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Abstract

Recent studies have explored the working001
mechanisms of In-Context Learning (ICL).002
However, they mainly focus on classification003
and simple generation tasks, limiting their004
broader application to more complex gener-005
ation tasks in practice. To address this gap,006
we investigate the impact of demonstrations007
on token representations within the practical008
alignment tasks. We find that the transformer009
embeds the task function learned from demon-010
strations into the separator token representation,011
which plays an important role in the genera-012
tion of prior response tokens. Once the prior013
response tokens are determined, the demon-014
strations become redundant. Motivated by this015
finding, we propose an efficient Progressive In-016
Context Alignment (PICA) method consisting017
of two stages. In the first few-shot stage, the018
model generates several prior response tokens019
via standard ICL while concurrently extracting020
the ICL vector that stores the task function from021
the separator token representation. In the fol-022
lowing zero-shot stage, this ICL vector guides023
the model to generate responses without further024
demonstrations. Extensive experiments demon-025
strate that our PICA not only surpasses vanilla026
ICL but also achieves comparable performance027
to other alignment tuning methods. The pro-028
posed training-free method reduces the time029
cost (e.g., 5.45×) with improved alignment per-030
formance (e.g., 6.57+). Consequently, our work031
highlights the application of ICL for alignment032
and calls for a deeper understanding of ICL for033
complex generations.034

1 Introduction035

In-Context Learning (ICL) has attracted growing036

attention alongside the scaling of Large Language037

Models (LLMs) (Brown et al., 2020). By condition-038

ing on a handful of input-label pairs as examples,039

LLMs achieve notable improvements and produce040

impressive few-shot performance across a range041

of downstream tasks (Wei et al., 2022). After that,042

numerous studies have explored the working mech- 043

anism of ICL and propose several effective methods 044

to enhance ICL (Hendel et al., 2023; Todd et al., 045

2023; Wang et al., 2023a; Li et al., 2024). 046

However, these works mainly focus on classi- 047

fication tasks and simple generation tasks, which 048

limits the exploration of these methods in more 049

complex generation tasks, such as aligning LLMs 050

with human preferences. As a complex and practi- 051

cal task, alignment typically requires training the 052

model, such as Supervise Fine-Tuning (SFT) (Zhou 053

et al., 2023) and Reinforcement Learning from Hu- 054

man Feedback (RLHF) (Ouyang et al., 2022). A 055

recent work (Lin et al., 2023) proposed URIAL, a 056

simple method using in-context examples to align 057

several powerful base LLMs and achieves notable 058

instruction-following performance. The success of 059

URIAL demonstrates the feasibility of in-context 060

alignment and encourages us to explore and opti- 061

mize ICL in the alignment task. 062

In this paper, we investigate the impact of demon- 063

strations during in-context alignment. We visualize 064

the token distribution KL-divergence of instruc- 065

tions and responses in zero-shot and few-shot set- 066

tings (Figure 1). To reduce context noise, we set up 067

two few-shot settings with different demonstrations 068

as control groups and have the following observa- 069

tions through comparative experiments: (1) The 070

model likely stores the task function learned from 071

the demonstration in the separator token representa- 072

tion. (2) Demonstrations play a crucial role in prior 073

response generation but are redundant in posterior 074

response generation. These observations highlight 075

the influence of demonstrations on token represen- 076

tation in ICL for alignment tasks, indicating that 077

demonstrations are not always indispensable during 078

the entire response generation stage. 079

Motivated by these findings, we propose a 080

Progressive In-Context Alignment (PICA) method 081

to enhance both the efficiency and effectiveness of 082

regular ICL. Specifically, Our approach involves 083
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a two-stage progressive generation strategy: the084

