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Abstract

This paper challenges the recent paradigm in atomic property prediction that links progress
to growing dataset sizes and computational resources. We show that pretraining on a care-
fully selected task-aligned dataset can match or even surpass large-scale pretraining, while
using only 1/24th of the computational cost. We introduce the Chemical Similarity
Index (CSI), a simple metric for molecular graphs inspired by the Fréchet Inception Distance
in computer vision, which quantifies the alignment between upstream pretraining datasets
and downstream tasks. By selecting the most aligned dataset with minimal CSI distance,
we show that models pretrained on a smaller, focused dataset consistently achieve better
performance on downstream tasks than those pretrained on massive, mixed datasets such as
JMP. This holds even when the mixed dataset includes the upstream dataset most aligned
with the downstream task. Counterintuitively, we also find that indiscriminately adding
more data can degrade model performance when the additional data is poorly aligned with
the target task. Owur findings highlight that quality often outperforms quantity in
pretraining for atomic property prediction.

1 Introduction

Machine learning is transforming molecular modeling, driving advancements in accurate predictions and
simulations of molecular behavior (Chanussot et al., 2021} |Tran et al., |2023; [Liao et all [2023). These
breakthroughs directly impact the acceleration of progress in crucial fields such as drug discovery (Huang
et al., |2021) and global climate change mitigation (Sriram et al., 2024)). The improvements in this field have
been primarily attributed to innovations in model architectures (Liao et al., 2023} |Gasteiger et al., [2021}
Passaro & Zitnickl 2023]) and the growing availability of large-scale molecular datasets. In recent years, the
sizes of molecular datasets have increased dramatically - from tens of thousands of examples (Christensen
& Von Lilienfeld, |2020; [Chmiela et al., 2023; [Wu et al. 2018) to hundreds of millions (Chanussot et al.,
2021} Tran et all 2023). This rapid growth in scale has also caused a surge in the computational resources
required for pretraining, increasing from a few days on a single GPU to over a thousand GPU-days (Shoghi
et al.l |2023} |[Liao et al., [2023). This trend begs the question:

Is scaling data and resources the only path forward for pretraining in atomic property
prediction, or can intelligent data selection achieve similar performance more efficiently?

While data selection strategies for pretraining have been explored in fields like natural language process-
ing (Penedo et al., |2024) and computer vision (Hammoud et all 2024} |Li et al., 2023, this area remains
largely underexplored in atomic property prediction, where unique challenges arise. This gap is especially
critical for 3D molecular and material pretraining, which requires far more computation (Liao et al., [2023)
than methods based on 2D representations (Rong et al.| 2020)). In this paper, we challenge the prevailing
assumption that "bigger is better' by exploring whether a smaller, strategically selected dataset can lead
to comparable or even superior performance while substantially reducing computational demands. We in-
troduce a pretraining paradigm for 3D molecular and material systems that shifts the focus from data and
compute scaling to selecting the most relevant upstream dataset for improved downstream performance.
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Figure 1: Pretraining on a High-Quality, Task-Aligned Dataset. Pretraining on a carefully selected
high-quality dataset achieves comparable or superior mean absolute error (MAE) across tasks while reducing
computational cost by a factor of 24 compared to JMP-S, which is pretrained on all upstream datasets. Lower
MAE indicates better performance.

Through a simple baseline, our experiments reveal two key insights: (1) Competitive Performance Can
Be Achieved with 24x Fewer Resources: Selecting upstream datasets based on their alignment with
the downstream task achieves performance on par with or exceeding that of large-scale pretrained models like
JMP (Shoghi et al., 2023) while utilizing only 1/24th of the computational resources, as shown in Figure[l]
(2) Quality Outperforms Quantity: Expanding the pretraining dataset by incorporating additional data
from less aligned sources can negatively impact downstream performance rather than enhance it.

To explore the potential of dataset selection for pretraining in atomic property prediction, we introduce the
Chemical Similarity Index (CSI), a simple metric inspired by the Fréchet Inception Distance (FID) from
computer vision. CSI measures the alignment between an upstream dataset and a downstream task, en-
abling the selection of chemically relevant pretraining data. By focusing on these highly relevant datasets,
we significantly reduce computational costs while maintaining competitive performance and, in many cases,
achieving improvements. While large-scale datasets like OC20 (Chanussot et al., 2021; |Tran et al.,2023) and
mixed datasets like JMP (Shoghi et al., [2023) are popular choices for pretraining in molecular domains
[luru et all {2022} [Shoghi et al., [2023), our findings challenge their universal utility. Surprisingly, pretraining
on a single, carefully selected dataset guided by CSI often outperforms models trained on mixtures, even
when those include the most relevant dataset.

The contributions of this paper are threefold: (1) We introduce a novel framework for computationally
efficient pretraining of molecular machine learning models, demonstrating that strategic data selection can
match or outperform models trained on much larger datasets. (2) We propose the Chemical Similarity Index
(CSI), a metric for assessing the alignment between upstream and downstream molecular datasets, enabling
effective dataset selection. (3) We provide an extensive empirical evaluation demonstrating the effectiveness
of our approach, offering a practical and efficient alternative to the current trend of ever-increasing data and
computational costs in molecular machine learning.

