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Abstract

This paper challenges the recent paradigm in atomic property prediction that links progress
to growing dataset sizes and computational resources. We show that pretraining on a care-
fully selected task-aligned dataset can match or even surpass large-scale pretraining, while
using only 1/24th of the computational cost. We introduce the Chemical Similarity
Index (CSI), a simple metric for molecular graphs inspired by the Fréchet Inception Distance
in computer vision, which quantifies the alignment between upstream pretraining datasets
and downstream tasks. By selecting the most aligned dataset with minimal CSI distance,
we show that models pretrained on a smaller, focused dataset consistently achieve better
performance on downstream tasks than those pretrained on massive, mixed datasets such as
JMP. This holds even when the mixed dataset includes the upstream dataset most aligned
with the downstream task. Counterintuitively, we also find that indiscriminately adding
more data can degrade model performance when the additional data is poorly aligned with
the target task. Owur findings highlight that quality often outperforms quantity in
pretraining for atomic property prediction.

1 Introduction

Machine learning is transforming molecular modeling, driving advancements in accurate predictions and
simulations of molecular behavior (Chanussot et al., 2021} [Tran et al., |2023; [Liao et all [2023). These
breakthroughs directly impact the acceleration of progress in crucial fields such as drug discovery (Huang
et al} |2021) and global climate change mitigation (Sriram et al., 2024). The improvements in this field have
been primarily attributed to innovations in model architectures (Liao et al., 2023} |Gasteiger et al., [2021}
Passaro & Zitnick, |2023)) and the growing availability of large-scale molecular datasets. In recent years, the
sizes of molecular datasets have increased dramatically - from tens of thousands of examples (Christensen
& Von Lilienfeld) 2020; (Chmiela et al., |2023; Wu et al., [2018) to hundreds of millions (Chanussot et al.,
2021} Tran et al 2023). This rapid growth in scale has also caused a surge in the computational resources
required for pretraining, increasing from a few days on a single GPU to over a thousand GPU-days (Shoghi
et al.| |2023; |[Liao et al., [2023). This trend begs the question:

Is scaling data and resources the only path forward in atomic property prediction, or can
intelligent data selection achieve similar performance more efficiently?

While data selection strategies for pretraining have been explored in fields like natural language process-
ing (Penedo et al. [2024) and computer vision (Hammoud et all [2024; Li et all [2023)), this area remains
largely underexplored in atomic property prediction, where unique challenges arise. In this paper, we chal-
lenge the prevailing assumption that "bigger is better' by exploring whether a smaller, strategically selected
dataset can lead to comparable or even superior performance while substantially reducing computational
demands. We introduce a pretraining paradigm that shifts the focus from data and compute scaling to
selecting the most relevant upstream dataset for improved downstream performance.

Through a simple baseline, our experiments reveal two key insights: (1) Competitive Performance Can
Be Achieved with 24x Fewer Resources: Selecting upstream datasets based on their alignment with
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Figure 1: Pretraining on a High-Quality, Task-Aligned Dataset. Pretraining on a carefully selected
high-quality dataset achieves comparable or superior mean absolute error (MAE) across tasks while reducing
computational cost by a factor of 24 compared to JMP-S, which is pretrained on all upstream datasets. Lower
MAE indicates better performance.

the downstream task achieves performance on par with or exceeding that of large-scale pretrained models like
JMP (Shoghi et al.| 2023 while utilizing only 1/24th of the computational resources, as shown in Figure
(2) Quality Outperforms Quantity: Expanding the pretraining dataset by incorporating additional data
from less aligned sources can negatively impact downstream performance rather than enhance it.

To explore the potential of dataset selection for pretraining in atomic property prediction, we introduce the
Chemical Similarity Index (CSI), a simple metric inspired by the Fréchet Inception Distance (FID) from
computer vision. CSI measures the alignment between an upstream dataset and a downstream task, en-
abling the selection of chemically relevant pretraining data. By focusing on these highly relevant datasets,
we significantly reduce computational costs while maintaining competitive performance and, in many cases,
achieving improvements. While large-scale datasets like OC20 (Chanussot et al., 2021 |Tran et al [2023) and
mixed datasets like JMP (Shoghi et al.l [2023]) are popular choices for pretraining in molecular domains (Kol-
luru et al., [2022; [Shoghi et al. 2023]), our findings challenge their universal utility. Surprisingly, pretraining
on a single, carefully selected dataset guided by CSI often outperforms models trained on mixtures, even
when those include the most relevant dataset.