few-shot stage and the zero-shot stage. During the085

few-shot stage, the model generates prior part of086

the response using the standard ICL settings. Sub-087

sequently, after generating a specific number of088

tokens, we transition the model into the zero-shot089

stage, eliminating the need for further demonstra-090

tions to generate the remaining part of the response.091

To capitalize on the task-related information em-092

bedded in the separator tokens, we introduce an093

ICL vector guidance method. Inspired by the work094

of task vector in ICL (Hendel et al., 2023; Todd095

et al., 2023; Li et al., 2024), we extract the ICL vec-096

tor from the hidden states of specific transformer097

layers. This vector is then used to steer the model098

during the zero-shot stage by intervening in the099

forward pass. PICA minimize the need for demon-100

strations while improving the quality of generated101

outputs, thereby reducing the computational cost102

associated with demonstrations and enhancing over-103

all performance. Extensive experiments show that104

PICA outperforms regular ICL in both of efficiency105

and effectiveness. As a training-free method, it106

is also comparable to other alignment methods107

(i.e., SFT and RLHF). For example, on average,108

our PICA boosts the performance of Mistral-7b109

to reach 90% of the performance of GPT-4-0613.110

These results support our observations and show111

the effectiveness of our method in various aspects112

of alignment. Additionally, we conduct ablation113

studies to investigate the robustness and generaliz-114

ability of our method. Our contributions are sum-115

marized as follows:116

• We delve into the impact of demonstrations on117

token representation in ICL and qualitatively ex-118

plore the working mechanism of task functions119

learned from demonstrations in complex align-120

ment tasks.121

• We propose a progressive in-context alignment122

method that incorporates progressive generation123

and ICL vector guidance. This method efficiently124

aligns models and significantly reduces the com-125

putational cost associated with demonstrations.126

• We conduct extensive evaluation and ablation ex-127

periments on the proposed method, where the128

results have fully demonstrated its efficiency and129

effectiveness. Our experiments and analyses pro-130

vide in-depth insights for future research on in-131

context alignment.132

2 Related Work 133

LLM Alignment. Prior works have explored 134

alignment tuning through supervised fine-tuning us- 135

ing public instruction datasets (Wang et al., 2022; 136

Zhou et al., 2023; Stiennon et al., 2020) or rein- 137

forcement learning from human feedback (Stien- 138

non et al., 2020; Rafailov et al., 2023). A common 139

approach is to fine-tune models using instruction 140

data to enable them to follow instructions effec- 141

tively. To rapidly accumulate a vast amount of in- 142

struction tuning data, Wang et al. (2023b) proposes 143

a pipeline to obtain instruction data from power- 144

ful models, such as GPT-4. LIMA leverages only 145

1000 high-quality instruction data points to fine- 146

tune a 65B parameter LLM (Zhou et al., 2023). It 147

shows that the minimal tuning surprisingly results 148

in a high win rate against ChatGPT. Following in- 149

struction fine-tuning, the reinforcement learning is 150

applied to further align the models (Stiennon et al., 151

2020). Rafailov et al. (2023) introduces a train- 152

ing method for alignment that does not require a 153

reward model. Its powerful convenience and effec- 154

tiveness have made it one of the de facto methods. 155

However, these methods necessitate substantial re- 156

sources and there is evidence to suggest that such 157

training approaches cause model forgetting of pre- 158

viously acquired knowledge in base LLMs (Wang 159

et al., 2023b; Shen et al., 2023; Wang et al., 2022). 160

In contrast to training-based methods, Lin et al. 161

(2023) experiment with ICL for LLM alignment 162

and Confirm the feasibility of ICL for the align- 163

ment task. Building on this finding, we explore a 164

training-free ICL approach. We do not merely uti- 165

lize ICL. Instead, we initially investigate its work- 166

ing mechanism in token representation learning. 167

This investigation helps enhance the effectiveness 168

of in-context alignment. Similar to us, a very recent 169

concurrent work (Zhan et al., 2024) also identifies 170

the critical role of prior answer token selection 171

in alignment tasks, and proposes a SFT model or 172

external resources guided generation method for 173

multilingual instruction following. Differing from 174

their approach, we focus on the working mech- 175

anisms and optimization methods of ICL in the 176

mainstream English alignment tasks. 177

In-context Learning Working Mechanism. Re- 178

cent studies have explored the working mecha- 179

nisms within ICL. Several works try to theoreti- 180

cally demonstrate a strong similarity between the 181

attention patterns in ICL and the process of gradi- 182

ent descent (Akyürek et al., 2023; Dai et al., 2023). 183
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(a) Input Experimental Group
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(b) Input Control Group
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(c) Output Experimental Group
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(d) Output Control Group

Figure 1: The KL-divergence of token probability distributions on Llama2-7b. Experimental Group compares zero-shot and
few-shot settings, while Control Group compares two few-shot settings with different demonstrations. We visualize the input and
output separately and mark the prior query tokens and prior response tokens with purple circles.