2 Related Work

Pretraining for Atomic Property Prediction. Inspired by the success of pretraining in computer vision
and natural language processing, pretraining for atomic property prediction has gained significant attention
in recent years. Most approaches in molecular machine learning have focused on self-supervised pretrain-
ing (Rong et al}|2020; [Liu et al.| [2021} [Jiao et al.| 2023} |Chen et al.| [2021} [Zhou et al.l |2022a}|Ji et al., [2024]),
while fewer studies have explored the effectiveness of supervised pretraining (Smith et al. [2019; [2018} |Kol-|
2022)). Early self-supervised methods such as GROVER (Rong et al., [2020) target 2D molecular
graphs. More recent approaches, including GraphMVP 2021)), Uni-Mol (Zhou et al.| [2022a) and
Uni-Mol2 , extend to 3D structures and often use denoising objectives that are best suited
for equilibrium geometries (Liao et all 2024]). This limits their applicability to large-scale non-equilibrium
datasets common in molecular and materials modeling. In contrast, recent supervised pretraining frameworks
such as Joint Multi-domain Pre-training (JMP) (Shoghi et all 2023)) jointly pretrain on diverse large-scale
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labeled datasets and operate effectively on non-equilibrium data. While powerful, JMP requires substantial
compute due to the massive data volume and does not reveal how each pretraining dataset influences down-
stream performance. Our work addresses this gap by systematically analyzing the link between pretraining
dataset choice and downstream performance. Based on our analysis, we reduce pretraining datasets with
minimal impact on performance and thus enable efficient pretraining model development under constrained
computational budgets.

Computational Budgeting. Recent research highlights the importance of studying model performance
under computationally budgeted setups. In continual learning (CL), works by Prabhu et al| (2023) and
|Ghunaim et al.| (2023) show that simple baselines often outperform state-of-the-art methods in compute-
constrained settings. TiC-CLIP (Garg et al) 2024) further demonstrates efficient rehearsal-based training
for time-continuous data. For Vision Transformers, Pan et al. (2022)) propose a framework to dynamically
control model complexity during training, achieving competitive performance under varying budgets.
formalize budgeted training, showing that budget-aware learning rate schedules, such as linear
decay, are critical for robust performance across tasks like image classification and object detection. In
multi-domain learning, Berriel et al.| (2019) introduce Budget-Aware Adapters, which reduce computational
complexity while maintaining accuracy by selecting relevant feature channels. These findings across domains
emphasize the critical need for more efficient approaches that can achieve competitive performance while
minimizing computational costs.

Distribution Similarity. A variety of methods exist for quantifying the distance between probability dis-
tributions, including Kullback-Leibler (KL) divergence (Kullback & Leibler, |1951), Jensen-Shannon (JS)
divergence 2002)), Maximum Mean Discrepancy (MMD) (Gretton et al., [2012)), and the Fréchet In-
ception Distance (FID) (Heusel et al. [2017). FID has become a standard metric in computer vision for
comparing real and generated data distributions by evaluating differences in the means and covariances of
their feature representations. In the chemical domain, the Fréchet ChemNet Distance (FCD)(Preuer et al.
adapts FID for evaluating generative models that use SMILES-based molecular representations and
has been integrated into benchmarking frameworks such as GuacaMol(Brown et all |2019). While FCD
demonstrates the applicability of FID-based metrics in chemistry, it is primarily applied to SMILES-based
molecular data within a single chemical domain. Our proposed Chemical Similarity Index (CSI) is also de-
rived from FID, but is designed for 3D graph-structured systems and focuses on measuring alignment across
multiple domains such as molecules and materials. To our knowledge, we are the first to systematically study
pretraining dataset alignment in 3D atomic property prediction.

Data Selection. Efficient training through data selection has been explored via two primary approaches:
subset selection and dataset distillation. Subset selection aims to identify a representative subset of the
training data that matches or even outperforms training on the full dataset. Several methods have been
proposed for vision and NLP tasks (Attendu & Corbeil, [2023; Killamsetty et all [2021albt [Kaushal et al),
[2019; Bairi et al.,2015; Lapedriza et al., |2013)). Dataset distillation, introduced by Wang et al.| (2018), focuses
on generating a smaller, synthetic subset of the dataset that preserves performance while reducing training
time and storage requirements. Subsequent work has explored techniques such as meta-learning
2022b; Nguyen et al [2021a3b), gradient matching (Zhao et all 2021), and distribution matching (Zhao &
Bilen, 2023). While most research in distillation has focused on vision tasks, a few studies have extended it
to graph data (Jin et al., [2022b; Liu et al., [2022} [Jin et al., [2022a)), though primarily targeting knowledge
and social graphs rather than molecular graphs.

Two recent vision studies are particularly relevant to our work. First, [Hammoud et al.| (2024) shows that
increasing pretraining data diversity enhances performance only when distribution shifts between upstream
and downstream tasks are minimized. Second, introduces a method to dynamically leverage
the open web, reducing the distribution gap between upstream and downstream tasks through targeted
representation learning. Findings from other domains suggest that aligning upstream datasets may be
crucial for effective pretraining.

Comparison to Our Work. To the best of our knowledge, no prior work has specifically explored upstream
dataset selection for molecular graphs, which present unique challenges due to their structural and chemical
complexity. In this work, we take the first step in addressing this gap by focusing on aligning upstream and
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Figure 2: Pipeline Overview. Our paradigm for pretraining and finetuning consists of two new components:
(1) Dataset Selection Stage, where a distance metric ¢ is employed to identify the dataset that is most similar
to our downstream task dataset Dy, in this case D&l). This selected dataset is then used for pretraining
the model. (2) Limited Budget Pretraining, where we impose a training budget by subsampling N random
samples from D ) and tralmng the model for £ epochs. This results in a computational budget of C = £ x N
The pretrained backbone 9b * i subsequently finetuned on the downstream task dataset Dy to obtain the
final model parameters 0.

downstream distributions at the dataset level rather than subselecting at a sample-wise level or creating a
synthetic distilled version of the dataset.

3 Formulation and Setup

In this section, we present our problem setup, notion of a computational budget, and the formulation of
dataset similarity. We then detail how we adapt the Fréchet Inception Distance (FID) to the molecular
domain, yielding the Chemical Similarity Index (CSI). Our setup is illustrated in Figure[2] Throughout this
work, we use the term ’molecular’ broadly to encompass both molecular and materials domains, as well as
their respective datasets.

