorithm. Traditionally, the
prior knowledge comes in the form of a complex physical model, which can be differentiated using adjoint
methods (see e.g. Bannister (2017)). A rich line of work has recently investigated the minimization of a
variational cost using autodifferentiation frameworks, either by re-implementing physical models in such
frameworks (see Gelbrecht et al. (2023) for a review) or by substituting this physical prior by a data-driven
one (Nonnenmacher & Greenberg, 2021; Fablet et al., 2021). We refer the interested reader to Cheng et al.
(2023) for a review of the methods combining machine learning and data assimilation.

Here, we show how to use a pre-trained AIKAE model as a prior for variational data assimilation, taking
inspiration from the work of Frion et al. (2024). In a few words, this method consists in finding the initial
latent state of the model that enables to most closely fit a set of observed states with associated timestamps.
Although it was originally introduced for regular (non-invertible) KAE models, it can be straightforwardly
adapted to IKAE and AIKAE models, and thus we hereafter explicit the AIKAE case only.

Suppose that we have at disposal a trained AIKAE model, with its components (ϕ, χ) = Φ and K. In
addition, we observe a trajectory of data through a set of T points (xt0 , ...,xtT

), with the associated time
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indexes (t0, ..., tT ) ∈ NT +1, supposed to be arranged in increasing order with t0 = 0 for convenience. Note
that the timestamps could be chosen to be non-integers if we use the matrix logarithm of K, as explained
in Frion et al. (2024). In order to fit the observed datapoints, one can solve the following optimization
problem:

z∗
0 = min

z0∈Rd

T∑
i=0

||Φ−1(Ktiz0) − xti
||2. (15)

This method corresponds to a strong-constrained variational data assimilation scheme, where the chosen
dynamical prior is the pre-trained AIKAE model. In practice, it can be solved using autodifferentiation,
leveraging the fact that the prior is fully differentiable. Once the (approximated) solution z∗

0 is found, one
can query the predicted state at any time t by simply computing

x̂t = Φ−1(Ktz∗
0). (16)

Then, depending on the time steps t for which we are interested in the predictions, this framework may
enable to solve denoising, interpolation, forecasting or all these tasks at once.

In order to adapt this method to a pre-trained IKAE model with components ϕ and K, one would simply
have to substitute ϕ to Φ in equations 15 and 16. Interestingly, since the latent space of an IKAE is in
bijection with the state space, the exact equality of its trajectory to an observation at one given timestamp
deterministically gives the remaining of the time series. To illustrate this remark, suppose that we constrain
the equality of the predicted initial state to the initial observation in equation 15. Then, we can solve

z∗
0 = min

z0∈Rd

T∑
i=0

||Φ−1(Ktiz0) − xti ||2

s.t. Φ−1(z0) = x0.

(17)

For an AIKAE, we have that the constraint Φ−1(z0) = x0 is respected if and only if zi
0 = ϕ(x0). Thus,

equation 17 is equivalent to an unconstrained optimization problem on za
0 ∈ Rp. If K has a nonzero upper-

right block (i.e. if za
0 influences the invertible parts of the subsequent latent states), then multiple trajectories

are admissible, making this problem nontrivial. In contrast, when adapting equation 17 for an IKAE, since
there is no augmentation encoder, the only possible value for z0 is z∗

0 = ϕ(x0), which is the same one as in
the direct inference in equation 8, taking no account of any of the subsequent observations. Overall, one can
see that an AIKAE can produce several different trajectories that exactly match an observed initial state
while an IKAE is not able to do so.