The contributions of this paper are threefold: (1) We introduce a novel framework for computationally
efficient pretraining of molecular machine learning models, demonstrating that strategic data selection can
match or outperform models trained on much larger datasets. (2) We propose the Chemical Similarity Index
(CSI), a metric for assessing the alignment between upstream and downstream molecular datasets, enabling
effective dataset selection. (3) We provide an extensive empirical evaluation demonstrating the effectiveness
of our approach, offering a practical and efficient alternative to the current trend of ever-increasing data and
computational costs in molecular machine learning.

2 Related Work

Pretraining for Atomic Property Prediction. Inspired by the success of pretraining in computer vision
and natural language processing, pretraining for atomic property prediction has gained significant attention
in recent years. Most approaches in molecular machine learning focus on self-supervised learning (Liu et al.,
2021} |Jiao et al.,|2023; (Chen et al.| 2021} |[Kolluru et al., [2022;|Zhou et al., [2022a; |Ji et al.,|[2024)), as generating
labels for molecular datasets is computationally expensive. In contrast, fewer studies explore the effectiveness
of supervised transfer learning (Smith et al. [2019; 2018; [Kolluru et al., 2022)). However, in both self-
supervised and supervised settings, the focus has primarily been on improving feature representation, often
overlooking the impact of pretraining dataset relevance on downstream performance. Recently, [Shoghi et al.
(2023) introduced Joint Multi-domain Pre-training (JMP), enabling pretraining on various upstream sources
concurrently. While effective, JMP pretraining requires enormous computational resources to reproduce and
does not reveal how each upstream source impacts downstream performance. Our work addresses this
gap by systematically studying the relationship between upstream pretraining datasets and downstream
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performance, enabling researchers to develop effective pretraining models even with limited computational
resources.

Computational Budgeting. Recent research highlights the importance of studying model performance
under computationally budgeted setups. In continual learning (CL), works by [Prabhu et al.| (2023) and
Ghunaim et al| (2023) show that simple baselines often outperform state-of-the-art methods in compute-
constrained settings. TiC-CLIP (Garg et al.l [2024) further demonstrates efficient rehearsal-based training
for time-continuous data. For Vision Transformers, Pan et al.| (2022)) propose a framework to dynamically
control model complexity during training, achieving competitive performance under varying budgets. |Li
et al.| (2019)) formalize budgeted training, showing that budget-aware learning rate schedules, such as linear
decay, are critical for robust performance across tasks like image classification and object detection. In
multi-domain learning, Berriel et al.|(2019) introduce Budget-Aware Adapters, which reduce computational
complexity while maintaining accuracy by selecting relevant feature channels. These findings across domains
emphasize the critical need for more efficient approaches that can achieve competitive performance while
minimizing computational costs.

Data Selection. Efficient training through data selection has been explored via two primary approaches:
subset selection and dataset distillation. Subset selection aims to identify a representative subset of the
training data that matches or even outperforms training on the full dataset. Several methods have been
proposed for vision and NLP tasks (Attendu & Corbeil, [2023; Killamsetty et al. [2021afb; [Kaushal et al.
2019; |Bairi et al.,|2015; Lapedriza et al.,2013)). Dataset distillation, introduced by [Wang et al.| (2018), focuses
on generating a smaller, synthetic subset of the dataset that preserves performance while reducing training
time and storage requirements. Subsequent work has explored techniques such as meta-learning (Zhou et al.|
2022b; Nguyen et al., [2021ajb)), gradient matching (Zhao et al., [2021), and distribution matching (Zhao &
Bilen| [2023). While most research in distillation has focused on vision tasks, a few studies have extended it
to graph data (Jin et al., |2022b; [Liu et all |2022; |Jin et al., 2022a)), though primarily targeting knowledge
and social graphs rather than molecular graphs.

Two recent vision studies are particularly relevant to our work. First, Hammoud et al.|(2024) shows that
increasing pretraining data diversity enhances performance only when distribution shifts between upstream
and downstream tasks are minimized. Second, |[Li et al.| (2023) introduces a method to dynamically leverage
the open web, reducing the distribution gap between upstream and downstream tasks through targeted
representation learning. Findings from other domains suggest that aligning upstream datasets may be
crucial for effective pretraining.

Comparison to Our Work. To the best of our knowledge, no prior work has specifically explored upstream
dataset selection for molecular graphs, which present unique challenges due to their structural and chemical
complexity. In this work, we take the first step in addressing this gap by focusing on aligning upstream and
downstream distributions at the dataset level rather than subselecting at a sample-wise level or creating a
synthetic distilled version of the dataset.