3.1 Formal Setting

Upstream and Downstream Datasets. Let {D&”,fo), e ,D&K)} denote a collection of K upstream
(pretraining) datasets, each containing molecular structures paired with relevant atomic properties (e.g.,
energies and forces). In the typical paradigm, upstream datasets are typically aggregated into a single
pretraining set:

K .
=1

We further define Dy as the downstream dataset, which focuses on a specific prediction task (e.g., predicting
an atomic property).

Multi-task Pretraining. We consider a neural network ®(+; #), where 6 encompasses the shared backbone
parameters 6, and task-specific head parameters 6, (for energy prediction) and 6; (for force prediction).

During pretraining, the network is trained to simultaneously predict energies and forces. Formally, the
(4)

multi-task pretraining objective over an upstream dataset Dy’ is given by:
0" = argmin Lprerrain(0; DY), (2)
where 0 = {6,0.,0;} and
Loretrain(0; DY) = @ Lonergy (00,063 D) + 5 Lrorces (05, 053 DY) (3)

We compute Lenergy using the Mean Absolute Error (MAE) and Liorees using the mean per-atom Euclidean
(L2) distance. Coefficients « and 8 weight the importance of energy and force tasks, respectively. Following
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the JMP paper (Shoghi et al., [2023), we set S > « to prioritize accurate force predictions in atomistic
modeling. Pretraining can be performed on either the joint upstream dataset D,,, similar to JMP (Shoghi
et al.l [2023)), or on an individual upstream dataset DT(LZ), as in our selective setting.
Fine-Tuning. After the multi-task pretraining phase, the task-specific heads . and 6y are discarded, and
a new task-specific head 6, is attached to the pretrained backbone #,. The downstream objective then
becomes: A

03 = argmin Lanewune(0b: 01; 6", Da), (4)

b;Yh

where Ol(f)* denotes the pretrained backbone parameters from Eq. . Intuitively, the downstream training
refines the shared backbone parameters 6, and learns the task-specific head 6y, to capture the target property
in Dd.

In this paper, we consider two additional needed definitions for this setting: (1) computational budget and
(2) dataset similarity.

Computational Budget. Following|Hammoud et al.|(2024)), we define the computational budget C to be
the product of the number of epochs £ and the number of unique samples A/ in the pretraining dataset:

C=¢&ExN. (5)

Hence, the computational budget C represents the total number of samples processed over training. It
naturally splits into two factors: the dataset size (N') and the number of passes through it (£). The choice
of C depends on the available computing resources. In our main experiments, we fix C, A/, and £ to ensure
a fair comparison across different upstream datasets. We also include experiments in which A (and thus C)
varies, in order to analyze the impact of dataset size and total compute on downstream performance.

Dataset Similarity. A key objective of this work is to estimate how well an upstream dataset D,, aligns
with a downstream dataset D,;. We therefore seek a distance metric

0(Dy, Dy)

that quantifies their alignment or “similarity.” In principle, a lower value of §(D,,Dy) reflects a higher
degree of alignment between the upstream and downstream distributions. Thus, among multiple candidate
upstream datasets {D&l), ... ,D&K)}, the one that minimizes

argmin (5(1)1(?, Dd)
1<i<K

should provide the most effective pretraining for Dy. In this paper, we empirically test this assumption,
examining whether lower §-values indeed correlate with improved downstream performance. Motivated by
this, we use J as a principled metric to guide dataset selection for Eq. . Instead of aggregating all
upstream datasets, we modify the pretraining setup to use only the single dataset fo) that best aligns with
the downstream task under a fixed computational budget.

3.2 The Chemical Similarity Index (CSl)

Recap of FID. Our proposed Chemical Similarity Index (CSI) draws its inspiration from the well-known
Fréchet Inception Distance (FID) (Heusel et al.,2017)). FID is commonly used in computer vision to compare
two sets of images via their feature distributions. Specifically, if one extracts features (e.g., from an Inception
network) for datasets X and Y and denotes their empirical means and covariances by ux, Xy and puy, Xy,
then

FID(X,Y) = fux —prl? + Te(Sx + Sy = 2(5x5y)2). (6)

The central idea is to represent each sample in a feature space where distances encode semantic similarity
and then compare the distributions of these representations for the two datasets.
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To adapt FID for graph-structured molecular data, we compute the CSI metric using node embeddings as
features and apply class-balanced sampling to ensure representative coverage of molecular types in each
upstream dataset. For computational feasibility, we subsample 10k instances from both the upstream and
downstream datasets. To keep the metric independent of the baselines evaluated in this study, we extract
features using EquiformerV2 (Liao et al., 2023) pretrained on OC20 (Chanussot et al., [2021). We provide
results with additional pretrained checkpoints in Appendix[C} feature representation choices in Appendix [D]
and class-balancing procedure in Appendix [E]

CSI Between Upstream and Downstream Results. In Figure[3] we present the CSI values for pairs
of upstream and downstream tasks related to energy and force predictions, with additional details about the
datasets and targets provided in Section For the first four downstream datasets in Figure ANI-1x (Smith
consistently achieves the closest alignment, reflecting its design goal of maximizing chemical
diversity. Transition-1x (Schreiner et al [2022), which focuses on transition states, ranks second suggesting
that its emphasis on high-energy transition states leads to partial overlap with downstream distributions.
OMat24 (Barroso-Luque et al., [2024)), which contains inorganic materials, is more closely aligned with the
catalysis datasets OC20 (Chanussot et al., [2021)) and OC22 (Tran et al., [2023) than with other upstream
datasets. While OC20 and OC22 are often favored for pretraining (Shoghi et al., [2023; Kolluru et al., 2022)
due to their scale and chemical diversity, our metric suggests they may not align well with most of the
considered downstream tasks. Next, we examine whether these alignment values correlate with downstream
performance.

