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ABSTRACT

Numerical simulations based on partial differential equations (PDEs) are a cen-
tral tool for a wide variety of scientific and engineering applications. Due to their
challenging nature, many numerical methods rely on a reduced representation of
degrees of freedom and adopt an efficient solver that solves the PDEs in the re-
duced space. In general, however, it is extremely challenging to faithfully pre-
serve the correct solutions over long timespans with reduced representations. This
problem is particularly pronounced for solutions with large amounts of small scale
features. To address this, data-driven methods can learn to restore the details as
required for accurate solutions of the underlying PDE problem. This paper studies
the training of deep neural network models that autonomously interact with a PDE
solver to achieve the desired solutions. In contrast to previous work, we do not
constrain the PDE solver but instead give the neural network complete freedom
to shape the PDE solutions as degrees of freedom of a latent space. Surprisingly,
this autonomy allows the neural network to discover new physical dynamics that
allow for better performance in the given learning objectives. We showcase that
this approach allows the trained encoder to transform accurate solutions into ab-
stract yet physical reduced representations, which are significantly different from
conventional down-sampling results. Moreover, we demonstrate that our decoder
outperforms models trained with different methodologies in terms of restoration
accuracy.

1 INTRODUCTION

Partial differential equations (PDEs) are a central tool to model a wide range of science and engi-
neering problems, from blood flow simulations (Johnston et al., 2004), over aerodynamics (Cum-
mins et al., 2018), to climate and weather (Randall et al., 2007). For those PDE problems, many
numerical methods have been developed to achieve desired solutions as efficiently as possible. How-
ever, a central challenge of utilizing these numerical methods lies in the fact that the PDE problems
of real-world scenarios are extremely costly to resolve. The desired solutions often require very
fine degrees of freedom both temporally and spatially. Thus, solving the given PDE problem in a
reduced space is often considered as an alternative, but at the price of approximation errors and a
lack of fine details.

To address these difficulties, data-driven methods were proposed to learn to restore details and mit-
igate the errors introduced by the reduced representation (Morton et al., 2018; Wiewel et al., 2020;
Kochkov et al., 2021). Despite the ongoing research, there remains the central, open question of
how to best shape the states in the reduced space such that the targeted solutions can be restored as
accurately as possible. Here the reduced space typically has much less degrees of freedom, denoted
dr, compared to the targeted, accurate solution space’s, df (i.e., dr�df ).

In this paper, we present a novel training method that autonomously shapes the latent space of a
neural network model into an effective reduced representation for physical states of spatio-temporal
PDE problems. For a given PDE, our solving procedure is made of (a) an encoder model that reduces
the degrees of freedom of a physical state, (b) a physics solver running on the reduced state, and (c)
a decoder, turning the reduced state output by the physics solver back into the target high resolution
space. Here, the autonomy given to the neural network to shape the latent space turns out to play a
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key role, as the reduced, physical states can deviate from states that closely correspond to the fine
solutions.
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Figure 1: The learned latent space (top, left) strongly
differs from reference (bottom, right) and from the re-
duced simulation (top, right). The restoration of details
from it leads to a relative improvement of 50% w.r.t to
the baseline.

We adopt a differentiable physics ap-
proach for training the models. Within
the interaction of the encoder, differen-
tiable solver, and decoder for the given
target solutions, we let the encoder model
learn the latent space representation with-
out imposing any constraints. There-
fore, this setup provides the training pro-
cedure with the complete autonomy of
shaping the reduced representation. Our
experiments demonstrate that this auton-
omy leads to a significantly better perfor-
mance for solving spatio-temporal PDE
problems. Moreover, interestingly, we ob-
serve that the learned reduced represen-
tation differs considerably from a typical
down-sampled representation. The train-
ing process discovers new, physical evolu-
tion that encode the necessary information for the learning objectives. The proposed training setup
also tailors the learned reduced representation to allow for a more accurate decoding procedure.
We demonstrate with two complex, non-linear PDE problems that the resulting models clearly out-
perform conventional and more tightly constrained models in terms of restoration accuracy. Fig. 1
shows the temporal evolution of an example reduced space representation that was learned by our au-
tonomous training approach, as well as the restored solution from the reduced state, for a buoyancy-
driven flow ruled by the 2D Navier-Stokes equations.

Previous Work: The study of machine learning (ML) techniques for PDEs has a long history in
science and engineering (Crutchfield & McNamara, 1987; Kevrekidis et al., 2003; Brunton et al.,
2016). A popular direction in using ML for PDEs is to aim for replacement of entire PDE solvers by
the neural network models that can efficiently approximate the solutions as accurately as possible
(Lusch et al., 2018; Kim et al., 2019; Wang et al., 2020a; Bhattacharya et al., 2021). Instead of
this pure ML-driven approach to solve for target PDEs, an alternative approach exists, which aims
for hybrid methods that combine ML with traditional numerical methods. For example, a learned
model can replace the most expensive part of an iterative PDE solver (Tompson et al., 2017) or
supplement inexpensive yet under-resolved simulations (Um et al., 2018; Sirignano et al., 2020).
These approaches have demonstrated the promising capabilities of ML to solve PDE problems for
many different applications.

