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How Transformers Utilize Multi-Head Attention in In-Context Learning?
A Case Study on Sparse Linear Regression

Anonymous Authors1

Abstract
In this study, we investigate how a trained multi-
head transformer performs in-context learning
on sparse linear regression. We experimentally
discover distinct patterns in multi-head utiliza-
tion across layers: multiple heads are essential in
the first layer, while subsequent layers predom-
inantly utilize a single head. We propose that
the first layer preprocesses input data, while later
layers execute simple optimization steps on the
preprocessed data. Theoretically, we prove such
a preprocess-then-optimize algorithm can outper-
form naive gradient descent and ridge regression,
corroborated by experiments. Our findings pro-
vide insights into the benefits of multi-head atten-
tion and the intricate mechanisms within trained
transformers.

1. Introduction

Transformers(Vaswani et al., 2023) have shown remark-
able performance in natural language processing (Ouyang
et al., 2022; Achiam et al., 2023; Brown et al., 2020; Rad-
ford et al., 2019) and other domains (Dosovitskiy et al.,
2020; Peebles & Xie, 2023), exhibiting capabilities like in-
context learning(Brown et al., 2020; Xie et al., 2021). While
numerous studies have explored transformers’ expressive
power(Kajitsuka & Sato, 2023; Takakura & Suzuki, 2023)
and ability to emulate algorithms(Guo et al., 2023; Bai et al.,
2023; Li et al.; Chen & Zou, 2024), understanding their
inner workings remains a challenge, especially the roles of
different attention layers and heads.

This work investigates how transformers utilize multi-head
attention across layers for in-context learning on sparse lin-
ear regression tasks. Empirically, we observed a distinct
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pattern: while the first attention layer utilized all heads
evenly, subsequent layers predominantly relied on a single
head. This suggests different working mechanisms for the
first and later layers. Based on these findings, we propose
that transformers employ a preprocess-then-optimize algo-
rithm: the first layer preprocesses input data using multiple
heads, then subsequent layers perform iterative optimization
(e.g., gradient descent) on the preprocessed data using a
single head. We theoretically demonstrate that such an algo-
rithm can be implemented by a modestly-sized transformer
and achieve lower excess risk than traditional methods like
gradient descent and ridge regression without preprocessing.

Our main contributions are:

• We empirically revealing the distinct head utilization pat-
terns across layers.

• Building upon our empirical findings, we proposed a pos-
sible working mechanism for multi-head transformers.

• We further validated our proposed mechanism by theoret-
ical analysis.

• We conducted additional experiments to further validate
our theoretical framework.

2. Preliminaries

Sparse Linear Regression. We consider sparse linear
models where (x, y) ∼ P = Plin

w⋆ is sampled as x ∼
N(0,Σ), y = ⟨w⋆,x⟩+ N

(
0, σ2

)
, where the Σ is a diago-

nal matrix and ground truth w⋆ ∈ Rd satisfies ∥w⋆∥0 ≤ s.
Then, we define the population risk of a parameter w as:

L(w) := E(x,y)∼P

[
(⟨x,w⟩ − y)2

]
.

Moreover, we are interested in the excess risk:

E(w) := L(w)−min
w

L(w).

Linear Attention-only Transformers To perform an in-
tractable theoretical investigation on the role of multi-head
in the attention layer, we make simplifications on the trans-
former model by considering linear attention-only trans-
formers. These simplifications are widely adopted in many
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recent works to study the behavior of transformer models
(von Oswald et al., 2023; Zhang et al., 2023; Mahankali
et al., 2023; Ahn et al.; Wu et al., 2023). In particular, the
i-th layer TFi performs the following update on the input
sequence (or hidden state) H(i−1) as follows:

H(i) = TFi(H
(i−1))

= W1

(
H(i−1) + Concat[{ViMK⊤

i Qi}hi=1]
)
,

M :=

In 0

0 0

 ∈ Rm×m,

(2.1)
where {WVi ,WKi ,WQi ∈ R

dhid
h ×dhid}hi=1 and W1 ∈

Rdhid×dhid are learnable parameters. Besides, the mask
matrix M is included in the attention to constrain the
model focus the first n in-context examples rather than the
subsequent m − n queries (Ahn et al.; Mahankali et al.,
2023). To adapt the transformer for solving sparse linear
regression problems, we introduce additional linear layers
WE ∈ R(d+1)×dhid and WO ∈ Rdhid×1 for input embed-
ding and output projection, respectively. Mathematically, let
E denotes the input sequences with n in-context example
followed by q queries,

E =

x1 x2 · · · xn xn+1 · · · xn+q

y1 y2 · · · yn 0 · · · 0

. (2.2)

Then model processes the input sequence E, resulting in the
output ŷ ∈ R1×(n+q):

ŷ = WO ◦ TFL ◦ · · · ◦ TF1 ◦WE(E),

here, L is the layer number of the transformer, and ŷi+n is
the prediction value for the query xi+n. During training, we
set q > 1 for efficiency, and for inference and theoretical
analysis, we set q = 1 and define the in-context learning
excess risk EICL as:

EICL := E(x,y)∼P(ŷn+1 − yn+1)
2 − σ2.

3. Experimental Insights into Multi-head
Attention for In-context Learning

To understand the hidden mechanism behind the trained
transformer, we design a series of experiments, utilizing
techniques like probing (Alain & Bengio, 2016) and prun-
ing(Li et al., 2017) to help us gain initial insights into how
the trained transformer utilizes multi-head attention.

ICL with Varying Heads: This experiment investigates the
performance of transformers in solving in-context sparse
linear regression with different numbers of attention heads.
An example can be found in Figure 1b, where we display
the excess risk for different models when using different

numbers of in-context examples. We can observe that given
few-shot in-context examples, transformers can outperform
OLS and ridge. Moreover, we can also clearly observe the
benefit of using multiple heads, which leads to lower excess
risk when increasing the number of heads. This highlights
the importance of multi-head attention in transformer
to perform in-context learning.

Heads Assessment: This experiment evaluates the impor-
tance of each attention head by masking individual heads
and measuring the change in risk. An example can be found
in Figure 1c. We find that in the first layer, no head distinctly
outweighs the others, while in the subsequent layers, there
always exists a head that exhibits higher importance than
others. This gives us insight that in the first attention layer,
all heads appear to be significant, while in the subse-
quent layers, only one head appears to be significant.

Pruning and Probing: Based on the previous findings,
this experiment prunes the trained model by retaining all
heads in the first layer and only keeping the most impor-
tant head in subsequent layers. The pruned model is then
fine-tuned. Linear probes are used to evaluate the predic-
tion performance of different layers. An example can be
found in Figure 1d, it shows that the pruned model performs
similarly to the original model, but differently from a single-
head transformer. Noting that the main difference between
them is the number of heads in the first layer (subsequent
layers have the same structure), it can be deduced that the
working mechanisms of the multi-head transformer may
be different for the first and subsequent layers.

4. Potential Mechanism Behind Trained
transformer

Based on the experimental insights from Section 3, we found
that while all heads in the first layer are crucial, only one
head plays a significant role in subsequent layers. Addition-
ally, probing and pruning results suggest different working
mechanisms for the first and subsequent layers. To this end,
we hypothesize that the multi-layer transformer implements
a preprocess-then-optimize approach for in-context learning,
where the first layer preprocesses the in-context examples,
and subsequent layers implement iterative optimization al-
gorithms on the preprocessed data.

4.1. Preprocessing on In-context Examples

As the multihead attention is designed to facilitate to model
to capture features from different representation subspaces
(Vaswani et al., 2023), we abstract the algorithm implemen-
tation by the first layer of the transformers as a preprocess-
ing procedure. In general, for the sparse linear regression, a
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Figure 1: Experimental insights into multi-head attention for in-context learning. (a): Overview of the experiments, including
task, data, architecture, and our insights. (b): ICL with Varying Heads. (c): Heads Assessment. (d): Pruning and Probing.

possible data preprocessing method is to perform reweight-
ing of the data features by emphasizing the features that
correspond to the nonzero entries of the ground truth w∗

and disregard the remaining features. In the idealized case,
if we know the nonzero support of w∗, we can trivially
zero out the date features of x on the complement of the
nonzero support, as a data preprocessing procedure, and
perform projected gradient descent to obtain the optimal
solution. Although the nonzero support of w∗ is intractable
to the learner, we can estimate each dimension w∗

i by
1
n

∑n
i=1 xijyi, as E[xiy] = E[

∑d
i=1 w

∗
i xi · xi] + E[ξxi] =

w∗
i E[x2

i ], resulting in Alg. 1.

4.2. Optimizing Over Preprocessed In-Context
Examples

Based on the experimental results, we observe that the sub-
sequent layers of transformers dominantly rely on one sin-
gle head, suggesting their different but potentially simpler
behavior compared to the first one. Motivated by a se-
ries of recent work (von Oswald et al., 2023; Cheng et al.,
2023; Zhang et al., 2023) that reveal the connection be-
tween gradient descent steps and multi-layer single-head
transformer in the in-context learning tasks, we conjecture
that the subsequent layers also implement iterative optimiza-
tion algorithms, e.g., gradient descent algorithm, on the
(preprocessed) in-context examples.

We further prove that these two procedures (preprocessing
then optimizing) can be implemented by linear attention-
only transformers in Propositions C.1 and C.2 (presented
in Appendix). More details about our preprocess-then-
optimize algorithm can be found in Appendix C.

5. Excess Risk of the Preprocess-then-optimize
Algorithm

In this section, we will develop the theory to demonstrate
the improved performance of the preprocess-then-optimize
algorithm compared to the gradient descent algorithm on the
raw inputs. Appendix E provides a more detailed analysis.

We first denote w̃t
gd as the estimator obtained by t-step

Algorithm 1 Data preprocessing for in-context examples

1: Input : Sequence with {(xi, yi)}ni=1, {(xi, 0)}n+q
i=n+1 as in-

context examples/queries.
2: for k = 1, . . . , n do
3: Compute x̃k by x̃k = R̂xk,

where R̂ = diag{r̂1, r̂2, . . . , r̂d}, where r̂j is given by

r̂j =
1

n

n∑
i=1

xijyi. (4.1)

4: end for
5: Output : Sequence with the preprocessed in-context exam-

ples/queries {(x̃i, yi)}ni=1, {(x̃i, 0)}n+q
i=n+1 .