ANI-1x I Transition-1x B 0C20 H 0C22

300

200}

CSI

100}

SPICE QM9 OMat24
Downstream Dataset

Figure 3: Alignment Between Upstream and Downstream Using CSI. We assess how well the
extracted representations from each upstream dataset align with downstream tasks using our CSI metric,
where lower values indicate stronger alignment. ANI-1x demonstrates the closest feature alignment with
most downstream tasks. However, for OMat24, the catalysis datasets OC20 and OC22 exhibit the strongest
alignment.

4 Experiments

We evaluate the impact of pretraining on different upstream datasets for downstream performance and
investigate how well the CSI values in Figure [3] reflect the relevance of these datasets. We begin by defining
the datasets, baselines, and evaluation setup.

Upstream Datasets: Following JMP (Shoghi et al.l|2023)), we perform pretraining on upstream datasets of
small molecules, including ANI-1x (Smith et al. |2020]) and Transition-1x (Schreiner et al., 2022), as well as
large-scale catalysis datasets, OC20 (Chanussot et all [2021)) and OC22 (Tran et al., 2023)). These datasets
vary in domain focus and graph size, enabling us to examine how these factors impact the generalization
of pretraining across downstream tasks. The ground-truth labels, energy and forces, are computed using
Density Functional Theory (DFT).

Downstream Datasets: For downstream evaluation, we focus on in-distribution (ID) tasks involving energy
or force prediction, following the definition in JMP (Shoghi et al) 2023). We discuss out-of-distribution
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Table 1: In-Distribution Evaluation for Energy and Force Targets. We report test MAE when fine-
tuning on downstream targets, as detailed in Downstream Datasets (Section . The top section represents
models pretrained with the large-scale JMP budget, while the lower two sections show results under a
limited budget. JMP-S™ denotes reproduced results. We report the average and standard deviation over
three random seeds.

C Upstream Data Backbone rMD17 MD22 SPICE QM9 OMat24
(meV/A) (meV/A) (meV/A) (meV) (meV/A)

JMP-L (GemNet-OC-L) 5.1 1.92 4.75 2.9 -

240M  Joint (Temperature) — JMP-S (GemNet-OC-S) 6.7 2.64 5.71 3.3 -

JMP-S* (GemNet-OC-S) 6.8 3.21 5.60 3.4 84.4
ANI-1x 52402 2924003 539+026 31+01 981+05
Transition-1x 98+£05  370+002 770+£031  3.6+03 1008 +0.1
1M 599 GemNet-OC-S 138+0.7 510+£057 967 +073 53+£04 87.440.1
o oc22 o _______ 153 £07 534+018 1062+042 57£01  925£01

77 Joint (Balanced) 9118 3734013 6994033 35£02  90.3+01
TOM y0int (Temperature) GemNet-OC-S 110+ 15 4414+059 844 +063 40+04 884 +0.1

(OOD) tasks in Section To keep the experiments tractable, we evaluate on a single target per downstream
dataset, since we run six baselines for each. These targets and their corresponding datasets are: Aspirin
in tMD17 (Christensen & Von Lilienfeld, 2020), Ac-Ala3-NHMe in MD22 (Chmiela et al., [2023), solvated
amino acids in SPICE (Eastman et al. [2023), Uy in QM9 (Wu et all |2018), and force prediction on the
rattled-300-subsampled split of OMat24 (Barroso-Luque et al., [2024)).

Baselines: We report the original performance of JMP, where "JMP-S" and "JMP-L" correspond to the
small and large backbones, respectively. Additionally, we present our reproduced fine-tuning results using
the official JMP checkpoints, denoted as "JMP-S™" and "JMP-L"".

For our budgeted evaluation, we present results in two categories: pretraining on a single upstream dataset
and pretraining on a joint combination of all upstream datasets. For single-dataset experiments, we randomly
sample N instances from the original upstream data. For joint pretraining, we construct the training set
using two different strategies. (1) Balanced Sampling, where an equal number of samples is drawn from each
of the four upstream datasets, totaling A/ samples; and (2) Temperature-Based Sampling, which preserves
the dataset proportions used in the full 120M sample set of JMP (Shoghi et al., [2023)).

Evaluation Setup: We pretrain the GemNet-OC-S model (Gasteiger et al., 2022)) on each individual up-
stream dataset, as well as on joint configurations that combine all upstream datasets, following the baseline
setups. For our main experiments, we set a fixed computational budget of C = 10M, achieved by training
on N = 2M samples for £ = 5 epochs. This budget ensures accessibility and reproducibility, with each
pretraining run completing within 1 to 2 days on an A100 GPU. This represents a 24x reduction in com-
putational cost compared to the pretraining budget used in JMP (Shoghi et al.| [2023]). Additional budget
configurations are explored in later sections and the appendix. Each pretrained model is then fine-tuned
separately on each downstream task.

4.1 Does CSI Correlate with Better Performance?

In Figure [3] we presented CSI values quantifying the alignment between each upstream and downstream
dataset. These results raise a critical question:

Can CSI reliably guide the selection of pretraining datasets to achieve optimal performance
on specific downstream tasks?

Table [I] summarizes the downstream performance of models pretrained on different datasets in the in-
distribution setting. Consistent with the CSI values, the upstream dataset with the lowest CSI for each
downstream task also achieves the best fine-tuning performance. Specifically, pretraining on ANI-1x, de-
spite being the smallest dataset, yields the best fine-tuning results on rMD17, MD22, SPICE and QM9,
outperforming all other individual pretraining datasets as well as the joint variants. For instance, on the
rMD17, SPICE and QM9 datasets, the model pretrained on ANI-1x achieves MAEs of 5.2, 5.39 and 3.1,
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compared to 6.7, 5.71 and 3.3 for JMP-S. This strong performance is achieved with less than 5% of the
pretraining computational budget used by JMP-S. For OMat24, the model pretrained on OC20 achieves the
best performance among the limited-budget baselines with an MAE of 87.4, comparable to JMP-S’s 84.4
despite its much larger 240M pretraining budget. This outcome is also predicted by CSI, which ranks OC20
as the most similar upstream dataset for this task.