5 Long-term time series forecasting experiments

In this section, we present experiments on a set of popular long-term time series forecasting datasets. Some-
times called the "Informer benchmark" as a reference to the work of Zhou et al. (2021) that popularised
it, it is comprised of the ETT datasets (including the subsets ETTh1, ETTh2, ETTm1, ETTm2), ECL,
Exchange, Traffic and Weather. These datasets have been extensively used in the last few years to evaluate
the performance of the recently introduced long-term time series forecasting models, including Transform-
ers (Zhou et al., 2022; Nie et al., 2023), convolution-based methods (Wu et al., 2023) and linear models (Zeng
et al., 2023). We refer the interested reader to Wang et al. (2024) for a recent assessment of the rapidly
evolving state of the art on this benchmark. The long-term time series forecasting task consists in predicting
the state of a time series over a prediction length of TP timesteps, using as input a lookback window of
TL preceding states. In practice, TL and TP are typically in the order of 100 time steps. Although the
considered datasets consist in multivariate time series, it has been observed that using the information of
a single variable over all time steps in a lookback window enables to obtain better performance than when
considering the information of all variables at a single time step. For this reason, some of the best per-
forming methods consist in either only one single univariate model that is used on every variable of the
dataset (Zeng et al., 2023; Li et al., 2023), or in one univariate model for each variable (Nie et al., 2023). In
addition, as underlined by Wang et al. (2024), sequential models such as long short-term memory networks
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(LSTM, Hochreiter (1997)) typically struggle to capture the long-term relationships compared to models
that process the lookback window all at once. Using these insights, we propose to solve the long-term time
series forecasting task with univariate delayed Koopman autoencoders, as described in subsection 3.2, rather
than with a classical KAE that would use a single (multivariate) observation as its state space. Interestingly,
a delayed KAE model may be seen as a generalization of the simplest linear model proposed by Zeng et al.
(2023). In a few words, this linear model consists in directly finding a matrix W ∈ RTP ×TL representing a
linear relationship between the observed lookback window X ∈ RTL and the corresponding output Y ∈ RTP .
Although W is found through stochastic gradient descent, this method is reminiscent of DMD with a delay
embedding. Indeed, when supposing TL = TP , these two approaches are equivalent. In this regard, our
delayed KAE approach is an additional generalization where the linear relationship is computed in a latent
space defined by a nonlinear encoding through ϕ of the delay embedded state, rather than directly on this
state. Thus, it will be of particular interest to assess whether the addition of a nonlinear encoder with an
IKAE or AIKAE model enables to improve the forecasting performance, knowing that linear models have
been observed to perform surprisingly well for the datasets that we consider.

We compare our delayed IKAE and AIKAE models against a set of strong and recent baselines representing
several popular classes of models for long-term time series forecasting:

• The DLinear model (Zeng et al., 2023) is a variant of the previously discussed linear model, which
leverages a trend-season decomposition of the lookback observations rather than the direct lookback
window of observations.

• PatchTST (Nie et al., 2023) is a Transformer model, which decomposes the input time series into
patches each containing information on several time indexes. It also treats each channel of the
multivariate time series independently instead of mixing their information.

• Timesnet (Wu et al., 2023) is a convolution-based method. It consists in building 2-dimensional
representations of the time series by reshaping the input data according to its main frequencies, and
processing these representations using convolutional neural networks.

• iTransformer (Liu et al., 2024) is a Transformer model in which the feature and time dimensions are
switched, which has been shown to enable better performance than all of the previously proposed
variants of the Transformer model.

Following the most standard evaluation conditions, we test our IKAE and AIKAE models with a lookback
window of size TL = 96, and 4 lengths TP of the prediction window: 96, 192, 336, 720. Thus, the size of
the invertible part of the latent space is TL = 96. For AIKAE, the augmentation part of the latent space
is of size 32, leading to a global latent space of size 128. We use reversible instance normalization (RevIN,
Kim et al. (2021)) for IKAE and AIKAE, as it was reported to improve the performance of multiple long-
term time series forecasting models. RevIN performs a channel-wise normalization of the input data, with
2 learnable parameters for each channel. In order to ensure the reproducibility of our results, we initialise
all IKAE models and all AIKAE models with the same fixed random seed. The training is performed with
the Adam algorithm with a learning rate of 10−3 and momentum parameters β = (0.9, 0.999). We use the
same training hyperparameters for all forecasting tasks, except for the batch size which is set to 4 for the
ETT datasets and to 32 for all other datasets. This choice is justified by the fact that complex models tend
to quickly overfit on these datasets, and therefore we seek to make our gradient descent more stochastic.

The full results are reported in table 1. The Exchange dataset is excluded from these results since it is the only
dataset for which none of the tested models is able to beat the persistence, which is a trivial method consisting
in copying the last observed value from the lookback window to the whole prediction window. Classically,
models that do not perform better than persistence are considered to contain no relevant information for
the task at hand. Thus, we consider comparisons between methods that do not beat the persistence to be
irrelevant. Extended results including the Exchange dataset and the persistence baseline can be found in
appendix B.1.

From table 1, one can see that the AIKAE model outperforms the IKAE model in the majority of the
considered tasks, although with a small margin. In addition, both models appear to be competitive with
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Table 1: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) for various models and
long-term forecasting tasks. For each dataset, we use a lookback window of size TL = 96 and prediction
horizons TP of sizes 96, 192, 336, 720. IKAE and AIKAE are our own implementations, while we use the
results reported by Liu et al. (2024) for all other models. For each task and metric, the best result is in bold
and the second best result is underlined.

