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Abstract

As machine learning models in critical fields increasingly grapple with multi-
modal data, they face the dual challenges of handling a wide array of modalities,
often incomplete due to missing elements, and the temporal irregularity and spar-
sity of collected samples. Successfully leveraging this complex data, while over-
coming the scarcity of high-quality training samples, is key to improving these
models’ predictive performance. We introduce “FuseMoE”, a mixture-of-experts
framework incorporated with an innovative gating function. Designed to integrate
a diverse number of modalities, FuseMoE is effective in managing scenarios with
missing modalities and irregularly sampled data trajectories. Theoretically, our
unique gating function contributes to enhanced convergence rates, leading to bet-
ter performance in multiple downstream tasks. The practical utility of FuseMoE
in the real world is validated by a diverse set of challenging prediction tasks.

1 Introduction

Multimodal fusion is a critical and extensively studied problem in many significant domains
[78, 94, 90, 9], such as sentiment analysis [26, 54], image and video captioning [42, 41], and med-
ical prediction [33, 83]. Previous research has shown that embracing multimodality can improve
predictive performance by capturing complementary information across modalities, outperforming
single-modality approaches in similar tasks [71, 32]. However, an ongoing challenge lies in the
creation of scalable frameworks for fusing multimodal data under a variety of conditions, and in
creating reliable models that consistently surpass their single-modal counterparts.
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Table 1: We evaluated the characteristics of FuseMoE against various benchmarks. The pipeline approach [83]
relies on a simple feature extraction scheme for each modality, followed by concatenation and classification. It
doesn’t incorporate irregularities or missingness in its process, but its use of concatenation and zero-imputation
for missing modalities allows it to be adapted to FlexiModal settings. Both [101] and [96] tackle multi-modality
fusion, but as modalities increase, their method demands exponentially more cross-modal computations and
significant model architecture modifications. Finally, [58] presents MoE for language-image alignment, yet it
also requires substantial adjustments for the more intricate and universal FlexiModal context we explore.

Method Type Irregularity Missingness Num of
Mods

Theory FlexiModal Adaptive?

Soenksen et al. [83] Data Pipeline ✗ ✗ ≥4 ✗ ✓

Zhang et al. [101] Modality Fusion ✓ ✗ 2 ✗ ✗

Zadeh et al. [96] Modality Fusion ✗ ✗ 3 ✗ ✗

Mustafa et al. [58] Multimodal MoE ✗ ✗ 2 ✗ ✗

FuseMoE This Paper ✓ ✓ ≥4 ✓ Adapted

Handling a variable number of input modalities remains an open challenge in multimodal fusion,
due to challenges with scalability and lack of unified approaches for addressing missing modali-
ties. Many existing multimodal fusion methods are designed for only two modalities [25, 102, 101],
rely on costly pairwise comparisons between modalities [90], or employ simple concatenation ap-
proaches [83], rendering them unable to scale to settings with a large number of input modalities
or adequately capture inter-modal interactions. Similarly, existing works are either unable to handle
missing modalities entirely [101, 98] or use imputation approaches [89, 51, 83] of varying sophis-
tication. The former methods restrict usage to cases where all modalities are completely observed,
significantly diminishing their utility in settings where this is often not the case (such as in clinical
applications); the latter can lead to suboptimal performance due to the inherent limitations of im-
puted data. In addition, the complex and irregular temporal dynamics present in multimodal data
have often been overlooked [101, 88], with existing methods often ignoring irregularity entirely
[83] or relying on positional embedding schemes [90] that may not be appropriate when modali-
ties display a varying degree of temporal irregularity. Consequently, there is a pressing need for
more advanced and scalable multimodal fusion techniques that can efficiently handle a broader set
of modalities, effectively manage missing and irregular data, and capture the nuanced inter-modal
relationships necessary for robust and accurate prediction. We use the term FlexiModal Data to
capture several of these key aspects, which haven’t been well-addressed by prior works:

“Flexi” suggests flexibility, indicating the possibility of having any combination
of modalities, even with arbitrary missingness or irregularity.

FlexiModal data is most evident in clinical scenarios, where extensive monitoring results in the
accumulation of comprehensive electronic health records (EHRs) for each patient. A typical EHR
encompasses diverse data types, including tabular (e.g., age, demographics, gender), images (X-
rays, magnetic resonance imaging, and photographs), clinical notes, physiological time series (ECG
and EEG), and vital signs (blood chemistry, heart rate). In this setting, we observe a variety of
modalities, sampled with varying irregularity and a high degree of missingness and sparsity.

Contributions In this paper, we introduce a novel mixture-of-experts (MoE) framework, which we
call FuseMoE, specifically designed to enhance the multimodal fusion of FlexiModal data. FuseMoE
incorporates sparsely gated MoE layers in its fusion component, which are adept at managing dis-
tinct tasks and learning optimal modality partitioning. In addition, FuseMoE surpasses previous
cross-attention-based methods in scalability, accommodating an unlimited array of input modal-
ities. Furthermore, FuseMoE routes each modality to designated experts that specialize in those
specific data types. This allows FuseMoE to effectively handle scenarios with missing modalities
by dynamically adjusting the influence of experts primarily responsible for the absent data, while
still utilizing the available modalities. Lastly, FuseMoE integrates a novel Laplace gating function,
which is theoretically proven to ensure better convergence rates compared to traditional Softmax
functions, thereby enhancing predictive performance. We have conducted comprehensive empirical
evaluations of FuseMoE across a range of application scenarios to validate its effectiveness.
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Figure 1: An example of addressing the challenge of FlexiModal Data: patients in ICUs often have extensive
and irregular health status measurements over time; patients with milder conditions only require monitoring
across fewer categories. FuseMoE is adept at handling inputs featuring any combination of modalities, including
those with missing elements. It starts by encoding inputs using modality-specific feature extractors, followed
by employing a multi-time attention mechanism [82] to address temporal irregularities. The core of FuseMoE
lies the MoE Fusion Layer, where a routing mechanism is trained to categorize multimodal inputs and direct
them to the appropriate combinations of MLPs. The outputs from these MLPs are weighted through a gating
function, resulting in fused embeddings, which are subsequently utilized for further processing.