Recently, differentiable components for ML have received a significant amount of attention, partic-
ularly when training neural network models in recurrent setups for spatio-temporal problems (Amos
& Kolter, 2017; de Avila Belbute-Peres et al., 2018; Toussaint et al., 2018; Chen et al., 2018; Schenck
& Fox, 2018; Liang et al., 2019; Wang et al., 2020b; Um et al., 2020; Kochkov et al., 2021; Zhuang
et al., 2021). Consequently, a variety of differentiable programming frameworks have been devel-
oped for different domains (Schoenholz & Cubuk, 2019; Hu et al., 2020; Innes et al., 2019; Holl
et al., 2020). These differentiable frameworks allow neural networks to closely interact with PDE
solvers, which provides the model with important feedback about the temporal evolution of the target
problem from the recurrent evaluations. In order to provide gradients for shaping the latent spaces,
we also make use of a differentiable framework in our training procedure.

Effectively utilizing latent spaces lies at the heart of many ML-based approaches for solving PDEs.
A central role of the latent space is to embed important (often non-linear) information for the given
training task into reduced degrees of freedom. With an autoencoder network architecture, for exam-
ple, the latent space can be used for discovering interpretable, low-dimensional dynamical models
and their associated coordinates from high-dimensional data (Champion et al., 2019). Moreover,
thanks to their effectiveness in terms of embedding information and reducing the degrees of free-
dom, latent space solvers have been proposed for different problems such as advection-dominated
systems (Maulik et al., 2021) and fluid flows (Wiewel et al., 2020; Fukami et al., 2021). While those
studies typically focus on training equation-free evolution models, we focus on autonomously shap-
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ing the latent space that is integrated over time by a PDE solver. On the other hand, neural network
models have been studied for the integration of a dynamical system with an ordinary differential
equation (ODE) solver in the latent space (Chen et al., 2018). This targets general neural network
approximations with a simple physical model in the form of an ODE, whereas we focus on learning
tasks for complex nonlinear PDE systems and their latent spaces.

The ability to learn underlying PDEs has allowed neural networks to improve reduced, approximate
solutions. Residual correction models are trained to address numerical errors of PDE solvers (Um
et al., 2020). Details at sub-grid scales are improved via learning discretizations of PDEs (Bar-Sinai
et al., 2019) and learning solvers (Kochkov et al., 2021) from high-resolution solutions. Moreover,
the super-resolution approach with downsampled skip-connection multi-scale models has been used
for recovering under-resolved turbulent flows from low-resolution data (Fukami et al., 2019). These
methods, however, typically employ a constrained solution manifold for the reduced representation;
i.e., the reduced solutions are produced using coarse-grained simulations with standard numerical
methods, while our method shows the advantages of freely determining the latent space content.

2 LEARNING WITH AUTONOMOUS LATENT SPACE EXPLORATION

Our goal is to explore how the training process for neural networks can leverage the environment
of a PDE in order to achieve a given learning objective. Let f ∈ Rdf and r ∈ Rdr denote two
discretized solutions of this PDE, where f and r denote a fine representation and its reduced version
respectively, with dr�df . Considering a reduction function E , called encoder, we can evaluate the
transformation of the accurate fine solution into a reduced representation as E(f) = r̂. We can also
consider a restoration function D, called decoder, that transforms the reduced representation into an
accurate solution as D(r) = f̂ .

We focus on the numerical integration of a target PDE problem and indicate the temporal evolution
of each state as a subscript. A reference solution trajectory integrated from a given initial state ft
at time t for N steps can be defined as a finite set of states {ft, ft+1, · · · , ft+N}. Without loss of
generality, each reference state is integrated over time with a fixed time step size using a numerical
solver, i.e., ft+1 = Pf (ft). Similarly, we integrate a reduced state rt over time using a corresponding
numerical solver at the reduced space, which we will call reduced solver henceforth, i.e., rt+1 =
P(r̂t). Although we give the model the freedom to reshape its latent states, in this work, we consider
the same PDE for the two different representations.