From a more practical perspective, another line of184

research suggests that the ICL may function by185

learning a mapping function from demonstrations,186

which it then applies to input queries to make pre-187

dictions (Hendel et al., 2023; Todd et al., 2023; Li188

et al., 2024). Hendel et al. (2023) extract an ICL189

task vector from the hidden states and utilize it for190

intervention during zero-shot inference. Todd et al.191

(2023) extract a function vector from attention acti-192

vations using the causal mediation method, which193

is subsequently added to the hidden states of cer-194

tain transformer layers during inference. Li et al.195

(2024) derive a state vector from attention activa-196

tions and propose several optimization strategies.197

Unlike these works, we focus on using comparative198

experiments to explore the impact of demonstra-199

tions on token representation, and leverage these200

findings to enhance the efficiency of ICL.201

3 Motivation202

In this section, we aim to shed light on the working203

mechanisms of in-context learning by investigat-204

ing the following question: What is the impact205

of demonstration on token representation in in-206

context alignment? To explore this, we design a207

comparative experiment to highlight how token rep-208

resentations differ between zero-shot and few-shot209

settings. We use token probability distributions210

as a proxy for token representations and utilize211

KL-divergence to measure the shifts in these distri-212

butions. By visualizing and quantifying the shifts213

in token probability distributions caused by demon-214

strations, we can understand the role of demon-215

strations in aligning the model and provide further216

optimization for in-context alignment.217

Regarding the experimental setup, we randomly218

selected 100 data instances of similar length from219

Ultra-chat (Ding et al., 2023), a commonly used220

dataset for alignment tuning, as our experimental 221

dataset. For the input prompt, we use a straightfor- 222

ward design by adding several tokens at the end of 223

the query to serve as separator tokens, explicitly 224

distinguishing between the query and the response. 225

We present the visualization results based on the 226

Llama2-7b model in the Figure 1, while the results 227

for other models are provided in Appendix C. We 228

break the token distribution of the whole instance 229

into the input and output parts. A straightforward 230

reason is that the input token distribution shift rep- 231

resents differences in understanding the instruction, 232

while the output token distribution shift represents 233

the ability to respond. By observing and analyzing 234

the visualization, we have two hypotheses: (1) the 235

ICL alignment task function might be encoded into 236

the separator token representation. (2) the quality 237

of response is highly reliant on the quality of prior 238

response tokens. 239

Input Token Distribution. By comparing the 240

input token probability distributions between zero- 241

shot and few-shot settings, a significant shift is ob- 242

served in both the prior tokens of the query and the 243

separator tokens. The KL-divergence decreases as 244

the number of query tokens increases. By compar- 245

ing the experimental group and the control group, 246

we find that the shift in the query distribution also 247

occurs in the control group. However, this shift 248

in the separator tokens is not consistent across dif- 249

ferent demonstration settings, suggesting distinct 250

underlying causes for these shifts. We attribute 251

the shift in the query’s prior token distribution to a 252

“context shift”, and we attribute the shift in the sep- 253

arator tokens distribution to a “task shift”. Given 254

that LLMs are trained to predict the next token 255

based on the provided context, altering the context 256

directly impacts the token distribution, which we 257
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refer to as the “context shift”. However, as the num-258

ber of query tokens increases, the decision space259

gradually aligns for both zero-shot and few-shot260

settings, leading to higher consistency in query to-261

ken prediction and thus a reduced KL-divergence.262

On the contrary, the trend observed in the query263

distribution is not mirrored in the separator token264

distribution. In the control group, the separator265

token representations remain highly similar. We at-266

tribute the large KL-divergence observed in the sep-267

arator token distribution of the experimental group268

to the differing tasks, indicating that separator to-269

kens likely encode task-specific information during270

ICL. We reasonably speculate that the primary im-271

pact of demonstration on instruction understanding272

is reflected in the encoding of separator tokens,273

where the alignment task function learned through274

ICL is stored. This hypothesis aligns with prior275

work (Hendel et al., 2023; Li et al., 2024), yet our276

findings contribute additional evidence supporting277

this perspective.278

Output Token Distribution. Observing the vi-279

sualization of output token distribution, we find280

that when comparing zero-shot and few-shot set-281

tings, the response token distribution shows simi-282

larity in the posterior tokens. This indicates that283

the model selects posterior tokens with high con-284

sistency in both zero-shot and few-shot settings.285

When comparing the prior response tokens of the286

experimental group and the control group, we ob-287

serve a pattern similar to that of the separator to-288

kens, suggesting that demonstrations play a cru-289

cial role in the prior response tokens. Based on290

these observations and analyses, we speculate that291

the primary impact of demonstrations on response292

generation is reflected in the generation of prior293

answer tokens. Compared to zero-shot settings,294

demonstrations guide the generation of accurate295

prior response tokens, which implicitly helps the296

model successfully follow the instructions. This297

observation also suggests that once the prior re-298

sponse tokens are determined, the influence of the299

demonstration diminishes and becomes redundant.300

4 Method301

Observations from §3 reveal that demonstrations302

are not always indispensable during the entire re-303

sponse generation stage. To minimize the need304

for demonstrations while preserving alignment per-305

formance, we introduce a progressive in-context306

alignment approach. This methodology enhances307
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Figure 2: Overview of PICA, which include few-shot stage
and zero-shot stage. The gray block denotes the hidden state
and orange block denotes the separator token hidden state that
forms the ICL vector. The blue block denotes the generated
answer token from few-shot stage.

the efficiency and efficacy of in-context alignment 308

through two innovations: (1) a progressive gen- 309

eration strategy that reduces the computational 310

cost associated with demonstrations, and (2) in- 311

context learning vector guidance that compresses 312

the task function from demonstrations to assist in 313

high-quality response generation. 314

Inspired by underscoring the redundancy of 315

demonstrations once the pivotal prior response to- 316

kens are determined, we introduce a progressive 317

generation strategy, dividing response generation 318

into few-shot and zero-shot stages. During the few- 319

shot stage, the model generates a specific number 320

of prior response tokens by employing a standard 321

in-context learning: 322

Y few
i = argmax

Y ∈V
P (Y |D,Q, S, Y few

1:i−1), (1) 323

where D is the demonstration, Q is the query, S 324

is the separator token, and Y few
i is the i-th answer 325

token generated in few-shot stage. After obtain- 326

ing several prior answer tokens, the model oper- 327

ates within a more certain and simplified decision 328

space for token generation, allowing the omission 329

of the demonstration to reduce computational costs. 330

Therefore, in the zero-shot stage, the model com- 331

pletes the response based on the existing prior re- 332
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sponse tokens:333