2 FuseMoE: Enhance Predictive Performance for FlexiModal Data

In this section, we delve into the fundamental components of FuseMoE, illustrated in Figure 1. We
focus on two critical elements: the modality and irregularity encoder, and the MoE fusion layer.

2.1 Sparse MoE Backbone

The main components of a sparse MoE layer are a network G as a sparse gate and an expert network
E. [79] proposed a Top-K gating function that takes as an input a token representation x ∈ RD

and then routes it to the Top-K experts out of the set {Ei}Si=1. The gating network parameter
W ∈ RD×N produces logits hs(x) = Top K(x ·W ), which are normalized via Softmax:

G(x)i =
exp(hs(x)i)∑K
j exp(hs(x)j)

. (1)

Each expert network (Ei : RD → RD) contains a feed-forward layer (FFN) and its parameters
are independent of other models. The final output of the expert network y is the linearly weighted
combination of each expert’s output on the token by the gate’s output: y =

∑S
i=1 G(x)iEi(x).

Gating Network Design The gating network’s advantage lies in its capacity to be concurrently
trained with FFNs, facilitating the learning of an optimal sparse combination of experts. Essentially,
by evaluating the similarity between the input token and the experts, the gating network/router op-
timally matches the input partition with the most suitable experts. In many cases, variations in the
routing mechanism can greatly influence performance across diverse applications [48]. The Soft-
max gating is the most widely adopted across domains [77, 79]. We introduce a novel Laplace gating
function that offers enhanced convergence guarantees and delivers superior predictive performance,
particularly in FlexiModal applications. The function is formulated as follows:

hl(x) = Top K(−∥W − x∥2). (2)

The Laplace gating function, characterized by its Euclidean term exp(−∥W − x∥2), is less prone
to converge towards extreme weight distributions due to the bounded nature of this term. In sub-
sequent sections, we will illustrate how this gating function facilitates faster parameter estimation
rates compared to Softmax gating. Moreover, our empirical findings indicate that the Laplace gating
exhibits enhanced performance in managing FlexiModal data.

2.2 Modality and Irregularity Encoder

To encode the irregularity of sampling in each modality, we utilize a discretized multi-time attention
(mTAND) module [82], which leverages a time attention mechanism [43, 92] to discretize irregularly
sampled observations into discrete intervals. Specifically, given a set of lk continuous time points,
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Router R1 R2 R3 R1 R2 R3

FFN 1 FFN 2 FFN 3 FFN 4 FFN 1 FFN 2 FFN 3 FFN 4 FFN 1 FFN 2 FFN 3 FFN 4

TS TXT IMG TS TXT IMG TS TXT IMG

𝑝 = 0.45
𝑝 = 0.35

(a) Joint experts & router (b) Per-modality routers (c) Disjoint experts & routers
Figure 2: We present three exemplary designs of the Top-K router for effective multimodal fusion, considering
an input scenario with three modalities: Time-Series (TS), Text (TXT), and images (IMG). (a) The joint router
design utilizes a concatenated embedding of all modalities, directing this combined input to selected experts.
(b) In the modality-specific router design, each modality’s embedding is independently assigned to a shared
pool of experts. (c) The third design variant also uses modality-specific routers but assigns each modality’s
embedding to separate pools of experts, each pool uniquely tailored to process a specific modality type.

t ∈ Rlk , corresponding to the kth dimensionality of a given modality, we employ H embedding
functions ϕh(τ) to embed each τk ∈ tk in a dh dimensional vector space (detailed definition and
examples can be found in Appendix B and E). The ith dimension of the hth embedding is defined as

ϕh(τ)[i] =

{
wiτk, if i = 1

sin(wiτk + ϕi), if 1 < i ≤ dh,

where {wi, ϕi}dh
i=1 are learnable parameters. By performing this for each continuous time point in tk,

we create a dh dimensional representation of each time point in H different embedding spaces. We
then leverage these embeddings to discretize the irregularly sampled observations into discretized
bins. Specifically, we seek to discretize xk (with lk corresponding observation times tk) into γ
regularly sampled intervals γ. We do this via an attention mechanism, which, for each embedding
function ϕh(τ), takes γ as queries, tk as keys, and xk as values and produces x̂k,h ∈ Rγ embeddings
for each sequence. Formally,

x̂k,h = Softmax
(
ϕh(γ)QhK

⊤
h ϕh(tk)

⊤
√
lk

)
xk,

where Qh and Kh are learnable parameters. This formulation allows us to discretize univariate
observations xk into γ regularly-sampled bins. To model irregularity across a multivariate set of
observations for a given modality with dm dimensions, we repeat this process for each dimension
of the input. This allows us to obtain an interpolation matrix X̂h = [x̂1,h, x̂2,h, ..., x̂dm,h] ∈ Rγ×dm

for each of the h embedding functions. We then concatenate the interpolation matrices across all H
embedding functions (i.e., I = [X̂1, X̂2, ..., X̂h] ∈ Rγ×(H·dm)) and employ a linear projection to
achieve a final, discretized embedding for each modality, Z ∈ Rγ×de , where de denotes the desired
dimensionality of each modality’s representation. The discretization procedure offers a standard-
ized approach to managing irregularly sampled time series across various input types; however, it
can inevitably result in information loss. On the other hand, relying solely on the mTAND module
may yield suboptimal performance due to the potentially varying sampling rates of different vari-
ables [31], especially in scenarios where the sample sizes are small. To mitigate this, we combine
discretized outputs with continuous representations learned through the mTAND module.

Encoding Multiple Modalities The process described above allows us to discretize an arbitrarily
long irregular, multivariate sequence into a regularly sampled, discretized embedding with length
γ and dimensionality de. We repeat this for each of the M modalities, to create M embeddings,
{Zj}Mj=1, which are then combined to generate predictions.