For a given reference solution trajectory, we can denote its approximate solution trajectory analo-
gously as a finite set of states {f̂t, f̂t+1, · · · , f̂t+N}, which are restored from the reduced trajectory
{rt, rt+1, · · · , rt+N} using a decoder model D. The goal of the model, then, naturally becomes to
minimize the error between the approximate solutions and their corresponding reference solutions,
which we evaluate with an l2-norm, i.e.,

∑N
i=1 ||̂ft+i − ft+i||2. Within this setup, we detail our au-

tonomous learning methodology and its variants that use either differently constrained interactions
between the reduced solver and neural network models, or no interaction. The interaction of differ-
entiable physics within training shares the same spirit as in (Um et al., 2020; Kochkov et al., 2021);
thus, our interacting models are along the line of their training methodology. However, our experi-
ments study the autonomy in shaping the latent space, whereas (Um et al., 2020) and (Kochkov et al.,
2021) focus on correcting the physical states of the reduced solver and the latent space, respectively,
which represent their learning target.

Autonomous interaction (ATO): For a target PDE problem, we integrate the approximate solu-
tion trajectory using the interaction of an encoder, a reduced solver, and a decoder, i.e., f̂t+k =

D(P(E(f̂t+k−1))), with the initial state f̂t being initialized by the corresponding reference state ft.
Within this setup for solving the target problem, we let both the encoder and decoder models be
trainable, namely, E(f |θE) and D(r|θD), where θE and θD are the learned weights for the encoder
and decoder, respectively.

Here, the encoder does not receive any explicit constraints and has the complete freedom to au-
tonomously explore the reduced space to arrive at a suitable representation for interacting with the
reduced solver and the decoder. Therefore, the training process retains complete autonomy in shap-
ing the latent space representation, which encodes important signals from the fine representation of
the accurate solution.
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Figure 2: Architecture of our interacting models for n solver steps. The initial state ft goes through
the encoder model that gives a reduced state r̂t. This reduced state is given to the reduced solver
P that outputs the next reduced state rt+1 that is then decoded into the approximate solution f̂t+1.
This is repeated n times.

Constrained interaction: Contrary to the fully autonomous case, we consider two constrained vari-
ants of the training setup. Here, the constraints are inspired by problem-dependent prior knowledge
and conventional algorithms for down-sampling solutions. These two variants correspond to algo-
rithms from previous work, which typically rely on coarse physical simulations as approximations
of the target phenomena (Bar-Sinai et al., 2019; Um et al., 2020; Kochkov et al., 2021).

In line with the ATO setup, the approximate solution is integrated with the interaction of a trainable
encoder, a solver, and a trainable decoder. However, as a first variant, we consider a constraint
of the latent space representation with an additional loss term that penalizes deviations from the
physical state in the reduced representation. Such terms are problem dependent and can, e.g., provide
gradients for divergence-freeness constraints. We denote such variants as constrained latent space
(CLS) setups.

As a second variant, we can constrain the latent space encoding itself. We call this variant the
constrained encoder (CEN) setup. This constraint is inspired by conventional filtering practices
for coarse representations in numerical methods. Here the reduced representation is determined
analytically via a down-sampling operator. We use linear interpolation in our experiments, i.e.,
r̂ = Elerp(f̂). In this case, the encoder does not contain any parameters, and hence is not trainable.

No interaction: Lastly, we also consider the non-interacting case (NON). In this setup, no encoder
exists, and each state of the approximate solution trajectory is integrated purely using the reduced
solver in combination with a decoder, i.e., f̂t+k = D(rt+k|θD) where rt+k = P(rt+k−1). Here, for
the initial reduced state rt, we apply a simple down-sampling operator to the initial reference state
ft, i.e., rt = Elerp(ft).
Below we will evaluate different encoder and decoder models trained with these different learning
setups. For the interacting setups (i.e., ATO, CLS, and CEN), the models are trained using a differ-
entiable physics framework such that the evaluation of trained models influences the approximated
solution trajectory, where the number of recurrent interacting steps varies. The architecture of such
interaction is detailed in Fig.2.

3 EXPERIMENTS

We investigate two different PDE scenarios to evaluate our approach: Burgers equation for non-
linear advection-diffusion and Navier-Stokes equations for buoyancy-driven flows.

3.1 NON-LINEAR ADVECTION-DIFFUSION

We first consider a two-dimensional non-linear advection-diffusion problem, where constant ran-
domized forces are periodically injected into the system such that it leads to a complex evolution of
physical state. This problem is modeled as the Burgers’ equation as follows:

∂v/∂t = −(v · ∇)v − ν∇2v + g (1)
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where v is the velocity, ν is the kinematic viscosity coefficient, and g denotes the external forces.
Similarly to previous work (Bar-Sinai et al., 2019; Um et al., 2020), the external forces, i.e., g =
[gx gy]

T , are evaluated using 20 overlapping sine functions with a random direction, amplitude, and
phase shift as follows:

gx(t) =

20∑
i=1

ai cos(αi) sin(wit− kx+φi) and gy(t) =

20∑
i=1

ai sin(αi) sin(wit− kx+φi). (2)

The reference solution trajectories are generated for N = 200 steps from ten different initial condi-
tions with a fixed time step size. Each simulation uses a domain discretized with 642 cells and a
staggered layout with periodic boundary conditions. A randomized force sequence is generated for
50 steps. This sequence is applied as g for all simulations periodically over the whole 200 steps.
This periodic forcing prevents overly chaotic temporal evolutions, and ensures that the simulations
stay within a controllable regime.

