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ABSTRACT

Vision and touch are the most commonly used senses in human manipulation.
While leveraging human manipulation videos for robotic task pretraining has
shown promise in prior works, it is limited to image and language modalities
and deployment to simple parallel grippers. In this paper, aiming to address the
limitations, we collect a vision-tactile dataset by humans manipulating 10 daily
tasks and 182 objects. In contrast with the existing datasets, our dataset is the
first visual-tactile dataset for complex robotic manipulation skill learning. Also,
we introduce a novel benchmark, featuring six complex dexterous manipulation
tasks and a reinforcement learning-based vision-tactile skill learning framework.
18 non-pretraining and pretraining methods within the framework are designed and
compared to investigate the effectiveness of different modalities and pertaining
strategies. Key findings based on our benchmark results and analyses experiments
include: 1) Despite the tactile modality used in our experiments being binary and
sparse, including it directly in the policy training boosts the success rate by about
20% and joint pretraining it with vision gains a further 20%. 2) Joint pretraining
visual-tactile modalities exhibits strong adaptability in unknown tasks and achieves
robust performance among all tasks. 3) Using binary tactile signals with vision
is robust to viewpoint setting, tactile noise, and the binarization threshold, which
facilitates to the visual-tactile policy to be deployed in reality. The dataset and
benchmark are available at https://github.com/LQTS/VTDexManip.

1 INTRODUCTION

Achieving human-like dexterous manipulation is one of the most challenging tasks in robotics and
embodied artificial intelligence. When humans interact with the world, vision and touch are the
common senses used. Touch offers physical information beyond vision and compensates for local
perception when vision is obstructed Billard & Kragic (2019). Therefore, extensive studies Lee
et al. (2020); Chen et al. (2022); Qi et al. (2023); Zhang & Demiris (2023); George et al. (2024);
Calandra et al. (2018); Jin et al. (2024) attach tactile sensors to grippers and leverage both visual
and tactile signals in a reinforcement learning framework for skill learning. However, the visual-
tactile representation is trained jointly with the manipulation policy for a specific task in limited
environments, struggling to generalize to other tasks and environments.

On the other hand, representation learning on large datasets has demonstrated generalization abilities
in many domains Radford et al. (2021); Zitkovich et al. (2023); Driess et al. (2023); Achiam et al.
(2023). To address the generalization issue in robotic manipulation, some works have collected
extensive robot operation data to train large robotic models Brohan et al. (2022); Dasari et al. (2019);
Bharadhwaj et al. (2023); Fang et al. (2023); Khazatsky et al. (2024). However, the data collection
cost is high, and it is challenging to gather complex manipulation skills on a large scale, resulting
in these datasets focusing on tasks with simple parallel grippers. In contrast, humans can perform
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complex dexterous manipulation tasks, such as in-hand rotation and it is easier to acquire large-scale
human manipulation videos. Therefore, recent studies have explored the representations learned from
large datasets of human manipulation for robotic tasks Radosavovic et al. (2023); Nair et al. (2022);
Karamcheti et al. (2023); Ma et al. (2023b); Zhang et al. (2023); Ma et al. (2023a). Nevertheless,
they primarily emphasize the visual and natural language modalities of human manipulation data,
neglecting the potential benefits of tactile data.

To bridge the gap, we create a dataset of 2032 vision-tactile sequences covering 10 daily tasks and
182 objects to study the tactile modality and multi-modal pretraining in complex manipulations.
Recently, attention has been paid to the fusion of vision and tactile modalities and several visual-
tactile datasets are collected to perform tasks like material classification, tactile localization, object
property prediction, garment classification Yang et al. (2022); Kerr et al. (2023); Dou et al. (2024);
Yu et al. (2024b) as shown in Tab.1. For our manipulation data collection, humans need to wear
tactile sensors to collect data for a long time and the sensors must be flexible and robust while these
optical-based tactile sensors are typically bulky and can not be easily integrated into wearable gloves
or attached to human hands at low cost. On the other hand, though these high-precision tactile signals
help sophisticated control at the low level, the combination and the tempo of touch status of different
hand parts may provide abundant information on how to manipulate in a higher planning level. As a
compromise, we adopt a solution of low-cost piezoresistive pressure sensors attached to a glove as
shown in Fig.1(a). Also, in contrast with the existing visual-tactile datasets, our dataset is the first
visual-tactile dataset with multi-fingered hand for complex robotic manipulation skill learning.

Table 1: Comparison of visual-tactile datasets.
Dataset #Frames/Objs/Seqs/Tasks Vision Tactile Application

Touch and go
13.9K/3971/-/- RGB GelSight

Tactile-driven image stylization,
Yang et al. (2022) multimodal video prediction

SSVTP
4500/10/-/- RGB DIGIT

Anomaly detection, edge following,
Kerr et al. (2023) tactile localization and classification

TaRF
19.3K/-/-/- RGB DIGIT

Tactile localization,
Dou et al. (2024) material classification

PHYSICLEAR
45.8k/76/408/- RGB-D GelSight

Physical property prediction,
Yu et al. (2024b) scenario reasoning

Ours 565k/182/2032/10 RGB Pressure sensor Complex multi-fingered manipulation tasks

To evaluate the role of human vision-tactile information in robotic manipulation, we introduce
a novel benchmark comprising a vision-tactile dexterous manipulation platform based on Isaac
Gym Makoviychuk et al. (2021) and a reinforcement learning-based skill learning framework,
with the hope of providing insights for future research relating to dexterous multi-fingered robotic
manipulation, human priors for robotic manipulation, multi-modal learning, tactile sensor design for
multi-fingered hands, etc. . Specifically, six complex manipulation tasks are built up in the simulation
that require sophisticated coordination of joint movements: Bottlecap Turning, Faucet Screwing,
Lever Sliding, Table Reorientation, In-hand Reorientation and Bimanual Hand-over. Though there
exists work on some similar tasks like Reorientation Chen et al. (2023), they only focus on one task.
Our multi-fingered manipulation platform is the first one consisting of very different types of complex
skills, which facilitates the study of generalizable human-like complex manipulation skill learning.

For the benchmark, a benchmark method fusing vision-tactile via joint pretraining is first constructed
to learn manipulation representations from human vision-tactile data inspired by MAE He et al.
(2022); Radosavovic et al. (2023); Liu et al. (2024). Further, five popular vision pretraining meth-
ods Radosavovic et al. (2023); Nair et al. (2022); Radford et al. (2021); He et al. (2016); Karamcheti
et al. (2023) used in computer vision and robotics and their combination with the tactile modality are
benchmarked. In addition to the methods, experiments and analyses regarding the viewpoint setting
for visual-tactile fusion, the tactile noise, and thresholds to binarize the tactile signals in pretraining
and RL are conducted to provide guidance for deploying the tactile modality to real-world experiment
setting. Our main contributions are summarized as follows:

• We collect a human visual-tactile manipulation dataset consisting of 565k frames, covering 10
daily tasks and 182 objects for multi-fingered robotic hand manipulation.

• We propose a vision-tactile benchmark for dexterous manipulation, which includes a manipulation
simulation platform with six multi-fingered manipulation tasks and a manipulation skill learning
framework based on pretraining and reinforcement learning.
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• We benchmark more than 18 non-pretraining and pretraining methods to investigate the effectiveness
of different modalities and pretraining strategies for dexterous manipulation.

• Extensive experiments and analyses regarding viewpoint setting, the noise and binary thresholds of
the tactile signals are conducted to provide guidance for the deployment of the tactile modality.

2 RELATED WORKS

Visual-Tactile datasets and benchmarks. In recent years, the integration of visual and tactile
sensing has gained increasing attention in robotics, particularly for tasks that involve intricate surface
interactions. Optical tactile sensors Lambeta et al. (2020); Yuan et al. (2017), in particular, have
enabled the collection of rich visual-tactile data that captures detailed texture information from the
contact area. With these sensors, prior works collected datasets that have been primarily used for
tasks such as texture recognition, classification, localization, and detection Yang et al. (2022); Kerr
et al. (2023); Dou et al. (2024); Yu et al. (2024b). While visual-tactile information plays a crucial role
in dexterous manipulation Qi et al. (2023); Guzey et al. (2023), there is currently no dataset available
specifically tailored for such tasks. The use of human tactile information for robot manipulation has
gained increasing attention. MimicTouch Yu et al. (2024a) leverages human tactile demonstrations
for gripper-based tasks like grasping and insertion. Inspired by Liu et al. (2024), our work fills this
gap by providing a visual-tactile dataset for learning diverse complex dexterous manipulation skills
with multi-fingered hands.