Model IKAE AIKAE iTransformer PatchTST TimesNet DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

EC
L

96 0.161 0.252 0.158 0.249 0.148 0.240 0.181 0.270 0.168 0.272 0.197 0.282
192 0.176 0.265 0.171 0.261 0.162 0.253 0.188 0.274 0.184 0.289 0.196 0.285
336 0.195 0.284 0.189 0.278 0.178 0.269 0.204 0.293 0.198 0.300 0.209 0.301
720 0.239 0.320 0.234 0.315 0.225 0.317 0.246 0.324 0.220 0.320 0.245 0.333

Tr
affi

c 96 0.460 0.313 0.450 0.301 0.395 0.268 0.462 0.295 0.593 0.321 0.650 0.396
192 0.476 0.317 0.458 0.302 0.417 0.276 0.466 0.296 0.617 0.336 0.598 0.370
336 0.496 0.327 0.475 0.311 0.433 0.283 0.482 0.304 0.629 0.336 0.605 0.373
720 0.524 0.343 0.509 0.331 0.467 0.302 0.514 0.322 0.640 0.350 0.645 0.394

W
ea

th
er 96 0.174 0.220 0.171 0.216 0.174 0.214 0.177 0.218 0.172 0.220 0.196 0.255

192 0.227 0.264 0.224 0.262 0.221 0.254 0.225 0.259 0.219 0.261 0.237 0.296
336 0.282 0.303 0.279 0.301 0.278 0.296 0.278 0.297 0.280 0.306 0.283 0.335
720 0.363 0.355 0.363 0.354 0.358 0.347 0.354 0.348 0.365 0.359 0.345 0.381

ET
T

h1

96 0.392 0.404 0.392 0.404 0.386 0.405 0.414 0.419 0.384 0.402 0.386 0.400
192 0.450 0.436 0.435 0.432 0.441 0.436 0.460 0.445 0.436 0.429 0.437 0.432
336 0.492 0.462 0.482 0.459 0.487 0.458 0.501 0.466 0.491 0.469 0.481 0.459
720 0.638 0.545 0.590 0.536 0.503 0.491 0.500 0.488 0.521 0.500 0.519 0.516

ET
T

h2

96 0.303 0.348 0.302 0.346 0.297 0.349 0.288 0.338 0.340 0.374 0.333 0.387
192 0.395 0.406 0.372 0.395 0.380 0.400 0.388 0.400 0.402 0.414 0.477 0.476
336 0.430 0.438 0.446 0.444 0.428 0.432 0.426 0.433 0.452 0.452 0.594 0.541
720 0.458 0.463 0.454 0.459 0.427 0.445 0.431 0.446 0.462 0.468 0.831 0.657

ET
T

m
1 96 0.328 0.364 0.322 0.360 0.334 0.368 0.329 0.367 0.338 0.375 0.345 0.372

192 0.375 0.392 0.375 0.389 0.377 0.391 0.367 0.385 0.374 0.387 0.380 0.389
336 0.411 0.420 0.405 0.415 0.426 0.420 0.399 0.410 0.410 0.411 0.413 0.413
720 0.478 0.456 0.466 0.449 0.491 0.459 0.454 0.439 0.478 0.450 0.474 0.453

ET
T

m
2 96 0.184 0.266 0.185 0.267 0.180 0.264 0.175 0.259 0.187 0.267 0.193 0.292

192 0.255 0.313 0.246 0.307 0.250 0.309 0.241 0.302 0.249 0.309 0.284 0.362
336 0.322 0.355 0.307 0.345 0.311 0.348 0.305 0.343 0.321 0.351 0.369 0.427
720 0.401 0.401 0.405 0.399 0.412 0.407 0.402 0.400 0.408 0.403 0.554 0.522

regard to the other considered methods, and they are always within a reasonably small range of the best
result. In particular, AIKAE ranks first or second in multiple tasks, and it outperforms DLinear in a majority
of settings.

Although IKAE and AIKAE notably lag behind iTransformer in their global results, they still demonstrate
competitive performance with regard to their low number of parameters and overall simplicity. We emphasize
that the number of parameters of our models depend on the lookback window length TL, but not on the
prediction length TP , since longer predictions are simply obtained by autoregressive multiplications in the
latent space. Thus, all of our IKAE and AIKAE models evaluated in table 1 have respectively 100K and
160K parameters. This is two orders of magnitude below most of the transformer models, which have tens of
millions of parameters (see e.g. Zeng et al. (2023)) and comparable to linear models such as DLinear, which
has around 140K parameters for TP = 720.

Though we did not perform an extensive hyperparameter search, preliminary results show that doing so
would significantly improve the performance of our models, especially for longer prediction times. Besides,
extensions of our models with classical time series processing tools such as the Fourier transform (Zhou et al.,
2022) or seasonal-trend decomposition Zeng et al. (2023) might be interesting directions to study in order
to further improve the results.

Additional results on this benchmark can be found in the appendices. Specifically, in appendix B.2, we study
the influence of RevIN and of different encoder architectures, notably establishing the superiority of AIKAE
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to the IKAE with zero padding proposed in Meng et al. (2024). In appendix B.3, we study the performance
of IKAE and AIKAE with varying lookback window sizes and show that, like linear models and in contrast
to many Transformer models, their performance consistently improves with an increasing lookback window
size.