We consider a four times coarser discretization for the reduced representation, and the velocity field
as our restoration target. Since the external forces are an important influence in this scenario, we
condition the encoder on g, which is provided as an additional input to this model. This allows the
networks to take the forcing into account when inferring latent space representations. However, the
reduced solver takes the analytically down-sampled force field as input. The loss for n interacting
steps is evaluated with the velocity as:

LAD =

n∑
i=1

‖v̂t+i − vt+i‖2 (3)

where v̂ denotes the velocity field restored using the trained model.

3.2 BUOYANCY-DRIVEN FLOWS

In the second scenario we consider a complex constrained PDE problem, namely the Navier-Stokes
equations, in the two-dimensional space as follows:

∂v/∂t = −(v · ∇)v −∇p/ρ+ ν∇2v + g subject to ∇ · v = 0 (4)
∂d/∂t = −(v · ∇)d (5)

where ρ is the density, p is the pressure, and d is a marker field whose values lie in [0, 1] and
which is advected with the flow. We use the Boussinesq approximation, which means that buoyancy
forces are determined by the marker field as g = [0 ηd]T , where η denotes the buoyancy factor.
This coupled system results in a chaotic and complex evolution of the solution trajectories and thus
constitutes a challenging learning problem.

For the reference solutions, we use a numerical fluid solver that adopts the operator splitting scheme,
Chorin projection for implicit pressure solve (Chorin, 1967), and the less dissipative advection al-
gorithm (Selle et al., 2008), enabling the chaotic evolution of marker volumes. Moreover, we do
not solve for the viscosity effect relying on the numerical viscosity inherent in discretization. The
domain is discretized with 64 cells in each dimension, where the velocity field follows the staggered
layout and is set with the closed boundary condition at the domain wall. Randomizing the position
and radius of an initial round marker volume, we generate 30 reference solution trajectories, each of
which consists of N = 400 steps integrated with a fixed time step size.

We consider a four times coarser discretization for the reduced representation and adopt the more
dissipative advection algorithm (Stam, 1999) for the reduced solver that is interacting with the
trained models. Since the solver mainly aims to resolve the evolution of velocity, we focus on
restoring the velocity field; thus, the decoder outputs only the velocity field. The marker field, on
the other hand, is passively advected using the restored velocity field. The encoder transforms both
the marker and velocity fields, and then their reduced representations are used for the reduced solver.

For n interacting steps, we can define the loss for this example as follows:

LBF =

n∑
i=1

‖v̂t+i − vt+i‖2 + ‖d̂t+i − dt+i‖2 (6)

where d̂ is the advected marker field using v̂.
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Figure 3: Evaluations of non-linear advection-diffusion (top) and buoyancy-driven flows (bottom).
(a) Visual overviews of different solution trajectories. (b) Velocity errors of restored solution trajec-
tories with respect to the reference solution, averaged over all test simulations of N time steps, for
differently trained models. The error bars indicate the variance over the test runs. (c) Evolution of
the errors over time, averaged over test simulations.

3.3 NETWORK ARCHITECTURE AND TRAINING PROCEDURE

The encoder E(·|θE) and decoder D(·|θD) are modeled as convolutional neural networks. The
encoder model contains two max-pooling layers that reduce the input dimension into a four times
lower dimension for the output. Correspondingly, the decoder uses two up-sampling layers that
restore the reduced dimension to the original input dimension. For the convolutional layers of the
models, we adopt circular padding for the periodic boundary condition problem and zero padding
for the closed boundary condition problem. We employ a U-net structure such that the information
of the intermediate features from the encoder can be propagated through the decoder (Ronneberger
et al., 2015). Our networks contain 11 layers including five Leaky ReLU activations for the encoder,
and 13 layers including five Leaky ReLU activations and two concatenations for the decoder. Details
of the architecture are given in the appendix.

When training the interacting setups (i.e., ATO, CLS and CEN) for a given number of n inte-
grated steps, at each training iteration, the encoder, differentiable physics solver, and decoder are
recurrently evaluated n times in the forward pass. Correspondingly, the weights of the neural net-
work models are updated by back-propagating through the n steps to accumulate the gradient of the
weights. In the following, we will denote the number of recurrently integrated steps as a subscript,
e.g., ATOn. For these setups, different numbers of integrated steps are investigated. At each training
iteration, for a given batch size, we randomly sample the initial states from the reference solution
trajectories and integrate the approximate solution trajectories for the n steps. All our training runs
use an Adam optimizer (Kingma & Ba, 2014) and an adaptive learning rate starting in {10−4, 10−3}.

