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Abstract

Wave-based imaging techniques play a critical role in diverse scientific, medical, and indus-
trial endeavors, from discovering hidden structures beneath the Earth’s surface to ultrasound
diagnostics. They rely on accurate solutions to the forward and inverse problems for par-
tial differential equations (PDEs) that govern wave propagation. Surrogate PDE solvers
based on machine learning emerged as an effective approach to computing the solutions
more efficiently than via classical numerical schemes. However, existing datasets for PDE
surrogates offer only limited coverage of the wave propagation phenomenon. In this paper,
we present WaveBench, a comprehensive collection of benchmark datasets for wave propa-
gation PDEs. WaveBench (1) contains 24 datasets that cover a wide range of forward and
inverse problems for time-harmonic and time-varying wave phenomena; (2) includes a user-
friendly PyTorch environment for comparing learning-based methods; and (3) comprises
reference performance and model checkpoints of popular PDE surrogates such as Fourier
neural operators and U-Nets. Our evaluation on WaveBench demonstrates the impressive
performance of PDE surrogates on in-distribution samples, while simultaneously unveiling
their limitations on out-of-distribution samples, indicating room for future improvements.
We anticipate that WaveBench will stimulate the development of accurate wave-based
imaging techniques through machine learning.

1 Introduction

Waves are behind imaging modalities as diverse as reflection seismology, medical ultrasound, and X-ray
crystallography. Imaging with waves relies on mathematical models of wave propagation expressed through
partial differential equations (PDEs) called wave equations.

Since conventional numerical PDE solvers are computationally expensive for large-scale problems, recent
research has witnessed a rapid emergence of machine learning-based models to approximate PDE solutions
(Li et al., 2020; Nelsen & Stuart, 2021; Lu et al., 2019; Bhattacharya et al., 2021; Li et al., 2021; Huang et al.,
2021; Wang et al., 2021; Gupta et al., 2021; de Hoop et al., 2022a; Kissas et al., 2022; Brandstetter et al.,
2023). These models, collectively referred to as PDE surrogates, are trained using a dataset of ground-truth
PDE solutions. Properly trained PDE surrogates can offer faster inference speeds compared to traditional
numerical solvers while maintaining accuracy. Realizing this advantage, however, typically requires having
access to high-quality PDE solutions for training purposes.

Indeed, it is hard to overstate the significance of high-quality datasets in the success of modern machine
learning models in computer vision and natural language processing. Similarly, in the case of PDE surrogates,
the importance of high-quality datasets has become evident. Recent efforts focus on constructing high-quality
datasets for PDE surrogates (Lu et al., 2022; de Hoop et al., 2022b; Gupta & Brandstetter, 2022; Takamoto
et al., 2022). These datasets cover a wide range of equations, especially those related to fluid dynamics, such
as Darcy flow, shallow-water, and Navier–Stokes equations (Li et al., 2021; Gupta & Brandstetter, 2022;
Stachenfeld et al., 2022; Holl et al., 2020). However, a comprehensive dataset for a broad family of wave
PDEs is still missing.
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To address the gap, we present WaveBench, an extensive collection of benchmark datasets designed for
wave propagation PDEs. WaveBench includes 24 datasets, encompassing two categories of forward and
inverse problems of acoustic waves: time-harmonic problems and time-varying problems. These datasets are
constructed using open-source software tools hawen (Faucher, 2021) for time-harmonic waves and j-wave
(Stanziola et al., 2023) for time-varying waves. We have made these datasets publicly accessible for re-
searchers to access. Moreover, we provide a PyTorch (Paszke et al., 2019) environment that enables easy
training and comparison between various PDE surrogate models. We also include checkpoints and reference
results for popular PDE surrogates of Fourier neural operators (Li et al., 2021), U-Nets (Ronneberger et al.,
2015), and the U-shaped neural operator (Rahman et al., 2023). By providing these resources, we aim to
foster the development of machine-learning techniques for wave imaging.