3 Formulation and Setup

In this section, we present our problem setup, notion of a computational budget, and the formulation of
dataset similarity. We then detail how we adapt the Fréchet Inception Distance (FID) to the molecular
domain, yielding the Chemical Similarity Index (CSI). Our setup is illustrated in Figure[2] Throughout this
work, we use the term ’molecular’ broadly to encompass both molecular and materials domains, as well as
their respective datasets.

3.1 Formal Setting

Upstream and Downstream Datasets. Let {Dq(}), 132), o ,D&K)} denote a collection of K upstream
(pretraining) datasets, each containing molecular structures paired with relevant atomic properties (e.g.,
energies and forces). In the typical paradigm, upstream datasets are typically aggregated into a single
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Figure 2: Pipeline Overview. Our paradigm for pretraining and finetuning consists of two new components:
(1) Dataset Selection Stage, where a distance metric ¢ is employed to identify the dataset that is most similar
to our downstream task dataset Dy, in this case D&l). This selected dataset is then used for pretraining

the model. (2) Limited Budget Pretraining, where we impose a training budget by subsampling N random
samples from D ) and tralmng the model for £ epochs. This results in a computational budget of C = £ x N

The pretrained backbone 9b * i subsequently finetuned on the downstream task dataset Dy to obtain the
final model parameters 0.

pretraining set:
K

D, = JDY. (1)
i=1
We further define Dy as the downstream dataset, which focuses on a specific prediction task (e.g., predicting
an atomic property).

Multi-task Pretraining. We consider a neural network ®(-; 6), where 6 encompasses the shared backbone
parameters 6, and task-specific head parameters 6, (for energy prediction) and 6; (for force prediction).

During pretraining, the network is trained to simultaneously predict energies and forces. Formally, the
()

multi-task pretraining objective over an upstream dataset D,,’ is given by:
0 = arg min Lpretsain (05 DY), (2)
where § = {6, 6.,60;} and
Loretrain(0; DY) = & Lonergy (06,03 D) + 5 Lrorces (05, 073 DY) (3)

We compute Lenergy using the Mean Absolute Error (MAE) and Liorees using the mean per-atom Euclidean
(L2) distance. Coefficients « and 8 weight the importance of energy and force tasks, respectively. Following
the JMP paper (Shoghi et al., [2023), we set 8 > « to prioritize accurate force predictions in atomistic
modeling. Pretraining can be performed on either the joint upstream dataset D,,, similar to JMP (Shoghi
et al.l |2023)), or on an individual upstream dataset D,(f), as in our selective setting.
Fine-Tuning. After the multi-task pretraining phase, the task-specific heads . and 6y are discarded, and
a new task-specific head 6} is attached to the pretrained backbone #,. The downstream objective then
becomes: 4

92 = arg 5?102 £ﬁnetune(9b7 eh; 91(72)*7 Dd)a (4)

where Géi)* denotes the pretrained backbone parameters from Eq. . Intuitively, the downstream training
refines the shared backbone parameters 6, and learns the task-specific head 6, to capture the target property
in Dd.

In this paper, we consider two additional needed definitions for this setting: (1) computational budget and
(2) dataset similarity.
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Computational Budget. Following|Hammoud et al.|(2024)), we define the computational budget C to be
the product of the number of epochs £ and the number of unique samples A in the pretraining dataset:

C =E& x N. (5)

Hence, the computational budget C represents the total number of samples processed over training. It
naturally splits into two factors: the dataset size (N') and the number of passes through it (£). The choice
of C depends on the available computing resources. In our main experiments, we fix C, A/, and £ to ensure
a fair comparison across different upstream datasets. We also include experiments in which A (and thus C)
varies, in order to analyze the impact of dataset size and total compute on downstream performance.

Dataset Similarity. A key objective of this work is to estimate how well an upstream dataset D,, aligns
with a downstream dataset D,;. We therefore seek a distance metric
6(Dua Dd)

that quantifies their alignment or “similarity.” In principle, a lower value of §(D,,Dy) reflects a higher
degree of alignment between the upstream and downstream distributions. Thus, among multiple candidate

upstream datasets {D&l), . ,ZD,SK)}7 the one that minimizes
argmin § (’Dq(j) , Dd)
1<i<K

should provide the most effective pretraining for Dy. In this paper, we empirically test this assumption,
examining whether lower §-values indeed correlate with improved downstream performance. Motivated by
this, we use ¢ as a principled metric to guide dataset selection for Eq. . Instead of aggregating all
upstream datasets, we modify the pretraining setup to use only the single dataset Dl(f) that best aligns with
the downstream task under a fixed computational budget.