Y zero
i = argmax

Y ∈V
P (Y |Q,S, Y few

1:N , Y zero
1:i−1), (2)334

where N is the number of prior tokens, and Y zero
i335

the i-th answer token generated in zero-shot stage.336

In-context Learning Vector Guidance. Our ob-337

servations indicate that transformers exhibit task-338

specific encoding behaviours when encoding the339

separator token. Recent works (Hendel et al.,340

2023; Todd et al., 2023) have similar observations,341

demonstrating that functions learned by ICL can342

be represented through compressed vectors derived343

from transformers and can perform simple genera-344

tion tasks in zero-shot settings. Inspired by these345

works, we propose the ICL vector guidance to as-346

sist the model in generating high-quality responses347

during the zero-shot stage. Unlike these previous348

works that intervene single hidden state of the last349

separator token, we intervene in the initial L layer350

of all separator tokens. Our preliminary experi-351

ments found that this method is more effective for352

the alignment task, where the output is much longer353

than that of the simple generation tasks focused on354

in previous works.355

Specifically, during the forward pass in the few-356

shot generation, we extract the separator token hid-357

den state H few
i from the first L layers, which we358

combine and refer to as the ICL vector. Subse-359

quently, in the zero-shot stage, we intervene in the360

separator token representation by replacing the hid-361

den state with the extracted hidden state from the362

few-shot stage:363

Hzero
i =

{
H few

i if i ≤ L

Layer(Hzero
i−1 ) otherwise

, (3)364

where Layer(·) is the process function of trans-365

former layer. By intervening with the ICL vec-366

tor, the model receives implicit guidance from the367

demonstration during generation, thereby improv-368

ing the quality of the zero-shot stage responses.369

Overall, our progressive in-context alignment370

process is as follows: In the few-shot stage, we371

utilize standard ICL to generate pivotal prior re-372

sponse tokens while extracting the ICL vector from373

the separator token representation. Subsequently,374

we discard the demonstration and employ the ICL375

vector to guide the model in generating the com-376

plete response in the zero-shot setting. This dual-377

stage progressive in-context alignment approach378

fully capitalizes on the potential of the ICL vector379

and the text completion capabilities of foundational 380

language models in the zero-shot setting. By effec- 381

tively harnessing these capabilities, the approach 382

not only reduces computational cost but also main- 383

tains high fidelity in response generation across 384

various settings. 385

5 Experiment 386

5.1 Datasets and Models 387

Recent research demonstrates that utilizing power- 388

ful AI assistants such as ChatGPT and GPT-4 for 389

scoring and comparing achieves close alignment 390

with human evaluations while reducing costs (Liu 391

et al., 2023; Dubois et al., 2024). Consequently, 392

we evaluate our method using two automatic align- 393

ment benchmarks: alpaca-eval (2.0) (Dubois et al., 394

2024) and just-eval (Lin et al., 2023). Alpaca-eval 395

comprises 805 instructions and provides a length- 396

controlled win rate from the judge model by com- 397

paring the assessed results with those from a refer- 398

ence model. For fast and validated evaluation, we 399

select GPT-3-text-davinci-003 and GPT-4 as refer- 400

ence models, while employing GPT-4-0314 as the 401

judge model. Just-eval includes 800 regular instruc- 402

tions and 200 red-teaming and malicious instruc- 403

tions selected from diverse open-source datasets, 404

offering detailed evaluations across six aspects. On 405

each aspect, scores range from 1 to 5, represent- 406

ing the degree of evaluation. In line with prior 407

work (Lin et al., 2023), we use GPT-4-0314 as the 408

evaluator and report the performance across three 409

random seeds. For efficiency analysis, we evaluate 410

the average inference time on 1000 test data with 411

strictly generated 4096 tokens without using any 412

additional decoding optimization techniques. We 413

report the speedup compared to the standard ICL. 414

We conduct our experiments using three prin- 415

cipal fundamental LLMs: Llama2-7b, Llama2- 416

13b (Touvron et al., 2023) and Mistral-7b 417

(v0.1) (Jiang et al., 2023). These models are se- 418

lected based on their moderate sizes, open-source 419

availability, and proficiency in ICL. For compara- 420

tive analysis, we utilized their respective alignment- 421

tuned versions: Llama2-7b-chat, Llama2-13b-chat, 422

and Mistral-7b-Instruct, facilitating a direct com- 423

parison with SFT and RLHF. Additionally, our 424

study includes results from OpenAI’s GPT models 425

(i.e., GPT-3.5-turbo-0611 and GPT-4-0613), allow- 426

ing comparison with the state-of-the-art AI assis- 427

tants. We follow the inference guidelines provided 428

by the authors of these tuned models. 429
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5.2 Implementation Detail430