2.3 MoE Fusion Layer

Router Design Study Upon obtaining embeddings from each of the j modalities, we propose mul-
tiple complementary approaches for processing multimodal inputs. Figure 2 illustrates a range of
router design options. The most straightforward strategy involves employing a common router that
handles the concatenated embeddings of all j modalities, without imposing any gating constraints.
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As the complexity increases with additional modalities, we consider more sophisticated alterna-
tives: deploying separate routers for each modality’s embedding and assigning these embeddings
to a shared pool of experts. This allows for distinct processing while maintaining a unified expert
framework. Additionally, we further segregate these common expert pools, allowing each router to
direct its respective embedding to dedicated experts skilled in handling such specific inputs. These
varied router design choices offer users enhanced flexibility, enabling more fine-grained control of
both inter-modal and intra-modal relationships. Details of the respective advantages and challenges
of these router design mechanisms can be found in Appendix C.

We implement an entropy regularization loss to ensure balanced and stable expert utilization, a
concept supported by various previous studies [58, 57, 22]. It maximizes the mutual information
between modalities and experts and serves as an auxiliary loss function in addition to task-specific
loss. Given a total of M modalities, and denoting H as the entropy, we define the loss function E as

E(x) = 1

M

M∑

j=1

H(p̂mj (E))−H(
1

M

M∑

j=1

p̂mj (E)), (3)

where p̂mj
(E) is the distribution over the experts {Ei}Si=1 for the jth modality. This distribution can

be approximated by p̂mj
(E) = 1

lj

∑lj

i=1 pmj
(E | xmj

i ), where lj is the number of observations of
the jth modality. Intuitively, we actively encourage the input embeddings to diminish the uncertainty
in selecting experts. By incorporating the loss E , we aim to stabilize the experts’ preferences within
each modality, while promoting a diverse range of expert selections across different modalities.

Missing Modalities In scenarios where certain modalities are missing throughout the data trajec-
tories, we substitute the original embedding Zmissing with a learnable embedding Z , acting as a
generic “missing indicator”. This strategy is facilitated by employing per-modality routers, which,
in conjunction with entropy regularization, guide Z predominantly toward a specific group of less-
utilized experts. The new embeddings Z are dynamically adjusted throughout the model training
process to minimize the task-specific loss and the entropy regularization loss. As a result, the router
will assign lower weights to the experts responsible for processing these embeddings.

3 Theoretical Contribution

In this section, we provide a theoretical guarantee of the benefits of the Laplace gating over the
standard Softmax gating in MoE. In particular, we conduct a convergence analysis for maximum
likelihood estimation (MLE) under the Lapace gating Gaussian MoE, and demonstrate that the MLE
under this model has better convergence behaviors than that under the softmax gating Gaussian MoE.

Problem Setup. Since the convergence analysis of MLE under the Top-K sparse gating MoE has
been studied in [63], we will focus on examining the Laplace gating solely in the sequel. Assume
that (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples drawn from the Laplace gating Gaussian
MoE of order k∗ whose conditional density function pG∗(Y |X) is

pG∗(Y |X) =

k∗∑

i=1

softmax(−∥W ∗
i −X∥+ β∗

i ) · f(Y |(a∗i )⊤X + b∗i , ν
∗
i ), (4)

where we define for any vectors v = (vi)
k∗
i=1 that softmax(vi) := exp(vi)∑k∗

j=1 exp(vj)
. Above, f(·|µ, ν)

denotes a univariate Gaussian density function with mean µ and variance ν. For ease of the pre-
sentation, we denote G∗ :=

∑k∗
i=1 exp(β

∗
i )δ(W∗

i ,a∗
i ,b

∗
i ,ν

∗
i )

as a true but unknown mixing measure
associated with unknown parameters (β∗

i ,W
∗
i , a

∗
i , b

∗
i , ν

∗
i ) for i ∈ {1, 2, . . . , k∗}. In the paper, we

specifically consider two settings of the true number of experts k∗: (i) Exact-specified setting: when
k∗ is known; (ii) Over-specified setting: when k∗ is unknown, and we over-specify the model in
equation 4 by a Laplace gating MoE model with k > k∗ experts. However, due to the space limit,
we present only the latter setting, and defer the former setting to Appendix J.
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Maximum Likelihood Estimation. We use the maximum likelihood method to estimate the un-
known mixing measure G∗ [91]. In particular, the MLE is given by

Ĝn ∈ argmax
G∈Gk(Θ)

1

n

n∑

i=1

log(pG(Yi|Xi)), (5)

where Gk(Θ) := {G =
∑k′

i=1 exp(βi)δ(Wi,ai,bi,νi) : 1 ≤ k′ ≤ k, (Wi, ai, bi, νi) ∈ Θ} denotes the
set of all mixing measures with at most k components. Given the MLE defined in equation 5, we
are ready to present the main results. Before that, let us introduce some necessary notations for our
analysis.

Notations. We denote [n] := {1, 2, . . . , n} for any n ∈ N. For any vector v ∈ Rd, ∥v∥ stands for
its 2-norm value. Additionally, the notation |S| indicates the cardinality of a given set S, while δ
denotes the Dirac delta measure. Finally, for any two probability densities p, q dominated by the
Lebesgue measure µ, we denote V (p, q) = 1

2

∫
|p− q|dµ as their Total Variation distance.

Firstly, we demonstrate in Theorem 3.1 that the convergence rate of density estimation under the
Laplace gating Gaussian MoE is parametric on the sample size n.
Theorem 3.1 (Density estimation). The density estimation pĜn

(Y |X) converges to the true density
pG∗(Y |X) under the Total Variation distance at the following rate:

EX [V (pĜn
(·|X), pG∗(·|X))] = O(

√
log(n)/n).

Proof of Theorem 3.1 is in Appendix K.2. The parametric rate O(
√
log(n)/n) of the conditional

density function pĜn
indicates that if there exists a loss function among parameters D such that

EX [V (pĜn
(·|X), pG∗(·|X))] ≳ D(Ĝn, G∗), then we will achieve the parameter and expert estima-

tion rates via the bound D(Ĝn, G∗) = O(
√
log(n)/n).