3.2 The Chemical Similarity Index (CSI)

Recap of FID. Our proposed Chemical Similarity Index (CSI) draws its inspiration from the well-known
Fréchet Inception Distance (FID) (Heusel et all |2017)). Recall that FID is commonly used in computer
vision to compare two sets of images via their feature distributions. Specifically, if one extracts features
(e.g., from an Inception network) for datasets X and Y and denotes their empirical means and covariances
by px,>x and py, 2y, then

FID(X,Y) = |ux — uy|? + Tr(ZX 4+, — 2(2X2y)1/2). (6)

The central idea is to represent each sample in a feature space where distances encode semantic similarity
and then compare the distributions of these representations for the two datasets.

To adapt FID for graph-structured molecular data, we compute the CSI metric using node embeddings as
features and apply class-balanced sampling to ensure representative coverage of molecular types in each
upstream dataset. For computational feasibility, we subsample 10k instances from both the upstream and
downstream datasets. To keep the metric independent of the baselines evaluated in this study, we extract
features using EquiformerV2 (Liao et al., [2023) pretrained on OC20 (Chanussot et al., [2021]).

CSI Between Upstream and Downstream Results. In Figure 3] we present the CSI values for pairs
of upstream and downstream tasks related to energy and force predictions, with additional details about
the datasets and targets provided in Section {4} ANI-1x (Smith et al., |2020) consistently achieves the closest
alignment across all downstream tasks, reflecting its design goal of maximizing chemical diversity. Transition-
1x (Schreiner et al.l |2022)), which focuses on transition states, shows as the second most aligned dataset,
suggesting that its emphasis on high-energy transition states leads to partial overlap with downstream
distributions. In contrast, the catalysis datasets, OC20 (Chanussot et al., 2021) and OC22 (Tran et al.,
2023)), exhibit the weakest alignment. While OC20 and OC22 are often favored for pretraining (Shoghi
et al., 2023 Kolluru et al., 2022) due to their scale and chemical diversity, our metric suggests they may not
align well with the considered downstream tasks. Next, we examine whether these alignment values correlate
with downstream performance.



Under review as submission to TMLR

ANI-1x B Transition-1x I 0C20 H 0C22

3001

2007

CSI

100}

MD22 SPICE QM9
Downstream Dataset

Figure 3: Alignment Between Upstream and Downstream Using CSI. We assess how well the
extracted representations from each upstream dataset align with downstream tasks using our CSI metric,
where lower values indicate stronger alignment. ANI-1x demonstrates the closest feature alignment with
downstream tasks, whereas OC20 and OC22 show the weakest alignment.

4 Experiments

We evaluate the impact of pretraining on different upstream datasets for downstream performance and
investigate how well the CSI values in Figure [3] reflect the relevance of these datasets. We begin by defining
the datasets, baselines, and evaluation setup.

Upstream Datasets: Following JMP (Shoghi et al.,[2023), we perform pretraining on upstream datasets of
small molecules, including ANI-1x (Smith et al. |2020]) and Transition-1x (Schreiner et al., 2022), as well as
large-scale catalysis datasets, OC20 (Chanussot et all [2021)) and OC22 (Tran et al., 2023)). These datasets
vary in domain focus and graph size, enabling us to examine how these factors impact the generalization
of pretraining across downstream tasks. The ground-truth labels, energy and forces, are computed using
Density Functional Theory (DFT).

Downstream Datasets: For downstream evaluation, we focus on in-distribution (ID) tasks involving energy
or force prediction, following the definition in JMP (Shoghi et al) 2023). We discuss out-of-distribution
(OOD) tasks in Section [} Given the large number of pairs for ID evaluation, we focus on the first molecule
for force tasks and the energy target for the multi-property dataset QM9 (Wu et al) [2018). The selected
targets and their corresponding datasets are: Aspirin in rMD17 (Christensen & Von Lilienfeld, 2020)), Ac-
Ala3-NHMe in MD22 (Chmiela et all [2023)), solvated amino acids in SPICE (Eastman et al., |2023)), and Uy

in QM9 (Wu et al] 018).

Baselines: We report the original performance of JMP, where "JMP-S" and "JMP-L" correspond to the
small and large backbones, respectively. Additionally, we present our reproduced fine-tuning results using
the official JMP checkpoints, denoted as "JMP-S™" and "JMP-L"".