For the in-context learning prompt, we follow previ-431

ous work (Lin et al., 2023) and use the mainstream432

system message employed in aligned LLMs. We433

meticulously designed the demonstrations for in-434

context learning, creating six examples for alpaca-435

eval and three examples for just-eval, as they em-436

phasize different evaluation aspects. We utilize437

greedy generation with a beam size of 1 and set438

the maximum token length to 4096. The in-context439

learning vector guidance method we described ear-440

lier has a key hyper-parameter, specifically the441

layer L. Previous studies (Hendel et al., 2023) have442

demonstrated that the choice of L influences perfor-443

mance. We determine the intervention layer based444

on the win rate on alpaca-eval. We set the number445

of prior tokens to 10 as a trade-off between gener-446

ation quality and efficiency. For consistency and447

reproducibility, we apply greedy decoding across448

all experiments. All experiments were conducted449

on a single NVIDIA A100 80G GPU, with each ex-450

periment consuming between 3 to 5 hours of GPU451

time, depending on the dataset and models used.452

5.3 Baseline453

In the paper, we compare our method with the fol-454

lowing methods and ablation variants:455

• SFT or RLHF is the baseline with alignment456

tuning method. We strictly follow the guidelines457

provided by the creators of these tuned models458

during inference.459

• Zero-shot is the baseline for the zero-shot set-460

ting that uses only the given query as input, and461

Vanilla ICL is the regular ICL which makes pre-462

dictions on the label by taking both demonstra-463

tion and instruction.464

• Vec. is the ablation variants that only utilize ICL465

vector guidance in zero-shot setting, while Prog.466

is the ablation variants that apply progressive467

generation strategy without ICL vector guidance468

during zero-shot stage.469

5.4 Main result470

Table 1 presents the win rates of each baseline on471

alpaca-eval and the scores on just-eval, as well as472

the speedup for efficiency analysis. In addition473

to our complete PICA method, we also present474

evaluation results for two ablation variants (i.e.,475

‘Vec.’ and ‘Prog.’) to explore the effectiveness of476

the two proposed innovations. The combination of 477

these innovations constitutes our PICA method. 478

PICA outperforms the baseline with tuning-free 479

baselines. As shown in the Table 1, our method 480

outperforms zero-shot and vanilla ICL baselines 481

across three models on alpaca-eval. On the just- 482

eval dataset, our PICA also surpasses the tuning- 483

free baseline in the majority of aspects. Compared 484

to regular ICL, our method effectively improves 485

helpfulness, factuality, engagement, and safety. 486

However, in terms of clarity and depth, our method 487

shows a minor decline. We attribute this to the fact 488

that our approach still has limitations in generating 489

consistently information-rich responses, indicating 490

that the ICL vector cannot fully encapsulate all the 491

information provided by the demonstration. 492

PICA is comparable to the alignment tuning 493

methods. When compared to SFT or RLHF mod- 494

els, our approach demonstrates superior perfor- 495

mance on the alpaca-eval dataset, indicating an 496

overall advantage over SFT and RLHF methods. 497

However, on the just-eval dataset, the results vary 498

across different aspects. For instance, in the aspects 499

of helpfulness and factuality, our method excels, 500

highlighting its capability to follow instructions 501

and generate high-quality and accurate responses. 502

This also supports the widespread hypothesis that 503

alignment tuning may cause models to forget some 504

of their knowledge (Wang et al., 2023b; Shen et al., 505

2023). Conversely, in terms of clarity, depth, and 506

engagement, our method lags slightly, suggesting 507

that SFT and RLHF have an advantage in produc- 508

ing high-quality response styles over ICL. In terms 509

of safety, our method surpasses SFT but does not 510

exceed RLHF, indicating that ICL provides rela- 511

tively basic safety alignment. On the other hand, 512

with strong models such as Llama2-13b or Mistral- 513

7b, the performance of our PICA can reach 90% of 514

the performance of GPT-3.5 and GPT-4. 515

PICA achieves high efficiency compared to 516

vanilla ICL. Analyzing the speedup shown in Ta- 517

ble 1, our method significantly reduces the time 518

cost compared to vanilla ICL (e.g., achieving a 519

5.45× speedup on Llama2-7b) and is close to the 520

zero-shot method across three models. This im- 521

provement is attributed to our progressive genera- 522

tion strategy, which successfully saves a substan- 523

tial amount of time by discarding the demonstra- 524

tion. Notably, our method is orthogonal to attention 525

speedup techniques, such as flash attention (Dao 526

et al., 2022) and page attention (Kwon et al., 2023). 527
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Models + Alignment Methods
Alpaca-eval Just-eval

Speedupvs GPT-3 vs GPT-4 Helpful Clear Factual Deep Engaging Safe
GPT-3.5-turbo-0611 69.51 46.46 4.82 4.97 4.84 4.33 4.66 4.99 -
GPT-4-0613 72.51 53.52 4.86 4.99 4.90 4.49 4.61 4.97 -
Llama2-7b-chat (RLHF) 40.50 17.49 4.12 4.84 4.13 4.18 4.77 5.00 5.68
Llama2-7b (Zero-shot) 24.65 11.74 2.78 3.01 3.11 2.27 2.29 1.05 5.81
Llama2-7b (Vanilla ICL) 42.47 15.00 4.01 4.10 4.16 3.50 3.31 1.98 1.00
Llama2-7b (Vec.) 36.51 13.73 3.68 3.72 3.80 3.01 2.94 1.73 5.43
Llama2-7b (Prog.) 42.13 16.23 3.78 3.82 3.94 3.26 3.04 1.78 5.53
Llama2-7b (PICA) 45.90 21.57 4.21 4.09 4.30 3.41 3.42 2.09 5.45
Llama2-13b-chat (RLHF) 55.30 38.60 4.36 4.94 4.36 4.55 4.83 5.00 4.97
Llama2-13b (Zero-shot) 33.73 15.20 3.26 3.65 3.60 2.63 2.62 1.86 5.31
Llama2-13b (Vanilla ICL) 59.82 37.61 4.38 4.70 4.68 4.37 4.24 4.09 1.00
Llama2-13b (Vec.) 53.57 24.43 4.24 4.45 4.24 3.85 3.79 2.22 4.84
Llama2-13b (Prog.) 58.14 34.91 4.25 4.33 4.35 3.60 3.48 4.01 4.78
Llama2-13b (PICA) 62.78 40.15 4.58 4.66 4.68 4.16 4.15 4.37 4.83
Mistral-7b-instruct (SFT) 62.78 43.30 4.72 4.75 4.30 4.41 4.37 2.00 4.95
Mistral-7b (Zero-shot) 43.32 22.55 3.86 4.14 4.05 3.38 3.31 1.61 5.23
Mistral-7b (Vanilla ICL) 62.03 40.35 4.70 4.87 4.81 4.32 4.38 3.03 1.00
Mistral-7b (Vec.) 61.19 37.61 4.76 4.81 4.74 4.36 4.32 2.48 5.02
Mistral-7b (Prog.) 62.75 39.73 4.76 4.84 4.77 4.42 4.61 4.17 4.83
Mistral-7b (PICA) 66.38 44.33 4.79 4.86 4.79 4.42 4.59 4.34 4.93

Table 1: Comparison of Alignment Performance and Efficiency. Alpaca-eval presents the win rate against competitor models,
while just-eval presents the scores across six aspects (scores are on a scale of 1-5). Results highlighted in gray represent our
methods: Vec. denotes the ICL vector guidance and Prog. denotes progressive generation ablation variants. The best results in
each aspect are marked in bold. Speedup indicates the efficiency improvement compared to vanilla ICL.