2 Background and related work

ML methods to approximate operators described by PDEs. The solution map of a generic PDE can
be written as an operator G† : A → U , where A and U are normed function spaces defined on some bounded
subsets in Rd. We focus on 2D domains, thus d = 2. For instance, G† can be a mapping that converts
PDE coefficients a ∈ A into a PDE solution G†(a) ∈ U . A PDE surrogate Gθ is a data-driven emulator of
the true PDE solution map G†, with θ denoting the model parameters. A PDE surrogate is learned from
a training dataset of input–output pairs {(aj , uj)}N

j=1, where aj ∈ A and uj = G†(aj) are prepared using
conventional numerical solvers. The loss quantifying how well a PDE surrogate with parameters θ fits the
data is formulated as

LN (θ) := 1
N

N∑
j=1

l
(

Gθ(aj), uj

)
,

where the error function l(·, ·) is often chosen as the absolute error l(û, u) = ∥û − u∥U or the relative error
l(û, u) = ∥û − u∥U ∥u∥−1

U (Kovachki et al., 2023). Once trained, the model Gθ yields approximate PDE
solutions, often faster than traditional solvers.

PDEs surrogates. A PDE surrogate Gθ can be parameterized in various ways. Popular choices include
kernel-based models (Kadri et al., 2016; Griebel & Rieger, 2017), random feature models (Nelsen & Stuart,
2021), Gaussian processes Chen et al. (2021), and neural networks (Lu et al., 2019; Kovachki et al., 2023;
Bhattacharya et al., 2021; Wang et al., 2021; Kissas et al., 2022; Brandstetter et al., 2023). Among them,
neural networks represent the current state-of-the-art in empirical performance. Recently, Lu et al. (2022);
de Hoop et al. (2022b); Gupta & Brandstetter (2022); Takamoto et al. (2022) ran a comprehensive numerical
comparison of various models, showing their relative merits in different scenarios. For PDEs discretized on
2D grid meshes, Fourier neural operators (FNO) and U-Nets are highly performant (Takamoto et al., 2022;
Gupta & Brandstetter, 2022); we thus adopt them as baselines.

Bechmarks and datasets for PDEs surrogates. Recent advancements in PDE surrogates have led to
the development of standardized datasets that serve as benchmarks (Lu et al., 2019; Kothari et al., 2020;
Li et al., 2021; Lu et al., 2022; de Hoop et al., 2022b; Gupta & Brandstetter, 2022; Takamoto et al., 2022;
Benitez et al., 2023). These datasets comprise a wide range of PDEs, usually with particular emphasis
on fluid dynamics problems such as Darcy flow, shallow-water, and Navier–Stokes problems. Despite this
impressive variety, there is a noticeable gap in the coverage of wave propagation PDEs. While a few work
apply PDE surrogates on wave problems (Kothari et al., 2020; de Hoop et al., 2022b; Deng et al., 2022;
Benitez et al., 2023), each focuses on a specialized setting. For instance, Kothari et al. (2020) and Deng et al.
(2022) focus on certain time-varying wave problems, and Stanziola et al. (2021); de Hoop et al. (2022b) and
Benitez et al. (2023) concentrate on time-harmonic ones. In contrast, the proposed WaveBench provides
a comprehensive range of wave propagation datasets by considering both time-varying and time-harmonic
problems. Additionally, we cover a wide range of frequency configurations for time-harmonic problems and
take different types of wave speeds into account for both time-varying and time-harmonic problems. To
facilitate model comparisons, we also offer a unified PyTorch environment for comparing and benchmarking
models.
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3 WaveBench datasets

Our proposed WaveBench consists of 20 datasets, divided into two problem categories: time-harmonic
wave problems and time-varying problems.

3.1 Datasets for time-harmonic wave problems

Isotropic GRF 10 Hz 15 Hz 20 Hz 40 Hz
Wavespeed Real parts of pressure fields            at different frequencies

Anisotropic GRF 10 Hz 15 Hz 20 Hz 40 Hz

Figure 1: Visualization of samples from the acoustic time-harmonic datasets. At a fixed frequency
ω, the solver to the Helmholtz equation (1) converts a wavespeed c to a pressure field p(·, ω). Two wavespeed
c are shown in the left-most panels. They are realizations of Gaussian random field (GRF) with an isotropic
kernel and an anisotropic kernel, respectively. The right panels display ground-truth pressure field p(·, ω) at
frequencies ω/(2π) = 10Hz, 15Hz, 20Hz, and 40Hz.

The time-harmonic wave equation describes wave phenomena in the frequency domain. We consider the
propagation of time-harmonic acoustic waves as well as time-harmonic elastic waves.