GD on {(x̃i, yi)}ni=1, which can be viewed as the solution
generated by the t+ 1-layer transformer based on our dis-
cussion in Section 4, and wt

gd as the estimator obtained by
t-step GD on {(xi, yi)}ni=1. Before presenting our main
theorem, we first need to redefine the excess risk of GD on
{(x̃i, yi)}ni=1. Note that in our algorithm, the learned pre-
dictor takes the form x → ⟨R̂x, w̃t

gd⟩. Consequently, the
population risk of a parameter w̃t

gd is naturally defined as
L̃(w̃t

gd) :=
1
2 ·E(x,y)∼P

[
(⟨R̂x, w̃t

gd⟩−y)2
]
, and the excess

risk is then defined as E(w) := L̃(w)−minw L̃(w) 1.

To make a formal comparison between preprocess-then-
optimize and baselines, we consider the example where
xi

i.i.d.∼ N(0, I), based on which we can get the upper bound
for our algorithm and the lower bound for OLS, ridge re-
gression, and finite-step GD.

Theorem 5.1. Suppose S with |S| = s is selected such that
each element is chosen with equal probability from the set
{1, 2, . . . , d} and w⋆

i ∼ U{−1/
√
s, 1/

√
s} has a restricted

uniform prior for i ∈ S , ∥w⋆∥2 ≃ Θ(1) and n ≳ t2s3d2/3.

1Here for the ease to presentation and comparison, we slightly
abuse the notation of E(w) by extending it to w̃t

gd, although E(w)
is originally defined for the estimator for the raw feature vector x.
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(c) Directly apply Alg. 1 on input data for gradient descent

Figure 2: Supporting experiments for our preprocess-then-optimize algorithm and theoretical analysis

Then there exists a choice of η and t such that

E
(
w̃t

gd

)
≲ σ2log2

(
ns/σ2

)
log2 (d/δ) ·

(
s

n
+

ds2

n2

)
,

with probability at least 1− δ. Besides, let ŵλ be the ridge
regression estimator with regularized parameter λ, and wols

be the OLS estimator, it holds that

Ew⋆ [E(w)] ≳

{
σ2d
n n ≳ d+ log (1/δ)

1− n
d + σ2n

d d ≳ n+ log (1/δ),

with probability at least 1− δ, where w ∈ {ŵλ,wols,w
t
gd}.

It can be seen that for a wide range of under-parameterized
and over-parameterized cases, w̃t

gd has a smaller excess
risk than ridge regression, standard gradient descent, and
OLS, when the sparsity s satisfies s = omin{d, n}. This
justifies the effectiveness of the preprocess-then-optimize
algorithm for dealing with the sparse regression problem.
Moreover, it is well known that Lasso can achieve Õ(s/n)

excess risk bound in the setting of Theorem 5.1. Then we
can conclude that the proprocess-then-optimize algorithm
can be comparable to Lasso up to logarithmic factors when
d ≲ n, while becomes worse when d ≳ n.

6. Experiments
In Section 3, we conduct several experiments, and based
on the observations, we propose that a trained transformer
can apply a preprocess-then-optimize algorithm. While the
second part (gradient descent over context) is supported by
extensive theoretical analysis and experimental evidence
(von Oswald et al., 2023; Cheng et al., 2023; Zhang et al.,

2023; Ahn et al.), here we develop a technique called pre-
processing probing (P-probing) on the trained transformer
to support the first part of our algorithm, where we try to ex-
tract the preprocessed component {x̃i}n+q

i=n+1 from the first
layer of transformer as in, as illustrated in Figure 2a. We
also directly apply Alg. 1 on the in-context examples and
then check the excess risk for multiple-step gradient descent
to verify the effectiveness of our algorithm and theoretical
analysis. Experimental details can be found in Appendix A.

Based on Figure 2b, we can observe that compared to the
transformer with single-head attention (h = 1), the query
entries extracted from the transformer with multiple heads
(h = 4, 8) preserve better convergence performance and
can dive into a lower risk. This aligns well with our exper-
iment result in Figure 2c, where compared to gd, the data
preprocessed by Alg. 1 preserves better convergence per-
formance and can dive into a lower risk space, supporting
the existence of the preprocessing procedure in the trained
transformer. Moreover, Figure 2c also aligns well with our
theoretical analysis, where our algorithm can outperform
ridge regression and OLS.

7. Conclusions

In this paper, we investigate a sparse linear regression prob-
lem and explore how a trained transformer leverages multi-
head attention for in-context learning. Based on the ex-
periment and theoretical characterizations, we show that
transformer may implement the preprocess-then-optimize
algorithm, by using multiple heads in the first layer and
one head in the subsequent layer. Numerical experiments
support our findings.
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A. Additional Details for Sections 3 and 6

Architecture and Optimization We conduct extensive experiments on encoder-only transformers with dhid = 256,
varying the number of heads h ∈ {1, 2, 4, 8}, layers l ∈ {3, 4, 5, 6}, and noise levels σ ∈ {0, 0.1, 0.2, 0.4, 0.8}. For the
input sequence, we sample x ∼ N(0, I). For w, we first sample w ∼ N(0, I) ∈ R16, and randomly choose s = 4 entries,
setting the other elements to zero. Note that We don’t apply positional encodings in our setting, as no positional information
is needed in our input setting. To further support our preprocessing-then-optimize algorithm, we also try a decoder-only
architecture(Figure 9) and train models with s = d = 16 (Figure 10) as a comparison in Appendix I. During training, we
set n = 12 and q = 4, with a batch size of 64. We utilize the Adam optimizer with a learning rate γ = 10−4 for 320000
updates. Each experiment takes about two hours on a single NVIDIA GeForce RTX 4090 GPU. We fix the random seed
such that each model is trained and evaluated with the same training and evaluation dataset. We use HuggingFace (Wolf
et al., 2019) library to implement our models.

ICL with Varying Heads We compare the model’s performance with ridge regression, OLS, and lasso. For ridge
regression and lasso, we tune λ, α ∈

{
1, 10−1, 10−2, 10−3, 10−4

}
respectively for the lowest risk, as in (Garg et al., 2023).
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Figure 3: ICL with varying heads, layers and noise levels
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From Figure 3, we can find that in most cases, transformers with single head (h = 1) exhibits higher risk compared to
models with multiple heads (h = 4, 8). Note that in thesame subplot, models with different numbers of heads have the same
number of parameters. This experiment highlights the importance of multi-head attention for transformers in in-context
learning.

Heads Assessment Based on Eq.(2.1), we know that the j-th head at the i-th layer corresponds to the subspace of the
intermediate output from (j − 1) · dhid/h to j · dhid/h− 1. To assess the importance of each attention head, we can mask
the particular head by zeroing out the corresponding output entries, while keeping other dimensions unchanged. Then, let
(i, j) be the layer and head indices, we evaluate the risk change before and after head masking, denoted by ∆EICL(i,j). Then
we normalize the risk changes in the same layer to evaluate their relative importance:

Wi,j =
∆EICL(i,j)∑h
k=1 ∆EICL(i,k)

. (A.1)

Here, we set n = 10 and q = 1, with an evaluation data size of 8192. For a model with h heads and l layers, we train
|σ| models under different noise levels. We first compute the Wh,l,σ under different noise levels σ, then sort each row in
Wh,l,σ , and add them together as Wh,l

avg =
1
|σ|
∑

σ∈σ Wh,l,σ , resulting in the final weight for each head. An example can be
found in Fig 1c. In Fig 4, we present more results for different h and l, and we also present the heat map for the decode-only
transformers in Figure 9.
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Figure 4: Head Assessment with varying heads, layers

From Fig 4, we can find that in most settings, each head contributes almost equally, while in the subsequent layers, there
always exists a head that has a much larger weight than the others. This indicates that in trained transformers for in-context
learning, in the first attention layer, all heads appear to be significant, while in the subsequent layers, only one head appears
to be significant.

Pruning and Probing Here, we also set n = 10 and q = 1, with an evaluation data size of 8192. To further support our
finding from the Head Assessment, we first prune the model based on our computed head weight Wh,l

avg, where we keep all
heads in the first layer, whereas we only keep the head with the highest score weight and mask the others. We then train the
pruned model with the same method as before for 60000 steps. In Fig 5, 6, 7, 8, we provide the Pruning and Probing results
for different numbers of heads h ∈ {4, 8} and noise levels σ ∈ {0, 0.1, 0.2, 0.4, 0.8}. It can be found that in almost all cases,
the pruned model exhibits almost the same performance in each layer, while being largely different from the single-layer
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transformer. This further supports the results in the Heads Assessment and indicates that the working mechanisms of the
multi-head transformer may be different for the first and subsequent layers.
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Figure 5: Pruning and Probing, 3 layers
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Figure 6: Pruning and Probing, 4 layers
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Figure 7: Pruning and Probing, 5 layers
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Figure 8: Pruning and Probing, 6 layers
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P-probing: To verify the existence of a preprocessing procedure in the trained transformer, we develop a “preprocessing
probing” (P-probing) technique on the trained transformers, as illustrated in Figure 2a. For a trained transformer, we first
set the input sequence as in Eq.(2.2), where the first n examples {x}ni=1 have the corresponding labels {y}ni=1, and the
following q query entries only have {xi}n+q

i=n+1 in the sequence. Then, we extract the last q vectors in the output hidden
state H1 from the first layer of the transformer and treat these data as processed query entries. Next, we conduct gradient
descent on the first q − 1 query entries with their corresponding y, computing the excess risk on the last query. Additional
experimental details can be found in Appendix A. We adapt this technique based on the intuition that, according to our
theoretical analysis, we can extract the preprocessed entry {x̃i}n+q

i=n+1 from H1, besides, the excess risk computed by the
preprocessed data has a better upper bound guarantee compared to raw data without preprocessing under the same number
of gradient descent steps, so if the trained transformer utilize multihead attention for preprocess, compared with single head
attention, the queries entries extract from H1 by multihead attention can have better gradient descent performance compared
with single head attention. Here, we also set n = 117 and q = 11, with an evaluation data size of 1024. We choose n ≫ q

such that the model can handle more queries (q = 11) than those in the training (q = 4) process.

Verifying the benefit of preprocessing: To further support the effectiveness of our algorithm, we directly apply Alg. 1
on the input data {xi, yi}n+1

i=1 , and then implement gradient descent on the example entries {xi, yi}ni=1 and compute
the excess risk with the last query {x̂n+1, yn+1}, we refer this procedure as pre-gd. We compare pre-gd with
the excess risk obtained by directly applying gradient descent without preprocessing (referred to as gd). For all ex-
periments (both P-probing and this), we set w0

gd = 0 and tune the learning rate η for each model by choosing from
[1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6] with the lowest average excess risk.