Furthermore, joint pretraining, whether balanced or temperature-based, generally performs worse than in-
dividual pretraining on the most CSI-aligned dataset for each task when both are trained under the same
limited-budget setting. Following the JMP formulation, temperature-based sampling allocates more samples
to OC20 and OC22 than balanced sampling. On OMat24, where OC20 and OC22 are most aligned according
to CSI values, temperature-based sampling outperforms balanced sampling. However, temperature-based
sampling reduces performance on other tasks where OC20 and OC22 are less aligned with the downstream
dataset. These results suggest that, under a limited budget, mixing upstream datasets with varying CSI
values is suboptimal and requires significantly more computational resources to achieve competitive perfor-
mance.

Takeaway. Our experiments reveal three key insights for in-distribution downstream tasks: (1) Task-
aligned upstream datasets outperform larger joint datasets. (2) Joint pretraining can match the benefits of
pretraining on a highly task-aligned dataset, but it requires significantly more compute and training time.
(3) CSI effectively predicts downstream performance, as lower CSI values consistently correlate with better
results.

Pretraining Dataset

ANI-1x Transition-1x 0C20 0C22
rMD17 MD22 SPICE QM9

20 6 6
13f

15¢ D 11t 5t

m

< 9

=10 4 4
7.

5t 3 5 A

0510 20 30 0510 20 30 0510 20 30 0510 20 3.0
Pretraining Budget (Millions) Pretraining Budget (Millions) Pretraining Budget (Millions) Pretraining Budget (Millions)

Figure 4: Effect of Computational Budget on Performance. While fixing the number of epochs
(€) to 5, we vary the number of training samples across N' = 0.5M, 1M, 2M, and 3M. Our findings are
consistent across budget levels where the upstream dataset with the lowest CSI yields the best downstream
performance.

4.2 What is the Effect of Computational Budget?

Building on our earlier findings, we now investigate how varying the computational budget impacts down-
stream performance. Specifically, we ask:

Do our findings about dataset alignment in terms of CSI hold across different budget levels?

Figure |4| shows the downstream MAE across pretraining budgets of 0.5M, 1M, 2M, and 3M samples (each
trained for 5 epochs). Pretraining on ANI-1x consistently yields the best downstream performance across all
budget levels, reinforcing the importance of task-aligned, low-CSI datasets. We observe that increasing the
budget for ANI-1x beyond 2M tends to offer diminishing returns on rMD17 and SPICE, suggesting slight
overfitting. In contrast, increasing the pretraining budget for high-CSI datasets (i.e., OC20 and OC22)
often degrades downstream performance more drastically, particularly on tMD17, SPICE, and QM9. These
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Table 2: Effect of Changing the Backbone Size. We analyze the impact of using a larger variant
of GemNet-OC and find that, irrespective of backbone size, relevance-based upstream dataset selection
consistently outperforms costly large-scale joint pretraining.

C Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A)  (meV/A)  (meV)
. JMP-L (GemNet-OC-L) 5.1 1.92 4.75 2.9
240M - Joint (Temperature) o ip 1+ o Net-OC-T.) 5.3 2.59 4.91 3.0
ANL1x 4.8 2.54 5.24 2.6
Transition-1x 9.7 3.56 7.42 3.0
1M 5099 GemNet-OC-L 13.8 3.90 9.24 4.6
0C22 12.0 4.14 10.43 4.0
o Joint (Balanced) . 89 339 757 32
LM y0int (Temperature) GemNet-OC-L 10.8 4.15 9.83 4.4

results highlight that allocating more compute to misaligned upstream tasks can reduce the model’s ability
to generalize to downstream tasks.

Takeaway. Our findings are consistent across budget levels: the upstream dataset with the lowest CSI
yields the best downstream performance.

4.3 What is the Effect of Changing the Backbone Size?

In the previous sections, we used the small variant, GemNet-OC-S, as our backbone. Here, we address the
question:

Does the correlation between CSI and downstream performance hold across different back-
bone sizes?

Table [2] reports the downstream performance using the large variant, GemNet-OC-L, as the backbone. We
also include our best attempt at reproducing the baseline results using JMP-L pretraining (denoted as
"JIMP-L"").

Consistent with the results on the small backbone, models pretrained on ANI-1x achieve the best performance
across all downstream tasks, aligning with its low CSI values. Notably, using a small computation budget of
C = 10M (i.e., 2M samples over 5 epochs), ANI-1x outperforms JMP-L, which was pretrained with C = 240M
on a joint upstream dataset. We obtain state-of-the-art results with an MAE of 4.8 on Aspirin (rMD17) and
2.6 on Uy (QM9), demonstrating that strong dataset alignment can outweigh large-scale pretraining even
with increased model capacity. While larger backbones improve overall performance, the gap between aligned
and misaligned upstream datasets persists. High-CSI datasets like OC20 and OC22 still underperform,
reaffirming the importance of dataset alignment.

In addition to varying the size of the GemNet-OC backbone, we evaluate the recent transformer-based
backbone EquiformerV2 (Liao et al.||2023) in Appendix The results are consistent with our main findings,
suggesting that the CSI metric can guide dataset selection for pretraining. They also indicate that our
conclusions hold across different backbone architectures.

Takeaway. Our findings hold across backbone sizes: scaling up the model does not change the relative
utility of upstream datasets. Alignment-based upstream dataset selection outperforms large-scale dataset
mixing, even under high-capacity settings and at significantly lower computational budgets.

4.4 Is More Diverse Data Always Better?

A common assumption in pretraining is that larger and more diverse datasets lead to better generalization.
This intuition motivates the JMP framework, where a large-scale pretraining budget of C = 240M led to
strong downstream results. However, it remains unclear whether this benefit comes from the size, the
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Figure 5: Impact of Adding Less Aligned Pretraining Data. Adding 1M OC22 samples to a 2M-
sample ANI-1x baseline worsens downstream performance despite a larger pretraining budget. This highlights
the importance of dataset alignment and the value of the CSI metric for effective pretraining.

diversity, or the alignment of the data with the downstream task. Here, we revisit this assumption through
a targeted experiment:

Does increasing data diversity by adding less aligned sources improve or harm downstream
performance?