4 RESULTS AND DISCUSSION

We evaluate trained models based on relative improvements over a reduced baseline simulation. The
baseline solutions are the trajectories integrated purely by the reduced solver, without interactions
with an encoder nor decoder model. Errors are computed with respect to the reference solutions, and
hence an improvement of 100% would mean that the restored solutions are identical to the reference.
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Figure 4: Visual comparisons of reduced states. The bottom two rows for the ATO models represent
physical dynamics that noticeably deviate from the original time evolution.
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(a) Non-linear advection-diffusion
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Figure 5: l2 difference of the reduced states with respect to the states of the best performing ATO
model. Larger distances consistently coincide with reduced model performance.

We present our evaluation with an l2 error metric; additional metrics such as SSIM (Wang et al.,
2004) and LSiM (Kohl et al., 2020) are also provided in the appendix.

Non-Linear Advection-Diffusion: This example considers a scenario where an external factor, i.e.,
randomized forcing, influences the evolution of solution trajectories. The reference solution of this
problem typically evolves from an initial state with high-frequency details towards a smoother state
over time due to its diffusive nature. Consequently, the evolution of the reduced solution generally
shows larger error at the beginning and becomes more similar to the reference in later steps. For the
constrained latent space (CLS) setup, we adapt the training loss by adding the difference between
the encoded state and down-sampled reference state as follows:

LAD =

n∑
i=1

‖v̂t+i − vt+i‖2 + ‖E(v̂t+i−1)− Elerp(vt+i−1)‖2. (7)

This encourages the encoded states to stay close to the reference states produced by a conventional
method for reduction. We evaluate the models with five trajectories from test simulations consisting
of 200 steps. In this test setup, we observe that the error of the reduced solution quickly drops to
half of its initial error after approximately 50 steps.

This example demonstrates that the complete autonomy significantly improves the training quality.
As shown at the top row of Fig. 3, the ATO64 model clearly outperforms the others. This particularly
stands out in the early steps, where most of high-frequency details would be lost due to the smaller
degrees of freedom of the reduced representation. Comparing the ATO models with different num-
bers of integrated steps, we can observe greater improvement when more steps are integrated. The
ATO64 model successfully restores the high-frequency details and shows 48% of improvement on
average for the five trajectories of the test solutions. Contrarily, despite the same number of inte-
grated steps, the model trained with a constrained encoding, CEN64, significantly deteriorates the
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Reference ATO8 ATO16 ATO32

Figure 6: Comparison among the ATO models for a buoyancy-driven flow example. Increasing
numbers of steps of the recurrent training yields better and better reconstructions of the reference on
the left.

solutions. On the other hand, the NON model fails to yield any improvements, presenting a simi-
lar error as the baseline. Moreover, we compare with a super-resolution architecture from previous
work (Fukami et al., 2019) as a state-of-the-art variant of the NON model. Despite the refined archi-
tecture, this no-interaction setup consistently gives a poor performance. Details of the comparison
are given in the appendix. For the CLS64 case, the constraint noticeably diminishes the improvement
of our ATO model, with 41% of improvement on average.

The images of Fig. 4-(a) show visual examples of four reduced representations for a selected test
trajectory for the non-linear advection-diffusion case. When the encoder is trained with complete
autonomy, we observe that, surprisingly, the reduced representations encoded by the ATO models
differ considerably from the conventionally down-sampled reference states (Fig. 4-(a) first row) and
the states integrated purely by the reduced solver, i.e., baseline (Fig. 4-(a) second row). Moreover,
the graphs from Fig. 5 show the quantified differences between the reduced states produced by the
different trained models and the ones from the best performing model, i.e., ATO64. We observe
over the course of repeated runs that the different ATO models produce reduced states that are
consistently closer to the best performing model’s when they are trained with more integrated steps.
This indicates that the complete freedom to shape the physical states in the given reduced degrees of
freedom allows the encoder to arrive at an “optimal” representation. For a given target PDE problem
and training setup, the different ATO versions reliably converge towards this representation, which
seems to best encode the information of the reference solutions.

Buoyancy-Driven Flow: This example targets a challenging learning task where complex swirling
motions are produced over time due to the coupled system of the velocity and marker fields. In this
scenario, the reduced PDE solver is based on a more dissipative advection algorithm. Thus, unlike
the advection-diffusion scenario, which discretized the same PDE formulation on the reduced and
fine spaces, the buoyancy-driven flow scenario contains additional challenges in the learning task.
For the constrained latent space (CLS) model, we include loss terms for the velocity divergence as
follows:

LBF =

n∑
i=1

‖v̂t+i − vt+i‖2 + ‖d̂t+i − dt+i‖2 + ‖∇ · E(v̂t+i−1)‖2. (8)

In this way, the encoded velocity field is guided to satisfy the divergence-free condition, which is
important for the given flow problem. The trained models are evaluated with seven test trajectories
consisting of 400 steps.