Pretraining for robot manipulation with out-of-domain dataset. Due to the challenges of collect-
ing robotic data and generalizing in-domain data, some previous works Radosavovic et al. (2023);
Nair et al. (2022); Karamcheti et al. (2023); Ma et al. (2023b); Zhang et al. (2023); Ma et al. (2023a)
have focused on leveraging out-of-domain datasets for pretraining. These works have shown that
representation models pretrained on human data can significantly aid in learning different robotic
tasks. These works are mainly divided into two categories: MVP Radosavovic et al. (2023), R3M Nair
et al. (2022), Voltron Karamcheti et al. (2023), and SGR Zhang et al. (2023) pretrain models to extract
representations from inputs, while VIP Ma et al. (2023b) and LIV Ma et al. (2023a) pretrain represen-
tation and reward function models. All these works utilize human manipulation datasets Grauman
et al. (2022); Damen et al. (2018); Goyal et al. (2017), focusing on visual, language, or point cloud
modalities. Tactile sensing, despite its crucial role in both human and robotic manipulation, has not
been explored extensively due to the absence of human tactile data in existing datasets.

Visual-tactile manipulation. Many studies have attached tactile sensors to parallel grippers and
combined the tactile signals with vision to realize manipulation tasks like cable plugging George
et al. (2024), dressing Zhang & Demiris (2023), efficient grasp adjustment Calandra et al. (2018),
and insertion Jin et al. (2024); Sferrazza et al. (2023). For multi-finger manipulation tasks, Guzeyet
al. Guzey et al. (2023) places uSkin on the Allegro Hand to learn six dexterous manipulation skills.
RotateIt Qi et al. (2023) equip robotic fingertips with four omnidirectional vision-based touch sensors
to learn the in-hand rotation skill. These studies focus on online learning of visual and tactile
modalities, achieving promising results for specific tasks. However, the learned representation models
are not transferable to other tasks, requiring task-specific data and representation learning for each
case, which is inefficient for multi-skill learning. Instead, we mainly study and analyze the efficacy
of visual and tactile pretraining for skill learning on various complex manipulation tasks by human
manipulation data collection and pretraining benchmarking similar to Liu et al. (2024).

3 VISUAL-TACTILE MANIPULATION DATASET

Data Collection Procedure. Following Liu et al. (2024), we set up our collection system as shown in
Fig.1(a). We calibrate each tactile unit on the glove using an F/T sensor to ensure that each tactile unit
can be activated by the same amount of force. Due to the simple principle and design, the glove can
produced in a more compact form in industry, suitable for large-scale data collection. We utilize the
glove and a Hololens2 1 to synchronously collect visual and tactile data pairs of human manipulation
from an ego-centric view. See A.1 for more about the glove.

Dataset Statistics and Analysis. The dataset is collected by 5 subjects and includes 2,032 manipula-
tion sequences, 10 daily tasks, 182 objects, which ends up with 565k visual-tactile pairs of frame.

1https://www.microsoft.com/en-us/hololens
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Figure 1: Visualization of our dataset. (a) Our collection system. (b) The number of trajectories and
objects. (c): The number of total frames (On: frames w/ contact; Off: frames w/o contact ). (d) The
distribution of the number of frames. (e) t-SNE of the tactile signals.

We show the number of trajectories and objects for each task in Fig.1(b), the number of total frames
for each task in Fig.1(c), and the distribution of the number of frames in each task trajectory in
Fig.1(d). The tactile signals carry pressure values during manipulation, but to reduce the real-to-sim
and sim-to-real gap, only binary signals acquired by thresholding pressure values are used in the
following sections. See A.2 for more details.

To further investigate the characteristics of the tactile signals for different manipulation tasks, we
visualize the tactile signals by t-SNE Van der Maaten & Hinton (2008) as shown in Fig.1(e): for
each sequence, we calculate the contact frequency of a tactile sensor and the frequency of all tactile
sensors is concatenated as the representation of the sequence for visualization (See A.3 for more
details about t-SNE). In the figure, there exist some clusters while a cluster does not correspond
to only a task: 1) the clusters may consist of data points from different tasks, e.g. data points for
In-hand Reorientation and BottleCap Turning form a relatively compact cluster; 2) data points for a
task may span many clusters, e.g. data points for Bowl Unstacking scatter across different clusters.

The complex distribution however may inspire research in many aspects. The tactile clusters exhibited
in our dataset may facilitate research in the dynamic manipulation taxonomy to understand human
behaviors using tactile signals, not just the hand poses used Feix et al. (2016) for grasp taxonomy
study. Second, the hand movement is continuous while the touch is not: the subtle changes of hands
in the moment of contact are hard to be reflected in the images and spacial displacement while the
discrete nature of the tactile signal can capture distinct information of finger gait and the synergy
during hand-object interaction like opening and closing scissors represented in Fig.1(e), which can
serve as a prior for complex manipulation skill learning. Also, the visual modality between different
tasks often has a large difference, but the similarity presented in touch (e.g.Bowl Unstacking and
Peg-in-hole as depicted in Fig.1(e).) can provide a basis for the generalization of task-level strategies
in downstream tasks.

4 VISUAL-TACTILE DEXTEROUS MANIPULATION BENCHMARK

4.1 VISUAL-TACTILE MANIPULATION PLATFORM AND TASKS

In this section, we introduce our visual-tactile dexterous manipulation platform based on Isaac Gym
environment Makoviychuk et al. (2021), which encompasses six complex tasks with a Shadow
Hand Sharma et al. (2014). See B.1 for more details.

• BottleCap Turning. Agents are required to rotate the bottle cap counterclockwise by one full
circle. 10 objects and 5 unseen objects from Wang et al. (2023) are prepared for skill learning and
for evaluation. The task is seen in human hand manipulation data.
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BottleCap Turning Faucet Screwing Lever Sliding

Table Reorientation In-hand Reorientation Bimanual Hand-over

(a) Manipulation Platform (6 dexterous manipulation tasks)

Pretrained Models
VT-JointPretrain

V-Pretrain T-Pretrain

V_CLIP+T

(Trained on our dataset) (Existing pretrained models and their variants)

V_CLIP
V_R3M+T
V_MVP+T

V_Voltron+T
V_Resnet+T V_R3M

V_MVP

V_Voltron
V_Resnet

Non-pretrained 
Models

V+T

T

V

Base

(b) Representation Module (18 benchmarking models)

Representation 
Module

ℎ

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠

Manipulation Policy

Proprioception

Actions

OR

(c) Manipulation Policy Learning via PPO

Representation 
Module

V-Pretrain+T-Pretrain

Figure 2: Overview of our benchmark. (a) shows the six tasks of our manipulation platform (Sec.4.1);
(b) lists the 18 pretrained and non-pretrained models in our benchmark (Sec.4.2); (c) is the policy
learning framework combines proprioceptive inputs and perception representations to guide actions
within an MDP, with skills learned via PPO (Sec.4.3).

• Faucet Screwing. Similar to the BottleCap Turing, agents are required to rotate the tap handle one
full circle clockwise. The task is unseen in human hand manipulation data. Five faucet models
with a rotational axis perpendicular to the ground from the SAPIEN dataset Xiang et al. (2020) for
manipulation policy learning and generate 10 test objects by scaling the taps using two different
scaling factors for evaluation.

• Lever Sliding. Agents focus on actions to separate a long hole and an axe, which requires the
fingers to press or pinch the object and use wrist motion to slide the axis out. We create 5 CAD
models based on everyday objects and generate URDF (Unified Robot Description Format) files
for them. We obtain 10 test objects by scaling the CAD models to two different sizes.

• Table Reorientation. This task enables the dexterous hand to learn how to rotate an object on the
table without toppling it. Unlike the previous rotation task, the object in this task is not fixed. We
use 10 objects for training and 5 objects for testing from the YCB dataset Calli et al. (2015).

• In-hand Reorientation. Agents are designed to rotate an object within the fingers while keeping
the palm facing upward, aiming to rotate the object anticlockwise over half a circle without
deviating beyond a specified threshold. 10 objects from the YCB dataset Calli et al. (2015) are
used for training, and 5 objects are used for evaluation.

• Bimanual Hand-over. This is a bimanual manipulation task in which one hand throws an object
while the other catches it, ensuring the object does not drop. This task primarily trains the dexterous
hand in bimanual coordination. We use 5 objects for training and 3 objects for testing from the
YCB dataset Calli et al. (2015).

Acquisition of Visual and Tactile Sensing. Isaac Gym Makoviychuk et al. (2021) provides users
with a rich set of APIs for visual and force sensors. We position ego-centric cameras to capture
RGB images of dexterous manipulation in the simulation as shown in the manipulation platform of
Fig.2. Similar to the collection of human data, we arrange 20 force sensors on the dexterous hand
corresponding to the tactile glove as shown in the right column of Fig.2.

4.2 VISUAL-TACTILE PRETRAINED MODELS

We aim to study whether human visual-tactile priors can enhance robotic dexterous manipulation
skill learning. We benchmark various pretrained and non-pretrained methods for visual and/or tactile
representation. More details for these methods in B.2 of the supplementary material.