B. Theoretical Analysis of the Preprocess-then-optimize Algorthm

B.1. Notations

For two functions f(x) ≥ 0 and g(x) ≥ 0 defined on the positive real numbers (x > 0), we write f(x) ≲ g(x) if there exists
two constants c, x0 > 0 such that ∀x ≥ x0, f(x) ≤ c · g(x); we write f(x) ≳ g(x) if g(x) ≲ f(x); we write f(x) ⋍ g(x)

if f(x) ≲ g(x) and g(x) ≲ f(x). If f(x) ≲ g(x), we can write f(x) as O(g(x)). We can also write write f(x) as Õ(g(x))

if there exists a constant k > 0 such that f(x) ≲ g(x) logk(x).

B.2. Theoretical results

We first provide the upper bound of the excess risk for E(w̃t
gd) and E(wt

gd) respectively.

Theorem B.1. Denote S := {i : w⋆
i ̸= 0} and R = diag{r1, . . . , rd}, where rj =

∑d
i=1 w

⋆
iΣij . Suppose that there

exist a β > 0 such that mini∈S |ri| ≥ β, ∥R∥2, ∥Σ∥2, ∥w⋆∥2 ≃ O(1) and n ≳ 1/β2 · t2s ·
(
Tr2/3(Σ) + Tr(RΣR)

)
·

poly(log (d/δ)). Then set η ≲ 1/∥RΣR∥2 and ηt ≃ 1
β ·
(σ2Tr(RΣR) log (d/δ)

n + σ2sTr(Σ) log2 (d/δ)
n2

)−1/2
, it holds that

E
(
w̃t

gd

)
≲

log t

β

√
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2
,

with probability at least 1− δ.

Theorem E.1 provides an upper bound on the excess risk achieved by the preprocess-then-optimize algorithm, where
we tuned learning rate η to balance the bias and variance error. Then, it can be seen that the risk bound is valid if
Tr(RΣR)/n → 0 and Tr(Σ)s/n2 → 0 when n → ∞. This can be readily satisfied if we have ∥w∗∥2 and Tr(Σ) be
bounded by some reasonable quantities that are independent of the sample size n, which are the common assumptions made
in many prior works (Zou et al., 2022; 2021; Bartlett et al., 2020). Besides, it can be also seen that the excess risk bound
explicitly depends on the sparsity parameter s and lower sparsity implies better performance. This implies the ability of the
proposed preprocess-then-optimize for discovering and leveraging the nice sparse structure of the ground truth.

As a comparison, the following theorem states the excess risk bound for the standard gradient descents on the raw features.
To make a fair comparison, we consider using the same number of steps but allow the step size to be tuned separately.

10
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Theorem B.2. Suppose that ∥Σ∥, ∥w⋆∥2 ≃ O(1) and n ≳ t2(Tr(Σ) + log (1/δ)). When η ≲ 1/∥Σ∥2 and ηt ≃(
σ2Tr(Σ) log (d/δ)

n

)−1/2

, it holds that

E
(
wt

gd

)
≲ log t ·

√
σ2Tr(Σ) log (d/δ)

n
,

with probability at least 1− δ.

We are now able to make a rough comparison between the excess risk bounds in Theorems E.1 and E.2. Then, it is clear that
E(w̃t

gd) ≲ E(wt
gd) requires Tr(RΣR)/β2 ≲ Tr(Σ) and s/(n2β2) ≤ 1/n. Specifically, we can consider the case that Σ to

be a diagonal matrix, assume w⋆
i ∼ U{−1/

√
s, 1/

√
s} has a restricted uniform prior for i ∈ S and mini∈S Σii ≥ 1/κ for

some constant κ > 1, we can get β ≥
√
1/(sκ2), thus Tr(RΣR)/β2 ≤ κ2

∑
i:w⋆

i ̸=0 Σii and s/(n2β2) ≤ κ2s2/n2. Note
that |S| = s ≪ d, then if the covariance matrix Σ has a flat eigenspectrum such that

∑
i∈S Σii ≪

∑
i∈[d] Σii = Tr(Σ),

we have Tr(RΣR)/β2 ≤ Tr(Σ) and s/(n2β2) ≤ κ2s2/n if s = o
(
min{d,

√
n}
)
. This suggests that the preprocess-then-

optimization algorithm can outperform the standard gradient descent for solving a sparse linear regression problem with
s = o

(
min{d,

√
n}
)
.

To make a more rigorous comparison, we next consider the example where xi
i.i.d.∼ N(0, I), based on which we can get the

upper bound for our algorithm and the lower bound for OLS, ridge regression, and finite-step GD.

Theorem B.3 (Theorem 5.1, restated). Suppose S with |S| = s is selected such that each element is chosen with equal
probability from the set {1, 2, . . . , d} and w⋆

i ∼ U{−1/
√
s, 1/

√
s} has a restricted uniform prior for i ∈ S , ∥w⋆∥2 ≃ Θ(1)

and n ≳ t2s3d2/3. Then there exists a choice of η and t such that

E
(
w̃t

gd

)
≲ σ2log2

(
ns/σ2

)
log2 (d/δ) ·

(
s

n
+

ds2

n2

)
,

with probability at least 1− δ. Besides, let ŵλ be the ridge regression estimator with regularized parameter λ, and wols be
the OLS estimator, it holds that

Ew⋆ [E(w)] ≳

{
σ2d
n n ≳ d+ log (1/δ)

1− n
d + σ2n

d d ≳ n+ log (1/δ),

with probability at least 1− δ, where w ∈ {ŵλ,wols,w
t
gd}.

C. Additional Details for Section 4

C.1. Details and Explanations of Preprocessing-then-Optimizing Algorithm

We note that (Guo et al., 2023) adapts a similar two-phase idea to explain how transformer learning specific functions in
context, in their constructed transformers, the first few layers utilize MLPs to compute an appropriate representation for each
entry, while the subsequent layers utilize the attention module to implement gradient descent over the context. We highlight
that our algorithm mainly focus on utilizing multihead attention, and it aligns well with the our experimental observation
and intuition. The details of our algorithm are as follows:

Preprocessing on In-context Examples We summarize this procedure in Alg. 1, we highlight that the preprocessing
procedure aligns well with the structure of a multi-head attention layer with linear attention, which motivates our theo-
retical construction of the desired transformer. In particular, each head of the attention layer can be conceptualized as
executing specific operations on a distinct subset of data entries. Then, the linear query-key calculation, represented as
(WKiH)⊤WQiH, where H = E denotes the input sequence embedding matrix, effectively estimates correlations between
the i-th subset of data entries and the corresponding label yi. Here, WKi and WQi selectively extract entries from the i-th
subset of features and the label, respectively, akin to an ”entries selection” process. Furthermore, when combined with the
value calculation WViH, each head of the attention layer conducts correlation calculations for the i-th subset of features and
subsequently employs them to reweight the original features within the same subset. Consequently, by stacking the outputs

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

How Transformers Utilize Multi-Head Attention in In-Context Learning?

of multiple heads, all data features can be reweighted accordingly, which matches the design of the proposed proprocessing
procedure in Alg. 1. We formally prove this in the following theorem.

Proposition C.1 (Single-layer multi-head transformer implements Alg. 1). There exists a single-layer transformer function
TF1, with d heads and dhid = 3d hidden dimension, together with an input embedding layer with weight WE ∈ Rdhid×d,
that can implement Alg. 1. Let E be the input sequence defined in Eq.(2.2) and x̃i = R̂x be the preprocessed features
defined in Alg. 1, it holds that

H(1) := TF1 ◦WE(E) =


x̃1 x̃2 · · · x̃n x̃n+1 · · · x̃n+q

y1 y2 · · · yn 0 · · · 0
...

...
. . .

...
...

. . .
...

, (C.1)

where · · · in third row implies arbitrary values.

Optimizing Over Preprocessed In-Context Examples To maintain clarity in our construction and explanation, in each
layer, we use a linear projection W

(i)
1 to rearrange the dimensions of the sequence processed by the multi-head attention,

resulting in the hidden state H(i) of each layer. We refer to the first d rows of the input data as x, and the (d+ 1)-th row
as the corresponding y. For example, in Eq.(C.1), we take the first d rows, together with the (d+ 1)-th row, as the input
data entry {x̃i, yi}n+1

i=1 . Then, the following proposition shows that the subsequent layers of transformer can implement
multi-step gradient descent on the preprocessed in-context examples {(x̃i, yi)}i=1,...,n.

Proposition C.2 (Subsequent single-head transformer implements multi-step GD). There exists a transformer with k layers,
1 head, dhid = 3d, let ŷℓn+1 be the prediction representation of the ℓ-th layer, then it holds that ŷℓ(n+1) = ⟨wℓ

gd, x̃n+1⟩, where

x̃n+1 = R̂xn+1 denotes the preprocessed data feature, wℓ
gd is defined as w0

gd = 0 and as follows for ℓ = 0, . . . , k − 1:

wℓ+1
gd = wℓ

gd − η∇L̃(wℓ
gd), where L̃(w) =

1

2n

n∑
i=1

(yi − ⟨w, x̃i⟩)2. (C.2)

C.2. Proof for Proposition C.1

Proposition C.3 (Restate of Proposition C.1). There exists a transformer with 1 layers, h = d heads, dhid = 3d and the
input projection WE ∈ R(d+1)×dhid such that with the input sequence E set as Equation 2.2 the first attention layer can
implement Algorithm 1 so that each of the enhanced data {r̂ixi,j}i∈[d] can be found in the output representation H(1):

H(1) = TF1 ◦WE(E) =


x̃1 x̃2 · · · x̃n x̃n+1 · · · x̃n+q

y1 y2 · · · yn 0 · · · 0
...

...
. . .

...
...
. . .

...

.

Proof. Here we first explain the key steps of our constructed transformer: the model first rearrange the input entries with a
input projection to divide the input data into d subspace WE , each subspace includes an entry of x and the corresponding y

(step C.4), then use h parameters {WVi
,WKi

,WQi
}hi=1 to calculate h queries, keys and values (step C.5), and compute

the attention output for each head and concatenate them together (step C.6), finally use a projection matrix W1 rearrange

12
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the result, resulting the target output (step C.7):

E =

x1 x2 · · · xn xn+1 · · · xn+q

y1 y2 · · · yn 0 · · · 0

 (C.3)

input projection−−−−−−−−−−−→
WE∈R(d+1)×dhid

H =


x1,1 x2,1 · · · xn,1 x(n+1),1 · · · x(n+q),1

y1 y2 · · · yn 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

 (C.4)

compute Qi,Ki,Vi−−−−−−−−−−−−−−−−→
WVi

,WKi
,WQi

∈R3×dhid

Ki =
1

n


0 · · · 0 0 · · ·
0 · · · 0 0 · · ·
y1 · · · yn 0 · · ·

;Qi,Vi =


0 · · · 0 0 · · ·
0 · · · 0 0 · · ·

x1,i · · · xn,i x(n+1),i · · ·

 (C.5)

Attn(WE(E))−−−−−−−−−−−−−−−→
H+Concat{ViMK⊤

i Qi}


x1,1 x2,1 · · · xn,1 x(n+1),1 · · · x(n+q),1

y1 y2 · · · yn 0 0 0

x̃1,1 x̃2,1 · · · x̃n,1 x̃(n+1),1 · · · x̃(n+q),1

...
...