To test this, we compare two settings: (1) pretraining on A/ = 2M unique samples from ANI-1x, the most
CSl-aligned dataset, and (2) pretraining on a mixture of 2M ANI-1x samples and 1M OC22 samples (i.e.,
N = 3M), both trained for 5 epochs. As shown in Figure simply adding OC22 results in worse downstream
performance across all four tasks, despite the increase in data volume. This indicates that adding less aligned
data may interfere with the knowledge transfer gained from aligned pretraining sources.

Takeaway. Our results challenge the intuitive strategy of adding diversity to pretraining datasets without
considering alignment. CSI provides a practical signal for curating upstream data that supports better
generalization, especially under constrained budgets.

5 Beyond In-Distribution

Recall that our pretraining process is conducted on upstream tasks involving molecules and catalysts, with
energy and force as targets. We classify as in-distribution (ID) any downstream task that uses the same
labels (energy and /or forces), and as out-of-distribution (OOD) those that involve different target properties,
such as band gap (e.g., QMOF) or phonon properties (e.g., MatBench). While our main results focused on
ID evaluation, here we explore our metric’s applicability to OOD tasks. Specifically, we examine three cases:
the Band Gap property from QMOF (Rosen et al.l [2021), Phonons from MatBench (Dunn et al., 2020), and
A, from QM9.

In Figure [6] we present the CSI values for OOD domains, where the OOD label (A.) for QM9 follows the
same values as in Figure[3] We observe that QMOF exhibits a pattern similar to other ID domains shown in
Figure [3] However, MatBench displays a distinct pattern, showing strong correlation with OC20 and OC22,
followed by ANI-1x and Transition-1x. Next, we analyze the correlation between CSI and downstream
performance under OOD evaluation.

Table [3] shows that A, in QM9 aligns with the CSI pattern, similar to ID evaluation, suggesting that CSI
remains effective when the downstream domain (i.e., molecules, as in QM9) is similar to the upstream tasks,
even if the label type is OOD. In QMOF, the different upstream sources achieve similar performance which
lags behind the full pretraining by JMP. For MatBench (evaluated over 5 folds), OC22 achieves the best mean
performance while OC20 lags behind, despite our metric predicting both to be equally suitable. Additionally,
for both QMOF and MatBench, joint pretraining variants generalize better than individual sources. This
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Figure 6: CSI Between Upstream and OOD Downstream Tasks. CSI values predict that ANI-1x is
the best pretraining choice for QMOF, while OC20 and OC22 are best for MatBench.

Table 3: OOD Task Performance Across Upstream Sources. We compare the CSI-predicted best
upstream sources with actual downstream performance on OOD tasks (QMOF, MatBench, and QM9’s
A.). While CST aligns well with QM9’s OOD label, it mispredicts the best source for MatBench. Joint
pretraining generally improves performance, highlighting the benefits of diverse upstream sources for OOD
generalization.

C Upstream Data Backbone QM9 [A.] QMOF MatBench [fold0 / mean]
(meV) (eV) (em™1)

. JMP-S (GemNet-OC-S) 23.1 0.18 26.60 / 22.77

240M - Joint (Temperature) b ¢ omNet-0C-S) 24.0 0.19 24.77 / 21.48
ANI-1x 24.5 0.22 30.09 / 29.60
Transition-1x 25.3 0.22 52.22 / 38.56

1M 5699 GemNet-OC-5 30.8 0.22 37.52 / 30.88
0C22 35.6 0.22 32.78 / 27.55

o Joint (Balanced) . . 273 021 26.11 / 24.87

LM 305t (Temperature) GemNet-OC-S 27.9 0.21 26.63 / 25.61

suggests that when both the downstream domain and the label type differ from all upstream sources, mixing
diverse upstream domains provides the best performance.

While CSI reliably guides dataset selection for in-distribution tasks, its effectiveness in OOD scenarios is
less consistent. This may stem from the limited diversity of the backbone used for feature extraction, which
was pretrained only on energy and force targets. Future work could explore using backbones pretrained
on broader sets of chemical properties or incorporating more diverse upstream domains to better capture
variation across OOD tasks. Another promising direction is to leverage foundation models trained on multi-
modal or multi-objective tasks, which may offer more transferable representations for similarity assessment
across varied downstream domains.

6 Conclusion

This paper challenges the prevailing trend of scaling data and computational resources in atomic property
prediction by demonstrating that strategic data selection based on dataset alignment can achieve comparable
or superior performance with significantly fewer resources. We introduce the Chemical Similarity Index (CSI),
a simple metric that quantifies the alignment between upstream pretraining datasets and downstream tasks,
enabling the selection of high-quality, task-aligned pretraining data. Our experiments reveal that smaller,
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focused datasets often outperform larger, mixed ones, and that indiscriminately adding data can degrade
performance when relevance is low. These findings highlight that alignment, rather than scale alone, is the
key to effective pretraining, and they point toward a more principled, efficient, and sustainable direction for
future research in atomic property prediction.
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A More Epochs or More Data?

To extend the findings presented in the main paper, we explore the trade-off between increasing the number
of training epochs and expanding the dataset size under a fixed computational budget. Specifically, we aim
to answer the following question:

Given a fized computational budget, is it more effective to train on a smaller dataset for
more epochs or to train on a larger dataset for fewer epochs?

Setup. To investigate this question, we compare two scenarios under the same computational budget of
10M samples: (1) training on 2M samples for 5 epochs, and (2) training on 1M samples for 10 epochs. We
evaluate the performance of models pretrained on ANI-1x, Transition-1x, OC20, and OC22, and fine-tune
them on the downstream datasets: tMD17, MD22, SPICE, and QM9. For comparison, we also include the
results of JMP-L and JMP-S, which use 120M samples for 2 epochs.