Visual-tactile Fusion by Joint Pretraining. Inspired by the masking reconstruction pretraining He
et al. (2022); Radosavovic et al. (2023); Liu et al. (2024), we construct a benchmark method VT-
JointPretrain to fuse the visual and tactile modalities, which consists of a fusion encoder and a
reconstruction decoder. The fusion encoder Eθ integrates image-tactile pairs (V,C). The RGB
image V is divided into patches and transformed into embeddings v̄ and tactile data C is sliced into
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patches and converted into embeddings c̄. We randomly mask patches in a certain proportion and
use a transformer encoder to fuse the visible patch embeddings along with a learnable CLS token,
producing a fused representation {hv, hc, hCLS}. The CLS token aggregates the latent features of
the visual-tactile pair and serves as the input to the downstream task network. For the reconstruction
decoder, {hv, hc} and the masked tokens are input into the transformer decoder. We then use
Rθv to project v̂ to the reconstructed image V̂ and Rθc to map each reconstructed tactile patch ĉi
to their reconstructed unit Ĉi. The network is trained with the discrepancy of the reconstructed
images and tactile signals with the original ones. After convergence, the encoder Eθ is leveraged
for downstream tasks and the token hCLS is input to a policy network. Based on the method, we
create two single-modality pretrained structures by removing either modality, resulting in V-Pretrain
and T-Pretrain. Both methods are trained using our dataset. Also, we construct another baseline
V-Pretrain+T-Pretrain by concatenating the features of V-Pretrain and T-Pretrain.

Other Pretrained Models. We collect 5 pretrained models: CLIP Radford et al. (2021), R3M Nair
et al. (2022), MVPRadosavovic et al. (2023), VoltronKaramcheti et al. (2023), ResNet18He et al.
(2016). We employ their open-source visual encoders to the RL framework, named as V CLIP,
V R3M, V MVP, V Voltron and V Resnet. We further extend the five methods by adding tactile
modality feature extraction with an MLP, concatenating the visual and tactile features to form
the visual-tactile representation. We name their variants as V CLIP+T, V R3M+T, V MVP+T,
V Voltron+T and V Resnet+T.

Non-pretrained Methods. We use the network structure of ResNet18 to extract image features and
an MLP to extract tactile features, forming three non-pretrained baseline models. T uses only tactile
input, V uses only image input, and V+T uses both image and tactile information, concatenating their
features to form the visual-tactile representation. Additionally, we prepare a Base baseline model
that uses only the proprioceptive information of the dexterous hand as input.

4.3 MANIPULATION POLICY LEARNING

We model the dexterous manipulation task as a Markov Decision Process (MDP), defined by a
tuple: (S,A, T ,R, γ). We use the PPO algorithm Schulman et al. (2017) to make the agent learn
manipulation skills. The architecture is shown in the right column of Fig.2. We define the state as
S = {h←Mθ(·),P} and the action and policy as a = πθ(S). Mθ(·) is a representation module,
which can be the pretrained encoders above or non-pretrianed ones. For the pretrained encoders,
Mθ is frozen during policy training. Mθ takes the ego-centric RGB image Vsim or the binarized
tactile signals Csim as input and generates the perceptual representation h. Vsim is captured by the
ego-centric camera in the simulator and Csim is the binarized result of the signal obtained from the
force sensors, with a tactile threshold set to 0.01 N across all tasks. P represents the proprioceptive
information of the dexterous hand, which includes the joint angles and joint velocities of the hand.
See B.3 and B.4 for more details about RL training for each task.

5 BENCHMARKING STUDY

Table 2: Success rate (%) for our method and baselines with different modalities in all tasks.
Tasks Split Base T-Pretrain V-Pretrain VT-JointPretrain

BottleCap Turning
Seen 55.9± 5.6 75.4± 2.9 70.8± 7.2 83.7± 0.9
Unseen 36.8± 9.4 68.6± 5.6 58.5±14.2 81.3± 0.5

Faucet Screwing
Seen 49.0±12.0 60.0±12.3 57.9± 7.0 80.1± 1.8
Unseen 43.9±10.5 51.9±12.1 51.8± 6.5 73.6± 2.1

Lever Sliding
Seen 5.8 ± 4.4 53.1±23.1 27.9±14.9 89.3± 3.6
Unseen 2.2 ± 1.9 48.3±20.7 20.5±10.9 79.6± 6.1

Table Reorientation
Seen 51.8± 6.3 68.8± 1.8 74.2± 9.4 85.0± 1.4
Unseen 46.7± 7.3 69.8± 2.3 69.2±10.0 84.6± 1.1

In-hand Reorientation
Seen 38.1± 2.4 42.1± 2.7 55.7± 1.5 62.2± 5.0
Unseen 33.7± 1.6 35.8± 2.6 53.5± 1.7 55.1± 2.7

Bimanual Hand-over
Seen 8.0 ± 4.4 35.0±10.2 37.7±10.9 45.5± 1.5
Unseen 3.3 ± 1.4 20.7± 6.0 23.1± 7.0 26.6± 1.9

Task Mean
Seen 34.8± 5.8 55.7± 8.8 54.0± 8.5 72.2± 2.4
Unseen 27.8± 5.0 49.2± 9.4 46.1± 8.1 66.8± 2.7
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VT-JointPretrain V-Pretrain T-Pretrain Base

Figure 3: The training process of different modalities in all tasks.

In this section, we first investigate the effect of the tactile information and compare different pretrained
and non-pretrained methods. Then, we study the robustness of methods under different viewpoints,
analyze the impact of the tactile threshold of the pretraining and RL, and investigate the impact of the
tactile noise on the policy learning and deployment, which are important aspects for exploiting the
tactile modality. In all experiments, the metric for all tasks is Success Rate (%). If the dexterous hand
achieves the goals in one episode, it is considered successful. All experiments use 4 random seeds,
and the results are tested 100 times for seen and unseen object. All baselines are described in Sec.4.2.

5.1 EFFECTIVENESS OF TACTILE INFORMATION.

We conduct five groups of experiments in all six tasks. The training process is shown in Fig.3 and the
evaluation results are listed in Tab.2. With the tactile informaiton, T-Pretrain demonstrates significant
improvements over the Base method. Furthermore, compared to the V-Pretrain methods that utilize
only vision, the VT-JointPretrain methods that incorporate extra tactile modality features show
considerably better performance. The results show that incorporating tactile information significantly
improves the learning of manipulation skills, even across different types of tasks.

5.2 BENCHMARKING PRETRAINED AND NON-PRETRAINED METHODS.

Table 3: Success rate (%) for benchmarking different methods.
Method Modality Pretrain Joint pretrain Seen Unseen

T t ✘ - 50.8± 2.5 47.0± 2.1
V v ✘ - 24.0± 3.0 22.2± 2.9
V+T v+t ✘ - 23.6± 2.6 19.3± 2.9

V-MVP v ✔ - 35.2± 2.7 29.4± 2.4
V-Voltron v ✔ - 40.0± 1.9 31.7± 1.5
V-R3M v ✔ - 37.0± 0.7 26.2± 2.1
V-CLIP v ✔ - 61.3± 1.5 49.4± 1.8
V-ResNet v ✔ - 54.1± 0.5 46.8± 0.6
V-MVP+T v+t ✔ ✘ 38.5± 2.5 35.3± 2.3
V-Voltron+T v+t ✔ ✘ 39.8± 2.1 34.7± 2.0
V-R3M+T v+t ✔ ✘ 38.9± 2.1 31.0± 1.5
V-CLIP+T v+t ✔ ✘ 65.4± 1.7 55.9± 1.7
V-ResNet+T v+t ✔ ✘ 55.4± 1.9 44.1± 1.8

V-Pretrain+T-Pretrain v+t ✔ ✘ 62.6± 6.3 53.3± 7.3
VT-JointPretrain v+t ✔ ✔ 74.3± 0.6 65.7± 0.7

We set up three groups of methods for benchmarking in all six tasks, shown in Tab.3. The first
is non-pretrained models, taking only tactile (T), only vision (V), or vision and tactile (V+T) as
input. The second group is the vision-pretrained models used in computer vision and robotics, which
are MVP (V MVP), Voltron(V Voltron), R3M(V R3M), CLIP(V CLIP), and ResNet(V ResNet).
Their features are concatenated with tactile features extracted by the method T to generate visual-
tactile pretrained methods (V MVP+T, V Voltron+T, V R3M+T, V CLIP+T, V ResNet+T). The
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last group is the visual-tactile concatenation method (V-Pretrein+T-Pretrain) and fusion method
(VT-JointPretrain) pretrained with our dataset.

It can be observed that, regardless of whether pretrained or non-pretrained methods are used, most
approaches relying solely on visual inputs show improved performance when augmented with tactile
information. However, directly concatenating tactile features is less effective than joint training
with VT-JointPretrain. Similarly, combining separately pretrained visual and tactile models (V-
Pretrain+T-Pretrain) also yields suboptimal results. In contrast, VT-JointPretrain effectively fuses
visual and tactile signals by masking input modalities and recovering the original signals, leading to
significant performance gains. Additionally, joint pretraining substantially reduces result variance
across different tasks and training random seeds, indicating improved consistency and robustness.

5.3 ANALYSIS OF VISUAL AND TACTILE MODALITIES

In this section, we further study the characteristics of the binary tactile signals of our dataset using
the visual-tactile fusion method VT-JointPretrain in the BottleCap Turning task.