Time-harmonic acoustic waves. The propagation of time-harmonic acoustic waves is described by the
Helmholtz equation:

−
(

∆ + ω2

c(x)2

)
p(x, ω) = f(x, ω), (1)

where p = p(x, ω) is a pressure field at the angular frequency ω, c is a wavespeed function, and f is a point
source function; throughout this work, our domain is in 2D, that is, x ∈ R2. Figure 1 provides an illustration
of the wavespeed c and pressure field p. The boundary conditions in our study are detailed in Appendix C.

At a fixed frequency ω and source f , the parametric form of the Helmholtz equation describes an operator
G†

helm that maps the wavespeed c to a pressure field p:

G†
helm : c 7→ p(·, ω). (2)

To estimate the operator G†
helm from data, we construct datasets that contain paired wavespeed and pressure

field {(cj , pj)}j . We let the wavespeed c be realizations of Gaussian random fields (GRF) with an isotropic
kernel or an anisotropic kernel. For each wavespeed c, the corresponding ground truth pressure field p
is obtained by solving the PDE using a hybridizable discontinuous Galerkin (HDG) method (Faucher &
Scherzer, 2020) implemented in hawen package (Faucher, 2021). We produce 8 time-harmonic datasets
corresponding to 2 wavespeed types and 4 frequencies. Each dataset contains 49,000 training samples, 500
validation samples, and 500 test samples. For an overview of these time-harmonic datasets, please refer to
Table 2 of Appendix A.

3



Under review as submission to TMLR

Time-harmonic elastic waves. Unlike the acoustic wave problem which models a scalar pressure field,
the elastic case works with the displacement vector field u, written as u = [ux, uy] in 2D. Each component
(ux or uy) is complex-valued. Furthermore, a wave in an elastic medium is associated with two wavespeed
functions cp and cs, corresponding to the P-wave (compressional or primary wave) and S-wave (shear or
secondary wave). We visualize the wavespeeds and the real parts of the displacement fields at different
frequencies in Figure 2. More details of our time-harmonic elastic datasets are provided in Appendix A.2.

P-wavespeed

S-wavespeed

field (real part)

field (real part)

field (real part) field (real part) field (real part)

field (real part) field (real part) field (real part)

Figure 2: Visualization of samples from the elastic time-harmonic datasets. The wavespeeds are
separated into P-waves and S-waves shown in the left-most column. At a fixed frequency ω, the solver
converts wavespeed c to a displacement field u = [ux, uz]. The right panels display these displacement fields
at frequencies ω/(2π) = 10Hz, 15Hz, 20Hz, and 40Hz.

3.2 Datasets for time-varying wave problems

We now turn to the governing equation for acoustic wave propagation in the time domain. The acoustic
wave equation describes the evolution of pressure q = q(x, t) over time under the influence of the wavespeed
c = c(x):

∆q(x, t) − 1
c(x)2

∂2q(x, t)
∂t2 = 0 (3)

This equation is subject to radiating boundary conditions detailed in Appendix B. The time-varying quan-
tity q = q(x, t) in (3) and the time-harmonic quantity p = p(x, ω) in (1) are related: under appropriate
assumptions, q(x, t) can be written as an integration of p(x, ω) in the frequency domain. We consider two
problems that arise from the time-varying wave dynamics: the reverse time continuation and the inverse
source problem.

Reverse time continuation (RTC) problem. The goal of this problem is to determine the initial
pressure of the wave equation (3) based on the final pressure. Let q(·, 0) be the initial pressure, which
propagates over a time span T to reach the final pressure q(·, T ). Note that the final pressure q(·, T ) is
influenced by both the initial pressure q(·, 0) and the wavespeed c in (3). With wavespeed c fixed, the
ground-truth operator that solves the RTC task is represented by

G†
rtc : q(·, T ) 7→ q(·, 0). (4)

We construct the RTC dataset in the form of
(
qj(·, T ), qj(·, 0)

)
j
, with a fixed propagation time T but different

wavespeed types. Figure 3 illustrates samples from these datasets. We consider three types of wavespeed
c (top panels of Figure 3): Gaussian lens and realizations of isotropic and anisotropic Gaussian random
fields. For configuring the initial pressure q(·, 0), we use two approaches. In the first approach, we place
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Isotropic GRFGaussian Lens Anisotropic GRF
wavespeed wavespeed wavespeed
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Figure 3: Visualization of samples from the reverse time continuation (RTC) problems. With a
fixed wavespeed c, the goal of RTC is to map the final pressure q(·, T ) to the initial pressure q(·, 0). The
top-most panels depict three types of wavespeeds c. The left-most panels depict two realizations of initial
pressures q(·, 0). The remaining panels display the final pressures q(·, T ), which are influenced by both the
initial pressure q(·, 0) in its respective row and the wavespeed c in its corresponding column.