Results. Table [4] presents the downstream performance for the two scenarios. Across all datasets, ANI-1x
consistently achieves the best performance, regardless of whether the model is trained on 2M samples for 5
epochs or 1M samples for 10 epochs. For example, on rMD17, ANI-1x achieves a test error of 5.4 in both
scenarios, outperforming JMP-S (6.7) and JMP-L (5.1). Similarly, on SPICE, ANI-1x achieves a test error
of 5.08 (2M samples, 5 epochs) and 5.04 (1M samples, 10 epochs), compared to 5.71 for JMP-S and 4.75 for
JMP-L.

Interestingly, increasing the number of epochs from 5 to 10 while reducing the dataset size from 2M to 1M
does not significantly degrade performance for ANI-1x. This suggests that for highly aligned datasets like
ANI-1x, training on fewer samples for more epochs can be as effective as training on more samples for fewer
epochs. In contrast, for less aligned datasets such as OC20 and OC22, increasing the number of epochs only
partially compensates for the reduced dataset size, as some tasks show similar performance while others
experience noticeable degradation.

Takeaway. Our findings indicate that the trade-off between more epochs and more data depends on the
alignment of the pretraining dataset with the downstream task. For highly aligned datasets like ANI-1x,
training on fewer samples for more epochs can yield comparable performance. In contrast, for less aligned
datasets, increasing the dataset size tends to be more beneficial. These results further show the importance
of dataset quality and alignment, as quantified by CSI, in determining an effective pretraining strategy.

Table 4: Trade-off between increasing the number of samples and the number of epochs. We report the MAE
for various downstream tasks while varying the pretraining sample count and epoch count simultaneously.
C, N, and £ denote the computational budget, number of samples, and number of epochs, respectively.

C N £  Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A) (meV/A)  (meV)

ANI-1x 5.4 2.90 5.13 2.9
Transition-1x 10.1 3.73 7.55 3.2
IOM-2M 5 a9 GemNet-OC-S 14.6 4.53 8.74 4.8
0C22 16.0 5.20 10.73 5.7
ANTIx 5.4 2.88 5.04 2.9
Transitionlx 10.6 3.79 7.50 3.1
1M IME 10 a9 GemNet-OC-5 14.8 4.67 10.16 4.9
0022 17.3 5.24 11.06 5.4
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B Impact of Changing the Backbone Type

In the main paper, we employed the GemNet-OC backbone for the primary evaluations to enable a direct
comparison with the JMP baseline. In this part, we examine whether our CSI alignment analysis holds when
using a different architecture. Specifically, we extend our experiments to EquiformerV2 (Liao et al., 2023,
a more recent transformer-based backbone. We pretrain this backbone on six upstream datasets, following
the same setup as in the main paper, with a budget of 1M samples over 5 epochs. We then evaluate the
resulting checkpoints on four downstream tasks, as shown in Table

The results indicate that, even with a transformer-based backbone, pretraining on the upstream dataset with
the lowest CSI value (i.e., ANI-1x) still yields the best downstream performance. This consistency across
architectures further supports the generality of our findings on the importance of dataset alignment.

Table 5: In-Distribution Evaluation for Energy and Force Targets using EquiformerV2. Test
MAE results when fine-tuning EquiformerV2-pretrained models on downstream targets.

C Upstream Data Backbone rMD17 MD22 SPICE QM9
(meV/A)  (meV/A)  (meV/A)  (meV)

ANI-1x 6.40 3.32 8.46 3.56
Transition-1x . 9.17 3.50 9.61 3.67

M 600 BquiformerV2 (3IM) 1y 5 3.48 10.69 3.99
0C22 12.77 3.69 11.75 4.22
Joint (Balanced) . 8.99 3.47 9.59 3.65

SM - jint (Temperature) ~ auiformerV2 (31M) 10.44 3.55 9.92 3.95
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C Impact of Changing the Feature Extractor for CSI

In the main paper, we used an EquiformerV2 model pretrained on the OC20 dataset as our primary feature
extractor for computing the CSI values. In this section, we explore alternative open-source pretrained
EquiformerV2 checkpoints, including: ODAC23 (Sriram et al., [2024), MPtrj (Barroso-Luque et al., |2024)
and MPtrj (DeNS) (Barroso-Luque et all) 2024). DeNS (Liao et al) 2024) refers to a denoising auxiliary
task that extends traditional denoising to non-equilibrium structures to improve learned representations.

We report the results in Figure [7] Our comparison is based on relative rankings since the absolute values
are influenced by the choice of feature extractor. Notably, for 4 out of 5 datasets (rMD17, MD22, SPICE,
and OMat24), all feature extractors agree on the lowest-CSI upstream dataset: ANI-1x for rMD17, MD22,
and SPICE, and OC20 for OMat24. For QM9, OC20 and MPtrj (DeNS) rank ANI-1x as the most aligned,
whereas ODAC23 and MPtrj place ANI-1x second to Transitionlx, which is also a strong upstream candidate
for QM9.

ANI-1x B Transition-1x H 0C20 H 0022

Feature Extractor: OC20 Feature Extractor: ODAC23
[ 10000 F
300
8000 |
200
. . 6000}
8 8
4000
100
2000
0 rMD17  MD22  SPICE QM9 OMat24 0 rMD17 MD22  SPICE QM9 OMat24
Downstream Dataset Downstream Dataset
Feature Extractor: MPtrj Feature Extractor: MPtrj (DeNS)
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— —
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Figure 7: Dataset Alignment Using Feature Extractors Pretrained on Various Datasets. We
compare CSI relative values computed using feature extractors pretrained on four different datasets: OC20,
ODAC23, MPtrj, and MPtrj (DeNS). The lowest CSI upstream dataset is consistent across feature extractors
for 4 out of 5 downstream tasks, namely tMD17, MD22, SPICE, and OMat24.
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D Feature Representation Choices for CSI

A key challenge when adapting the Fréchet Inception Distance (FID) to 3D molecular graphs is handling their
variable number of atoms. Our feature extractor, EquiformerV2, produces variable-sized node-level features
in R"*4 where n is the number of atoms and d is the feature dimension. A straightforward approach is
to aggregate these features using mean pooling, producing a graph-level representation in RV*?, where N
is the number of graphs. This setup is directly analogous to the image-based FID. The central question,
however, is whether this aggregation loses valuable information.