6 Variational data assimilation on satellite image time series

We now move on to a training task involving long-term forecasting of satellite image time series at the pixel
level. More precisely, we work with a dataset of Sentinel-2 image time series, introduced by Frion et al.
(2023b) and used as a variational data assimilation benchmark by Frion et al. (2024). These data differ
from the time series datasets of the previous section in several ways. Most importantly, satellite images have
multiple missing observations that are due to the presence of clouds between the observation satellite and the
surface of the Earth. Since we are usually solely interested in modeling the surface, we find ourselves with
the dilemma of either directly processing an irregularly sampled time series or interpolating the available
observations as a pre-processing step. In the first case, the time series will be significantly more difficult
to process. In particular, one cannot directly observe a lookback window of many previous observations in
order to make a long-term prediction. In the second case, the time series is significantly easier to process,
yet it is made partly synthetic by the interpolation pre-processing step, which will be learned by the model
alongside the true distribution of the satellite data. Fortunately, as underlined by Frion et al. (2024), the
Koopman autoencoder framework is more flexible than most time series processing methods thanks to its
ability to learn an underlying continuous representation of the modeled system. However, in order to retain
this flexibility, one cannot work with a large delay embedding as described in section 3.2, or use the other
models from the benchmark of section 5. Instead, we will work with a more classical model, from which the
input space is built out of only two consecutive observations, the second of which being used to compute
a first order derivative. Indeed, as underlined in Frion et al. (2024), the access to a first order derivative
enables to more easily compute short-term predictions since, when the evolution is smooth enough, one can
already obtain a reasonably good approximation by using it to compute an explicit Euler scheme over one
time step. Machine learning-based autoregressive forecasting models based on two previous observations are
commonplace for tasks such as weather prediction: see e.g. Lam et al. (2023) and Oskarsson et al. (2024).

We now describe the forecasting benchmark that was introduced by Frion et al. (2024), on which we will
test several variants of Koopman autoencoder models including our new AIKAE architecture. We have at
disposal satellite images from two spatial areas: the forest of Fontainebleau and the forest of Orléans. The
data from Fontainebleau, which is used as a training area, is regularly sampled in time thanks to a pre-
processing Cressman interpolation step. To train a KAE model as a dynamical prior, we use Ttrain = 242
time steps of data, from an area of 150 × 150 pixels. The Sentinel-2 images that compose the dataset
are multispectral, which means that they contain a richer spectral information than classical RGB images.
Namely, the available information for each pixel and time step is a reflectance vector of size L = 10, including
the classical red-green-blue spectral bands as well as 7 bands in the infrared domain. We emphasize that we
work at the pixel level, which means that the input space of a model corresponds to the reflectance vector
(and its first order derivative) of a single pixel, and that the pixel trajectories are assumed to all correspond
to a same dynamical system.

After training, the trained model is used as a dynamical prior in a variational data assimilation framework,
as discussed in section 4. The objective is to accurately predict the Ttest = 100 steps of data that follow
the window of training data, by leveraging the observations of this training window. This task is declined
on the two areas discussed before. For the Fontainebleau training area, the time series is again regularly
sampled in time, and only the capacity of the model to extrapolate to unseen time indexes is assessed. For
the Orléans area, the data are not interpolated as a pre-processing step, and are thus irregularly sampled
in time. In this case, all observations correspond to actual satellite measurements. The extrapolation task
on this area tests not only the ability of the trained KAE model to extrapolate in time, but also to transfer
its learned knowledge to a new spatial area with differing dynamics. Besides, the irregular sampling pattern
of the observed data for this task is the precise reason for which one cannot resort to a model with delay
embedding in this experiment.
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It should be noted that directly training a model on irregularly-sampled data is preferable and that it is
possible to do so with a KAE model, as demonstrated by Frion et al. (2024). However, we restrain our
study to the case where training is performed on interpolated data in order to match the conditions of the
main benchmark proposed by the authors. For this benchmark, we compare 4 variants of the Koopman
autoencoder model:

• The base KAE model with 2 MLP networks as its encoder ϕ and decoder ψ, as described in Frion
et al. (2024).

• An IKAE model leveraging a coupling layer normalizing flow model as its analytically invertible
encoder, as proposed by Meng et al. (2024). More precisely, the encoder is implemented with the
NICE architecture (Dinh et al., 2014). Note that substituting the NICE model by a non-volume
preserving encoder such as RealNVP (Dinh et al., 2016) resulted in a less stable training procedure,
constraining a reduction of the learning rate and leading to worse performance.

• An IKAE with zero padding, as suggested by Meng et al. (2024) (abbreviated IKAE-zp). This
model is identical to the previous one except for the concatenation of zeros to the input state before
entering the normalizing flow encoder, hence inflating the dimension of the latent space.

• Our AIKAE model, as described in subsection 3.1, where the latent dimension is inflated by the
means of learning a second, non-invertible encoder χ rather than applying a fixed zero padding.