boxes or thick lines of random sizes, orientations, and locations in the domain, following the approach in
Kothari et al. (2020). Additionally, to evaluate the out-of-distribution (OOD) generalization performance of
models, we construct test datasets using MNIST images (LeCun et al., 1998) as the initial pressure. The
two bottom rows of Figure 3 display samples from both the in-distribution thick line initial pressure and the
OOD MNIST pressure. Appendix B provides detailed configuration information about the RTC datasets.

Inverse source (IS) problem. In the previous RTC problem, we are given the final pressure q(·, T ) on
the full domain at a terminal time T . However, this assumption is often too strong in applications such as
seismic imaging, where the pressure can only be measured by sensors placed at some portions of the domain
boundary. To address this limitation, we turn to the inverse source (IS) problem. The IS problem aims to
predict the initial pressure q(·, 0) based on pressure measurements taken at certain boundary locations over a
time span [0, T ]. Given a fixed wavespeed c, sensor locations S, and discrete time steps T , the ground-truth
operator that solves the IS task can be expressed as:

G†
is : [q(x, t)]x∈S,t∈T 7→ q(·, 0). (5)

This problem is illustrated in Figure 4. Similar to the RTC dataset, we create random thick lines and use
them as initial pressure q(·, 0). In Figure 4, we visualize samples from IS datasets. The sensor locations S
are fixed to be the upper boundary of the domain. Further details on the configuration of the IS datasets
are provided in Appendix B.
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Isotropic GRFGaussian Lens Anisotropic GRF
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Figure 4: Visualization of samples from the inverse source (IS) problems. At a fixed wavespeed
c, the goal of IS is to map [q(x, t)]x∈S,t∈T (pressure recorded at sensor locations S and time T ) into the
initial pressure q(·, 0). The top-most panels depict three types of wavespeeds c. The left-most panels depict
two realizations of initial pressures q(·, 0). The remaining panels exhibit the sensor records [q(x, t)]x∈S,t∈T ,
which are influenced by both the initial pressure q(·, 0) in its respective row and the wavespeed c in its
corresponding column.

We summarize our 12 time-varying datasets of RTC and IS in Table 3 in Appendix B. Each dataset based
upon the initial pressures of thick lines consists of 9,000 training samples, 500 validation samples, and 500
testing samples. Each dataset based upon the initial pressures of MNIST is for out-of-distribution testing
purposes, comprising of 500 testing samples.

3.3 Dataset accessibility and format.

The datasets are in the beton format of FFCV (Leclerc et al., 2023), which is an open-source software
that provides high-throughput data loading for model training. Our datasets will be accessible on Zenodo
(an open platform for datasets sharing), and the benchmark code will be accessible through our GitHub
repository; links to both will be provided here upon the de-anonymization of our submission.

4 Wavebench Benchmarks

4.1 Baseline models

We provide reference implementations and benchmark performance of PDE surrogates trained on
WaveBench datasets. We focus on U-Nets and FNOs as PDE surrogates, which exhibit high performance
across various PDE problems (Takamoto et al., 2022; Gupta & Brandstetter, 2022).
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Model # parameters Forward pass runtime [s] Backward pass runtime [s]
FNO-depth-4 4.2M 0.011 0.018
FNO-depth-8 8.4M 0.019 0.033
U-Net-ch-32 7.8M 0.006 0.012
U-Net-ch-64 31.0M 0.016 0.031

UNO-modes-12 10.1M 0.024 0.032
UNO-modes-16 17.9M 0.024 0.033

Table 1: Comparison of baseline models. The baseline models include two variants of FNO (Li et al.,
2021) and two variants of U-Net (Ronneberger et al., 2015). FNO-depth-4 and FNO-depth-8 are two FNO
variants with of 4 or 8 hidden Fourier layers. U-Net-ch-64 stands for the standard U-Net that has 64 channels
in its first layer, and U-Net-ch-32 is a smaller variant with all convolutional channels halved. Both UNO-
modes-12 and UNO-modes-16 variants have 3 scales that correspond to domain-discretization of 128 × 128,
64 × 64, and 32 × 32. The UNO-modes-12 model uses [12, 6, 3] Fourier modes for each scale, while the
UNO-modes-16 uses [16, 8, 4] Fourier modes for each scale. The model runtime was assessed using a batch
(8, 1, 128, 128), consisting of 8 samples of 128 × 128 array. The benchmarking procedure involved initial 10
dry runs followed by 100 test runs conducted on an 11 GB NVIDIA GeForce RTX 2080 Ti GPU.