In this buoyancy-driven flow case, the trained models likewise benefit from larger numbers of time
steps at training time as shown in Fig. 6. The model trained with the autonomous interaction setup
significantly outperforms the other variants: the average l2 error over the seven test trajectories for
the ATO32 model is 33.44, which is equivalent to a 50% improvement. The CEN32 model does
not achieve a comparable performance giving a higher error of 49.73. With the CLS32 model, we
report that the additional latent space loss once again reduces the improvement of our ATO model;
see ATO32 and CLS32 of Fig. 3. The model trained with the non-interacting setup (NON) and a
regular architecture leads to large errors of 70.28, while the NON super-resolution architecture leads
to similarly large errors of 70.59. These error measurements can be confirmed visually, as shown
in the bottom row of Fig. 3. The ATO32 model is able to produce finely resolved details that stay
close to the reference solution.
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In this scenario, the reduced PDE is driven by the marker field in addition to the velocity field. A
set of reduced representations for both fields is shown in Fig. 4-(b). Again, we observe that both
reduced fields significantly differ from the down-sampled reference fields (Fig. 4-(b) first row) and
the reduced solution fields (Fig. 4-(b) second row). Additionally, the graphs in Fig. 5 present a
comparison among the reduced velocity fields of different setups. As in the non-linear advection-
diffusion case, the reduced states produced with the ATO models get closer to the states of the best
performing model as they approach a better performance for the learning objective.

For the buoyancy-driven flow, the latent spaces learned by the ATO models allow for an intuitive
interpretation by human observers. The learned dynamics are best observed in the supplemental
video, but the still images in Fig. 4-(b) already give an impression: it becomes apparent that the
neural network rearranges space and translates the upwards motion caused by buoyancy in physical
space into a diagonal motion in latent space. In addition, the localized markers in physical space
occupy larger regions in the latent space. Most likely, this encodes more information about the
configurations in the target space with its higher resolution.

Runtime Performance: While gains in terms of the runtime of the learned solver in reduced space
represent the central goal of our approach, our current version focuses on a proof of concept im-
plementation. Despite this, the buoyancy flow solver yields improvements in runtime, where the
reduced simulation takes 0.02s on average per simulation step, and the neural networks cause an
additional 0.02s of evaluation time. Instead, the reference solver requires 0.06s per step. For the
advection-diffusion scenario, there is no improvement in runtime performance, with 0.01s for the
reduced simulation, 0.02s for the neural networks, and 0.02s on average for the reference. This
is directly linked to the explicit nature of the numerical solver step, which has an inherently low
runtime.

However, these numbers all employ efficient CPU-based PDE solvers and include GPU-transfer
overhead for the neural network evaluations. Hence, due to the super-linear scaling of typical PDE
solvers, we see the potential for large performance gains from our approach.

5 CONCLUSIONS

The work presented in this paper has demonstrated that neural networks can learn new physical
evolutions in the spaces of coupled PDE solvers, resulting in a shaping of latent spaces that yields
benefits for learning objectives. Specifically, giving complete freedom to the encoder and decoder
models to influence the content of a PDE-based latent space has shown to be highly effective for
restoring complex reference solutions. The models trained with this autonomy have shown their
superiority on the tasks we experimented with: reducing a physical state, integrating this reduced
state forward in time, and eventually transforming the integrated state into an accurate and fine so-
lution. We have demonstrated that the reduced state learned with this methodology forms a physical
solution that is significantly different from conventional reduced states.

Our results indicate that the proposed training methodology and correspondingly trained models
have the potential to lead to novel ways of solving complex PDE problems. To the best of our
knowledge, we have presented the first study about shaping the latent spaces of neural networks
for interactions with PDE solvers. We believe that our study sheds light on how the unconstrained,
learning-based reshaping of physical states can be used to improve PDE solvers.

6 FUTURE WORK

Our work poses a variety of interesting avenues for future work. Despite the great reduction in
terms of the solver’s degrees of freedom as shown in the buoyancy-driven flow example, the general
question of which reduced PDE solver to employ in the latent space in order to achieve the best
performance for a given problem remains open. Moreover, we plan to investigate the evolution of
the reduced space representations of our models in more detail. For example, analyzing how the
dynamics of the reduced states relate to known PDE formulations will be highly valuable as future
work.
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REPRODUCIBILITY STATEMENT

The source code of our experiments and simulations for generating all data sets will be published
upon acceptance.
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Frédo Durand. Difftaichi: Differentiable programming for physical simulation. International
Conference on Learning Representations (ICLR), 2020.

10



Under review as a conference paper at ICLR 2022

Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B Shah, and Will
Tebbutt. A differentiable programming system to bridge machine learning and scientific comput-
ing. arXiv 1907.07587, 2019.