Voronoi Loss. Following the above implication, we now define a loss function among parameters
based on a notion of Voronoi cells as in [55]. Given some mixing measure G, we distribute its com-
ponents θi := (Wi, ai, bi, νi) to the following Voronoi cells, which are generated by the components
θ∗j := (W ∗

j , a
∗
j , b

∗
j , ν

∗
j ) of the true mixing measure G∗:

Aj ≡ Aj(G) := {i ∈ [k] : ∥θi − θ∗j ∥ ≤ ∥θi − θ∗ℓ ∥, ∀ℓ ̸= j}, (6)

for any 1 ≤ j ≤ k∗. Note that, the cardinality of the Voronoi cell Aj is exactly the number of fitted
components approximating θ∗j . For ease of the presentation, let us denote Φij(ρ1, ρ2, ρ3, ρ4) :=

∥Wi −W ∗
j ∥ρ1 + ∥ai − a∗j∥ρ2 + |bi − b∗j |ρ3 + |νi − ν∗j |ρ4 , for any (ρ1, ρ2, ρ3, ρ4) ∈ R4. Then, the

Voronoi loss function D2(G,G∗) used for our analysis under the over-specified setting is given by:

D2(G,G∗) :=
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βi)− exp(β∗
j )
∣∣∣+

∑

j∈[k∗]:|Aj |=1

∑

i∈Aj

exp(βi)Φij(1, 1, 1, 1)

+
∑

j∈[k∗]:|Aj |>1

∑

i∈Aj

exp(βi)Φij

(
2, 2, r̄(|Aj |),

r̄(|Aj |)
2

)
. (7)

The notation r̄(|Aj |) stands for the minimum value of r ∈ N such that the following sys-
tem of polynomial equations does not have any non-trivial solutions for the unknown variables
{(q1i, q2i, q3i)}|Aj |

i=1 :

|Aj |∑

i=1

∑

m1+2m2=s,
1≤m1+m2≤r

q23iq
m1
1i qm2

2i

m1!m2!
= 0, for each s = 1, 2, . . . , r, (8)

A solution to the above system is regarded as non-trivial if at least among variables q1i is different
from zero, whereas all the variables q3i are non-zero. It is worth noting that the function r̄(·) was
previously studied in [28] to characterize the convergence behavior of parameter estimation under
the location-scale Gaussian mixture models. [28] also gave some specific values of that function,
namely r̄(2) = 4 and r̄(3) = 6. Meanwhile, they claimed that it was non-trivial to determine the
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D1(Ĝn, G∗)

0.2 n−0.49

(a) Exact-specified setting

103 104 105

Sample size n

10−3

10−2

L
os

s
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Figure 3: Log-log scaled plots illustrating simulation results under the exact-specified (left) and the
over-specified settings (right). The orange curves depict the mean discrepancy between the MLE Ĝn

and the true mixing measure G∗, accompanied by error bars signifying two empirical standard de-
viations. Additionally, the gray dash-dotted line represents the least-squares fitted linear regression
line for these data points. Finally, the loss functions D1 and D2 are defined in equations equation 9
and equation 7, respectively. See Appendix I for the experimental details.

value of r̄(m) when m ≥ 4, and further techniques should be developed for that purpose. Since
Gaussian MoE models are generalization of the Gaussian mixture models, we also involve the func-
tion r̄(·) in our convergence analysis. Now, we provide in the following theorem the convergence
rate of parameter estimation under the over-specified setting of the Laplace gating Gaussian MoE
model (see also Figure 3 for the empirical convergence rates justifying the theoretical rates in The-
orem 3.2).

Table 2: Parameter estimation rates under the Softmax and Laplace gating Gaussian MoE models. The func-
tion r̃(·) represents the solvability of a system of polynomial equations considered in [64] while r̃(·) ≤ r̄(·)
and r̃(2) = 4, r̃(3) = 6. Additionally, An

j := Aj(Ĝn) denotes a Voronoi cell defined in equation 6.

Gates exp(β∗
j ) W ∗

j a∗j b∗j ν∗j
Softmax [64] O(n−1/2) O(n−1/2r̃(|An

j |)) O(n−1/r̃(|An
j |)) O(n−1/2r̃(|An

j |)) O(n−1/r̃(|An
j |))

Laplace (Ours) O(n−1/2) O(n−1/4) O(n−1/4) O(n−1/2r̄(|An
j |)) O(n−1/r̄(|An

j |))

Theorem 3.2 (Parameter Estimation). When k > k∗ becomes unknown, the following Total Varia-
tion bound holds true for any mixing measure G ∈ Gk(Θ):

EX [V (pG(·|X), pG∗(·|X))] ≳ D2(G,G∗).

Consequently, we obtain that D2(Ĝn, G∗) = O(
√

log(n)/n).

Proof of Theorem 3.2 is in Appendix K.3. The results of Theorem 3.2 together with the formulation
of the loss function D2 in equation 7 reveal that (see also Table 2):

(i) The parameters W ∗
i , a

∗
i , b

∗
i , ν

∗
i which are fitted by exactly one component, i.e. |An

i | :=

|Ai(Ĝn)| = 1, enjoy the same estimation rate of order O(n−1/2) (up to some logarithmic factor),
which match those in [64].

(ii) The rates for estimating the parameters W ∗
i , a

∗
i , b

∗
i , ν

∗
i which are fitted by more than one com-

ponent, i.e. |An
i | > 1, are no longer homogeneous. On the one hand, the estimation rates for the

parameters b∗i and ν∗i are of orders O(n−1/2r̄(|An
i |)) and O(n−1/r̄(|An

i |)), respectively, both of which
are determined by the function r̄(·) and vary with the number of fitted components |An

i |. Those rates
are comparable to their counterparts in [64]. On the other hand, the estimation rates for the gating
parameters W ∗

i and the expert parameters a∗i are all of order O(n−1/4), which remains constant with
respect to the number of fitted components. Meanwhile, those rates in [64] depend on a different
system of polynomial equations from that in equation 8, which are significantly slower.