For our budgeted evaluation, we present results in two categories: pretraining on a single upstream dataset
and pretraining on a joint combination of all upstream datasets. For single-dataset experiments, we randomly
sample N instances from the original upstream data. For joint pretraining, we construct the training set
using two different strategies. (1) Balanced Sampling, where an equal number of samples is drawn from each
of the four upstream datasets, totaling N samples; and (2) Temperature-Based Sampling, which preserves
the dataset proportions used in the full 120M sample set of JMP (Shoghi et al., [2023).

Evaluation Setup: We pretrain the GemNet-OC-S model (Gasteiger et al., |2022) on each individual up-
stream dataset, as well as on joint configurations that combine all upstream datasets, following the baseline
setups. For our main experiments, we set a fixed computational budget of C = 10M, achieved by training
on N = 2M samples for & = 5 epochs. This budget ensures accessibility and reproducibility, with each
pretraining run completing within 1 to 2 days on an A100 GPU. This represents a 24x reduction in com-
putational cost compared to the pretraining budget used in JMP (Shoghi et al. [2023). Additional budget
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Table 1: In-Distribution Evaluation for energy and force targets. We report test MAE when fine-
tuning on downstream targets, as detailed in Downstream Datasets (Section . The top section represents
models pretrained with the large-scale JMP budget, while the lower two sections show results under a limited
budget. JMP-S™ denotes reproduced results.

C Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A)  (meV/A)  (meV)
JMP-L (GemNet-OC-L) 5.1 1.92 4.75 2.9
240M  Joint (Temperature)  JMP-S (GemNet-OC-S) 6.7 2.64 5.71 3.3
JMP-S™(GemNet-OC-S) 6.8 3.21 5.60 3.4
ANI-1x 5.4 2.90 5.13 2.9
Transition-1x 10.1 3.73 7.55 3.2
1M 5020 GemNet-0C-5 14.6 4.53 8.74 4.8
0C22 16.0 5.20 10.73 5.7
Joint (Balanced) 9.4 3.62 7.02 3.2
10M Joint (Temperature) GemNet-OC-S 11.0 4.03 7.98 3.6

configurations are explored in later sections and the appendix. Fach pretrained model is then fine-tuned
separately on each downstream task.

4.1 Does CSI Correlate with Better Performance?

In Figure [3] we presented CSI values quantifying the alignment between each upstream and downstream
dataset. The results indicate that ANI-1x exhibits the highest alignment to all downstream datasets. This
finding raises a critical question:

Can CSI reliably guide the selection of pretraining datasets to achieve optimal performance
on specific downstream tasks?

Table [I] summarizes the downstream performance of models pretrained on different datasets in the in-
distribution setting. Surprisingly, the model pretrained on ANI-1x, despite being the smallest dataset,
consistently outperforms all other individual datasets as well as the joint variants. For instance, on the
rMD17, SPICE, and QM9 datasets, the model pretrained on ANI-1x achieves MAEs of 5.4, 5.13, and 2.9,
compared to 6.7, 5.71, and 3.3 for JMP-S. This strong performance is achieved with less than 5% of the
pretraining computational budget used by JMP-S. In contrast, and consistent with our CSI scores, pretraining
on the least aligned upstream datasets, such as OC20 and OC22, leads to the worst downstream performance
compared to ANI-1x.

Furthermore, temperature-based joint training, which follows the JMP formulation and emphasizes high-CSI
datasets such as OC20 and OC22, performs worse overall. Balanced joint training offers a slight improvement
by including a higher proportion of samples from the more aligned datasets ANI-1x and Transition-1x, yet
remains inferior to individual pretraining on ANI-1x. These results suggest that, under a limited budget,
mixing upstream datasets with varying CSI values is suboptimal and requires significantly more computa-
tional resources to achieve competitive performance.

Takeaway. Our experiments reveal three key insights for in-distribution downstream tasks: (1) Task-aligned
upstream datasets such as ANI-1x outperform larger joint datasets, even when ANI-1x is part of the joint
composition. (2) Joint pretraining can match the benefits of highly relevant pretraining, but it requires
significantly more compute and training time. (3) CSI effectively predicts downstream performance, as
lower CSI values (e.g., ANI-1x) consistently correlate with better results.