The size of the input space is n = 2L = 20, and the dimension is augmented by 16, leading to a latent
space of size d = 36, for IKAE-zp and AIKAE. The latent dimension is set to d = 32 for KAE, and
constrained to d = n by design for IKAE. For each of these models, we train five instances corresponding to
five parameter initializations with fixed random seeds. Following the recommendations of Frion et al. (2024),
we design loss functions based on 4 terms: the prediction term, the reconstruction term, the linearity term
and an additional orthogonality term. While the first 3 of these loss terms were proposed by Lusch et al.
(2018) and are standardly used by multiple KAE implementations, the orthogonality term was proposed as
a way to improve the long-term stability of the predictions, by ensuring that the norms of the latent states
stay approximately constant through time. As previously mentioned, the 3 tested invertible models are
trained without the reconstruction loss term since their reconstructions are exact by design. The training is
performed with the Adam algorithm, with a learning rate of 10−3. We use weight decay with a coefficient
of 10−6 for training the IKAE-zp and AIKAE models. For the other 2 models, we present results obtained
with no weight decay since the usage of weight decay did not improve the performance.

The testing procedure leverages the methods of section 4 by using the pre-trained model as a variational prior
for data assimilation, with the motivation of producing a long-term forecast from an observed trajectory.
Typically, for evaluating a trained AIKAE instance with components Φ and K on long-term forecasting the
Fontainebleau data, we instantiate equation 15 as

z∗
0 = min

z0∈Rd×N×N

Ttrain∑
t=0

||Φ−1(Ktz0) − xt||2, (18)

where xt ∈ RL×N×N corresponds to the reflectance over an area of N2 = 100 × 100 pixels, which is included
in the training data. Concretely, since the prior is a pixelwise model, this can be seen as N × N separate
optimization problems. One could however perform a joint optimization with an additional spatial coherence
prior, as proposed by Frion et al. (2024). After z∗

0 is obtained, the forecasting mean squared error is computed
as

MSE = 1
Ttest

Ttrain+Ttest∑
t=Ttrain+1

||Φ−1(Ktz∗
0) − xt||2, (19)

and the mean absolute error is computed in an analogous way. This procedure can be simply adapted to
the other KAE variants by replacing Φ and Φ−1 by ϕ, ψ or ϕ−1 when necessary. The procedure is similar
for the Orléans area, except that the assimilation cost and the metrics are computed only over time indexes
where groundtruth observations are available.
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Table 2: Mean squared errors (MSEs) and mean absolute errors (MAEs) obtained by averaging the perfor-
mance of 5 instances of each model. The models are pre-trained on the Fontainebleau area, and then used as
variational data assimilation priors, following equation 18. The KAE model was the only one to be subject
to overfitting when assimilating the Orléans data, hence the additional row "Orléans (overfit)".

Model KAE IKAE IKAE-zp AIKAE
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Fontainebleau 0.00112 0.0213 0.00128 0.0224 0.00106 0.0212 0.00108 0.0204
Orléans (optimal) 0.00346 0.0384 0.00382 0.0399 0.00324 0.0366 0.00297 0.0356
Orléans (overfit) 0.00403 0.0419 N/A N/A N/A N/A N/A N/A

Table 2 displays the obtained results. Additionally, in appendix C, we display and analyze forecasting results
associated to this task for a randomly selected pixel. When extrapolating on the training Fontainebleau area,
one can see that the performances of the models are relatively even, except for the IKAE model. Its worse
performance may be attributed to the reduced size of its latent space, which limits its ability to find a
proper linear representation of the system. The IKAE-zp variant seems to partially alleviate this issue as
it obtains significantly better performance. The test Orléans area exhibits a stronger contrast between the
tested models. On this area, one can see that the AIKAE model performs best, followed by the IKAE-zp.

Interestingly, the base KAE model was the only variant which was observed to overfit on its assimilated data
on the Orléans area. In other words, the latent initial state z∗

0 from equation 18 is not necessarily the best
initial state for minimizing the forecasting error of equation 19. Concretely, as explained in section 4, we
find an approximation to z∗

0 by minimizing the associated variational cost using automatic differentiation
with the Adam optimizer. We observe that the best extrapolation performance is obtained by using a
relatively small learning rate and fewer gradient descent steps, resulting in a suboptimal minimization of
the variational cost of equation 18. In contrast, for all other models, the best extrapolation result is always
obtained by minimizing the variational cost, which means that the assimilation scheme does not overfit the
assimilated data. To illustrate this difference, we report two results for the KAE model on the Orléans
area: the first one is with the optimal variational assimilation hyperparameters, as reported by Frion et al.
(2024). The second one is with the hyperparameters that minimize the cost of equation 18. The tendency
to overfit on the assimilated data is a critical flaw in practice since, in real conditions, one cannot fit the
assimilation hyperparameters using future data which are actually not known, and one will simply choose the
hyperparameters that best fit the available data. Since the conditions for training and testing all 4 models
are very similar, the fact that the other models do not overfit the assimilation data should be attributed to
an increased regularity enabled by their invertible encoders.