1). Viewpoint adaptability for RL. We study the robustness to changes in perspective by further
testing the camera mounted on the robot arm (*-arm) and a third-person view (*-3rd). *-ego refers
to the perspective used in previous experiments. Tab.4 shows the average success rates for the success
rates under each perspective for seen and unseen objects. Adding tactile information helps to improve
the average success rate and also reduces the variations due to perspectives.

2). Robustness to tactile thresholds for RL. We study the robustness to different tactile thresholds.
We set tactile thresholds to 0.5N (*-50) and 1N (*-100). 0.01N(*-1) is the previous threshold setting.
Similarly, Tab.4 shows the average success rates for the success rates of different thresholds. The
performance of both tactile-only and visual-tactile methods declines as the threshold increases.

Table 4: Success rate (%) of different visual and tactile modalities.

Method
Vision Tactile

Seen Unseenviewpoints thresholds

V-ego (V-Pretrain) ego-centric - 70.8± 7.2 58.5±14.2
V-arm on the arm - 58.2±16.9 58.5±17.0
V-3rd third view - 46.2±17.6 37.4±18.8
VT-arm on the arm 0.01N 78.0± 4.9 73.3± 7.0
VT-3rd third view 0.01N 82.4± 2.3 79.4± 4.2

T-1 (T-Pretrain) - 0.01N 75.4± 2.9 68.6± 5.6
T-50 - 0.5N 60.8± 9.1 48.8±14.4
T-100 - 1.0N 64.3± 5.9 46.6± 9.7
VT-50 ego-centric 0.5N 82.9± 1.2 80.6± 0.2
VT-100 ego-centric 1.0N 74.4± 4.8 65.0± 8.8

VT-JointPretrain ego-centric 0.01N 83.7± 0.9 81.3± 0.5

3). Impact of tactile threshold on pretraining. In addition to the threshold of 0.2V discussed
in the paper, we conduct two additional experiment settings: pretrain VT-JointPretrain using
threshold voltages of 0.55V and 0.75V for real tactile signals to study the sensitivity of the joint
pretraining method to the tactile threshold. According to the calibration data from the tactile glove,
described in A.1 of the supplementary materials, these thresholds correspond to forces of 0.05 N,
0.5 N, and 1 N, respectively. We use these pretrained models to conduct RL training with three
different simulation force thresholds (0.01 N, 0.5 N, and 1.0 N). Tab.5 presents the results of these
experimentsk. The success rate of the policy only declines significantly when the threshold difference
between real data pretraining and simulation RL training is as large as 20-fold (0.05 N vs. 1.0 N).
These results demonstrate that using binary tactile signal is robust to the thresholds used for real data,
and mismatches between the thresholds in real data and simulation.

4). Impact of tactile noise for policy learning and deployment. To assess the impact of tactile
noise on downstream tasks, we add Gaussian noise with standard deviations of 0.01N, 0.1N, and
1.0N to tactile signals, keeping the binarization threshold at 0.01N. We train the policy without noise
and test it under tactile noise (v1) and hysteresis noise (v2) with thresholds ranging from 0.01N to
0.5N. Additionally, we train a policy with tactile signals augmented by Gaussian noise (σ = 0.1) and
test it with varying noise levels (v3). The results (Tab.6) show that models trained without noise are
sensitive to tactile noise during testing, while applying a hysteresis threshold significantly reduces
this effect, suggesting that pretrained models using binary tactile signals can be effectively deployed
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Table 5: Tactile threshold setting for pertaining
Force threshold (N) for RL training

0.01N 0.5N 1.0N

Seen Unseen Seen Unseen Seen Unseen

0.2V (0.05N) 83.7± 0.9 81.3± 0.5 82.9± 1.2 80.6± 0.2 74.4± 4.8 65.0± 8.8
0.55V (0.5N) 80.5± 6.7 77.8± 6.3 85.3± 5.1 82.3± 2.1 82.5± 4.3 81.6± 4.2
0.75V (1.0N) 81.6± 3.5 79.3± 5.1 86.4± 3.8 84.2± 3.0 80.8± 4.4 77.8± 7.2

Table 6: Tactile noise setting for RL
σ=0.01N σ=0.1N σ=1N

Seen Unseen Seen Unseen Seen Unseen

v1 60.3± 7.8 62.7± 6.0 37.0± 10.9 33.7± 6.4 34.4± 10.2 33.5± 8.0
v2 83.8± 1.4 81.2± 0.8 79.1± 1.4 79.9± 2.2 41.2± 10.1 40.7± 4.8
v3 84.6± 4.6 81.7± 9.6 87.1± 4.2 84.6± 7.8 86.8± 5.5 83.8± 8.1

Table 7: Success rate (%) for deploying single modality after joint pretraining to RL
Method V-Pretrain VT-JointPretrain-MaskT T-Pretrain VT-JointPretrain-MaskV VT-JointPretrain

Seen 70.8± 7.2 73.3± 2.9 75.4± 2.9 72.6± 2.7 83.7± 0.9
Unseen 58.5±14.2 65.7± 5.0 68.6± 5.6 66.1± 7.0 81.3± 0.5

in real-world scenarios by adjusting the binarization schedule. Furthermore, introducing noise during
RL training not only improves performance but also enhances robustness to noise. Notice that the
average force is about 10N to 15N for different tasks manipulation. The setting of thresholds and
stand deviations from 0.01N to 1N spans a large range.

5). Deploy single modality to RL after joint pretraining. In this part, we investigate whether
only using one modality after joint pretraining can benefit from the modality fusion. Therefore,
we mask the input visual and tactile modality of the joint pretrained model separately, denoted as
VT-JointPretrain-MaskV and VT-JointPretrain-MaskT. In Tab.7, comparing VT-JointPretrain-
MaskT with V-Pretrain, the fusion algorithm demonstrates superior performance in downstream
tasks when only visual input is provided, indicating the tactile information contributes to the visual
feature extraction during joint pretraining. However, similar distillation is not observed when masking
visual modality. VT-JointPretrain-MaskV even sees a little drop in the success rate.

5.4 REAL-WORLD EXPERIMENTS

The real-world experiment employs a Shadow Hand Sharma et al. (2014) and an Azure Kinect
camera2. To collect tactile data, 20 piezoresistive sensors are attached across the Shadow Hand. The
hardware and control algorithm are integrated via ROS, enabling the collection of environmental
states and observations. To address the Sim2Real gap, a teacher policy is first trained using domain
randomization Tobin et al. (2017) on joint angles, velocities, and actions, with Gaussian noise
(standard deviation 0.1) added to tactile forces before binarization during RL training. This policy is
then distilled into a student policy using Dagger Ross et al. (2011), incorporating augmented visual
inputs. The tactile sensors are evaluated on the Shadow Hand, with 0.2V set as the binarization
threshold. Further details and examples are provided in C of the supplementary material.

Table Reorientation In-hand RLever SlidingFaucet ScrewingBottleCap Turning

(a) (b) (c) (d) (e) (f)

1

2

3

4

Figure 4: Real-world experiments. a) Hardware: 1-Shadow Hand, 2-Azure Kinect camera, 3-Tactile
collection board. 4-Bottle. Deployment to real world: (b-f) BottleCap Turning, Faucet Screwing,
Lever Sliding, Table Reorientation, In-hand Reorientation.

5.5 DISCUSSION, LIMITATION AND FUTURE WORK

Downstream Task Adaptation. Among the six tasks, only the BottleCap Turing task is in the dataset
and the others are unseen tasks. The hand over task is distinct with two hands. Despite the difference,
the model pre-trained with our visual-tactile data VT-JointPretrain performs exceptionally well on
all tasks. This indicates that the visual-tactile pretraining approach not only improves performance
on known tasks but also exhibits adaptability in unknown tasks, particularly in complex manipulation
requiring tactile feedback. As shown in Tab.2, for the first four tasks where visual information of the

2https://azure.microsoft.com/en-us/products/kinect-dk
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objects is prone to blocked by the robotic hands, tactile information significantly enhances model
performance. However, in the last two tasks, where visual information is relatively complete, the
advantages of visual input become more pronounced. The results demonstrates the complementary
nature of visual and tactile information and the joint pretraining via MAE exploits the nature.

Tactile Modality. In the tactile research community, various tactile sensors have been developed and
many of them can capture very high dimensional and dense information like images, e.g. GelSight
Yuan et al. (2017). Pretraining these dense tactile patches and aligning them with images has been
demonstrated effective for downstream tasks like physical reasoning Yu et al. (2024b). However,
they have not been evaluated for dexterous manipulation with complex dynamics and coordination
between fingers. Though not able to capture highly precise force information, tactile signals carry
important information about the coordination between fingers during complex interactions with
objects. We attribute the effectiveness of tactile modality demonstrated in the results to the embedded
coordination information and also complementing images containing occlusions.