We will leave further exploration for future work.528

Both progressive generation strategy and ICL529

vector guidance contribute to performance im-530

provement. We conduct ablation experiments on531

our proposed progressive generation strategy and532

ICL vector guidance, as indicated by the results533

highlighted in grey in Table 1. When only one of534

these methods is used, the model’s performance de-535

clines, with a more significant drop observed when536

the progressive generation strategy is removed.537

This clearly demonstrates the effectiveness of both538

methods, with the progressive generation strategy539

playing a more critical role. It also indicates the540

limitations of ICL vector guidance, which, while541

effective in simpler tasks (Hendel et al., 2023; Todd542

et al., 2023), shows constraints in more complex543

alignment tasks.544

Overall, our method outperforms ICL in perfor-545

mance and efficiency, achieving results comparable546

to alignment tuning. These promising outcomes547

validate the effectiveness of our approach and em-548

pirically support our understanding of the role of549

demonstrations in in-context alignment.550

6 Analysis551

6.1 Layer Selection552

We delve into the impact of layer selection on the553

extraction of the ICL vector. We evaluate the per-554

formance based on the win rate compared to GPT-555
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Figure 3: Win rate comparing with GPT-3-text-davinci-003
on alpaca-eval for each choice of the intermediate layer L.

3-text-davinci-003 on the alpaca-eval datasets, as 556

shown in Figure 3. Our results reveal a dual-phase 557

trend: initially, increasing the number of layers im- 558

proves performance, but this improvement stops or 559

slightly declines in the later layers. This indicates 560

that the ICL function is dynamically stored within 561

the separator token representation. In the initial lay- 562

ers, transformers primarily focus on learning and 563

encapsulating the ICL function within the hidden 564

state, where additional layers enhance the richness 565

of the functional information in the ICL vector. In 566

contrast, the later layers prioritize applying this 567

learned information for prediction tasks. Here, ad- 568

ditional layers tend to introduce noise, causing a 569

slight drop in performance. This also suggests that 570
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We normalize the result with vanilla ICL result.
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Figure 5: The mean and standard error of ICL and PICA
performance with five demonstration across three models.

our method is not significantly affected by layer se-571

lection, confirming the robustness of our approach.572

6.2 Prior token Ablation573

Figure 4 presents an ablation study on the number574

of prior tokens across three models, normalized by575

the vanilla ICL results. An intuitive conclusion is576

that increasing the number of prior tokens improves577

the model’s performance, and with about 8 prior578

tokens, PICA surpasses vanilla ICL. However, this579

improvement trend gradually diminishes. When the580

number of prior tokens reaches 10, the performance581

gain becomes less significant. This indicates that582

the demonstration aligns approximately the first 10583

tokens to human performance. After generating 10584

tokens, the base model can largely complete the585

response generation independently.586

6.3 Robustness Analysis587

In this section, we examine the robustness of PICA588

to demonstration selection. Specifically, we evalu-589

ate the performance of ICL and PICA across three590

Winner Ratio (%)

Mistral-7b (PICA) 35.4
Mistral-7b-instruct (SFT) 24.1
Tie 40.5

Llama2-13b (PICA) 34.6
Llama2–13b-chat (RLHF) 21.3
Tie 44.1

Table 2: Results of human evaluation: The win rate of pairwise
comparisons between PICA and SFT or RLHF.

models using five different sets of demonstrations. 591

The results, including the mean and standard devia- 592

tion of the performance metrics, are shown in Fig- 593

ure 5. We observe that the ICL method is more sen- 594

sitive to changes in the demonstrations compared to 595

the PICA method across all three models. This in- 596

dicates that PICA effectively enhances robustness. 597

We attribute this to our approach of explicitly incor- 598

porating demonstrations only in the prior response 599

tokens, while using implicit demonstration repre- 600

sentations during the zero-shot generation stage. 601

This strategy effectively mitigates the impact of 602

suboptimal demonstrations on performance. 603

6.4 Human Evaluation 604

We randomly sampled 100 examples each from 605

the alpaca-eval and just-eval datasets, presenting 606

the responses generated by PICA alongside those 607

from the SFT or RLHF models to computer science 608

graduate students who serve as annotators. We 609

asked the annotators to choose which response was 610

better or if it was a tie. Table 2 shows the results, 611

which align with the automated evaluation. 612

7 Conclusion 613

In this paper, we investigate and analyze the im- 614

pact of demonstrations on token representation in 615

in-context alignment through comparative exper- 616

iments. Based on our observations and analyses, 617

we introduce a novel progressive in-context align- 618

ment method that significantly reduces the need for 619

demonstrations while preserving alignment perfor- 620

mance. Extensive experiments indicate that PICA 621

outperforms tuning-free baselines in both effective- 622

ness and efficiency, achieving performance that is 623

better or comparable to SFT or RLHF. Our exper- 624

iments and analyses provide in-depth insights for 625

future research on ICL in alignment. In the fu- 626

ture, we aim to further explore the mechanisms and 627

optimizations of ICL in more complex tasks. 628
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Limitations629