7 Conclusion

We have discussed the existing Koopman autoencoder implementations and presented the new Augmented
Invertible Koopman AutoEncoder (AIKAE), taking inspiration from recent invertible Koopman autoencoder
(IKAE) models. We have showed how recently proposed variational data assimilation schemes leveraging
Koopman autoencoder models can be easily extended to the AIKAE architecture, enabling to work in
difficult contexts where the observed data may be incomplete and noisy. Additionally, we proposed to design
Koopman autoencoder models with a delay embedding, in order to solve long-term time series forecasting
tasks in ideal settings where the data is regularly sampled with no missing information, and a large number
of past states are observed. We showed that the AIKAE model outperforms the IKAE, both in these ideal
settings and in more difficult settings related to satellite image time series. Additionally, we showed that
our AIKAE with delay embedding performs competitively with recent concurrent methods on a popular
long-term time series forecasting benchmark.

A potential direction for future work would be to design stochastic Koopman autoencoder models, leverag-
ing the likelihood computation abilities brought by the coupling-layer normalizing flows that compose the
(augmented) invertible Koopman autoencoders.
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A Reconstruction abilities of older Koopman-based methods

For Dynamic Mode Decomposition (DMD, Schmid (2010)), which is the most popular and well-established
method for finding an approximation to the Koopman operator, the set of measurement functions is simply
chosen to be the set of canonical measurement functions constituting the state variable. Hence, this method
implicitly assumes that the dynamical system under study evolves linearly, or at least that accurate short-
term predictions can be made by a linear model. In this case, the predictions are made directly in the state
space, making its reconstruction unnecessary. A notable extension of DMD is the so-called extended Dynamic
Mode Decomposition (Williams et al., 2015), which consists in manually designing a set of measurement
functions that is likely to yield an approximate invariance by the Koopman operator. Common choices
for these measurement functions are sets of polynomials of the state variables up to a chosen order and
sets of radial basis functions. The canonical measurement functions of the state are usually included in
the hand-designed dictionary. This enables to trivially link the set of measurement functions to the state
space by projecting on the appropriate variables. Although extended DMD is generally applied on low-
dimensional dynamical systems, a high number of measurement functions is usually required to obtain
accurate predictions, which is a limiting factor of this method in practice. Thus, some subsequent works (Li
et al., 2017; Yeung et al., 2019) have proposed to replace the hand-designed dictionary of measurement
functions by a lower-dimensional dictionary that is automatically learned by a neural network. In these
models, the inferred Koopman invariant subspace is a concatenation of the fixed canonical measurement
functions and of the ones that are learned by the neural network.

Although the inclusion of the state variables in the Koopman invariant subspace again enables to easily
reconstruct the state vector after multiplication by K, it may be detrimental to the actual linearity of the
model. Indeed, depending on the dynamical system under study, there might not exist an (approximately)
Koopman invariant subspace of low dimension that contains the state variables. This flaw has motivated
the introduction of Koopman autoencoders Lusch et al. (2018), which do no constrain a direct inclusion of
the input variables in their latent space.

B Additional long-term time series forecasting experiments

B.1 Extended forecasting results

Table 3 extends the results from table 1 by adding the persistence baseline and the exchange dataset. As
mentioned in the main text, it shows that the tested models outperform the performance baseline on all
datasets except for Exchange.

B.2 Ablation study

In order to get insight on the performance of the delayed IKAE and AIKAE models, we now perform an
ablation study. We focus on the influence of two components of our models: the nonlinear encoder and the
usage of RevIN.

Concretely, we test eight different models. The IKAE and AIKAE models with RevIN correspond to the
results reported in table 1. For each of these models, we train a variant where we do not use RevIN. In
order to infer the interest of inflating the latent space with a second learned encoder rather than with zero
padding as proposed by Meng et al. (2024), we also test IKAE models with zero padding, which are referred
to as IKAE-zp, with or without RevIN. The size of the zero padding is 32, corresponding to the size of the
augmentation encoding in AIKAE models. In addition, we test simple linear models, where the nonlinear
encoder ϕ or Φ is simply replaced by an identity function, with (Li et al., 2023) or without (Zeng et al.,
2023) RevIN. We work with TL = TP = 96, which means that the linear model without RevIN may be
seen as a dynamic mode decomposition (Schmid, 2010) with a delay embedding of size 96. We perform the
ablation study on three datasets: Traffic, Weather and ETTm1.