Tactile Pretraining. In pretraining, as discussed in 5) of Sec.5.3, vision information fails to transfer
effectively to the tactile modality after joint learning. Unlike the continuity of images and poses,
tactile signals are inherently discrete, reflecting either contact or no contact. Effectively leveraging
this discrete nature remains an open challenge. Our initial exploration focuses on binary tactile
signals; future work must address signals with pressure values, shear forces, sensor sensitivity
variations, and the simulation-to-reality gap, aiming for policies that generalize across tasks. Fully
exploiting tactile signals also requires high-speed, high-fidelity simulations of complex object-sensor
interactions—a major challenge for the field. Additionally, for analysis, the visual-tactile pretraining
method VT-JointPretrain is trained from scratch on our dataset. Integrating large vision-language
models with tactile data presents a promising avenue for enhancing performance.

Cross-Modal Regularization for Dexterous Manipulation. Integrating high-precision tactile
modalities into robotic systems often increases cost and complexity. However, as shown in Tab. 7,
our visual-tactile fusion approach demonstrates that even sparse tactile data can enhance visual
representations by serving as a regularization mechanism. This underscores the potential of tactile
signals to boost efficiency and robustness in multimodal learning. Future research could explore
distilling tactile into visual modalities, achieving similar performance with reduced reliance on
high-precision tactile hardware—lowering deployment costs without compromising accuracy.

Adaptation to Various Tactile Sensors. Learning a manipulation policy with different tactile sensors
is a major challenge in robotics due to the diverse physical principles involved, such as capacitive,
piezoresistive, or optical sensing. Though the pretraining methods evaluated in the work cannot
deal with the original tactile signals, in principle they can work with the binarized tactile signals if
a proper preprocessing thresholding step is applied to the original ones. With the thresholding, the
differences of tactile sensors become a black box to these pretraining methods, and working with
binarized signals mitigates issues like noise, scaling, and sim2real transfer.

Robustness to Tactile Noise. Tactile sensors can produce varying levels of noise when interacting
with objects. MAE-based pretraining methods adopted in this work can mitigate this issue by masking
the tactile signals during pretraining. The models are forced to learn how to infer missing information,
thereby enhancing its robustness to noise and data loss. The denoising effect of MAE is also verified
in Yuda Zou (2024), where MAE is used to denoising the key-point labeling noise.

6 CONCLUSION

In this study, we present the first visual-tactile dataset for complex manipulation skill learning and
introduce a benchmark with six challenging tasks and a reinforcement learning-based framework.
We evaluate 18 pretraining and non-pretraining methods to explore the effectiveness of different
modalities and pretraining strategies for dexterous manipulation, conducting extensive experiments
on various viewpoints, tactile thresholds, and noise levels. The results reveal key insights: 1)
Incorporating binary, sparse tactile information significantly enhances complex dexterous skill
learning, especially when combined with vision pretraining. 2) Joint visual-tactile pretraining shows
strong adaptability to unseen tasks and achieves robust performance across all tasks. 3) Binary
tactile signals exhibit high robustness to threshold variations and tactile noise, helping to mitigate the
sim-to-real gap. Our work provides the support for advancing dexterous manipulation through visual
and tactile modalities. We will release the benchmark and hope it can help find better solutions.
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Bimanual Hand-overIn-hand ReorientationTable Reorientation

Lever SlidingFaucet ScrewingBottleCap Turning

Figure 5: Visualizaiton of manipulation policies on different tasks and objects in the simulation

Table Reorientation In-hand Reorientation

Lever SlidingFaucet ScrewingBottleCap Turning

Bimanual Hand-over

Figure 6: Seen and unseen objects in all tasks. The unseen objects of Faucet Screwing and Lever
Sliding are generated by scaling the seen objects with two different scaling factors (0.9 and 1.1)
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A MORE DETAILS ABOUT THE DATASET

A.1 TACTILE GLOVE

Our glove system in Fig.8 incorporates 20 commercial piezoresistive pressure sensors as
tactile sensing units. For enhanced sensitivity, we utilize an 18.3 mm diameter sensor
on the thumb tip and palm, while the remaining areas are equipped with 10 mm sensors.

Figure 7: Force and voltage testing results

Each sensor’s resistance is converted into voltage sig-
nals through a conversion module, which are then
processed by an STM32 microcontroller. The system
transmits these signals at a rate of 200 Hz to a central
computer via a serial port for data storage.
For calibration, we conducted 15 force tests per sen-
sor using a force/torque (F/T) sensor, applying forces
ranging from 0.5 N to 7.5 N in 0.5 N increments as
shown in Fig.7. Notably, the sliding resistors in the
conversion module are fine-tuned to ensure consis-
tent voltage readings across all sensors for the same
force. And this calibration is applied to both the left
and right-hand gloves. The calibrated force-voltage
function is given by:

U = 0.7216× F 0.5025 + 0.0398 (1)

STM32F205RBT6 

Microcontroller

AD7606 Module

RKXS4040 

Resistance-

voltage 

Conversion 

Module

•Specification: Short tail

•Range: 20g-6kg

•Pin Pitch: 2.54mm
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(Height) * 18mm

•Pin Length: 5mm

Thin Film Pressure Sensor

•Specification: Short tail

•Range: 20g-2kg

•Pin Pitch: 2.54mm

•Dimensions: 24mm 

(Height) * 10mm

•Pin Length: 5mm

Thin Film Pressure Sensor

•Specification: Short tail

•Range: 20g-6kg

•Pin Pitch: 2.54mm

•Dimensions: 32mm 

(Height) * 18mm

•Pin Length: 5mm

Thin Film Pressure Sensor

•Specification: Short tail

•Range: 20g-2kg

•Pin Pitch: 2.54mm

•Dimensions: 24mm 
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•Pin Length: 5mm

Thin Film Pressure Sensor

10 mm10 mm 18 mm18 mm

Figure 8: Hardware specification of data collection and glove force and voltage testing results

A.2 COLLECTION TASKS

Tab.8 shows the task descriptions we collect in our dataset and some demos.

A.3 T-SNE VISUALIZATION

We set 0.2 (the same as the experiment settings in Sec.B.2) to binarize the tactile voltage signals,
converting them into 0-1 contact signals. We perform t-SNE visualization on the binary tactile signals
of each trajectory to further investigate the relationship between tactile combination sequences of
different operational tasks. Due to the varying length of each operation trajectory and the fact that we
rarely care about the relationship between the hand and object before the first contact, we only retain
the trajectory between the first and last contact frames for each operation trajectory. According to the
length statistics in Fig.1(d), we set the length of each trajectory to 500 frames. For trajectories with
insufficient length, we loop the tactile state of the trajectory to reach a length of 500 frames. For any
trajectories with more than 500 frames, we directly delete the extra frames.
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Table 8: Tasks descriptions and demos in the dataset
Collected Tasks Description # Objects # Trajs Examples

PickUp pick up an object and put it down 50 250

BottleCap Turning open or close the bottle cap 30 300

In-hand Reorientation Rotate the in-hand object with
the palm facing up. 20 205

Bowl Unstacking unstack a bowl from another 28 269

Articulated Manipulation Manipulate the object around
the pivot of the hinge. 10 168

Peg-in-hole Insert the plug into the socket
or Remove the plug from the socket 8 153

Water Pouring pour the water into the bowl 10 196

Table-top Manipulation
manipulate the objects on the

table, such as pushing,
rotating, flipping, rolling

10 196

Scissors Manipulation
manipulate tools made using the

principle of levers, such as
scissors, pliers, and clamps,

6 106

Pressing
Pressing a button to perform

certain functions, such as
using a remote control

10 189

B DETAILS OF THE BENCHMARK

B.1 TASK SPECIFICATIONS

In this section, we introduce our visual-tactile dexterous manipulation platform. Due to Isaac
Gym Makoviychuk et al. (2021) (BSD 3-Clause License) supporting GPU acceleration and rendering,
we construct all the tasks in the Isaac Gym environment.

B.1.1 BOTTLECAP TURNING

Description. This task provides a platform for a dexterous hand to learn the skill of rotating bottle
caps. Unlike grippers, a dexterous hand can utilize the coordination among its fingers, leveraging
lateral friction between the fingers and the cap to induce rotation. In this task, we fix all the bottles on
the table, preserving only the rotational freedom of the cap around its own Z-axis. Since rotating
a bottle cap with one hand is also challenging for humans, we are more focused on whether the
manipulation policy can learn the coordination between the fingers to rotate the cap. The objects used
in this task are sourced from the ShapeNet Chang et al. (2015) dataset. Building upon the URDF
files of the objects provided in the work Wang et al. (2023) (CC BY-NC 4.0 License), we add a joint
with a rotational range of 0 to 6.28 radians to the cap. We prepare 10 objects for skill learning and 5
unseen objects for testing. Using various objects for training allows the learned policy to generalize
to unseen bottle caps. This task aims to rotate the bottle cap counterclockwise by one full circle.
Achieving this goal requires the dexterous hand to act twisting the cap with fingers in one episode
repeatedly.

Environment settings. We place the bottle at the center of the table at coordinates (0, 0), with its
height just touching the table surface. We determine the bottle’s height by measuring the furthest
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distance of the bottle mesh along the Z-axis. The robotic arm is positioned at (−0.38,−0.02, h+0.05),
where h is the combined height of the table and the bottle. For this task, the camera parameters are
set as eye = [−0.25, 0.35, 0.5] and lookat = [0.02,−0.02, 0.1]. The damping of the bottle cap joint is
set to 0.1, and all other simulation parameters use default values.