. . .
...

...
. . .

...

 (C.6)

H(1)=TF1◦WE(E)−−−−−−−−−−−−→
W1∈Rdhid×dhid


x̃1 x̃2 · · · x̃n x̃n+1 · · · x̃n+q

y1 y2 · · · yn 0 · · · 0
...

...
. . .

...
...

. . .
...

 (C.7)

. The detailed parameters and calculation process for each step are as follows:

• we set WE ∈ R(d+1)×dhid to rearrange the entries:

WE =
1[1] 1[d+ 1] 0 1[2] 1[d+ 1] 0 · · · 1[d] 1[d+ 1] 0

⊤
,

where 1[k] is an 1× dhid vector with 1 at i-th entry and 0 elsewhere, such that

H = WEE =



x1,1 x2,1 · · · xn,1 x(n+1),1 · · · x(n+q),1

y1 y2 · · · yn 0 · · · 0

0 0 · · · 0 0 · · · 0

x1,2 x2,2 · · · xn,2 x(n+1),2 · · · x(n+q),2

...
...

. . .
...

...
. . .

...


.

• we set WVi
,WKi

,WQi
∈ R3×dhid for values, keys and queries:

WKi
=

1

n


0

0

1[3i− 1]

; WVi
,WQi

=


0

0

1[3i− 2]

,

such that the i-th head extract i-th entry of x and corresponding y

Ki =
1

n


0

0

1[3i− 1]




x1,1 x2,1 · · · xn,1 x(n+1),1 · · ·
y1 y2 · · · yn 0 · · ·
0 0 · · · 0 0 · · ·

x1,2 x2,2 · · · xn,2 x(n+1),2 · · ·
...

...
. . .

...
...

. . .


=

1

n


0 · · · 0 0 · · ·
0 · · · 0 0 · · ·
y1 · · · yn 0 · · ·

,

Qi,Vi =


0

0

1[3i− 2]




x1,1 x2,1 · · · xn,1 x(n+1),1 · · ·
y1 y2 · · · yn 0 · · ·
0 0 · · · 0 0 · · ·

x1,2 x2,2 · · · xn,2 x(n+1),2 · · ·
...

...
. . .

...
...

. . .


=


0 · · · 0 0 · · ·
0 · · · 0 0 · · ·

x1,i · · · xn,i x(n+1),i · · ·

,
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ViMK⊤
i Qi =


0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

x1,i · · · xn,i x(n+1),i · · · x(n+q),i


In 0

0 0

·


0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

y1 · · · yn 0 · · · 0


⊤

0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

x1,i · · · xn,i x(n+1),i · · · x(n+q),i


=


0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

x̃1,i · · · x̃n,i x̃(n+1),i · · · x̃(n+q),i

.

• Then concatenate the output of each head {ViMK⊤
i Qi}hi=1 together with residue:

H+ Concat[{ViMK⊤
i Qi}hi=1] =


x1,1 x2,1 · · · xn,1 x(n+1),1 · · · x(n+q),1

y1 y2 · · · yn 0 · · · 0

x̃1,1 x̃2,1 · · · x̃n,1 x̃(n+1),1 · · · x̃(n+q),1

...
...

. . .
...

...
. . .

...

. (C.8)

• Finally, W1 is applied to rearrange the entries:

W1 =
1[3] · · · 1[3d] 1[2] · · ·

⊤
,

where the first · · · implies the omitted d− 2 vectors {1[3i]|i = 2, 3, . . . , (d− 1)}, the second · · · implies arbitrary values,
then resulting the final output:

H(1) = W1

[
H+ Concat[{ViMK⊤

i Qi}hi=1]
]
=


x̃1 x̃2 · · · x̃n x̃n+1 · · · x̃n+q

y1 y2 · · · yn 0 · · · 0
...

...
. . .

...
...

. . .
...

.

in this way we construct a transformer that can apply Alg. 1 so that each of the enhanced data {r̂ixi,j}i∈[d] can be found in
the output representation H(1).

C.3. Proof for Proposition C.2

Proposition C.4 (Restate of Proposition C.2). There exists a transformer with k layers, 1 head, dhid = 3d, let {(x̃i, ŷ
ℓ
(i))}

n+1
i=1

be the ℓ-th layer input data entry, then it holds that ŷℓ(n+1) = ⟨wℓ
gd, x̃n+1⟩, where wgd is defined as w0

gd = 0 and as follows
for ℓ = 0, ..., k − 1:

wℓ+1
gd = wℓ

gd − η∇L̃(wℓ
gd), where L̃(w) =

1

2n

n∑
i=1

(yi − ⟨w, x̃i⟩)2.

Proof. Here we directly provide the parameters Wℓ
V ,W

ℓ
K ,Wℓ

Q ∈ Rdhid×dhid and Wℓ
1 ∈ Rdhid×dhid for each layer TFℓ,

Wℓ
V = − η

n

0 0

0 1

; Wℓ
K ,Wℓ

Q =

Id×d 0

0 0

; Wℓ
1 = Idhid×dhid

(C.9)

As we set Wℓ
1 as the identity matrix, we can ignore it and then apply Lemma 1 in (Ahn et al.). By replacing (Wℓ

K

⊤
Wℓ

Q)

as Qi and Wℓ
V with Pi, then it holds that ŷℓ(n+1) = ⟨wℓ

gd, x̃n+1⟩, where wgd is defined as w0
gd = 0 and as follows for

ℓ = 0, ..., k − 1:

wℓ+1
gd = wℓ

gd − η∇L̃(wℓ
gd), where L̃(w) =

1

2n

n∑
i=1

(yi − ⟨w, x̃i⟩)2.

14
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D. Additional Related Work

In addition to works towards understanding the expressive power of transformers that we introduced before, there is also a
body of research on the mechanism interpretation and the training dynamics of transformers:

Mechanism interpretation of trained transformers To understand the mechanisms in trained transformers, researchers
have developed various techniques, including interpreting transformers into programming languages (Friedman et al.;
Lindner et al., 2023; Weiss et al., 2021; Zhou et al., 2024), probing the behavior of individual layers (Pandit & Hou, 2021;
Wu et al., 2020; Bricken et al., 2023; Allen-Zhu & Li, 2023; Zhu & Li, 2023), and incorporating transformers with other large
language models to interpret individual neurons (Bills et al., 2023). While these techniques provide high-level insights into
transformer mechanism understanding, providing a clear algorithms behind the trained transformers is still very challenging.

Training dynamics of transformers In parallel, a body of work has also investigated how transformers learn these
algorithms, i.e., the training dynamics of transformers. (Tarzanagh et al., 2023) shows an equivalence between a single
attention layer and a support vector machine. (Zhang et al., 2023; Huang et al., 2023) analyze the training dynamics of a
single-head attention layer for in-context linear regression, where (Zhang et al., 2023) demonstrates that it can converge to
implement one-step gradient over in-context examples. Additionally, (Tian et al., 2023; Li et al., 2023) study the convergence
of transformers on sequences of discrete tokens. These works provide valuable insights towards the theoretical understanding
of the training dynamics of transformers, which offer potential future extension aspects for our work.

E. Theoretical Analysis of the Preprocess-then-optimize Algorthm

E.1. Notations

For two functions f(x) ≥ 0 and g(x) ≥ 0 defined on the positive real numbers (x > 0), we write f(x) ≲ g(x) if there exists
two constants c, x0 > 0 such that ∀x ≥ x0, f(x) ≤ c · g(x); we write f(x) ≳ g(x) if g(x) ≲ f(x); we write f(x) ⋍ g(x)

if f(x) ≲ g(x) and g(x) ≲ f(x). If f(x) ≲ g(x), we can write f(x) as O(g(x)). We can also write write f(x) as Õ(g(x))

if there exists a constant k > 0 such that f(x) ≲ g(x) logk(x).

E.2. Theoretical results

We first provide the upper bound of the excess risk for E(w̃t
gd) and E(wt

gd) respectively.

Theorem E.1. Denote S := {i : w⋆
i ̸= 0} and R = diag{r1, . . . , rd}, where rj =

∑d
i=1 w

⋆
iΣij . Suppose that there

exist a β > 0 such that mini∈S |ri| ≥ β, ∥R∥2, ∥Σ∥2, ∥w⋆∥2 ≃ O(1) and n ≳ 1/β2 · t2s ·
(
Tr2/3(Σ) + Tr(RΣR)

)
·

poly(log (d/δ)). Then set η ≲ 1/∥RΣR∥2 and ηt ≃ 1
β ·
(σ2Tr(RΣR) log (d/δ)

n + σ2sTr(Σ) log2 (d/δ)
n2

)−1/2
, it holds that

E
(
w̃t

gd

)
≲

log t

β

√
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2
,

with probability at least 1− δ.

Theorem E.1 provides an upper bound on the excess risk achieved by the preprocess-then-optimize algorithm, where
we tuned learning rate η to balance the bias and variance error. Then, it can be seen that the risk bound is valid if
Tr(RΣR)/n → 0 and Tr(Σ)s/n2 → 0 when n → ∞. This can be readily satisfied if we have ∥w∗∥2 and Tr(Σ) be
bounded by some reasonable quantities that are independent of the sample size n, which are the common assumptions made
in many prior works (Zou et al., 2022; 2021; Bartlett et al., 2020). Besides, it can be also seen that the excess risk bound
explicitly depends on the sparsity parameter s and lower sparsity implies better performance. This implies the ability of the
proposed preprocess-then-optimize for discovering and leveraging the nice sparse structure of the ground truth.

As a comparison, the following theorem states the excess risk bound for the standard gradient descents on the raw features.
To make a fair comparison, we consider using the same number of steps but allow the step size to be tuned separately.

Theorem E.2. Suppose that ∥Σ∥, ∥w⋆∥2 ≃ O(1) and n ≳ t2(Tr(Σ) + log (1/δ)). When η ≲ 1/∥Σ∥2 and ηt ≃
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σ2Tr(Σ) log (d/δ)

n

)−1/2

, it holds that

E
(
wt

gd

)
≲ log t ·

√
σ2Tr(Σ) log (d/δ)

n
,

with probability at least 1− δ.