Barbara M Johnston, Peter R Johnston, Stuart Corney, and David Kilpatrick. Non-newtonian blood
flow in human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5):
709–720, 2004.

Ioannis G Kevrekidis, C William Gear, James M Hyman, Panagiotis G Kevrekidid, Olof Runborg,
Constantinos Theodoropoulos, et al. Equation-free, coarse-grained multiscale computation: En-
abling mocroscopic simulators to perform system-level analysis. Communications in Mathemati-
cal Sciences, 1(4):715–762, 2003.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. Computer
Graphics Forum, 2019. ISSN 1467-8659. doi: 10.1111/cgf.13619.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980
[cs], December 2014.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21), May 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/
pnas.2101784118.

Georg Kohl, Kiwon Um, and Nils Thuerey. Learning similarity metrics for numerical simulations.
Proceedings of the International Conference on Machine Learning, 1, 2020.

Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse problems.
In Advances in Neural Information Processing Systems, pp. 771–780, 2019.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear em-
beddings of nonlinear dynamics. Nature Communications, 9(1):4950, November 2018. ISSN
2041-1723. doi: 10.1038/s41467-018-07210-0.

Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoencoders. Physics of
Fluids, 33(3):037106, March 2021. ISSN 1070-6631. doi: 10.1063/5.0039986.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynamical
modeling and control of unsteady fluid flows. In Advances in Neural Information Processing
Systems, 2018.

David A Randall, Richard A Wood, Sandrine Bony, Robert Colman, Thierry Fichefet, John Fyfe,
Vladimir Kattsov, Andrew Pitman, Jagadish Shukla, Jayaraman Srinivasan, et al. Climate models
and their evaluation. In Report of the IPCC (FAR), pp. 589–662. Cambridge University Press,
2007.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 234–241. Springer, 2015.

Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks.
In Conference on Robot Learning, pp. 317–335, 2018.

Samuel S Schoenholz and Ekin D Cubuk. Jax, md: End-to-end differentiable, hardware accelerated,
molecular dynamics in pure python. arXiv:1912.04232, 2019.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac. An uncon-
ditionally stable maccormack method. Journal of Scientific Computing, 35(2-3):350–371, June
2008. ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-007-9166-4.

11



Under review as a conference paper at ICLR 2022

Justin Sirignano, Jonathan F. MacArt, and Jonathan B. Freund. DPM: A deep learning PDE aug-
mentation method with application to large-eddy simulation. Journal of Computational Physics,
423:109811, December 2020. ISSN 0021-9991. doi: 10.1016/j.jcp.2020.109811.

Jos Stam. Stable fluids. In SIGGRAPH ’99, pp. 121–128. ACM, 1999. ISBN 0-201-48560-5. doi:
10.1145/311535.311548.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In Proceedings of Machine Learning Research, pp.
3424–3433, 2017.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. In Robotics: Science and Systems, 2018.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. Computer
Graphics Forum, 37(8):171–182, December 2018. ISSN 1467-8659. doi: 10.1111/cgf.13522.

Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33, 2020.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’20, pp. 1457–1466,
New York, NY, USA, August 2020a. Association for Computing Machinery. ISBN 978-1-4503-
7998-4. doi: 10.1145/3394486.3403198.
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A NETWORK ARCHITECTURE AND TRAINING PROCEDURE

We provide details of the U-net architecture used for our ATO models, and more specifically the
architecture used for our buoyancy-driven flow scenario in Fig. 7. In this scenario, the input layer
contains three channels: one for the scalar marker field and two for the velocity vector field. The
encoder reduces their degrees of freedom and outputs three channels, which the physics solver in-
tegrates forward in time. Then, the updated state goes into the decoder, being concatenated with
the previous state in line with the skip connection of the U-net structure. Note that, since we target
the velocity field, the decoder takes the velocity fields as its input and outputs two channels for the
restored velocity field. Fig. 8 shows the selected examples of our training datasets.

In the non-linear advection-diffusion scenario, on the other hand, the encoder takes four channels
of the velocity vector field and external force field while generating two channels of the reduced
velocity field. Since the forcing in this scenario is an external parameter of the physics, the solver
takes analytically downsampled force fields as external forcing in the reduced space. The decoder,
then, again generates the velocity field with two channels.

As in (Um et al., 2020), we find that training our ATO models is quickly stabilized when adopting
a “warm” start, which initializes the model from another model that is trained with less number of
integrated steps. Our models are trained with this warm start, e.g., when training ATO32, the weights
of the model are initialized using the ATO16 model’s.
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Figure 7: A detailed architecture of the encoder and decoder models interacting with the differen-
tiable physics solver for the buoyancy-driven flow scenario.