B.1.2 FAUCET SCREWING.

Description. Faucet Screwing is similar to BottleCap Turning. However, when constructing the
task, we introduce distinct designs to ensure the diversity of the tasks. We add taps with handles to
the task so that the hand needs to push the handle with fingers. Additionally, we define the goal of the
task as rotating the tap handle one full circle clockwise, necessitating different finger gaits compared
with the goal of BottleCap Turning. We choose five faucet models with a rotational axis perpendicular
to the ground from the SAPIEN Xiang et al. (2020) (MIT license) dataset for manipulation policy
learning and generate 10 test objects by scaling the taps using two different scaling factors (1.1 and
0.9) to evaluate the generalization of the learned policy. We limit the rotation range of the faucet to
0-6.28 radians.

Table 9: Hand position for different objects
Obj ID Scale Height Euler(zyx) Hand position

886 0.3 0.1 (0, 0, 3.14) (0.32, 0.12, 0.72)
1386 0.3 0.07 (0, 0, 3.14) (0.38, 0.12, 0.74)
2017 0.25 0.0 (0, 0, 3.14) (0.36, -0.01, 0.75)
2095 0.15 0.02 (0, 1.57, 0) (0.37, -0.015, 0.73)
2113 0.3 0.2 (0, 0, 1.57) (0, 1.57, 0)

Environment settings. To place all the
faucets on the table, we scale, rotate and ad-
just the height of different objects. Then, we
rotate the robotic arm using Euler angles (3.14,
0, 1.57) in the ZYX order and place the objects
in different positions for each faucet. The spe-
cific settings for these adjustments are detailed
in Tab.9. We set the damping for all faucet joints
to 0.1 and the friction to 0.5. The mass of each faucet is set to 0.15 kg. For this task, the camera
parameters are set as eye = [0.4,−0.4, 0.5] and lookat = [0, 0, 0.05].

B.1.3 LEVER SLIDING.

Description. The lever sliding task focuses on actions to separate the long hole and the axe.
Without the assistance of arm movement, this task requires the fingers to press or pinch the object
and use wrist motion to slide the axis out. Unlike the previous two tasks, which involve complex
coordination between fingers, this task is a simple coordinated movement where all fingers perform
the same motion pattern. However, it places greater demands on the coordination between wrist
joint and finger movements. In this task, we select five common long-hole and axis combinations
in daily life, including (1) ClampingHanger, (2) DeadboltLock, (3) GasSpring, (4) Padlock, and (5)
TelescopingSlide. We create the CAD models and manually generate the corresponding URDF files.
Due to the varying lengths of the holes in each model, we uniformly define the completion goal for
all models in this task as sliding the axis out by 15 cm. We train with the five objects and, like the
Faucet Screwing task, create 10 test objects by scaling in two sets (1.1 and 0.9).

Table 10: Object settings and hand positions in the Lever
Sliding task.

Obj ID Scale Position Euler(zyx) Hand position
1 0.25 (0, 0, 0.63) (1.57, 0, 0) (0.4, 0.1, 0.71)
2 0.2 (0, 0, 0.67) (-1.57, 0, -1.57) (0.4, 0.08, 0.71)
3 0.12 (0, -0.12, 0.65) (-1.57, 0, 0) (0.4, 0.13, 0.71)
4 0.15 (0, -0.12, 0.65) (0, 1.57, 0) (0.38, 0.08, 0.71)
5 0.15 (0, 0, 0.66) (1.57, -1.57, 0) (0.4, 0.08, 0.72)

Environment settings. In this task, we
rotate the robotic arm using Euler angles
(3.14, 0, 1.57) in the ZYX order and the
scale, positions and rotations of the ob-
jects and the hand position are shown in
Tab.10. We set the force and velocity
limits for the sliding joints to 1, the joint
stiffness to 1, damping to 0.5, and joint
friction to 1.5. We set the surface friction
coefficient of the objects to 1 and their mass to 1 kg. For this task, the camera parameters are set as
eye = [0.3,−0.25, 0.3] and lookat = [0, 0, 0].

B.1.4 TABLE REORIENTATION

Description. Sometimes, when we want to pick up an object from the table, we aim to position it
appropriately before grasping it. In this task, the dexterous hand attempts to rotate the object on the
table while ensuring that it does not topple over. This task rigorously tests the coordination between
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the thumb and the other four fingers, as the object is prone to tipping due to uneven forces. The goal
of this task is to achieve a half-circle rotation of the object while keeping it stable. To ensure that the
skills learned by the dexterous hand can generalize to different objects, we selected 10 objects from
the YCB dataset for training and chose 5 objects for testing.

Environment settings. In this environment, the dexterous hand rotates an object on the table. We
set the table height at 0.6 meters and positioned the robotic hand at (-0.03, 0.4, 0.72), rotated 180
degrees around the Y-axis. The object is initialized at (0, 0.02, 0.67) and freely falls onto the table
after the round begins. All objects have a friction coefficient of 0.8, and their RGB color is set to
(204, 204, 0).

B.1.5 IN-HAND REORIENTATION.

Description. The in-hand reorientation task involves rotating an object with the fingers while
keeping the palm facing upward. The goal is to rotate the object anticlockwise over a large angle
without deviating beyond a specified threshold. This task adds complexity compared to previous
ones, as maintaining an upward-facing palm during rotation increases the risk of the object falling if
not properly stabilized. Rotations over half a circle without exceeding the deviation threshold along
the Z-axis from the target position are considered successful. Due to the frequent changes in the
object’s Z-axis position, the fall condition is relaxed, allowing for a small amount of Z-axis bias. 10
objects from the YCB dataset are used during training, and 5 are used for testing.

Environment settings. Since the table is not involved in this task, it has been removed from the
simulation environment. The robot arm is initially positioned at coordinates (0, 0, 0.5), and the
object is placed at (0, -0.39, 0.56), which aligns it with the center of the robot’s palm. The surface
friction coefficient between the objects and the environment is set to 0.8 to simulate realistic contact
interactions. The masses of the objects are randomly assigned within the range of 0.5kg to 1.5kg
to introduce variability in weight. For this task, the camera parameters are configured with the eye
position at [0.15, 0.15, 0.165] and the look-at point at [0.1, 0, 0.05].

B.1.6 BIMANUAL HAND-OVER

Description. Unlike previous tasks, this is a bimanual manipulation task designed to teach the
dexterous hands the skill of coordination. In this task, one hand throws the object while the other
hand needs to catch it and ensure it does not drop. This requires the dexterous hand to coordinate
finger joints and wrist joints, allowing the object to be thrown in the correct direction and at the
appropriate speed. The catching hand must use its various joints to counteract this speed and stabilize
the object in its grasp. This task includes 8 objects for training and 5 objects for testing.

Environment settings. The task environment consists of two Shadow Hands and an object. The
throwing hand is positioned at (0, 0, 0.5), while the catching hand is placed at (0, -1, 0.5) and rotated
(0, 0, 3.1415) radians in the ZYX order. All objects are initialized at (0, -0.39, 0.54), directly above
the throwing hand. Each object’s mass is set to 0.1 kg, with RGB color set to (204, 204, 0). The target
position for the object is (0, -0.64, 0.54), and the task is considered successful when the catching
hand brings the object close to this target position.

B.2 DETAILS OF REPRESENTATION LEARNING METHODS

B.2.1 VISUAL-TACTILE FUSION MODEL

Inspired by MAE (masked autoencoder) He et al. (2022), we construct a benchmark method to fuse
visual and tactile modalities, which consists of two parts: the fusion encoder and the reconstruction
decoder. Fig.9 shows the framework of our fusion algorithm.

Fusion Encoder The fusion encoder Eθ processes image-tactile data pairs (V,C) to output a
visual-tactile fused representation h, which encompasses three stages: extraction (Eq.2), masking
(Eq.3), and fusion (Eq.4).
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Figure 9: The network structure of VT-JointPretrain

For extraction, the input RGB image V ∈ RH×W×3 is divided and flattened to v ∈ RNv×(P 2·3),
where Nv is the number of image patches and (P, P ) is the resolution of each patch. And we apply
a linear projection ϕθ(·) to image patches v and add 2D sine-cosine positional encoding vpos to
generate image patches embeddings v̄ ∈ RNi×den . The input tactile C ∈ {0, 1}Nc is sliced into Nc

tactile patches, each of which is projected with an MLP layer φθ(·) and add 1D sine-cosine positional
encodings cpos to produce tactile patch embeddings c̄ ∈ RNc×den . den is the dimensionality of the
encoder output. The extraction is described as:

v̄ = ϕθ(v) + vpos, c̄ = φθ(c) + cpos (2)

For masking, we introduce a modality-specific masking function denoted as M(·, γ), where γ
represents the masking ratio for the respective input modality. Utilizing this function, we apply
masking to the image (or tactile) patch embeddings with a given mask ratio γv (or γc). This results
in the output of visible patch embeddings v̄vis ∈ R(1−γv)Nv×den (or c̄vis ∈ R(1−γc)Nc×den). We
specify the masking process as follows:

v̄vis = M(v̄, γv), c̄vis = M(c̄, γc) (3)

For fusion, the main architecture is a transformer encoder TransE(·). We concatenate a learnable
CLS token with visiable patched embeddings (v̄vis, c̄vis). The visual-tactile fusion representation
h ∈ Rs×d = {hCLS , hv, hc} can be defined as:

h = TransE(CLS, v̄vis, c̄vis) (4)

where s = (1− γv)Nv + (1− γc)Nc + 1 and d is the dimensionality of the fusion representation.
hCLS , hv and hc represent latent features of each input.