FNO. The Fourier neural operator (Li et al., 2021) represents one of the state-of-the-art models for PDE
data on regular grids. We use FNOs in 2D consisting of 64 hidden channels, 16 Fourier modes, and either
4 or 8 Fourier layers as hidden layers; for the input lifting and output projection parts of FNOs, we use
single-hidden-layer MLPs that consisted of 1x1 convolution with 128 channels. The FNO variants with 4
and 8 hidden Fourier layers are referred to as FNO-depth-4 and FNO-depth-8, whose parameter count and
runtime are summarized in Table 1.

U-Net. The U-Net (Ronneberger et al., 2015) is a convolutional network originally developed for 2D image-
to-image regression problems such as image segmentation. However, its versatility has led to its adoption
in PDE learning tasks (Kothari et al., 2020; Li et al., 2021; Gupta & Brandstetter, 2022; Chen & Thuerey,
2023), both as a component within larger architectures or as standalone model. Remarkably, even as a
standalone model, U-Nets perform well in several PDE modeling tasks, sometimes matching or surpassing
dedicated PDE surrogates such as FNOs (Takamoto et al., 2022; Gupta & Brandstetter, 2022). In our
baselines, we employ either the standard U-Net (Ronneberger et al., 2015), referred to as U-Net-ch-64 as it
uses 64 channels in the first hidden layer, or a smaller variant with halved convolutional channels (referred
to as U-Net-ch-32). Table 1 summarizes their parameter counts and runtime.

UNO. The UNO (U-shaped neural operator) (Rahman et al., 2023) combines U-Net and FNO design
elements. Like U-Net, UNO encodes input into smaller domains and decodes to generate output on greater
domains. UNO’s layers are parametrized with Fourier layers in a way identical to FNOs. We consider two
UNO variants, UNO-modes-12 and UNO-modes-16. For both versions, we use 3 scales on domains 128×128,
64 × 64, and 32 × 32. UNO-modes-12 uses Fourier modes of [12, 6, 3] for each scale, and UNO-modes-16 with
[16, 8, 4] for each scale.

Training protocol. We trained and tested the baseline U-Net, FNO, and UNO models using the 20
datasets described in Section 3 and summarized in Table 2 and Table 3 in the appendix. For all datasets, we
trained all models for 50 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019). The learning rates
were initially set to 1e-3 and then annealed to 1e-5 using the cosine annealing (Loshchilov & Hutter, 2017).
We employed the relative L2 loss for training and evaluation in all our problems, following the approach
in Li et al. (2021); de Hoop et al. (2022b). Since all datasets were divided into training, validation, and
test splits, we monitored the model’s generalization performance on the validation split during training. We
selected the model that performed the best on the validation split for the evaluation of the test split. All
experiments were conducted on an 11 GB NVIDIA GeForce RTX 2080 Ti GPU.
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Figure 5: In-distribution test performance of models on a acoustic time-harmonic dataset. The
model is trained and tested on splits of the acoustic time-harmonic dataset with isotropic GRF wavespeed
and frequency ω/2π = 40Hz. The input wavespeed c and real part of the ground-truth pressure field are
shown in the top panels, cf. Equation (1). The middle panels show the predictions from 4 different models.
The bottom panels show the relative error |p(·, ω) − p̂(·, ω)| / ∥p(·, ω)∥L2 between the predicted pressure p̂
and the ground-truth pressure p.

In the following sections, we present empirical results on a subset of WaveBench datasets. Additional
visualizations and complete qualitative results are provided in Appendix A and B. Due to space limitations,
we present results for PDE surrogates of FNOs and U-Nets here in the main text; UNO variant outcomes
are in the appendix. In most experiments, UNOs outperform some U-Nets but not the best FNOs.