We are now able to make a rough comparison between the excess risk bounds in Theorems E.1 and E.2. Then, it is clear that
E(w̃t

gd) ≲ E(wt
gd) requires Tr(RΣR)/β2 ≲ Tr(Σ) and s/(n2β2) ≤ 1/n. Specifically, we can consider the case that Σ to

be a diagonal matrix, assume w⋆
i ∼ U{−1/

√
s, 1/

√
s} has a restricted uniform prior for i ∈ S and mini∈S Σii ≥ 1/κ for

some constant κ > 1, we can get β ≥
√
1/(sκ2), thus Tr(RΣR)/β2 ≤ κ2

∑
i:w⋆

i ̸=0 Σii and s/(n2β2) ≤ κ2s2/n2. Note
that |S| = s ≪ d, then if the covariance matrix Σ has a flat eigenspectrum such that

∑
i∈S Σii ≪

∑
i∈[d] Σii = Tr(Σ),

we have Tr(RΣR)/β2 ≤ Tr(Σ) and s/(n2β2) ≤ κ2s2/n if s = o
(
min{d,

√
n}
)
. This suggests that the preprocess-then-

optimization algorithm can outperform the standard gradient descent for solving a sparse linear regression problem with
s = o

(
min{d,

√
n}
)
.

To make a more rigorous comparison, we next consider the example where xi
i.i.d.∼ N(0, I), based on which we can get the

upper bound for our algorithm and the lower bound for OLS, ridge regression, and finite-step GD.

Theorem E.3 (Theorem 5.1, restated). Suppose S with |S| = s is selected such that each element is chosen with equal
probability from the set {1, 2, . . . , d} and w⋆

i ∼ U{−1/
√
s, 1/

√
s} has a restricted uniform prior for i ∈ S , ∥w⋆∥2 ≃ Θ(1)

and n ≳ t2s3d2/3. Then there exists a choice of η and t such that

E
(
w̃t

gd

)
≲ σ2log2

(
ns/σ2

)
log2 (d/δ) ·

(
s

n
+

ds2

n2

)
,

with probability at least 1− δ. Besides, let ŵλ be the ridge regression estimator with regularized parameter λ, and wols be
the OLS estimator, it holds that

Ew⋆ [E(w)] ≳

{
σ2d
n n ≳ d+ log (1/δ)

1− n
d + σ2n

d d ≳ n+ log (1/δ),

with probability at least 1− δ, where w ∈ {ŵλ,wols,w
t
gd}.

F. Proof of Theorem E.1

To simplify the notations, we use ŵt to denote w̃t
gd. We first prove that with a high probability, there exists a R ∈ Rd×d

such that RR̂ = R̂R = Is, where Is = diag{a1, . . . , ad} with aj = 1{j∈S}.

Lemma F.1. Denote R = diag{r1, . . . , rd}, where rj =
∑d

i=1 w
⋆
iΣij . Suppose n ≥ O(log (d/δ)), then for any δ ∈ (0, 1)

with probability at least 1− δ, we have

∥R̂−R∥2 ≲ K ·
√

s log (d/δ)

n
,

where K := C
(
maxi Σii + σ2

)
, where C is an absolute constant.

Lemma F.2. Define the event ER by ER =
{
|r̂|i ≥

1
2 |ri|, ∀i ∈ S

}
. Suppose that n ≳ s log (d/δ)/β2, then P(E1) ≥ 1− δ.

We define R by R = diag{r1, . . . , rd}, where rj is given by

rj =

{
0 j /∈ S,
1/r̂j j ∈ S.

It is easy to see RR̂ = R̂R = Is. On the event E1, we have that
∥∥R∥∥ ≲ 1/β. Hereafter, we condition on E1.
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F.1. Bias-variance Decomposition

Let X̃ = XR̂ with x̃i = R̂xi. For ŵt, we have

ŵt+1 −Rw⋆ = ŵt −Rw⋆ − η · 1
n

n∑
i=1

x̃i

(
x̃⊤
i ŵt − yi

)
= ŵt −Rw⋆ − η · 1

n

n∑
i=1

x̃i

(
x̃⊤
i ŵt − x̃⊤

i Rw⋆ + ϵ
)

=
(
I− ηΣ̂

)(
ŵt −Rw⋆

)
+ η · 1

n
X̃⊤ϵ.

Hence, we have

ŵt =

(
I−

(
I− ηΣ̂

)t)
Rw⋆ +

1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X̃⊤ϵ. (F.1)

We can decompose the risk L(ŵt) by

E(ŵt) = E(x,y)∼P

[(
⟨R̂x, ŵt⟩ − ⟨R̂x,Rw⋆⟩ − ϵ

)2]
− σ2 (F.2)

= E(x,y)∼P

[(
⟨R̂x, ŵt⟩ − ⟨R̂x,Rw⋆⟩

)2]
=
∥∥∥Σ1/2R̂

(
ŵt −Rw⋆

)∥∥∥2
2

=

∥∥∥∥∥Σ1/2R̂

(
−
(
I− ηΣ̂

)t
Rw⋆ + η · 1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X̃⊤ϵ

)∥∥∥∥∥
2

2

=

∥∥∥∥Σ1/2R̂
(
I− ηΣ̂

)t
Rw⋆

∥∥∥∥2
2︸ ︷︷ ︸

Bias

+ η2

∥∥∥∥∥Σ1/2R̂

(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X̃⊤ϵ

)∥∥∥∥∥
2

2︸ ︷︷ ︸
Variance

. (F.3)

Next, we present some lemmas.

Lemma F.3 (Theorem 9 in Bartlett et al. (2020)). There is an absolute constant c such that for any δ ∈ (0, 1) with probability
at least 1− δ,

∥Σ̂−Σ∥2 ≤ c∥Σ∥2 ·max

{√
r(Σ)

n
,
r(Σ)

n
,

√
log (1/δ)

n
,
log (1/δ)

n

}
,

where r(Σ) = Tr(Σ)/λ1.

Lemma F.4. With probability at least 1− δ, we have

∥R̂Σ̂R̂−RΣR∥2 ≲
√
s · poly(log (d/δ)) ·

(√
r(RΣR)

n
+

√
r(Σ) + r(RΣR)

n
+

r(Σ)

n3/2

)
.

As a result, when n ≳ st2
(
r2/3(Σ) + r(RΣR)

)
· poly(log (d/δ)), with probability at least 1− δ, we have

∥R̂Σ̂R̂−RΣR∥2 ≤ 1/t.

We define the event E2 as follows:

E2 :=
{
∥RΣR∥2 ≲ α̃(n, δ) ≤ 1/t

}
,
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where

α̃(n, δ) =
√
s · poly(log (d/δ)) ·

(√
r(RΣR)

n
+

√
r(Σ) + r(RΣR)

n
+

r(Σ)

n3/2

)
.

By Lemma F.4, P(E2) ≥ 1− δ. Hereafter, we condition on E1 ∩ E2.

F.2. Bounding the Bias

On E1 ∩ E2, we have

Bias =

∥∥∥∥Σ1/2R̂
(
I− ηΣ̂

)t
Rw⋆

∥∥∥∥2
2

= w⋆⊤R
(
I− ηΣ̂

)t
R̂ΣR̂

(
I− ηΣ̂

)t
Rw⋆

= w⋆⊤R
(
I− ηΣ̂

)t
R̂
(
Σ− Σ̂

)
R̂
(
I− ηΣ̂

)t
Rw⋆︸ ︷︷ ︸

I

+w⋆⊤R
(
I− ηΣ̂

)t
R̂Σ̂R̂

(
I− ηΣ̂

)t
Rw⋆︸ ︷︷ ︸

II

.. (F.4)

Lemma F.5. On E1 ∩ E2, we have

I ≲
1

tβ2

and

II ≲
1

ηtβ2
·

hold with probability at least 1− δ.

By Lemma F.5, we obtain that with probability at least 1− δ,

Bias ≲ I + II ≤ 1

tβ2
+

1

ηtβ2
≲

1

ηtβ2
(F.5)

where the last inequality is by η ≲ 1/∥Σ∥ ≲ 1.

F.3. Bounding the Variance

Variance = η2

∥∥∥∥∥Σ1/2R̂

(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X̃⊤ϵ

)∥∥∥∥∥
2

2

=
η2

n2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂ΣR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ

=
η2

n2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂
(
Σ− Σ̂

)
R̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ︸ ︷︷ ︸
I

+
η2

n2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂Σ̂R̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ︸ ︷︷ ︸
II

. (F.6)
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Lemma F.6. On E1 ∩ E2, with probability at least 1− δ, we have

I ≲
η2t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2

and

II ≲
ηt log t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
.

By applying Lemma F.6 to Eq.(F.6), we obtain that

Variance = I + II ≲
η2t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
+

ηt log t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
≲

ηt log t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
. (F.7)

Lemma F.7. with probability at least 1− δ, we have∥∥∥∥ 1n · R̂X⊤ϵ

∥∥∥∥2
2

≲
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2

By applying Lemma F.7 to Eq.(F.7), we obtain that

Variance ≲ ηt log t ·
(
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2

)
. (F.8)

F.4. Final Bound

Combining Eq.(F.5) and Eq.(F.8), we obtain that

E(ŵt) ≤
1

ηtβ2
+ ηt log t ·

(
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2

)

≲
log t

β

√
σ2Tr(RΣR) log (d/δ)

n
+

σ2sTr(Σ) log2 (d/δ)

n2
,

when ηt ≃ 1
β ·
(

σ2Tr(RΣR) log (d/δ)
n + σ2sTr(Σ) log2 (d/δ)

n2

)−1/2

.