4.2 What is the Effect of Computational Budget?

Building on our earlier findings, we now investigate how varying the computational budget impacts down-
stream performance. Specifically, we ask:
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Figure 4: Effect of Computational Budget on Performance. While fixing the number of epochs
(&) to 5, we vary the number of training samples across N' = 0.5M, 1M, 2M, and 3M. Our findings are
consistent across budget levels where the upstream dataset with the lowest CSI yields the best downstream
performance.

Do our findings about dataset alignment in terms of CSI hold across different budget levels?

Figure |4| shows the downstream MAE across pretraining budgets of 0.5M, 1M, 2M, and 3M samples (each
trained for 5 epochs). Pretraining on ANI-1x consistently yields the best downstream performance across all
budget levels, reinforcing the importance of task-aligned, low-CSI datasets. We observe that increasing the
budget for ANI-1x beyond 2M tends to offer diminishing returns on rMD17 and SPICE, suggesting slight
overfitting. In contrast, increasing the pretraining budget for high-CSI datasets (i.e., OC20 and OC22)
often degrades downstream performance more drastically, particularly on tMD17, SPICE, and QM9. These
results highlight that allocating more compute to misaligned upstream tasks can reduce the model’s ability
to generalize to downstream tasks.

Takeaway. Our findings are consistent across budget levels: the upstream dataset with the lowest CSI
yields the best downstream performance.

4.3 What is the Effect of Changing the Backbone Size?

In the previous sections, we used the small variant, GemNet-OC-S, as our backbone. Here, we address the
question:

Does the correlation between CSI and downstream performance hold across different back-
bone sizes?

Table [2] reports the downstream performance using the large variant, GemNet-OC-L, as the backbone. We
also include our best attempt at reproducing the baseline results using JMP-L pretraining (denoted as
"JIMP-L"").

Consistent with the results on the small backbone, models pretrained on ANI-1x achieve the best performance
across all downstream tasks, aligning with its low CSI values. Notably, using a small computation budget of
C = 10M (i.e., 2M samples over 5 epochs), ANI-1x outperforms JMP-L, which was pretrained with C = 240M
on a joint upstream dataset. We obtain state-of-the-art results with an MAE of 4.8 on Aspirin (rMD17) and
2.6 on Uy (QM9), demonstrating that strong dataset alignment can outweigh large-scale pretraining even
with increased model capacity. While larger backbones improve overall performance, the gap between aligned
and misaligned upstream datasets persists. High-CSI datasets like OC20 and OC22 still underperform,
reaffirming the importance of dataset alignment.
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Table 2: Effect of Changing the Backbone Size. We analyze the impact of using a larger variant
of GemNet-OC and find that, irrespective of backbone size, relevance-based upstream dataset selection
consistently outperforms costly large-scale joint pretraining.

C Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A)  (meV/A)  (meV)

. JMP-L (GemNet-OC-L) 5.1 1.92 4.75 2.9

240M - Joint (Temperature)  yy /o %o Net-OC-L.) 5.3 2.59 491 3.0
ANL1x 4.8 2.54 5.24 2.6
Transition-1x 9.7 3.56 7.42 3.0

1M 5099 GemNet-OC-L 13.8 3.90 9.24 4.6
0C22 12.0 4.14 10.43 4.0

[ ANLIx (2M) [0 ANL1x (2M) + 0C22 (1M)

7571 T
= L |
= 5.0
=

2.5 1

0.0

rMD17 MD22 SPICE QM9
(meV/A) (meV/A) (meV/A) (meV)

Figure 5: Impact of Adding Less Aligned Pretraining Data. Adding 1M OC22 samples to a 2M-
sample ANI-1x baseline worsens downstream performance despite a larger pretraining budget. This highlights
the importance of dataset alignment and the value of the CSI metric for effective pretraining.

Takeaway. Our findings hold across backbone sizes: scaling up the model does not change the relative
utility of upstream datasets. Alignment-based upstream dataset selection outperforms large-scale dataset
mixing, even under high-capacity settings and at significantly lower computational budgets.

4.4 Is More Diverse Data Always Better?

A common assumption in pretraining is that larger and more diverse datasets lead to better generalization.
This intuition motivates the JMP framework, where a large-scale pretraining budget of C = 240M led to
strong downstream results. However, it remains unclear whether this benefit comes from the size, the
diversity, or the alignment of the data with the downstream task. Here, we revisit this assumption through
a targeted experiment:

Does increasing data diversity by adding less aligned sources improve or harm downstream
performance?