4.2 Performance of baseline models on time-harmonic datasets

In-distribution performance. Figure 5 illustrates the performances of models applied to the time-
harmonic dataset with isotropic GRF wavespeeds and frequency 40 Hz. All models are trained using the
training split of the dataset; the figure presents results based on a sample from the test split. All PDE
surrogates produce visually comparable predictions. However, the error fields (the third row of Figure 5)
show that two FNO variants produce smaller errors in comparison to U-Nets.

Numerical values of the errors are provided in Table 4 in the Appendix C.

Out-of-distribution (OOD) performance. While FNOs and U-Nets produce both visually and nu-
merically appealing results for in-distribution samples, their out-of-distribution (OOD) test results clearly
indicate room for further improvements (Figure 6). In this experiment, we trained models on a time-harmonic
dataset with isotropic GRF wavespeed and evaluated them on the anisotropic version of the dataset. This
setup presents a greater challenge, as models that can successfully solve it presumably must capture a greater
extent of the physics of wave propagation. The results demonstrate that PDE surrogates generally perform
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Figure 6: OOD test performance of models on an acoustic time-harmonic dataset. Here, the
model is trained on the time-harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 40Hz,
but tested on the anisotropic version instead.

over 5 times worse in OOD tests compared to in-distribution tests in the metric of relative L2 error (Table 5
in the Appendix C).

4.3 Performance of baseline models on time-harmonic datasets

Recall that WaveBench contains two time-varying wave problems: reverse time continuation (RTC) and
the inverse source problem (IS). Here in the main text, we report the model performances on the more
challenging IS problem. Full results of both problems can be found in Appendix E.

Figure 7 provides a visual performances comparison of PDE surrogates on the IS dataset that uses isotropic
Gaussian Random Field (GRF) wavespeeds. Both U-Nets and Fourier neural operators yield comparable
results on in-distribution samples. U-Nets slightly exceed FNOs in performance, though the margin is narrow
(Table 7 in Appendix E). The outputs from both models are within reasonable expectations.

However, when it comes to OOD samples, both models introduce artifacts, leading to inaccuracies in re-
constructing the target. This can be seen in the third row of Figure 7. There, U-Nets generate outputs
with box-like patterns, which are derived from the training data; FNOs struggle to accurately reproduce the
smooth contour of the OOD target. It is worth noting that similar artifacts can be consistently observed
across all time-varying datasets (Appendix E).

5 Discussion

This paper introduces WaveBench, a comprehensive repository of 24 benchmark datasets designed for
wave PDEs. The datasets cover a broad range of wave-related problems, including time-dependent prob-
lems derived from the wave equation and time-harmonic problems derived from the Helmholtz equation.
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Figure 7: Test performance of models on the time-varying IS dataset with isotropic GRF
wavespeed. The first row shows the input and target samples of the IS dataset; they can be either
in-distribution or OOD. The second row shows the model predictions on the in-distribution sample. The
third row shows the model predictions on the OOD sample.

WaveBench serves two purposes: providing a data source for machine learning for wave problems and
providing a user-friendly PyTorch environment for training and evaluating PDE surrogate models.

After evaluating PDE surrogates on the WaveBench datasets, we have identified several recurring patterns.
Firstly, across all datasets, U-Nets and FNOs showed remarkable capabilities in approximating wave prop-
agation for in-distribution data. The larger models, such as FNO-depth-8 and U-Net-ch-64, outperformed
their smaller counterparts like FNO-depth-4 and U-Net-ch-32. This shows the potential advantages of em-
ploying high-capacity models to tackle challenging PDE problems, assuming the existence of abundant and
high-quality PDE data.

However, the performance of PDE surrogates declines significantly when moving from in-distribution to out-
of-distribution (OOD) samples. This implies that although these models learn statistical patterns from the
data, they do not capture the wave-propagation physics present in the data. Given the importance of OOD
generalization in the practical use of wave-based techniques in exploratory scientific applications like seismic
imaging and medical imaging, future PDE surrogates that have the capability to learn wave-propagation
physics from data are highly sought-after.

Limitations. While WaveBench contains a broad range of wave propagation PDE problems, we note
that all WaveBench datasets are presently simulated on 2D domains. A simulation of wave propagation
within a 3D domain could provide a more realistic and challenging setting for applying PDE surrogates. At
the same time, preparing such a dataset is computationally much more demanding. We leave this aspect for
future work.
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