Reconstruction Decoder Following MAE, the reconstruction decoder Dθ is responsible for re-
constructing masked patches. Firstly, hv, hc and mask tokens m ∈ Rγv×Nv+γc×Nc are fed into a
transformer decoder TransD(·), represented as follow:

{v̂, ĉ} = TransD(hv, hc,m) (5)

where v̂ ∈ RNi×dde (or ĉ ∈ RNc×dde ) is the reconstructed image (or tactile) patch embeddings. dde
is the dimensionality of the reconstructed patch embeddings.

We use an MLP as the visual reconstructor Rθv , which projects v̂ into V̂ ∈ RH×W×3. The tactile
reconstructor Rθc is an ensemble of Multi-Layer Perceptrons (MLPs), where each MLP is utilized
to individually map reconstructed tactile patch ĉi ∈ ĉ = {ĉ0, ĉ1, . . . , ĉNc

} to their reconstructed
representations Ĉi ∈ R1. Thus, the reconstructors are formulated as follows:

V̂ = Rθv (v̂), Ĉ = Rθc(ĉ) (6)
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Table 12: Visual pretrained models used in our benchmark
Pretrained models Method Architectures
CLIP Radford et al. (2021) Contrastive learning Hadsell et al. (2006) ViT-B/16
R3M Nair et al. (2022) Time contrastive learning Sermanet et al. (2018) Resnet-18
MVP Radosavovic et al. (2023) Masked autoencoder He et al. (2022) ViT-Base
Voltron Karamcheti et al. (2023) Multimodal masked autoencoder Geng et al. (2022) ViT-Small
ResNet18 He et al. (2016) Supervised learning Resnet-18

Loss Function Our visual-tactile representation learning algorithm leverages the reconstruction of
invisible patches from visible ones, enabling the integration and interaction of information between
modalities. This process facilitates the learning of semantic associations both within and between
modalities. To evaluate the quality of the reconstruction, we define the following loss function:

L(θ) = λv ·MSE(V, V̂ ) + λc ·MSE(C, Ĉ) (7)

where λv and λc are the loss weight for vision and tactile modality.

Dataset preprocessing. We first trim the first and last 10% of each operation sequence,
retaining the data pairs that include activated tactile signals. Then, we split the dataset
into training and test sets with an 8/2 ratio. The images in the dataset have a resolu-
tion of 420x240. Before feeding the images into the network, we perform a center crop
and resize to a resolution of 224x224. The tactile data is binarized by a threshold (0.2).
We feed the processed visual-tactile data pairs into the network for training and testing.

Table 11: The hyperparameters of
our visual-tactile fusion model

Hyperparameters All Models
Image resolution (H,W ) (224, 224)
Num image patches Nv 196
Num tactile patches Nc 20
Patch resolution (P, P ) (16, 16)
Encoder input dim den 384

Image mask ratio γv 0.75
Tactile mask ratio γc 0.5

Fusion dim d 384
Decoder output dim dde 192

Image loss weight λv 1
Tactile loss weight λc 10

Learning rate 1.5e-4
Batch size 64

Training details Tab.11 lists the hyperparameters used dur-
ing our training. For parameters not listed, we followed the
MAE settings. We trained on our data for 250 epochs in
parallel on two NVIDIA GTX 3090 GPUs, which took ap-
proximately 25 hours. We selected the model from the 210th
epoch for downstream visual-tactile representation extraction.
The other two single-modality pretrained methods using our
data (V-Pretrain and T-Pretrain) also used these parameters but
selected models from the 170th and 310th epochs, respectively.

B.2.2 OTHER PRETRAINED METHODS

We utilize the open-sourced models from these works directly,
with the corresponding model names being ”resnet18”, ”vitb-mae-egosoup”, ”ViT-B/16”, and ”v-
cond+vit-small+sth-sth+epoch-400”. The models we use are listed in Tab.12.

CLIP Radford et al. (2021). The core of the CLIP model is to train a model that understands the
relationship between image content and textual descriptions through a contrastive learning approach.
It is pre-trained on a large-scale dataset of image and text pairs, learning to map visual and text
information into a common feature space. We import the CLIP model into our RL framework by
calling clip.load("ViT-B/16", device=device), which is provided on the Github3.

R3M Nair et al. (2022). R3M employs two contrastive learning objectives: time contrastive
learning and image-language temporal alignment. It leverages the temporal structure of videos,
aiming to maximize similarity between adjacent frames while contrasting frames that are further apart.
Additionally, R3M utilizes language supervision, combining language descriptions with dual-frame
contexts to capture task progression. We import the R3M model into our RL framework by calling
r3m = load r3m("resnet18"), which is provided on the Github4.

MVP Radosavovic et al. (2023). MVP employs the concept of masked autoencoders He et al.
(2022), where parts of the input image are masked, and then a transformer is used to integrate and

3https://github.com/openai/CLIP
4https://github.com/facebookresearch/r3m
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reconstruct the image. We import the MVP model into our RL framework by calling model =
mvp.load("vitb-mae-egosoup"), which is provided on the Github5.

Voltron Karamcheti et al. (2023). Voltron is a framework for language-driven representation
learning from human videos and associated captions. It balances between language-conditioned
visual reconstruction to help in learning low-level visual patterns, and visually-grounded language
generation, which encodes high-level semantics. We import the MVP model into our RL frame-
work by calling voltron.load("v-cond", device="cuda", freeze=True), which
is provided on the Github6.

ResNet18 He et al. (2016). ResNet18 is trained with ImageNet-1k Krizhevsky et al. (2012)
by supervised learning. We import the ResNet18 model into our RL framework by calling
torchvision.models. resnet18(pretrained=True). When using the model, we
removed the final linear layer.

Feature extraction in RL. For all pretrained models, we retain only the visual feature extractor
and freeze all parameters. When using models for the visual modality alone (such as V CLIP),
the extracted visual features are combined with proprioceptive information and feed into the policy
network. For models using visual-tactile modalities (such as V CLIP+T), an additional tactile feature
extracted by an MLP is also input into the network.

B.2.3 NON-PRETRINED METHODS

We use the network structure of ResNet18 to extract image features and an MLP to ex-
tract tactile features, forming three non-pretrained baseline models: T, V and V+T. We use
torchvision.models.resnet18() to load the model.

B.3 RL FRAMEWORK

B.3.1 RL MODELING

We model the dexterous manipulation task as a Markov Decision Process (MDP), defined by a tuple:
(S,A, T ,R, γ). S and A represent the state and action space. The policy πθ : S → A maps the state
space S to the action space A. T : S × A → S is the transition dynamic. R : S × A → R is the
reward function and γ ∈ (0, 1] is the discount factor. Our goal is to maximize the expected discounted
reward J(π) = Eπ [

∑
t=0 γ

tr (st, at)] to train a policy network πθ. We use the PPO Schulman et al.
(2017) algorithm to make the agent learn manipulation skills.

State Space. In all tasks, we define the state as S = {h←Mθ(·),P}. Mθ(·) take the RGB image
Vsim or the binarized tactile signals Csim as input and generate the perceptual representation h. Vsim

is captured by the ego-centric camera in the simulator and Csim is the binarized result of the signal
obtained from the force sensors, with a tactile threshold set to 0.01 N across all tasks. P represents the
proprioceptive information of the dexterous hand, which includes the joint angles and joint velocities
of the hand. We do not incorporate the extra information of the dexterous hand intentionally, primarily
to encourage the manipulation strategy to focus more on visual-tactile perceptual signals. Moreover,
the joint angles and joint velocities of the hand are readily accessible in real-world environments.

Action Space. In all tasks, we utilize the Shadow Hand as the operator, which possesses 24 degrees
of freedom. However, four of these joints are actuated through tendons. We immobilize the arm of the
Shadow Hand, allowing it to complete each task solely with the motion of its fingers. Consequently,
in each task, the action a ∈ R20.

Reward Design of BottleCap Turning. We define the reward function as:

r = λ1rp + λ2rv + λ3rd + λ4rs (8)

5https://github.com/ir413/mvp
6https://github.com/siddk/voltron-robotics/tree/main
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where the position reward rp = min(θjoint, 7.0), the velocity reward rv = clamp(vjoint,−10, 10),
the distance reward rd = exp−10d and the success reward rs = 5. d represents the sum of the
distances from each fingertip to 2 centimeters below the bottle cap. We set λ1 = 0.5, λ2 = 1,
λ3 = 0.5 and λ4 = 1. Especially, if rv > 0 but the tactile sensors are not activated, then λ2 will be
set to 0 when calculating the reward, aiming to encourage the dexterous hand to use the part of the
tactile sensor that makes contact with the bottle cap to generate positive rotation.