F.5. Proof for Appendix F

Proof of Lemma F.1. Since yi =
∑d

j=1 w
⋆
jxij + ϵi, then we have

r̂i =
1

n

n∑
j=1

xjiyj =
1

n

n∑
j=1

xji ·

(
d∑

k=1

w⋆
kxjk + ϵj

)
=

d∑
k=1

w⋆
k

n

n∑
j=1

xjkxji +
1

n

n∑
j=1

xjiϵj . (F.9)

Since xji ∼ N(0,Σii) for any i, j, by Lemma 2.7.7 in Vershynin (2020), there exists an absolute constant C such that
xjkxji is a sub-exponential random variable with

∥xjkxji∥Ψ1
≤ C

√
ΣkkΣii ≤ K,

where ∥ · ∥Ψ1 denotes the sub-exponential norm and the last inequality comes from the definition of K. By applying
Bernstein’s inequality (?)Theorem 2.8.1]vershynin2020high, we have∣∣∣∣∣∣ 1n

n∑
j=1

xjkxji − E[x1kx1i]

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n

n∑
j=1

xjkxji − Σki

∣∣∣∣∣∣
≤ K ·max

{√
log (d/δ)

n
,
log (d/δ)

n

}

= K ·
√

log (d/δ)

n
, (F.10)
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where the last equality due to n ≥ O(log (d/δ)). We also note that xjiϵj is a sub-exponential random variable with
∥xjiϵj∥Ψ1

≤ K. Hence, we also have ∣∣∣∣∣∣ 1n
∑
j=1

xjiϵj

∣∣∣∣∣∣ ≲ K ·
√

log (d/δ)

n
. (F.11)

Combining Eq.(F.9), Eq.(F.10) and Eq.(F.11), we have

|r̂i − ri| ≲ K ·
√

log (d/δ)

n

d∑
k=1

|w⋆
k|+K ·

√
log (d/δ)

n
= (∥w⋆∥1 + 1)K ·

√
log (d/δ)

n
.

By definition of R̂ and R, we obtain

∥R̂−R∥2 = max
i

|r̂i − ri| ≤ K(∥w⋆∥1 + 1) ·
√

log (d/δ)

n

≤ K

(√
s∥w⋆∥22 + 1

)
·
√

log (d/δ)

n
≲ K ·

√
s log (d/δ)

n
,

which completes the proof.

Proof of Lemma F.2. By Lemma F.1, for any j ∈ S, with probability at least 1− δ, we have

|ri − r̂j | ≲
√

s log (d/δ)

n
≲ β/2 ≤ |rj |/2, (F.12)

where the last inequality is due to the definition of β.

Proof of Lemma F.4. We can decompose ∥R̂Σ̂R̂−RΣR∥2 as follows:

∥R̂Σ̂R̂−RΣR∥2 = ∥R̂Σ̂R̂−RΣ̂R̂+RΣ̂R̂−RΣR̂+RΣR̂−RΣR∥2
≤ ∥R̂Σ̂R̂−RΣ̂R̂∥2︸ ︷︷ ︸

I

+ ∥RΣ̂R̂−RΣR̂∥2︸ ︷︷ ︸
II

+ ∥RΣR̂−RΣR∥2︸ ︷︷ ︸
III

. (F.13)

Next, we proof the bound for I, II and III separately.

For term I,

I = ∥R̂Σ̂R̂−RΣ̂R̂∥2 = ∥
(
R̂−R

)
Σ̂R̂∥2

≤ ∥R̂−R∥2 · ∥Σ̂∥2 · ∥R̂∥2

≤ ∥R̂−R∥2 ·
(
∥Σ∥2 + ∥Σ̂−Σ∥2

)
·
(
∥R∥2 + ∥R− R̂∥2

)
, (F.14)

where the last line is due to triangle inequality. By Lemma F.3, with probability at least 1− δ/3, we have

∥Σ̂−Σ∥2 ≲ ∥Σ∥2 ·max

{√
r(Σ)

n
,
r(Σ)

n
,

√
log (1/δ)

n
,
log (1/δ)

n

}

≲ ∥Σ∥2 ·max

{√
r(Σ) + log (1/δ)

n
,
r(Σ) + log (1/δ)

n

}
. (F.15)

By Lemma F.1, we obtain that

∥R̂−R∥2 ≤ K ·
√

s log (d/δ)

n
≲ 1 (F.16)
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holds with probability at least 1− δ/3, where the last inequality is valid since n ≳ K2s∥R∥22 log (d/δ). Combing Eq.(F.14),
Eq.(F.15) and Eq.(F.16), we have

I ≲ K∥Σ∥2

√
s log (d/δ)

n
·

(
1 + max

{√
r(Σ) + log (1/δ)

n
,
r(Σ) + log (1/δ)

n

})

≤ K∥Σ∥2

√
s
log (d/δ)

n
·

(
1 +

√
r(Σ) + log (1/δ)

n
+

r(Σ) + log (1/δ)

n

)
. (F.17)

For term II, we can decompose II as follows:

∥R
(
Σ̂−Σ

)
R̂∥2 ≤ ∥R

(
Σ̂−Σ

)
R∥2︸ ︷︷ ︸

II.a

+ ∥R
(
Σ̂−Σ

)(
R̂−R

)
∥2︸ ︷︷ ︸

II.b

.

For term II.a, by using Lemma F.3, we have with probability at least 1− δ/3,

II.a ≲ ∥RΣR∥2 ·max

{√
r(RΣR)

n
,
r(RΣR)

n
,

√
log (1/δ)

n
,
log (1/δ)

n

}

≲ ∥RΣR∥2 ·max

{√
r(RΣR) + log (1/δ)

n
,
r(RΣR) + log (1/δ)

n

}

≤ ∥RΣR∥2 ·

(√
r(RΣR) + log (1/δ)

n
+

r(RΣR) + log (1/δ)

n

)
(F.18)

Similar to the proof for bounding I, we can obtain that

II.b ≲ K∥Σ∥2

√
s log (d/δ)

n
·

(
1 +

√
r(Σ) + log (1/δ)

n
+

r(Σ) + log (1/δ)

n

)
. (F.19)

For term III, we have

III = ∥RΣ
(
R̂−R

)
∥2 ≤ |R∥2∥Σ∥2K(∥w⋆∥1 + 1) ·

√
s log (d/δ)

n
, (F.20)

where the last inequality is by Eq.(F.16).

Combining Eq.(F.17), Eq.(F.18), Eq.(F.19) and Eq.(F.20) and taking the union bound, we obtain that with probability at
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least 1− δ,

∥R̂Σ̂R̂−RΣR∥2 ≤ I + II + III

≲ K∥Σ∥2(∥w
⋆∥1 + 1)

√
log (d/δ)

n
·

(
1 +

√
r(Σ) + log (1/δ)

n
+

r(Σ) + log (1/δ)

n

)

+ ∥RΣR∥2 ·

(√
r(RΣR) + log (1/δ)

n
+

r(RΣR) + log (1/δ)

n

)

+ ∥R∥2∥Σ∥2K(∥w⋆∥1 + 1) ·
√

log (d/δ)

n

≤ (K∥Σ∥2(∥w
⋆∥1 + 1) + ∥RΣR∥2 + ∥R∥2∥Σ∥2K(∥w⋆∥1 + 1))

·

(√
log (d/δ)

n
·

(
2 +

√
r(Σ) + log (1/δ)

n
+

r(Σ) + log (1/δ)

n

)

+

√
r(RΣR) + log (1/δ)

n
+

r(RΣR) + log (1/δ)

n

)

≲ C̃cov ·

(√
r(RΣR) + log (1/δ)

n
+

√
r(Σ) log (d/δ) + r(RΣR) + log(d/δ)

n

+
r(Σ)

√
log (d/δ) + log3/2 (d/δ)

n3/2

)

≲ C̃cov · poly(log (d/δ)) ·

(√
r(RΣR)

n
+

√
r(Σ) + r(RΣR)

n
+

r(Σ)

n3/2

)
,

where the second last inequality is by aa′ + bb′ + cc′ ≤ (a+ b+ c)(a′ + b′ + c′) for a, a′, b, b′, c, c′ ≥ 0. Here C̃cov =

K∥Σ∥2(∥w⋆∥1 + 1) + ∥RΣR∥2 + ∥R∥2∥Σ∥2K(∥w⋆∥1 + 1) ≲
√
s.

Proof of Lemma F.5. By the triangle inequality, we have∥∥∥R̂(Σ− Σ̂
)
R̂
∥∥∥
2

=
∥∥∥R(Σ− Σ̂

)
R+R

(
Σ− Σ̂

)(
R̂−R

)
+
(
R̂−R

)(
Σ− Σ̂

)
R+

(
R̂−R

)(
Σ− Σ̂

)(
R̂−R

)∥∥∥
2

≤
∥∥∥R(Σ− Σ̂

)
R
∥∥∥
2
+
∥∥∥R(Σ− Σ̂

)(
R̂−R

)∥∥∥
2
+
∥∥∥(R̂−R

)(
Σ− Σ̂

)
R
∥∥∥
2
+
∥∥∥(R̂−R

)(
Σ− Σ̂

)(
R̂−R

)∥∥∥
2
.

Following the proof of Lemma F.4, we can prove that with probability at least 1− δ,∥∥∥R̂(Σ− Σ̂
)
R̂
∥∥∥
2
≲ α̃(n, δ) ≤ 1/t, (F.21)

where the last inequality is by E2. By Eq.(F.21), we have

R̂
(
Σ− Σ̂

)
R̂ ⪯ 1/t · I.

Hence, we obtain that

I ≲ w⋆⊤R
(
I− ηΣ̂

)t
· 1/t · I ·

(
I− ηΣ̂

)t
Rw⋆

=
1

t
w⋆⊤R

(
I− ηΣ̂

)2t
Rw⋆

≤ 1

t
w⋆⊤RRw⋆ (by

(
I− ηΣ̂

)2t
⪯ I)

≤ 1

t
∥w⋆∥22, (F.22)
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where the last line by R ⪯ 2
β · I. For the term II, we have

II = w⋆⊤R
(
I− ηΣ̂

)t
R̂Σ̂R̂

(
I− ηΣ̂

)t
Rw⋆

≲
1

ηt
w⋆⊤RRw⋆

1

ηtβ2
∥w⋆∥22 ≤ 1

ηtβ2
, (F.23)

where the second last line is by the fact that x(1− x)k ≤ 1/(k + 1) for all x ∈ [0, 1] and all k > 0.

Proof of Lemma F.6. Similar to the proof of Lemma F.5, with probability at least 1 − δ, we have R̂
(
Σ− Σ̂

)
R̂ ⪯ 1

t · I.
Then we have

I =
η2

n2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂
(
Σ− Σ̂

)
R̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ

≲
η2

tn2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1 t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ

≤ η2t

n2
ϵ⊤XR̂R̂X⊤ϵ

=
η2t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
,

where the second last line is by
∑t

i=1

(
I− ηΣ̂

)i−1

⪯ t · I. By the fact that x(1− x)k ≤ 1/(k + 1) for all x ∈ [0, 1] and
all k > 0, we have

II =
η2

n2
ϵ⊤XR̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂Σ̂R̂

t∑
i=1

(
I− ηΣ̂

)i−1

R̂X⊤ϵ

=
η

n2
ϵ⊤XR̂

 t∑
i,j=1

(
I− ηΣ̂

)i+j−2

ηR̂Σ̂

R̂X⊤ϵ

≤ η

n2
· (

t∑
i,j=1

1

i+ j − 1
)
∥∥∥R̂X⊤ϵ

∥∥∥2
2

≤ ηt

n2
· (

t∑
i=1

1

i
)
∥∥∥R̂X⊤ϵ

∥∥∥2
2

≲
ηt log t

n2
·
∥∥∥R̂X⊤ϵ

∥∥∥2
2
,

where the last inequality is by the fact that
∑t

i=1
1
i ≲ log t.