To test this, we compare two settings: (1) pretraining on N' = 2M unique samples from ANI-1x, the most
CSI-aligned dataset, and (2) pretraining on a mixture of 2M ANI-1x samples and 1M OC22 samples (i.e.,
N = 3M), both trained for 5 epochs. As shown in Figure simply adding OC22 results in worse downstream
performance across all four tasks, despite the increase in data volume. This indicates that adding less aligned
data may interfere with the knowledge transfer gained from aligned pretraining sources.

Takeaway. Our results challenge the intuitive strategy of adding diversity to pretraining datasets without
considering alignment. CSI provides a practical signal for curating upstream data that supports better
generalization, especially under constrained budgets.
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Figure 6: CSI Between Upstream and OOD Downstream Tasks. CSI values predict that ANI-1x is
the best pretraining choice for QMOF, while OC20 and OC22 are best for MatBench.

Table 3: OOD Task Performance Across Upstream Sources. We compare the CSI-predicted best
upstream sources with actual downstream performance on OOD tasks (QMOF, MatBench, and QM9’s
A.). While CSI aligns well with QM9’s OOD label, it mispredicts the best source for MatBench. Joint
pretraining generally improves performance, highlighting the benefits of diverse upstream sources for OOD
generalization.

C Upstream Data Backbone QM9 [A.] QMOF MatBench [fold0 / mean]
(meV) (eV) (em™1)

: JMP-S (GemNet-OC-S) 23.1 0.18 26.60 / 22.77

240M - Joint (Temperature)  p b ¢ (G omNet-0C-S) 24.0 0.19 24.77 / 21.48
ANI-1x 24.5 0.22 30.09 / 29.60
Transition-1x 25.3 0.22 52.22 / 38.56

1M 5099 GemNet-OC-S 30.8 0.22 37.52 / 30.88
0C22 35.6 0.22 32.78 / 27.55

Joint (Balanced) 27.3 0.21 26.11 / 24.87

1M y0int (Temperature) GemNet-OC-5 27.9 0.21 26.63 / 25.61

5 Beyond In-Distribution

Recall that our pretraining process is conducted on upstream tasks involving molecules and catalysts, with
energy and force as targets. For downstream tasks with different labels (e.g., band gap in QMOF) or from dis-
tinct chemical domains such as materials (e.g., MatBench and QMOF), we classify these as out-of-distribution
(OOD). While our main results focused on ID evaluation, here we explore our metric’s applicability to OOD
tasks. Specifically, we examine three cases: the Band Gap property from QMOF (Rosen et all [2021)),
Phonons (the first non-energy target in JMP tables) from MatBench (Dunn et al., [2020), and A, from QM9,
explicitly categorized as OOD in the JMP paper.

In Figure @ we present the CSI values for OOD domains, where the OOD label (A.) for QM9 follows the
same values as in Figure[3] We observe that QMOF exhibits a pattern similar to other ID domains shown in
Figure [3] However, MatBench displays a distinct pattern, showing strong correlation with OC20 and OC22,
followed by ANI-1x and Transition-1x. Next, we analyze the correlation between CSI and downstream
performance under OOD evaluation.

Table |3[ shows that A, in QM9 aligns with the CSI pattern, similar to ID evaluation, suggesting that CSI is
effective for OOD in the label space. In QMOF, the different upstream sources achieve similar performance
which lags behind the full pretraining by JMP. For MatBench (evaluated over 5 folds), OC22 achieves the
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best mean performance while OC20 lags behind, despite our metric predicting both to be equally suitable.
Additionally, for both QMOF and MatBench, joint pretraining variants generalize better than individual
sources. This suggests that when the downstream domain differs from all upstream sources, mixing diverse
upstream domains provides the best performance.

While CSI reliably guides dataset selection for in-distribution tasks, its effectiveness in OOD scenarios is
less consistent. This may stem from the limited diversity of the backbone used for feature extraction, which
was pretrained only on energy and force targets. Future work could explore using backbones pretrained
on broader sets of chemical properties or incorporating more diverse upstream domains to better capture
variation across OOD tasks. Another promising direction is to leverage foundation models trained on multi-
modal or multi-objective tasks, which may offer more transferable representations for similarity assessment
across varied downstream domains.

6 Conclusion

This paper challenges the prevailing trend of scaling data and computational resources in atomic property
prediction by demonstrating that strategic data selection based on dataset alignment can achieve comparable
or superior performance with significantly fewer resources. We introduce the Chemical Similarity Index (CSI),
a simple metric that quantifies the alignment between upstream pretraining datasets and downstream tasks,
enabling the selection of high-quality, task-aligned pretraining data. Our experiments reveal that smaller,
focused datasets often outperform larger, mixed ones, and that indiscriminately adding data can degrade
performance when relevance is low. These findings highlight that alignment, rather than scale alone, is the
key to effective pretraining, and they point toward a more principled, efficient, and sustainable direction for
future research in atomic property prediction.
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A More Epochs or More Data?