Despite our discoveries and improvements, we630

must acknowledge certain limitations in our work:631

Model Size: We evaluated our method on632

Llama2-7b, Llama2-13b, and Mistral-7b, and these633

experiments were conducted on a limited scale with634

moderately sized models. This limits our explo-635

ration of the application of PICA on larger models.636

We will explore the use of PICA on larger models637

such as llama2-70b in future work.638

Theoretical Foundation: Our conclusions about639

the role of demonstration and ICL working mech-640

anism lack rigorous theoretical grounding. In ex-641

ploring the working mechanism of ICL, we de-642

rived some hypotheses through comparative ex-643

periments on token representation. While these644

hypotheses provided insights, they lack solid math-645

ematical derivation and a theoretical basis, limiting646

the generalizability of our method. For example, in647

Appendix B, we analyze a kind of instruction that648

PICA does not handle well.649

Evaluation Datasets: Most of our experiments650

utilized the alpaca-eval and just-eval datasets,651

which are based on AI assistant automated evalua-652

tion pipelines. Related work (Dubois et al., 2024)653

has shown that these GPT-4-based evaluation meth-654

ods can introduce biases, such as a preference for655

longer responses, which may affect the accuracy of656

our experimental results. Additionally, our dataset657

quantity is still limited, and the evaluation metrics658

do not fully cover all aspects of alignment, such659

as mathematics, reasoning, and coding. We will660

continue to explore our method with more compre-661

hensive evaluation metrics in future work.662
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A Case Study851

We present a case study comparing SFT, ICL, and852

PICA on Mistral-7b in Figure 6. The SFT model853

incorrectly stated that Canada was colonized by854

the British in 1607, leading to poor performance in855

factuality with a score of 1. This highlights a com-856

mon issue with SFT models, where they may forget857

acquired knowledge over time. As a result, the SFT858

model received low marks in helpfulness (3) and859

engagement (2), despite a reasonable clarity score860

(4). This misrepresentation shows the limitations861

of the SFT approach in retaining and accurately re-862

calling historical facts. The ICL model is relatively863

better in factuality. However, the generated con-864

tent lacked depth and richness, scoring 2 in depth865

and 2 in helpfulness, suggesting that while the ICL866

method generates some stylistic tokens, it does not867

produce sufficiently detailed or useful responses.868

Our PICA model provided a comprehensive and869

accurate response, detailing the colonization his-870

tory of Canada, resulting in high scores across all871

aspects: helpfulness (5), clarity (5), factuality (5),872

depth (4), and engagement (4). The PICA model873

effectively combined stylistic tokens with detailed874

and accurate information, showcasing its capabil-875

ity to generate high-quality responses that are both876

informative and engaging.877

B Error Analysis878

In our preliminary experiments, we found that the879

proposed PICA approach frequently performed880

poorly in generating enumeration-type responses881

(e.g. “Give me a list of some famous world mu-882

sic artists.”). Consequently, we analyzed the KL-883

divergence of responses to these instructions in884

zero-shot and few-shot settings. The visualization885

results are shown in Figure 7. Our observations886

indicate that, although the trend of KL-divergence887

is generally similar to what we observed in §3 there888

are differences in each enumeration of the response.889

We found that the KL-divergence of prior tokens is890

usually larger than the posterior tokens in each enu-891

meration, indicating that these prior enumeration892

tokens are pivotal. The quality of responses to enu-893

merative instructions is influenced not only by the894

selection of prior response tokens but also by the895

selection of prior enumeration tokens. We attribute896

this to the fact that each enumerated item is rela-897

tively independent of each other. When generating898

these enumerations, the model requires more sub-899

stantial guidance from the demonstrations. How-900

ever, the proposed ICL vector and the positions 901

of previous enumeration responses do not provide 902

enough information for generation, thus reducing 903

the quality of each enumeration. This highlights a 904

limitation of our current PICA approach, which we 905

will explore and optimize in future work. 906

C More Exploration on Demonstration 907

We present additional comparative experiments to 908

further delve into the impact of demonstrations on 909

token representation. We conduct experiments on 910

Llama2-7b and Mistral-7b models with the same 911

data as in §3. The experimental group includes both 912

zero-shot and few-shot methods, while the control 913

group includes two different demonstrations in few- 914

shot settings. In addition to the KL-divergence of 915

token distributions, we introduce two new metrics 916

for measuring the difference between the two meth- 917

ods, i.e., Top Token Prob and Top Token Rank. 918

Top Token Rank refers to the ranking position of 919

a token predicted by one method within the token 920

distribution of another method. Specifically, given 921

the context, we first obtain the next predicted to- 922

ken from one method and then determine its rank 923

within the token distribution of the other method. 924

A lower Top Token Rank manifests a greater over- 925

lap in the decision space under the greedy search 926

setting. Analogously, Top Token Prob indicates 927

the probability of a token predicted by one method 928

within the distribution of another method. In this 929

case, we first obtain the next predicted token from 930

one method and then report its probability in the 931

token distribution of the other method. A higher 932

Top Token Prob manifests a higher likelihood of ob- 933

taining the same result under the greedy sampling 934

setting. These metrics directly reflect the similarity 935

between the generation results of the two methods. 936

By evaluating both Top Token Rank and Top Token 937

Prob, we can obtain a comprehensive understand- 938

ing of how closely the methods align in terms of 939

their token predictions. 940

The KL-divergence results on Mistral-7b are 941

shown in Figure 8, and we find a similar pattern to 942

that in Figure 1. 943

The Top Token Rank results are shown in Fig- 944

ure 9 and Figure 10. For convenience, we set the 945

rank of the token to 10 if it is greater than 10. We 946

find that tokens with a large KL-divergence differ- 947

ence typically also have a higher Top Token Rank, 948

indicating that our understanding of demonstra- 949

tions applies to this observation as well. Notably, 950
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When was Canada colonized?