Figure 8: Training dataset examples of the buoyancy-driven flow scenario. The selected marker
fields of four reference trajectories are shown at each row.
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B ABLATION STUDY

We conduct an ablation study to show the importance of the U-Net architecture adopted in our ATO
model. Fig. 9 shows the l2 error analysis of our ATO models as well as a version of the ATO64 model
without skip connections for the advection-diffusion case. As shown in the graphs, skip connections
yield significant improvements with our ATO models. Here, the mean error for the ATO model with
64 integrated steps is 16.2 without skip-connections, while it is 5.8 with skip connections (compared
to 11.1 for the baseline). Hence, the ATO model performs significantly better when it can make use
of the skip connections while the latent space remains autonomous. We note that the reduced solver
interacts only with the latent-space state.
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Figure 9: Ablation study of the influence of skip connections in the ATO model.

C ADDITIONAL RESULTS

In this section, we provide additional information about our comparison with the work of (Fukami
et al., 2019). We implemented the “DSC/MS” model for super-resolution that is described in their
work. In comparison to our regular NON model, it contains two advanced components: skip-
connections and multi-scale layers with convolutional filters of different sizes. For the advection-
diffusion example, we experimented with two different models: a large model of 120k weights,
which is close to their original model, and a smaller one with 17K weights, which contains a similar
number of weights as ours. Both were then trained with the data sets and tasks outlined in our work.
When evaluated with our test sets, these new models do not show any significant improvement com-
pared to the regular NON model; the l2 errors of the large and small models are 10.6 and 10.1,
respectively, while the NON model shows the l2 error of 10.3 and the ATO model shows 5.80. Ad-
ditionally, we tested the large model of 120k weights with the buoyancy-flow example; its l2 error is
70.59, whereas the NON and ATO models show the error of 70.28 and 33.44, respectively. Thus, our
ATO model outperforms the others in every case. We believe that, when using the super-resolution
NON model (Fukami et al., 2019), the complete lack of temporal integration in the training process
leads to the observed, poor performance despite its advanced architecture.

We also provide additional results of our experiments. We note that the scalar marker fields are
visualized using the “terrain” color scheme and the velocity fields are visualized as in (Baker et al.,
2007). The color bars for these two visualizations can be seen next to each figure. For the veloc-
ity fields, the color bar only shows the angle visualization, while the magnitude of the vectors is
represented using the intensity. Fig. 10 shows two additional visual comparisons of four reduced
representations. We, again, observe that the reduced representations encoded by our ATO models
differ considerably from the conventionally downsampled reference states and the baseline. More-
over, as shown in Fig. 11, our best performing models in both scenarios successfully restore the
simulation results close to the references.
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(b) Buoyancy-driven flow

Figure 10: Two additional examples of reduced space visualizations.

Step 0 Step 50 Step 125

R
ef

er
en

ce
A

TO
6
4

B
as

el
in

e

Step 0 Step 100 Step 200

R
ef

er
en

ce
A

TO
3
2

B
as

el
in

e

Figure 11: Comparisons of temporal evolutions in a non-linear advection-diffusion (left) and a
buoyancy-driven flow example (right).
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Fig. 12 shows additional test examples of the buoyancy-driven flow scenario, where the initial states
are selected at the middle of our test dateset’s trajectories. As shown, our model successfully restores
the results close to the reference. Fig. 13 shows the l2 error analysis of these additional examples,
and our ATO32 model presents the lowest error in the graphs.
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Figure 12: Selected simulation steps of two additional test examples started from different initial
states.
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Figure 13: Mean l2 errors for the buoyancy-driven flow case, starting from step 100 (left) and step
200 (right).

As an additional study, we extrapolate our results beyond the time-range that is observed during
training, for the buoyancy-driven flow case. We use the 200th time step of our usual test simulations
as an initial state to apply our models to. We compare the results of this experiment for 400 con-
secutive steps for ATO32, the baseline and the NON model. The baseline gives an average error of
63.1, the NON model an error of 60.2 and our ATO model of 53.7. Therefore, the fully autonomous
model still performs better than the baseline and NON models outside of the observed time range.

D ADDITIONAL METRICS

In addition to the l2 error shown in Fig. 3, Fig. 14 shows the comparisons of different models in
two other metrics: structural similarity index (SSIM) (Wang et al., 2004) and learned simulation
metric (LSiM) (Kohl et al., 2020). SSIM is a perceptual metric considering structural information
while LSiM is a learning-based metric that intends for comparing numerical simulations. In these
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different metrics, our experiments consistently show that training with the autonomy leads to the
best performing model while the constrained training deteriorates its performance. We also note
that a lack of interaction in terms of integrated simulation steps yields a failure at learning the task
as shown for ATO2 and ATO4 in Fig. 15.
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Figure 14: Evaluations of non-linear advection-diffusion (top) and buoyancy-driven flow (bottom)
in two additional metrics: SSIM and LSiM.
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Figure 15: Mean l2 errors for the non-linear advection-diffusion scenario with different numbers of
integrated steps.
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