Advantage of Laplace Gating on FlexiModal Setting In the standard Softmax gating [64], the
similarity score is computed as the inner product of a token’s hidden representation and an expert

7



Table 3: MoE demonstrates improved performance averaged over 5 random experiments on the CMU-MOSI
and MOSEI datasets; the best results are highlighted in bold font and the second best results are underlined.

Method / Data
MOSI Dataset MOSEI Dataset

MAE↓ Acc-2↑ Corr↑ F1↑ MAE↓ Acc-2↑ Corr↑ F1↑
TFN 0.90 ± 0.02 80.81 ± 0.34 0.70 ± 0.04 80.70 ± 0.18 0.59 ± 0.03 82.50 ± 0.58 0.68 ± 0.02 82.10 ± 0.41
MulT 0.86 ± 0.01 84.10 ± 0.21 0.71 ± 0.02 83.90 ± 0.27 0.58 ± 0.02 82.51 ± 0.41 0.71 ± 0.04 82.31 ± 0.27
MAG 0.71 ± 0.04 86.10 ± 0.44 0.80 ± 0.03 86.00 ± 0.09 0.57 ± 0.07 85.56 ± 0.22 0.79 ± 0.02 84.50 ± 0.18

Softmax-MoE 0.69 ± 0.01 87.09 ± 0.18 0.82 ± 0.02 87.29 ± 0.22 0.55 ± 0.03 86.34 ± 0.23 0.76 ± 0.05 84.97 ± 0.32
Joint experts&router 0.67 ± 0.02 87.28 ± 0.35 0.82 ± 0.03 87.35 ± 0.24 0.54 ± 0.01 86.41 ± 0.36 0.81 ± 0.05 85.43 ± 0.25

Per-mod router 0.65 ± 0.04 88.23 ± 0.57 0.84 ± 0.01 87.39 ± 0.13 0.56 ± 0.02 86.12 ± 0.19 0.78 ± 0.02 85.07 ± 0.14
Disjoint router 0.73 ± 0.02 86.37 ± 0.33 0.81 ± 0.04 86.89 ± 0.21 0.55 ± 0.02 85.67 ± 0.31 0.81 ± 0.01 85.21 ± 0.22

(a) (b) (c)

Figure 4: (a) The Laplace gating mechanism enhances CIFAR-10 classification when integrated into Vision-
MoE [77]. We employed Vision Transformer (ViT) [17] and ViT-small as the backbone models and selectively
replaced their FFN layers with MoE layers; (b) FuseMoE improves prediction on PAM dataset over baseline
time series models; (c) Per-modality routers and the entropy loss E mitigate the impact of missing modalities.

embedding. However, this approach can lead to representation collapse [13, 69], where a subset
of experts dominates the decision-making process, resulting in the redundancy of other experts.
This issue likely contributes to the slow rates of estimating expert parameters a∗i in this setting (see
Table 2). By contrast, the Laplace gating function partially alleviates this problem by computing
the similarity score as the L2-distance between token representations and expert embeddings. This
approach does not inherently favor any expert based on magnitude, unlike inner product which can
be biased towards experts with larger norms. The Laplace gating ensures that all experts have a
more balanced opportunity to be selected based on how close they are to the token representation.
Therefore, Laplace gating is beneficial when dealing with heterogeneous inputs, such as multimodal
data, where its feature distributions can be very different across modalities. This is because it can
handle these differences without being overly sensitive to the scale and variance of the input features.
In addition, it can gracefully degrade in the presence of missing data, rather than causing abrupt
changes in gating probabilities that might occur with inner product-based measures. The improved
estimation rates for expert parameters a∗i under the Laplace gating Gaussian MoE, along with our
empirical results on multiple large-scale datasets, substantiate these insights.

4 Experiments

Overview We demonstrate that FuseMoE can provide accurate and efficient predictions when ap-
plied to the FlexiModal setting. We tested FuseMoE on a diverse set of benchmarks, including
MIMIC-III [40] and MIMIC-IV [36], CMU-MOSI and MOSEI [97], the Physical Activity Moni-
toring (PAM) dataset [75], and CIFAR-10 [46]. Compared to CMU-MOSI and MOSEI, the MIMIC
ecosystem exhibits irregular and missing modality patterns and includes distinct modalities unlike
PAM and CIFAR-10. Evaluating FuseMoE across these diverse datasets provides various empirical
insights into critical aspects of our model’s performance. Comprehensive details on the datasets,
metrics, parameters, and additional results are thoroughly presented in the Appendices.

4.1 Main Results

CMU-MOSI and MOSEI Datasets We first apply our method to the CMU-MOSI and MOSEI
datasets [97], which utilize visual, acoustic, and textual data for sentiment analysis and emotion
recognition tasks. Our methodology employs pre-trained T5 [73] for text encoding, librosa [56] for
audio feature extraction, and EfficientNet [84] for video feature encoding. Table 3 details the per-
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Table 4: Comparison of FuseMoE-based methods (gray) and baselines, utilizing vital signs and clinical notes
of MIMIC-IV [36]. The best results are highlighted in bold font, and the second-best results are underlined.
All results are averaged across 5 random experiments.