Canada was colonized by the British in 1607. The first successful British colony was established 
at Jamestown, Virginia, in 1607, and three years later, the Pilgrims established the Plymouth 
Colony in present-day Massachusetts. Over the next two centuries, the British gradually 
established more colonies along the eastern seaboard, eventually forming the thirteen colonies 
that would become the United States.

Hello, I'm happy to help you! Canada was colonized by European settlers in the 16th century. The 
first European settlement in Canada was established by the French in 1534, when Jacques Cartier 
explored the St. Lawrence River and claimed the land for France. The British later established 
their own colonies in Canada, and the two nations fought for control of the territory for centuries. 
The British eventually gained control of most of Canada, and the country became a self-governing 
dominion of the British Empire in 1867. Canada gained full independence from Britain in 1982, 
and has since become a thriving democracy and a leading member of the international community.

Hello! I'm happy to help you with your question about the history of Canada. Canada was first 
colonized by the French in the 16th century, with the establishment of the colony of New France 
in 1534. 

Instruction

Mistral-7b (SFT)

Mistral-7b (ICL)

Mistral-7b (PICA)

Helpfulness: 3 Factuality: 1 Depth: 3 Engagement: 2Clarity: 4

Helpfulness: 2 Factuality: 3 Depth: 2 Engagement: 3Clarity: 4

Helpfulness: 5 Factuality: 5 Depth: 4 Engagement: 4Clarity: 5

Figure 6: Case study of SFT, ICL, and PICA on Mistral-7b. We report results of the five regular evaluation aspects on just-eval.
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Figure 7: KL-divergence of response token distributions of enumerative instructions on Llama2-7b and Mistral-7b.

even though the separator token distribution dif-951

fers significantly, the Top Token Rank remains low.952

This observation suggests that though demonstra-953

tions have a lot of influence on the separator token954

representation, the predicted next token rank still955

remains unchanged.956

The Top Token Prob results are shown in Fig-957

ure 11 and Figure 12, where we find that tokens958

with a large KL-divergence difference typically959

also have a low Top Token Prob. This further sup-960

ports our understanding of the role that demonstra-961

tions play in the ICL. Similar to the result of Top962

Token Rank, the predicted separator token proba-963

bility is high, indicating that demonstration will not964

change the selection of separator token.965

Overall, we observe similar patterns across KL- 966

Divergence, Top Token Rank, and Top Token Prob 967

metrics, despite minor differences. This demon- 968

strates the generalizability and universality of our 969

understanding of the impact of demonstrations. 970

D PICA Prompt 971

We present the default version prompt with one 972

example used in our experiment in the Table 3. 973
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Figure 8: The KL-divergence of token probability distributions on Mistral-7b. Experimental Group compares zero-shot and
few-shot settings, while Control Group compares two few-shot settings with different demonstrations. We visualize the input and
output separately and mark the prior query tokens and prior response tokens with purple circles.
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Figure 9: Average Top Token Rank on Llama2-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately
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(c) Output Experimental Group
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Figure 10: Average Top Token Rank on Mistral-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately
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(c) Output Experimental Group
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Figure 11: Average Top Token Prob on Llama2-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately
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(c) Output Experimental Group
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Figure 12: Average Top Token Prob on Mistral-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately

The default version of PICA prompt with an example

[System Message]
# Instruction

Below is a list of conversations between a human and an AI assistant (you).
As an AI assistant, you will engage in conversations with users, responding to their queries which
are presented under the heading "# Query:".
Your responses should be entered under the heading "# Answer:".
You excel in a wide range of tasks including, but not limited to, providing general information,
conducting reasoning, engaging in role-play, creative writing, planning, and solving mathematical
and coding problems.
Your responses should be well-structured, comprehensive, and aim to thoroughly address the user’s
query or problem at hand.
When enumerating items in your responses, limit the examples to no more than ten, and avoid
completely redundant content.
Please ensure that your responses are encapsulated within triple backticks (“```”) at the start and
end to maintain formatting consistency throughout the conversation.

# Query:
```
Look for poems that mention the given object or character. The names of the poems and their
poets should be written.

the moon
```

# Answer:
```
These are seven examples of poems that mention the moon.
1. "The Moon and the Yew Tree" by Sylvia Plath
2. "The Moon" by Robert Louis Stevenson
3. "Above the Dock" by T. E. Hulme
4. "Moonrise" by D. H. Lawrence
5. "The Freedom of the Moon" by Robert Frost
6. "To the Moon" by Percy Bysshe Shelley
7. "The Cat and the Moon" by W. B. Yeats

This celestial body is a frequent motif in poetry, symbolizing various themes such as
beauty, mystery, and the passage of time, making it a beloved subject for many poets.
```

Table 3: The default version of PICA prompt with an example
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