The results obtained by the eight described models are reported in table 4. Although we use our own imple-
mentation of the linear models in order to limit the risk of differing implementation choices influencing the
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Table 3: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) for various models and
long-term forecasting tasks. For each dataset, we use a lookback window of size TL = 96 and prediction
horizons TP of sizes 96, 192, 336, 720. IKAE and AIKAE are our own implementations, while we use the
results reported by Zeng et al. (2023) for the persistence baseline and by Liu et al. (2024) for all other
models. For each task and metric, the best result is in bold and the second best result is underlined.

Model IKAE AIKAE iTransformer PatchTST TimesNet DLinear Persistence
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

EC
L

96 0.161 0.252 0.158 0.249 0.148 0.240 0.181 0.270 0.168 0.272 0.197 0.282 1.588 0.946
192 0.176 0.265 0.171 0.261 0.162 0.253 0.188 0.274 0.184 0.289 0.196 0.285 1.595 0.950
336 0.195 0.284 0.189 0.278 0.178 0.269 0.204 0.293 0.198 0.300 0.209 0.301 1.617 0.961
720 0.239 0.320 0.234 0.315 0.225 0.317 0.246 0.324 0.220 0.320 0.245 0.333 1.647 0.975

Ex
ch

. 96 0.093 0.212 0.092 0.212 0.086 0.206 0.088 0.205 0.107 0.234 0.088 0.218 0.081 0.196
192 0.190 0.311 0.188 0.309 0.177 0.299 0.176 0.299 0.226 0.344 0.176 0.315 0.167 0.289
336 0.378 0.445 0.364 0.439 0.331 0.417 0.301 0.397 0.367 0.448 0.313 0.427 0.305 0.396
720 0.912 0.722 0.857 0.698 0.847 0.691 0.901 0.714 0.964 0.746 0.839 0.695 0.823 0.681

Tr
affi

c 96 0.460 0.313 0.450 0.301 0.395 0.268 0.462 0.295 0.593 0.321 0.650 0.396 2.723 1.079
192 0.476 0.317 0.458 0.302 0.417 0.276 0.466 0.296 0.617 0.336 0.598 0.370 2.756 1.087
336 0.496 0.327 0.475 0.311 0.433 0.283 0.482 0.304 0.629 0.336 0.605 0.373 2.791 1.095
720 0.524 0.343 0.509 0.331 0.467 0.302 0.514 0.322 0.640 0.350 0.645 0.394 2.811 1.097

W
ea

th
er 96 0.174 0.220 0.171 0.216 0.174 0.214 0.177 0.218 0.172 0.220 0.196 0.255 0.259 0.254

192 0.227 0.264 0.224 0.262 0.221 0.254 0.225 0.259 0.219 0.261 0.237 0.296 0.309 0.292
336 0.282 0.303 0.279 0.301 0.278 0.296 0.278 0.297 0.280 0.306 0.283 0.335 0.377 0.338
720 0.363 0.355 0.363 0.354 0.358 0.347 0.354 0.348 0.365 0.359 0.345 0.381 0.465 0.394

ET
T

h1

96 0.392 0.404 0.392 0.404 0.386 0.405 0.414 0.419 0.384 0.402 0.386 0.400 1.295 0.713
192 0.450 0.436 0.435 0.432 0.441 0.436 0.460 0.445 0.436 0.429 0.437 0.432 1.325 0.733
336 0.492 0.462 0.482 0.459 0.487 0.458 0.501 0.466 0.491 0.469 0.481 0.459 1.323 0.744
720 0.638 0.545 0.590 0.536 0.503 0.491 0.500 0.488 0.521 0.500 0.519 0.516 1.339 0.756

ET
T

h2

96 0.303 0.348 0.302 0.346 0.297 0.349 0.288 0.338 0.340 0.374 0.333 0.387 0.432 0.422
192 0.395 0.406 0.372 0.395 0.380 0.400 0.388 0.400 0.402 0.414 0.477 0.476 0.534 0.473
336 0.430 0.438 0.446 0.444 0.428 0.432 0.426 0.433 0.452 0.452 0.594 0.541 0.591 0.508
720 0.458 0.463 0.454 0.459 0.427 0.445 0.431 0.446 0.462 0.468 0.831 0.657 0.588 0.517

ET
T

m
1 96 0.328 0.364 0.322 0.360 0.334 0.368 0.329 0.367 0.338 0.375 0.345 0.372 1.214 0.665

192 0.375 0.392 0.375 0.389 0.377 0.391 0.367 0.385 0.374 0.387 0.380 0.389 1.261 0.690
336 0.411 0.420 0.405 0.415 0.426 0.420 0.399 0.410 0.410 0.411 0.413 0.413 1.283 0.707
720 0.478 0.456 0.466 0.449 0.491 0.459 0.454 0.439 0.478 0.450 0.474 0.453 1.319 0.729