Task \ Method MISTS MulT MAG TFN HAIM Softmax Gaussian Laplace

48-IHM
AUROC 75.06 ± 1.03 75.95 ± 0.84 75.82 ± 0.73 78.76 ± 0.79 79.65 ± 0.00 79.49 ± 0.83 80.76 ± 0.56 81.03 ± 0.25

F1 45.61 ± 0.34 38.81 ± 0.22 42.55 ± 0.82 40.61 ± 0.41 39.79 ± 0.00 42.86 ± 0.44 46.86 ± 0.24 46.53 ± 0.57

LOS
AUROC 80.56 ± 0.33 81.36 ± 1.32 81.13 ± 0.66 80.71 ± 0.45 82.58 ± 0.00 82.11 ± 0.39 81.92 ± 0.73 82.91 ± 1.02

F1 73.01 ± 0.52 73.45 ± 0.59 72.51 ± 0.27 73.84 ± 0.61 73.18 ± 0.00 74.43 ± 0.88 74.46 ± 0.52 74.58 ± 0.63

25-PHE
AUROC 69.45 ± 0.72 66.58 ± 0.41 69.55 ± 0.67 69.18 ± 0.32 63.39 ± 0.00 70.54 ± 0.47 70.42 ± 0.26 71.23 ± 0.53

F1 28.59 ± 0.46 28.55 ± 0.31 27.86 ± 0.29 28.52 ± 0.22 42.13 ± 0.00 31.25 ± 0.18 30.44 ± 0.27 31.33 ± 0.19

formance of various router design mechanisms within our MoE architecture, utilizing the Laplace
gating function, compared against representative baselines. The baselines include (1) the early fu-
sion method, Tensor Fusion Network (TFN) [96]; (2) the Multimodal Transformer (MulT), which
fuses modalities by modeling their interactions [90]; (3) the Multimodal Adaptation Gate (MAG),
which focuses on the consistency and differences across modalities [74]; and (4) multimodal fusion
using standard MoE with the Softmax gating function. Results indicate that employing an MoE
backbone—regardless of the gating function chosen or whether utilizing per-modality routers or a
joint experts & router configuration—significantly enhances performance on the multimodal task.
This improvement is attributed to the MoE’s ability to effectively allocate specific components to
handle distinct input modalities, thus better addressing both inter- and intra-modal relationships.

CIFAR-10 Dataset Subsequently, we evaluate our method using the Vision-MoE framework [77]
on the CIFAR-10 classification task [46], with results illustrated in Figure 4(a). In this experiment,
we selectively replace the FFN layers with an even number in the Vision Transformer (ViT) mod-
els with MoE layers. These results, along with Table 3 on the CMU-MOSI and MOSEI datasets
comparing Softmax-gating MoE, indicate that the Laplace gating function surpasses the standard
Softmax gating function in performance. This outcome is consistent with our theoretical claims.

MIMIC-IV and PAM Datasets We then conduct comprehensive evaluations of FuseMoE on
MIMIC-IV [36], and the Physical Activity Monitoring (PAM) dataset [75]. These datasets feature
multiple input modalities, each characterized by varying degrees of irregular sampling or significant
levels of missingness. Our tasks of interest for MIMIC datasets include the 48-hour in-hospital mor-
tality prediction (48-IHM), 25-type phenotype classification (25-PHE), and length-of-stay (LOS)
prediction. In addition to the previously mentioned baselines, we have incorporated the HAIM
method [83], a data pipeline specifically designed for integrating multimodal data from the MIMIC-
IV dataset. We also include the cross-attention combined with irregular sequences modeling ap-
proach (MISTS) [101]. Table 4 shows the outcomes of combining irregular vital signs and clinical
notes from the MIMIC-IV dataset. In addition to the commonly used Softmax gating function, we
also evaluated the Gaussian gating function [93] as a comparative benchmark. The FuseMoE-based
methods surpass baselines in most scenarios, often by a non-trivial margin. Furthermore, we ob-
serve that HAIM shows considerable efficacy in extracting features from time series, resulting in a
strong performance in the 48-IHM and LOS tasks, which are heavily reliant on such data. However,
its performance appears more moderate on the 25-PHE task. The PAM dataset captures daily liv-
ing activities through 17 sensors, with data from each sensor treated as a separate modality. These
modalities are individually processed through time-series and irregularity encoders before being in-
tegrated into the FuseMoE framework. Our baselines include the Transformer [92], GRU-D [10],
SeFT [31], a mTAND-only configuration, and IP-Net [81]. We use the Laplace gating and its joint
experts & router structure in these experiments. The results in Figure 4(b) have again shown the
efficacy of integrating the irregularity encoder with the MoE fusion layer.

4.2 Ablation Studies

Scalability of FuseMoE with Increasing Modalities Table 5 presents the revised outcomes of
the MIMIC-IV dataset after integrating CXR and ECG of corresponding patients, employing the
per-modality router and the entropy loss E within FuseMoE. This setup was chosen as it slightly
outperformed the joint router with an increase in modalities. Relative to their two-modality ver-
sions, FuseMoE has effectively harnessed additional information (notably from CXR), resulting in
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Table 5: Incorporating CXR and ECG into FuseMoE leads to a noticeable enhancement as compared to their
two-modality counterparts. All results are averaged across 5 random experiments.

Task \ Method
Vital & Notes & CXR Vital & Notes & CXR & ECG

HAIM Softmax Gaussian Laplace HAIM Softmax Gaussian Laplace

48-IHM
AUROC 78.87 ± 0.00 83.13 ± 0.36 83.64 ± 0.47 83.87 ± 0.33 78.87 ± 0.00 82.92 ± 0.22 83.03 ± 0.85 83.55 ± 0.49

F1 39.78 ± 0.00 46.82 ± 0.28 38.87 ± 0.26 45.36 ± 0.46 39.78 ± 0.00 46.87 ± 0.17 44.04 ± 0.26 46.88 ± 0.42

LOS
AUROC 82.46 ± 0.00 83.76 ± 0.59 83.64 ± 0.52 83.51 ± 0.51 82.46 ± 0.00 83.53 ± 0.34 83.47 ± 0.37 83.58 ± 0.78

F1 72.75 ± 0.00 74.32 ± 0.44 76.59 ± 0.74 75.18 ± 0.77 72.75 ± 0.00 75.01 ± 0.63 74.43 ± 0.64 75.11 ± 0.65

25-PHE
AUROC 63.57 ± 0.00 73.87 ± 0.71 72.68 ± 0.61 73.65 ± 0.39 63.82 ± 0.00 73.64 ± 0.89 73.74 ± 0.41 73.67 ± 0.71

F1 42.80 ± 0.00 35.96 ± 0.23 35.09 ± 0.15 36.01 ± 0.42 43.20 ± 0.00 36.06 ± 0.17 36.46 ± 0.55 35.81 ± 0.34

a significant enhancement in performance. Conversely, the addition of new modalities did not ben-
efit the HAIM method, possibly due to its reliance on vital signs and clinical notes without ade-
quately addressing the dynamics between different modalities. Furthermore, HAIM’s notably high
F1 scores on the 25-PHE task can be attributed to XGBoost’s proficiency in managing missing mi-
nority classes. Note that, except for HAIM, other baselines were not designed to be agnostic to the
quantity and variety of input modalities. Therefore, adapting them to manage extra and missing
modalities requires considerable model changes, which might compromise their performance.