Proof of Lemma F.7. First, we can decompose
∥∥∥ 1
n · R̂X⊤ϵ

∥∥∥2
2

by

∥∥∥∥ 1n · R̂X⊤ϵ

∥∥∥∥2
2

≲

∥∥∥∥ 1n ·RX⊤ϵ

∥∥∥∥2
2

+

∥∥∥∥ 1n ·
(
R̂−R

)
X⊤ϵ

∥∥∥∥2
2

.

Let zi = Rxi, then zi ∼ N(G), where G := RΣR. For any i, j, by Lemma 2.7.7 in Vershynin (2020), there exists an
absolute constant C such that ϵjzji is a sub-exponential random variable with

∥ϵjzji∥Ψ1 ≤ Cσ
√

Gii.
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By applying Bernstein’s inequality Vershynin (2020, Theorem 2.8.1), for any 1 ≤ i ≤ d, we have that∣∣∣∣∣∣ 1n
n∑

j=1

ϵjzji − E[ϵ1z1i]

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n

n∑
j=1

ϵjzji

∣∣∣∣∣∣
≲ σ

√
Gii ·max

{√
log (d/δ)

n
,
log (d/δ)

n

}
= σ

√
Gii ·

√
log (d/δ)

n
(F.24)

hold with probability 1− δ
3d , where the last inequality is due to n ≥ O(log(d/δ)). By taking the union bound, we obtain

that ∣∣∣∣∣∣ 1n
n∑

j=1

ϵjzji

∣∣∣∣∣∣ ≲ σ
√

Gii ·
√

log (d/δ)

n

holds for any i, with probability 1− δ
3 . Then we have

I =

d∑
i=1

 1

n

n∑
j=1

ϵjzji

2

≲
d∑

i=1

σ2Gii ·
log(d/δ)

n
=

σ2Tr(RΣR) log(d/δ)

n
.

In the same way, we can prove that with probability at least 1− δ/3,∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

≲
σ2Tr(Σ) log(d/δ)

n
. (F.25)

By applying Lemma F.1, with probability at least 1− δ/3, we have∥∥∥R̂−R
∥∥∥2
2
≲

s log (d/δ)

n
. (F.26)

By Eq.(F.25) and Eq.(F.26), with probability 1− 2δ/3, we have∥∥∥∥ 1n ·
(
R̂−R

)
X⊤ϵ

∥∥∥∥2
2

≤
∥∥∥R̂−R

∥∥∥2
2

∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

≲
σ2sTr(Σ) log2 (d/δ)

n2
.

By taking the union bound, we derive the desired result.

G. Proof for Theorem E.2

To simplify the notations, we use wt to denote wt
gd.

Lemma G.1. with probability at least 1− δ, we have∥∥∥Σ̂−Σ
∥∥∥ ≲ α(n, δ), (G.1)

where α(n, δ) =
√

Tr(Σ)+log (1/δ)
n + Tr(Σ)+log (1/δ)

n . As a result, when n ≳ t2(Tr(Σ) + log (1/δ)), with probability at
least 1− δ, ∥∥∥Σ̂−Σ

∥∥∥ ≲ 1/t.

Proof of Lemma G.1. By Lemma F.3, we have

∥Σ̂−Σ∥2 ≤ c∥Σ∥2 ·max

{√
r(Σ)

n
,
r(Σ)

n
,

√
log (1/δ)

n
,
log (1/δ)

n

}

≲ max

{√
r(Σ) + log (1/δ)

n
,
r(Σ) + log (1/δ)

n

}

≤
√

r(Σ) + log (1/δ)

n
+

r(Σ) + log (1/δ)

n
(G.2)
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holds with probability at least 1− δ, where the last line is by the inequality that max {a, b} ≤ a+ b for all a, b ≥ 0.

We define the event E as follows:

E :=
{
RΣR∥2 ≲ α(n, δ) ≤ 1/t

}
.

By Lemma G.1, P(E) ≥ 1− δ. Hereafter, we condition on E .

Bias-variance Decomposition Similar to Eq.(F.1), we have

wt =

(
I−

(
I− ηΣ̂

)t)
w⋆ +

1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X⊤ϵ. (G.3)

In the same way, we can decompose the risk E(wt) by

E(wt) =

∥∥∥∥Σ1/2
(
I− ηΣ̂

)t
w⋆

∥∥∥∥2
2︸ ︷︷ ︸

Bias

+ η2

∥∥∥∥∥Σ1/2

(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X⊤ϵ

)∥∥∥∥∥
2

2︸ ︷︷ ︸
Variance

. (G.4)

Bounding the Bias

Bias = w⋆⊤
(
I− ηΣ̂

)t
Σ
(
I− ηΣ̂

)t
w⋆

= w⋆⊤
(
I− ηΣ̂

)t(
Σ− Σ̂

)(
I− ηΣ̂

)t
w⋆︸ ︷︷ ︸

I

+w⋆⊤
(
I− ηΣ̂

)t
Σ̂
(
I− ηΣ̂

)t
w⋆︸ ︷︷ ︸

II

.

Similar to the proof of Lemma F.5, we have the following lemma.

Lemma G.2. On E , we have

I ≲
1

t

and

II ≲
1

ηt

hold with probability at least 1− δ.

As a result, the bound of the bias term is given by

Bias ≤ 1

ηt
+

1

t
≲

1

ηt
. (G.5)

Bounding the Variance By using the same way of the proof for bounding the variance term of Theorem E.1, we have the
following lemma.

Lemma G.3. On E , with probability at least 1− δ, we have that

Variance ≲ ηt log t ·
∥∥∥∥ 1n ·X⊤ϵ

∥∥∥∥2
2

≲ ηt log t · σ
2Tr(Σ) log (d/δ)

n
. (G.6)

Combining Eq.(G.5) and Eq.(G.6), we obtain that

E(wt) ≲
1

ηt
+ ηt log t · σ

2Tr(Σ) log (d/δ)

n
≲ log t ·

√
σ2Tr(Σ) log (d/δ)

n
,

when ηt ≃
(

σ2Tr(Σ) log (d/δ)
n

)−1/2
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H. Proof for Theorem 5.1

To simplify the notation, we use ŵt to denote w̃t
gd and wt to denote wt

gd.

H.1. Proof for the upper bound of the excess risk

When Σ = I, by Eq.(F.2), we have

E(ŵt) =

∥∥∥∥R̂(I− ηΣ̂
)t
Rw⋆

∥∥∥∥2
2︸ ︷︷ ︸

Bias

+ η2

∥∥∥∥∥R̂
(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X̃⊤ϵ

)∥∥∥∥∥
2

2︸ ︷︷ ︸
Variance

.

Following the proof of Theorem E.1, it holds that

Variance ≲ ηt log t · σ
2 log (d/δ)

n
+

σ2sd log2 (d/δ)

n2

with probability at least 1− δ, when n ≳ t2sd2/3

Similar to the proof of Lemma F.2, we can prove that

r̂i ≥
ri
2

∀i ∈ S, r̂i ≲ 1 ∀i,

with probability at least 1− δ.

When Σ = I, by Lemma F.4, we have that ∥∥∥R̂Σ̂R̂−RΣR
∥∥∥
2
≲

β2

t

holds with probability at least 1− δ, when n ≳ t2∥w⋆∥2
1d

2/3

β4 . As a result, RΣR− β2

t · I ⪯ R̂Σ̂R̂. Hereafter, we condition
on the above events. For the bias term, we have∥∥∥∥R̂(I− ηΣ̂

)t
Rw⋆

∥∥∥∥2
2

≤
∥∥∥R̂∥∥∥2

2
·
∥∥∥∥(I− ηΣ̂

)t
Rw⋆

∥∥∥∥2
2

≤ w⋆⊤R
(
I− ηΣ̂

)2t
Rw⋆

≲ w⋆⊤R

(
I− η

(
RΣR− β2

t
· I
))2t

Rw⋆

=
∑
i∈S

(w⋆
i /r̂i)

2 ·
(
1− η

(
(w⋆

i )
2 − β2

t

))2t

≤ s ·
(
1− ηβ2/2

)2t
,

where the last line is by the definition of β. When t ≳ log
(

σ2

ns

)
/
(
2 log

(
1− ηβ2/2

))
, we have

Bias =

∥∥∥∥R̂(I− ηΣ̂
)t
Rw⋆

∥∥∥∥2
2

≤ σ2

n
. (H.1)

When ηβ2/2 ≤ 1/2, there exist a c > 0, such that

log
(
1− ηβ2/2

)
≥ cηβ2/2.

Hence, the variance term is bounded by

Variance ≲ ηt log t ·

(
σ2 log (d/δ)

n
+

σ2∥w⋆∥21d log
2 (d/δ)

n2

)

≲
σ2log2

(
ns/σ2

)
log2 (d/δ)

β2
·
(
s

n
+

ds

n2

)
, (H.2)
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where the last line is by ∥w⋆∥1 ≤ s · ∥w⋆∥22 = s and ηt ≲
log (ns/σ2)

β2 . Combining Eq.(H.1) and Eq.(H.2), we have that

E(ŵt) ≲
σ2

n
+

σ2log2
(
ns/σ2

)
log2 (d/δ)

β2
·
(
1

n
+

ds

n2

)
≲

σ2log2
(
ns/σ2

)
log2 (d/δ)

β2
·
(
1

n
+

ds

n2

)
,

when n ≳ t2sd2/3

β4 ≥ t2∥w⋆∥2
1d

2/3

β4 and t ≳ log (ns)
ηβ2 . When w⋆

i ∈ U{−1/
√
s, 1/

√
s}, β = 1/

√
s. In this case, we have that

E(ŵt) ≲ σ2log2
(
ns/σ2

)
log2 (d/δ) ·

(
s

n
+

ds2

n2

)
,

when n ≳ t2s3d2/3 and t ≳ log (ns)
ηs .