To extend the findings presented in the main paper, we explore the trade-off between increasing the number
of training epochs and expanding the dataset size under a fixed computational budget. Specifically, we aim
to answer the following question:

Given a fized computational budget, is it more effective to train on a smaller dataset for
more epochs or to train on a larger dataset for fewer epochs?

Setup. To investigate this question, we compare two scenarios under the same computational budget of
10M samples: (1) training on 2M samples for 5 epochs, and (2) training on 1M samples for 10 epochs. We
evaluate the performance of models pretrained on ANI-1x, Transition-1x, OC20, and OC22, and fine-tune
them on the downstream datasets: tMD17, MD22, SPICE, and QM9. For comparison, we also include the
results of JMP-L and JMP-S, which use 120M samples for 2 epochs.

Results. Table [4] presents the downstream performance for the two scenarios. Across all datasets, ANI-1x
consistently achieves the best performance, regardless of whether the model is trained on 2M samples for 5
epochs or 1M samples for 10 epochs. For example, on rMD17, ANI-1x achieves a test error of 5.4 in both
scenarios, outperforming JMP-S (6.7) and JMP-L (5.1). Similarly, on SPICE, ANI-1x achieves a test error
of 5.08 (2M samples, 5 epochs) and 5.04 (1M samples, 10 epochs), compared to 5.71 for JMP-S and 4.75 for
JMP-L.

Interestingly, increasing the number of epochs from 5 to 10 while reducing the dataset size from 2M to 1M
does not significantly degrade performance for ANI-1x. This suggests that for highly aligned datasets like
ANI-1x, training on fewer samples for more epochs can be as effective as training on more samples for fewer
epochs. In contrast, for less aligned datasets such as OC20 and OC22, increasing the number of epochs only
partially compensates for the reduced dataset size, as some tasks show similar performance while others
experience noticeable degradation.

Takeaway. Our findings indicate that the trade-off between more epochs and more data depends on the
alignment of the pretraining dataset with the downstream task. For highly aligned datasets like ANI-1x,
training on fewer samples for more epochs can yield comparable performance. In contrast, for less aligned
datasets, increasing the dataset size tends to be more beneficial. These results further show the importance
of dataset quality and alignment, as quantified by CSI, in determining an effective pretraining strategy.

Table 4: Trade-off between increasing the number of samples and the number of epochs. We report the MAE
for various downstream tasks while varying the pretraining sample count and epoch count simultaneously.
C, N, and £ denote the computational budget, number of samples, and number of epochs, respectively.

C N £  Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A) (meV/A)  (meV)

ANI-1x 5.4 2.90 5.13 2.9
Transition-1x 10.1 3.73 7.55 3.2
IOM-2M 5 a9 GemNet-OC-S 14.6 4.53 8.74 4.8
0C22 16.0 5.20 10.73 5.7
ANTIx 5.4 2.88 5.04 2.9
Transitionlx 10.6 3.79 7.50 3.1
1M IME 10 a9 GemNet-OC-5 14.8 4.67 10.16 4.9
0022 17.3 5.24 11.06 5.4
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B Implementation Details

For both pretraining and fine-tuning experiments, we primarily follow the JMP hyperparameters. However,
due to resource constraints requiring smaller batch sizes compared to JMP, we adjusted the learning rate to
ensure training stability, as detailed below.

For pretraining, we use a batch size of 20 and a learning rate (LR) of le-4 for the small backbone
(GemNet-OC-S). For the large backbone (GemNet-OC-L), the batch size is reduced to 12 to fit GPU memory.
Additionally, when training with the OC22 dataset on the large backbone, a LR of le-4 caused gradient
instability, thus we used a LR of le-5 for that particular run. Unless otherwise specified, each experiment is
run for five epochs on the specified number of samples for each section of the paper. The best checkpoint is
selected based on the performance in the validation set. To handle the large size of the upstream validation
sets, validation is performed on a smaller subset of 2,000 samples.

For finetuning, we use the batch size specified in the JMP codebase and a default learning rate (LR)
of 8e-5, except for cases where adjustments were needed to stabilize training. Specifically, we use 5e-5 for
QMOF, 8e-4 for MatBench when pretrained on Transitionlx.
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