Missing Modalities Figure 4(c) illustrates the effectiveness of utilizing per-modality routers and
the entropy loss E in addressing missing modalities. Initially, we compare the performance of
FuseMoE on patients with fully available modalities against those with missing components, em-
ploying a joint router mechanism with the importance loss function [79], to ensure load balancing.
The inclusion of datasets with missing modalities, while expanding the sample size, resulted in a de-
crease in performance due to the compromised data quality. However, a performance enhancement
was observed upon integrating per-modality or disjoint routers with E . Notably, the outcomes for
the 48-IHM and LOS tasks with missing modalities surpassed those obtained from datasets with-
out any missingness. This is because the per-modality approach can better separate the present and
missing modalities, reducing the influence of experts responsible for processing the absent inputs.
Therefore, this leads to a more efficient exploitation of a broader array of samples.

5 Discussions and Limitations

In this paper, we introduced FuseMoE, a model adept at managing multimodal data characterized
by random missingness or irregularity—a crucial yet relatively unexplored challenge. FuseMoE
integrates MoE fusion layers with modal embeddings and offers multiple router configurations to
adeptly handle multimodal inputs across different complexity levels. FuseMoE also employs an
innovative Laplace gating function, which provides better theoretical results. Through empirical
evaluation, FuseMoE has demonstrated superior performance across diverse scenarios. However,
our current approach to encoding irregularities may potentially lead to over-parameterization when
the input size is small. In our future work, we aim to identify simpler and more efficient methods to
handle the irregularities of input samples while preserving the model’s overall performance.
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Morten Hylander Møller, Christian Fynbo Christiansen, José Castela Forte, Harold Snieder,
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A Related Works

Multimodal Fusion Initial approaches to multimodal fusion incorporated techniques such as
kernel-based methods [7, 11, 70], graphical models [59, 21, 76], and neural networks [60, 20, 67].
With the diverse evolution of deep learning models, numerous advanced methods have now been
employed in the fusion of multimodal data. In the realm of sentiment analysis, [96, 52] employ
a low-rank Tensor Fusion method that leverages both language and video content. Attention-
gating mechanisms are used by [74, 95] to generate displacement vectors through cross-modal
self-attention, which are then added to the input vectors from the primary modality. [90] takes an
alternative approach by integrating multiple layers of cross-modal attention blocks in a word-level
vision/language/audio alignment task.

In the context of clinical prediction, [45, 16] adopt a late fusion approach to combining vital sign
and text data by concatenating embeddings from pre-trained feature extractors. [83] developed a
generalizable data preprocessing and modeling pipeline for EHR encompassing four data modali-
ties, albeit through a direct concatenation of existing feature embeddings for each modality followed
by an XGBoost classifier [12]. Recently, [101] expanded on the work of [90] by introducing a dis-
cretized multi-time attention (mTAND) module [82] to encode temporal irregularities in time series
and text data. Their fusion approach involves layering sets of self- and cross-modal attention blocks.
However, this approach is limited to just two modalities and is not easily extendable to include
additional modal components or handle missing modalities. To the best of our knowledge, exist-
ing works are tailored to application-specific settings that necessitate the computation of pairwise
cross-modal relationships, which are not scalable to more general settings with arbitrary modalities.
Moreover, these studies typically do not account for scenarios where modalities are missing, or rely
on imputation approaches based on observed data.

Mixture-of-Experts MoE [35, 93] has gained significant popularity for managing complex tasks
since its introduction three decades ago. Unlike traditional models that reuse the same parameters
for all inputs, MoE selects distinct parameters for each specific input. This results in a sparsely
activated layer, enabling a substantial scaling of model capacity without a corresponding increase
in computational cost. Recent studies have demonstrated the effectiveness of integrating MoE with
cutting-edge models across a diverse range of tasks [79, 19, 103]. These works have also tackled
key challenges such as accuracy and training instability [66, 104, 72]. Given its ability to assign
input partitions to specialized experts, MoE naturally lends itself to multimodal applications. This
approach has been explored in fields such as vision-language modeling [58, 80] and dynamic image
fusion [9]. However, the application of MoE in complex real-world settings, such as those involving
FlexiModal Data, remains largely unexplored. This gap presents an opportunity to leverage MoE’s
potential in handling its intricate and multifaceted nature such as multimodal EHR, where reliable
multimodal integration is crucial.

MoE Theory While MoE has been widely employed to scale up large models, its theoretical
foundations have remained nascent. Recently, [64] provided convergence rates for both density and
parameter estimation of Softmax gating Gaussian MoE. They connected these rates to the solvability
of systems of polynomial equations under Voronoi-based loss functions. Later, [63] extended these
theories to the top-K sparse softmax gating Gaussian MoE. Their theories further characterize the
effect of the sparsity of gating functions on the behaviors of parameter estimation and verify the
benefits of using top-1 sparse softmax gating MoE in practice. Other theoretical results for MoE
include estimation rates of parameters and experts for multinomial logistic MoE [62], for dense-to-
sparse gating MoE [61], for Gaussian gating MoE [65], and for input-independent gating MoE [29].

B FlexiModal Data and Tasks of Interest

Definition of FlexiModal Data We provide a generic definition for the FlexiModal Data as we
used throughout the paper. Let D = {(xm1

i , tm1
i ), (xm2

i , tm2
i ), . . . , (x

mj

i , t
mj

i ), yi}Ni=1 to be the
FlexiModal dataset with N units, where x

mj

i represents the input sequence from the ith unit of the
jth modality, tmj

i denotes the corresponding time points, and yi is the task-specific outcome. Take
multimodal EHR as an example, each jth modality, which may vary from time-series data like heart
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rate, blood pressure, and glucose levels to high-dimensional inputs such as clinical notes and X-rays,
contains lmj observations. Figure 5 is a more specific illustration of the FlexiModal example.