For our CSI metric to accurately measure alignment across various domains, it is critical that the feature
expressivity is maximized. To quantify this expressivity, we use the Effective Rank (Roy & Vetterli, 2007)
of the covariance matrix of these features. The Effective Rank is similar to the traditional matrix rank but
is more robust to noise.

Formally, as in |R0y & Vetterli| (]2007[), let C € R™? be the covariance matrix with eigenvalues {); };l:l and
d . d . .
P = Aj/ > m—1 Am- The[Shannon| (1948)) entropy is H = — ijl pjlogp;, and the Effective Rank is:

erank(C) = exp(H).

Higher erank indicates that information is distributed across more independent directions, signifying a richer
and less redundant feature representation.

To compare node-level and graph-level expressivity in a paired manner, we employ a bootstrap protocol. For
a chosen number of graphs k, we proceed as follows:

1. Sample k graphs from the dataset.

2. Construct two matrices in R¥*? from the sampled graphs: (i) a graph-level matrix, where each row is
the pooled representation of one graph, and (ii) a node-level matrix, where each row corresponds to a
randomly selected node representation from each graph.

3. Standardize each feature (z-score per dimension) in both matrices.

4. Compute the covariance C' and its effective rank erank(C) for both variants.

We repeat this process 10 times and report the mean effective ranks. We perform this comparison for
k € {5,000, 10,000, 15,000} and show the results in Figure We observe that across all tested sample sizes,
the node-level features consistently have a significantly larger effective rank. This finding indicates that the
aggregation process for graph-level features results in a loss of intrinsic dimensions that are likely significant
for dataset alignment studies. Therefore, to preserve maximum feature expressivity, we use node-level
features in our CSI design.
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Figure 8: Node-Level vs Graph-Level Effective Rank. Effective rank of features from (ANI-1x,
Transition-1x, OC20, OC22) datasets using both node-level (green) and mean-pooled graph-level (orange)
representations. The consistently higher effective rank of node-level features demonstrates that mean pooling
removes informative directions, which may be inadequate for analyzing alignment between datasets.
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To complement our effective rank analysis, we compare node-level and graph-level CSI variants in Figure [9]
0C20 and OC22 are both catalysis-focused datasets and share similar chemical domains. The node-level
features reflect this similarity by yielding comparable scores between the two datasets. In contrast, the graph-
level variant suggests greater divergence between the two, which may be due to information loss introduced
by mean pooling.
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Figure 9: CSI values for Node-Level vs Graph-Level Feature Representation
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E Class Balancing for Feature Extraction

The upstream datasets analyzed in our main paper are large in size. For example, OC20 contains over 133
million training samples, while Transition-1x contains around 9.6 million. To make the computation of our
CSI metric tractable, we sample 10K instances from each upstream dataset for feature extraction. To ensure
these subsets are representative of the full distribution, we perform class-balanced sampling. For ANI-1x
and Transition-1x, a class is defined by the molecular formula of the molecule in the trajectory. For OC20
and OC22, a class is defined by the bulk structure. Each class is treated as a bin, and we sample an equal
number of instances from each bin.

Figure [I0] compares random sampling and class-balanced sampling in terms of class coverage. Random
sampling leads to significant underrepresentation of less frequent classes, while class-balanced sampling
ensures uniform coverage across all classes.

ANI1x Transitionlx 0C20 0C22
10000 F 1
---- Total Unique: 2434 175 + ---- Total Unique: 155 - ---- Total Unique: 8178 4000 - —---- Total Unique: 3519 -
2500 ¢ 1
3500
1507 1 8000F
9] 3000
OU.; 2000 - 125 F
n
= 6000 - 4 2500
O 1500 1007
) 2000
2 5
< B 1 4000
= 1000 1500 -
- 50
1000
500 L 2000 -
% 500
0 . . 0 - . 0 . 5 . 0 . .
Random Class Balanced Random Class Balanced Random Class Balanced Random Class Balanced

Figure 10: Impact of Sampling Strategies on Subset Construction for Feature Extraction. We
show the differences in class coverage between random and class-balanced sampling when sampling 10K
instances for each upstream task.
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F Implementation Details

For both pretraining and fine-tuning experiments, we primarily follow the JMP hyperparameters. However,
due to resource constraints requiring smaller batch sizes compared to JMP, we adjusted the learning rate to
ensure training stability, as detailed below.

For pretraining, we use a batch size of 20 and a learning rate (LR) of le-4 for the small backbone
(GemNet-OC-S). For the large backbone (GemNet-OC-L), the batch size is reduced to 12 to fit GPU memory.
Additionally, when training with the OC22 dataset on the large backbone, a LR of le-4 caused gradient
instability, thus we used a LR of le-5 for that particular run. Unless otherwise specified, each experiment is
run for five epochs on the specified number of samples for each section of the paper. The best checkpoint is
selected based on the performance in the validation set. To handle the large size of the upstream validation
sets, validation is performed on a smaller subset of 2,000 samples.

For finetuning, we use the batch size specified in the JMP codebase and a default learning rate (LR)
of 8e-5, except for cases where adjustments were needed to stabilize training. Specifically, we use 5e-5 for
QMOF, 8e-4 for MatBench when pretrained on Transitionlx.
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