H.2. Lower bound for Ridge Regression

When n ≳ d+log (1/δ), by Lemma F.3, we have that 1
2 ·I ⪯ Σ̂ ⪯ 2·I For the ridge estimator ŵλ = 1

n ·
(
Σ̂+ λ · I

)−1

X⊤y,
we have

Ew⋆ [E(ŵλ)] =

∥∥∥∥(I− (Σ̂+ λI
)−1

Σ̂

)
w⋆

∥∥∥∥2
2

+

∥∥∥∥ 1n ·
(
Σ̂+ λ · I

)−1

X⊤ϵ

∥∥∥∥2
2

≥
∥∥∥∥ 1n ·

(
Σ̂+ λ · I

)−1

X⊤ϵ

∥∥∥∥2
2

.

By Lemma F.3, when 1
2 · I ⪯ Σ̂ ⪯ 2 · I, with probability at least 1− δ, we have

Ew⋆ [E(ŵλ)] ≥
∥∥∥∥ 1n ·

(
Σ̂+ λ · I

)−1

X⊤ϵ

∥∥∥∥2
2

=
1

n2
· ϵ⊤X

(
Σ̂+ λI

)−2

X⊤ϵ

≥ 1

n2(2 + λ)
2 · ϵ⊤XX⊤ϵ,

where the last line is due to the fact that Σ̂+ λI ⪯ (2 + λ) · I.

Lemma H.1. Given X such that 1
2I ⪯ Σ̂ ⪯ 2I, it holds that∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

≳
σ2d

n
,

with probability at least 1− δ, when n ≥ O(log (1/δ)).

Proof of Lemma H.1. We consider the singular value decomposition of 1√
n
X⊤: 1√

n
X⊤ = UΛV⊤, where U ∈ Rd×d is an

orthogonal matrix, Λ ∈ Rd×n is a rectangular diagonal matrix with non-negative real numbers on the diagonal, V ∈ Rn×n

is an orthogonal matrix. Let {σ1, . . . , σd} be the singular values of 1√
n
X⊤. Then we have

∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

=

∥∥∥∥ 1√
n
UΛV⊤ϵ

∥∥∥∥2
2

=

∥∥∥∥ 1√
n
ΛV⊤ϵ

∥∥∥∥2
2

=

∥∥∥∥ 1√
n
Λϵ̃

∥∥∥∥2
2

=
1

n

d∑
i=1

σ2
i ϵ̃

2
i ,
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where ϵ̃ = V⊤ϵ ∼ N(0, I). By [Lemma 22], we have∣∣∣∣∣
∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

− E

[∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

]∣∣∣∣∣ ≲ σ2 max


√∑d

i=1 σ
4
i log (1/δ)

n
,
maxi σ

2
i log (1/δ)

n


≲ σ2 max

{√
d log (1/δ)

n
,
log (1/δ)

n

}
, (H.3)

where the last line is valid since
{
σ2
1 , . . . , σ

2
d

}
is the eigenvalues of Σ̂ = 1

nX
⊤X and 1

2I ⪯ Σ̂ ⪯ 2I. By Eq.(H.3), we
obtain that ∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

≥ E

[∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

]
− σ2 max

{√
d log (1/δ)

n
,
log (1/δ)

n

}

= σ2
d∑

i=1

σ2
i − σ2 max

{√
d log (1/δ)

n
,
log (1/δ)

n

}

= σ2 d

n
− σ2 max

{√
d log (1/δ)

n
,
log (1/δ)

n

}
(by 1

2I ⪯ Σ̂ ⪯ 2I)

≲ σ2 d

n
,

where the last line is due to d ≥ O(log (1/δ)).

Next, we define the event E as follows:

Eridge :=

{
1

2
I ⪯ Σ̂ ⪯ 2I,

∥∥∥∥ 1nX⊤ϵ

∥∥∥∥2
2

≳
σ2d

n

}
.

By Lemma H.1, we have P(E) ≥ 1− δ when n ≥ O(d) ≥ O(log (1/δ)). On Eridge, we have

Ew⋆ [E(ŵλ)] ≳
σ2d

(1 + λ)
2
n
. (H.4)

When d ≳ n+ log (1/δ), by Lemma F.3, with probability at least 1− δ, we have that d
2 · I ⪯ XX⊤ ⪯ 2d · I. Hereafter, we

condition on this event. By direct calculation, we can decompose the excess risk by

Ew⋆ [E(ŵλ)] = Ew⋆

∥∥∥∥(I− (Σ̂+ λI
)−1

Σ̂

)
w⋆

∥∥∥∥2
2

+

∥∥∥∥ 1n ·
(
Σ̂+ λ · I

)−1

X⊤ϵ

∥∥∥∥2
2

.

For the first term, we have

Ew⋆

∥∥∥∥(I− (Σ̂+ λI
)−1

Σ̂

)
w⋆

∥∥∥∥2
2

= Ew⋆

∥∥∥(I−X⊤(XX⊤ + nλI
)−1

X
)
w⋆
∥∥∥2
2

= (1− n

d
)Ew⋆

[
∥w⋆∥22

]
, (H.5)

= 1− n

d
(H.6)

where the last line is due to
(
I−X⊤(XX⊤ + nλI

)−1
X
)

is a d− n space.

∥∥∥∥ 1n ·
(
Σ̂+ λ · I

)−1

X⊤ϵ

∥∥∥∥2
2

= ϵ⊤XX⊤(XX⊤ + nλI
)−2

ϵ

≥ dn

2(2d+ nλ)
2 · 1

n

n∑
i=1

ϵ2i , (H.7)
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where the first line is by
(
X⊤X+ nλI

)−1
X⊤ = X⊤(XX⊤ + nλI

)−1
and the last line is by d

2(d+nλ)2 · I ⪯
XX⊤(XX⊤ + nλI

)−2
. By Tsigler & Bartlett (2023, Lemma 22), we obatain that∣∣∣∣∣

n∑
i=1

ϵ2i − nσ2

∣∣∣∣∣ ≲ σ2
√
n log (1/δ) + σ2

holds with probability at least 1− δ. When n ≳ log (1/δ), we have
∣∣∑n

i=1 ϵ
2
i − nσ2

∣∣ ≥ nσ2

2 holds with probability at least
1− δ. Taking the union bound, we obtain that

Ew⋆ [E(ŵλ)] ≳ 1− n

d
+ σ2 · dn

2(2d+ nλ)
2 ≳ 1− n

d
+ σ2 n

(1 + λ)
2
d
. (H.8)

H.3. Lower Bound for Finite-Step GD

We first consider the case where n ≳ d+ log (1/δ). Define the event EGD by EGD =
{

1
2 · I ⪯ Σ̂ ⪯ 2I

}
. By Lemma F.3,

P(EGD) ≥ 1− δ. By Eq.(G.4), we have

Ew⋆ [E(wt)] = Ew⋆

∥∥∥∥(I− ηΣ̂
)t
w⋆

∥∥∥∥2
2

+ η2

∥∥∥∥∥
(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X⊤ϵ

)∥∥∥∥∥
2

2

≥ η

∥∥∥∥∥
(
1

n

t∑
i=1

(
I− ηΣ̂

)i−1

X⊤ϵ

)∥∥∥∥∥
2

2

=
η2

n2
·

∥∥∥∥∥∥
(
Σ̂

(
I−

(
I− ηΣ̂

)t)−1
)−1

X⊤ϵ

∥∥∥∥∥∥
2

2

≳
η2

n2
·

∥∥∥∥∥
(
Σ̂+

1

ηt
· I
)−1

X⊤ϵ

∥∥∥∥∥
2

2

≳ σ2 η2d

(1 + 1/(ηt))
2
n
,

where the second last line is by Σ̂

(
I−

(
I− ηΣ̂

)t)−1

⪯ Σ+ 2
tη · I and the last line is by Eq.(H.4).

We then consider the case where d ≳ n + log (1/δ). Define the event E ′
GD =

{
d
2 · I ⪯ XX⊤ ≺ 2dI

}
. By Lemma F.3,

P(E ′
GD) ≥ 1− δ. Following the proof of Zou et al. (2022, Theorem 4.3), we have

Ew⋆ [E(wt)] ≥ Ew⋆

∥∥∥∥∥
(
I−X⊤

(
XX⊤ +

n

ηt
I

)−1

X

)∥∥∥∥∥
2

2

+

∥∥∥∥∥ 1nX⊤
(
XX⊤ +

n

ηt
I

)−1

ϵ

∥∥∥∥∥
2

2

= 1− n

d
+

σ2n(
1 + 1

ηt

)2
d
,

where we use the results from Appendix H.2.

H.4. Lower bound of OLS

Let wols be the OLS estimator. It is easy to see wols = w0. Hence, we have

Ew⋆ [E(wols)] ≳

{
σ2d
n n ≳ d+ log (1/δ)

1− n
d + σ2n

d d ≳ n+ log (1/δ),

holds with probability at least 1− δ.
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I. Additional Experiments

Here, we provide additional experiments on the decoder-only architecture and train models with s = d = 16.

Training Decoder-Only Transformer In this experiment, we adapt the same input setting and training objective as in
(Garg et al., 2023). During training, we set n = 24 and k = 8 in Eq.(I.1) (where in yi, we use zero padding to align with
xi), dhid = 256. We choose h = 8 and l ∈ {4, 5, 6}.2 We then conduct heads assessment experiments on the trained
decoder-only transformers with 10 in-context examples, as in the previous settings. The result is shown in Figure 9. We
can observe that the decoder-only transformer exhibits the similar weight distribution for each layer as the encoder-based
models, indicating that our algorithm may extend to decoder-only based models.

E =
x1 y1 x2 y2 . . . xn yn

, L =

n∑
i=k

(ŷi − yi)
2. (I.1)
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Figure 9: Heads Assessment for decoder-only transformers

Training Models with s = d = 16 Here, we adapt the encoder-only transformer and the same settings as introduced in
A, but set s = d = 16. We observe that in these cases, there is no distinct performance difference between models with
different numbers of heads. As shown in Figure 3, when we set s = 4, d = 16, transformers with more heads (h = 4, 8)
always perform better than models with fewer heads (h = 1, 2). However, in Figure 10, such a difference is unclear, which
aligns well with the theoretical analysis. When s is close to d, a clear better upper bound guarantee, as ensured in cases
where s ≪ d may not hold.

2We also tried other settings with fewer heads or layers, but even with delicate hyperparameter tuning, decoder-only transformers with
fewer heads or layers consistently failed to learn how to solve our sparse linear regression problem. A possible reason is that decoder-only
transformers first need to learn the causal structure (Nichani et al., 2024) and then apply an optimization algorithm to the in-context
entries, which is more challenging than our encoder-based settings.
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Figure 10: Train Models with s = d = 16
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