ET
T

m
2 96 0.184 0.266 0.185 0.267 0.180 0.264 0.175 0.259 0.187 0.267 0.193 0.292 0.266 0.328

192 0.255 0.313 0.246 0.307 0.250 0.309 0.241 0.302 0.249 0.309 0.284 0.362 0.340 0.371
336 0.322 0.355 0.307 0.345 0.311 0.348 0.305 0.343 0.321 0.351 0.369 0.427 0.412 0.410
720 0.401 0.401 0.405 0.399 0.412 0.407 0.402 0.400 0.408 0.403 0.554 0.522 0.521 0.465

Table 4: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) of different models
on three datasets, with lookback window TL = 96 and forecasting horizon TP = 96. For each dataset and
metric, the best result is in bold and the second best result is underlined.

Dataset Traffic Weather ETTm1
Metric MSE MAE MSE MAE MSE MAE

AIKAE with RevIN 0.450 0.301 0.171 0.216 0.322 0.360
without RevIN 0.497 0.299 0.167 0.226 0.350 0.386

IKAE-zp with RevIN 0.452 0.304 0.174 0.219 0.331 0.365
without RevIN 0.507 0.300 0.170 0.227 0.349 0.380

IKAE with RevIN 0.460 0.313 0.174 0.220 0.328 0.364
without RevIN 0.517 0.317 0.168 0.225 0.342 0.377

Linear with RevIN 0.644 0.390 0.194 0.234 0.349 0.369
without RevIN 0.649 0.397 0.201 0.266 0.345 0.377
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study, we obtain consistent results with the implementations of Zeng et al. (2023) and Li et al. (2023). From
these results, one can see that the addition of RevIN often (though not always) improves the performance
of all backbone models. In addition, the gains obtained by using a more complex embedding appear to be
complementary to the gains of RevIN. In particular, the delay AIKAE model without RevIN outperforms
the delay IKAE without RevIN, which itself outperforms the linear model without RevIN. Thus, this study
shows that resorting to an invertible nonlinear embedding of the input data improves the results compared
to a simple linear model, and that the results are further improved when additionally increasing the di-
mension of this embedding with an AIKAE. Besides, the superiority of IKAE-zp to IKAE (either with or
without RevIN) cannot be clearly established, and thus AIKAE remains the strongest of the tested KAE
architectures in this benchmark.

B.3 Influence of the lookback window size

It has been repeatedly observed in previous works (e.g. Zeng et al. (2023); Nie et al. (2023); Liu et al. (2024))
that many transformer-based models for long-term time series forecasting do not benefit from an increased
size TL of the lookback window. Indeed, for many of these models, the forecasting performance stagnates
or even decreases as the length of the lookback window increases, which has been attributed to a distracted
attention over the input. In contrast, simple linear models have been shown to greatly benefit from a longer
window of observations. Thus, we now assess the performance of the IKAE and AIKAE models as the size
of the lookback window increases. We work in the same setting as Zeng et al. (2023), where we evaluate the
forecasting performance for a prediction window of size TP = 720 according to varying input sizes TL from
48 to 720. For each lookback length, we train our two models as well as the DLinear model of Zeng et al.
(2023) and 4 transformer-based models: the base transformer (Vaswani, 2017), Informer (Zhou et al., 2021),
Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022).
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Figure 2: Mean squared error (left) and mean average errors (right) obtained by different models for predic-
tions of TP = 720 time steps on the ECL dataset, as a function of the lookback window size TL.

The results of this experiment are summarized in figure 2. From this figure, one can see that none of the
transformer models is characterized by consistently decreasing error metrics as the size of the lookback
window increases. Only the AIKAE, IKAE and DLinear models exhibit this behavior. While the AIKAE
and IKAE models outperform the DLinear models for shorter lookback windows (as could be seen from the
main results in table 1), DLinear performs best for longer lookback windows. Thus, this experiments shows
that the delayed Koopman autoencoder models do not share the same flaws as many Transformer models,
but still struggle to compete with linear models when a very large window of past observations is available.

C Graphical results for satellite image time series forecasting

On figure 3, assimilated trajectories are plotted on the B7 spectral band (i.e. the most energetic one for
this data). The trajectories result from an assimilation of the data snapshots before the dashed line, using
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Figure 3: Assimilated trajectories by different models on the B7 spectral band, for a randomly selected pixel
of the test Orléans area. The dashed vertical line marks the limit between the window of assimilated data
(on the left) and the extrapolation window (on the right).

the best trained instance of respectively the KAE, IKAE, IKAE-zp and AIKAE models. On this example,
the IKAE model clearly does not fit the assimilated data as well as the other models, which confirms our
observation that the limited latent dimension might hurt the expressive power of this model. When it comes
to extrapolating beyond the assimilated datapoints, the AIKAE model clearly performs best, followed by
the IKAE-zp, which is consistent with the global results of table 2.
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