Reward Design of Faucet Screwing. The reward function for the faucet is similar to that for the
bottle cap, with the difference being that the contact condition is not considered when calculating
the velocity reward. Additionally, we set a target height for each faucet that we aim for the fingers
to reach. In the Z-axis direction, these target heights are offset from the faucet positions by [-0.02,
-0.01, 0.08, -0.02, -0.01]. d is the sum of the distances from each fingertip to these positions.

Reward Design of Lever Sliding. We define the reward function as:

r = λ1rp + λ2rv + λ3rd (9)

where the position reward rp = θjoint, the velocity reward rv = vjoint and the distance reward
rd = exp−10d1 +exp−10d2 . We set the target position 8 cm away from the center of the object in
the direction of the axis coming out. The d1 is the sum of the distances between the fingertips and
the target position. The d2 is the distance between the palm and the target position. We set λ1 = 1,
λ2 = 2, λ3 = 1.

Reward Design of Table Reorientation. We define the reward function of this task as:

r = λ1rd + λ2rrot + λ3ra + λ4rv + rb (10)

where rd =
[
exp−10d1 , d2

]
contains the distance d1 between the fingertips and the object along the

z-axis and the Euclidean distance d2 to the target in the xy-plane. rrot represents the difference
between the current pose and the target pose of the object. ra = ||a||2 is the action reward and
rv = clamp(ωz,−10, 10) is the velocity reward for the z-axis rotation. rb = 250 is the bonus when

the agent achieves the goal. We set the λ1 =

[
0.25
−10

]
, λ2 = 1, λ3 = −0.0002 and λ4 = 1.

Reward Design of In-hand Reorientation. The reward function is defined as:

r = λ1rd + λ2rrot + λ3ra + λ4rv (11)

where the distance reward rd =
[
exp−10d1 , d2

]
, the absolute rotation rrot, the action reward ra and

the velocity reward rv = clamp(ωz,−10, 10). d1 represents the distance between the fingertips and
the object along the z-axis and d2 is the Euclidean distance to the target in the xy-plane. We set

λ1 =

[
0.25
−10

]
, λ2 = 1, λ3 = −0.0002 and λ4 = 1.

Reward Design of Bimanual Hand-over. The reward function of Bimanual Hand-over is repre-
sented as:

r = rd + rb (12)
where rd = exp−0.2∗(d1∗50+d2). d1 is the Euclidean distance between the current position and the
target position and d2 is the distance between the current pose and the target pose of the object.
rb = 250 is the bonus reward.

B.4 TRAINING DETAILS

For all tasks, we set up 200 environments in Isaac Gym Makoviychuk et al. (2021) to collect
trajectories in parallel. The maximum episode length is 500 for BottleCap Turning and Faucet
Screwing, 250 for Lever Sliding and 600 for other three tasks. Upon each reset, the fixed position of
the robotic arm is perturbed by 1 cm, each joint angle is reset to a random value within -0.05 to 0.05
rad, and the joint velocities are reset to a random value within -0.1 to 0.1 rad/s.

In each step, the camera captures a 224×224 image, or the pressure values from 20 tactile sensors
are binarized using a threshold of 0.01 N. This sensory information is fed into the representation
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extraction model to obtain the representation information. A linear layer maps this representation to a
128-dimensional vector, which is concatenated with another 128-dimensional vector representing
proprioceptive information, also mapped through a linear layer. This combined information is then
fed into the policy network πθ.

Table 13: The hyperparameters of
PPO

Hyperparameters All Tasks
Num mini-batches 4
Num opt-epochs 10

Rollout step 32
Hidden size [1024, 1024, 512]
Activation ELU
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (λ) 0.96

GAE lambda (γ) 0.95
Init noise std 0.8

Desired kl 0.016
Ent-coef 0

Our policy network has hidden layer sizes of [1024, 1024, 512]
and uses ELU Clevert et al. (2015) as the activation function.
The policy network is optimized using the PPO Schulman
et al. (2017) algorithm. Tab.13 shows the hyperparameters of
the PPO algorithm. Although the handover task involves two
hands, we do not use multi-agent reinforcement learning Wang
et al. (2024) to train them. Instead, the policy network directly
outputs the actions for both hands.

We run all experiments for 2000 or 3000 iterations on a device
equipped with an Intel Xeon Gold 6326 processor and an
NVIDIA 3090 GPU. For methods using both vision and tactile
input, training the manipulation policy takes approximately
14 or 21 hours. For methods using only vision input, it takes
about 10 or 15 hours to train the visual manipulation policy.
For methods using only tactile input, training the manipulation policy takes about 4 or 6 hours.
However, for methods without pretraining that include vision, training for 2000 iterations can take up
to a week.

B.5 VISUALIZAITON OF MANIPULATION POLICES

Fig. 5 visualizes the results of RL policy training for different tasks and objects on our manipulation
platform.

B.6 DETAILS OF VIEWPOINT ADAPTABILITY.

Tab.14 represents the 3 different view settings.

Table 14: Viewpoint settings across three tasks
Task Viewpoint Eye Lookat

BottleCap Turning
ego-centric (-0.25, 0.35, 0.5) (0.02, -0.02, 0.1)
on the arm (-0.25, 0.0, 0.5) (0.02, 0, 0.1)
third view (0.25, 0.35, 0.5) (-0.02, -0.02, 0.1)

C REAL WORLD EXPERIEMNTS

C.1 SYSTEM SETUP

In order to evaluate the effectiveness of the trained policy, we established a system comprising a
Shadow Hand Sharma et al. (2014) and an Azure Kinect camera7. To collect tactile data, we attach
20 piezoresistive tactile sensors to each part of the Shadow Hand. We calibrate the tactile sensors
and collect the tactile signals using the same system, described in A.1. We set the tactile threshold to
0.2V for the dexterous manipulation platform. In all tasks, the position of the arm remains fixed.

C.2 SIM2REAL PARAMETERS FOR DIFFERENT MODALITIES

We train a robust policy in simulation by first applying domain randomization to proprioceptive data
and introducing tactile noise. Next, we distill the trained policy into a student policy to handle the
image sim2real transfer.

7https://azure.microsoft.com/en-us/products/kinect-dk
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Bottle1

Bottle2

Bottle3

Figure 10: More BottleCap Turning real experiments with different objects.

For proprioceptive information and actions, there are 24 dimensions of joint angles and 24
dimensions of joint velocities. We apply domain randomization Tobin et al. (2017) to both the
proprioceptive data and the actions. The parameters are shown in Tab.15.

Table 15: Real-world experiment settings
Joint angles & Joint vel (48dim) Actions (20dim)

Noise (mean, std) [ 0, 0.002] [ 0, 0.05]
Correlated noise (mean, std) [ 0, 0.001] [ 0, 0.015]
Operation Additive Additive
Distribution Gaussian Gaussian
Schedule Linear Linear
Schedule steps 40000 40000

For RGB images, we employ various image augmentation techniques and the color of the manipula-
tive objects on real RGB images to address the sim2real problem:

• Pixel randomization. We add uniform noise in the range of [-5, 5] to each pixel indepen-
dently and pixels of values outside the range of [0, 255] are clipped

• Random perspective transformation. We uniformly randomize the offset of the four
corners of the source image with the range of [0, 30].

• Contrast and lightness randomization. The contrast parameter is randomly generated in
the range of [-20, 20] and the lightness parameter is randomly generated in the range of [-30,
30].

• Manipulated object color settings. We set different colors for various objects.

For tactile, we introduce Gaussian noise with standard deviations of 0.1N to the tactile signals,
keeping the binarization threshold at 0.01N as v3 in 4) of Sec.5.3 dose.

C.3 DEPLOYMENT THE ROBUST POLICY IN REAL WORLD

We use ROS to obtain the joint angles and velocities of the Shadow Hand, Kinect to capture the
visual information of the scene, and tactile sensors attached to the hand to collect tactile signals. A
Kinect camera is manually calibrated to match the position and orientation of the simulated camera
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and we crop the RGB images with a size of 224×224×3, which matches the pixel observation size
in the simulation. The tactile sensors capture voltage signals, which are binarized using a 0.2V
threshold. All real-world observations are fed into the trained policy, which outputs actions to control
the movement of the robot hand.

Due to hardware limitations, we only conducted single-hand tasks in the real-world environment.
The qualitative results are shown in Fig.4 and more real experiments about BottleCap Turning can be
seen in Fig.10. For demos, see the supplementary video in the zip file.

Tab.16 provides quantitative results of VT-JointPretrain for each task, with two objects per task. A
trial is considered successful if the goal is achieved within 15 seconds. Trials exceeding the time
limit or resulting in object drops are counted as failures. Each object is tested 10 times.

Table 16: Quantitative results of real-world experiments. We conducted 20 trials for each task.
Tasks BottleCap Turning Faucet Screwing Lever Sliding Table Reorientation In-hand Reorientation

Succ Times 16 14 15 13 10
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