B.1 MIMIC-IV and MIMIC-III Datasets

Tasks In the ICU, where rapid and informed decisions are crucial, accurate mortality prediction
is essential to provide clinicians with advanced warnings of patient deterioration, aiding in critical
decision-making processes [5]. Similarly, the prediction of patient length-of-stay is indispensable
for optimizing treatment plans, resource allocation, and discharge processes [6]. Further, phenotyp-
ing of critical care conditions is highly relevant to comorbidity detection and risk adjustment and
presents a more challenging task than binary classification, due to the heterogeneous presentation
of conditions and the larger number of prediction tasks [101]. We concentrate on three critical care
tasks as highlighted in [44], performing extensive empirical analysis on each building block of the
proposed framework.

• 48-IHM In this binary classification task, we predict in-hospital mortality based on the
first 48 of the ICU stay for patients who stayed in the ICU for at least 48 hours.

• LOS We formulate our length-of-stay task similar to that of 48-IHM: for patients who
spent at least 48 hours in the ICU, we predict ICU discharge without expiration within the
following 48 hours.

• 25-PHE In this multilabel classification problem, we attempt to predict one of 25 acute
care conditions [18, 53] (e.g., congestive heart failure, pneumonia, shock, etc.) at the end
each each patient’s ICU stay. Because the original task was designed for diagnoses based
on ICD-9 codes, but MIMIC-IV includes both ICD-9 and ICD-10 codes, we map patients
with diagnoses coded using ICD-10 using the conversion database provided by [8].

Figure 5: Schematic of tasks of interest. Plotted are example vitals/labs, radiological notes, X-rays,
and ECGs sampled over the course of a patient’s ICU stay. The first three rows represent example
observations from a single modality consisting of three irregularly sampled vital signs (HR, BP), and
lab values (Glucose). The following three rows represent irregularly sampled radiological notes, X-
rays, and ECGs. Opaque shapes denote observations falling within the observation window (i.e.,
observations that are used to generate predictions), while translucent shapes are not used to generate
predictions. For the 48-IHM task, we use the first 48 hours of observations to predict death at
any time during the ICU stay. For the LOS task, we use the first 48 hours of observations to predict
whether the patient will be discharged (alive) during the following 48 hours. And in the phenotyping
task (PHE), we use all observations to predict one of 25 critical care conditions.

We implement an in-hospital mortality prediction (48-IHM) task to evaluate our method’s ability
to predict short-term patient deterioration. Similarly, an accurate determination of patient discharge
times is crucial for optimizing patient outcomes and hospital resource allocation [6], which motivates
our length-of-stay (LOS) task. We frame 48-IHM and LOS as binary classification problems and
use a 48-hour observation window (for patients who spent at least 48 hours in the ICU) to predict
in-hospital mortality (48-IHM) and discharge (without expiration) within the 48 hours following
the observation window (LOS). Lastly, identifying the presence of specific acute care conditions
in patient records is essential for various clinical objectives, including the construction of cohorts
for clinical studies and the detection of comorbidities [1]. Traditional methods, often reliant on
manual chart reviews or simple billing code-based definitions, are increasingly being supplemented
by machine learning techniques [27]; automating this process requires high-fidelity classifications,
motivating our 25-type phenotype classification (25-PHE) task. In this multilabel classification
problem, we attempt to predict one of 25 acute care conditions using data from the entire ICU stay.
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Evaluation In our initial analysis, we focused on patients with no missing modalities, resulting
in a dataset comprised of 8,770 ICU stays for the 48-IHM and LOS tasks, and 14,541 stays for the
25-PHE task. For our analyses with missing observations, we include a total of 35,129 stays for
48-IHM and LOS, and 71.173 for 25-PHE. To evaluate the single-label tasks, 48-IHM and LOS, we
employ the F1-score and AUROC as our primary metrics. In line with previous studies [101, 50, 3],
we use macro-averaged F1-score and AUROC to assess the 25-PHE task.

Dataset Information We leveraged data from MIMIC-IV [36], a comprehensive database with
records from nearly 300k patients admitted to a medical center from 2008 to 2019, focusing on the
subset of 73,181 ICU stays. We were able to link core ICU records (containing lab results and vital
signs) to corresponding chest X-rays [39], radiological notes [38], and electrocardiogram (ECG)
data [24] taking place during a given ICU stay. We allocated 70 percent of the data for model
training, with the remaining 30 percent evenly split between validation and testing.

Missingness Rates The total number of samples for each of our three tasks (i.e., those in which at
least one vital sign was recorded in the specified observation window), along with the total number
of observations per-modality, are shown in Table 6.

Table 6: We present the total number of ICU stays in each task, taking into account observations with
missing modalities. The total number of stays with at least one observation of the corresponding
modality are shown in the three right-most columns.

Task(s) Total Text CXR ECG

48-IHM & LOS 35,129 32,038 8,781 18,271

25-PHE 73,173 56,824 14,568 35,925

B.2 MOSI and MOSEI Datasets

Task We focus on the multimodal sentiment analysis (MSA) task which aims to predict sentiment
polarity ∈ {positive, negative, and neutral} and sentiment intensity, which is a real number ranging
from -3 to +3 under a multimodal setting.

Evaluation Following previous work such as [26], we adopt mean absolute error (MAE), Pearson
correlation (Corr), binary classification accuracy, F1 score computed for non-negative/negative class
as evaluation metrics.

Dataset Information The CMU-MOSI dataset contains 1284/229/686 train/validation/test sam-
ples, and the CMU-MOSEI dataset contains 16326/1871/4659 train/validation/test samples. They
are the largest dataset of multimodal sentiment analysis and emotion recognition to date. The
datasets contain utterance videos from numerous online YouTube speakers, which are transcribed
and properly punctuated, leading to multimodal input consisting of video frames, text, and audio
signals.

B.3 PAM Dataset

Task Physical Activity Monitoring (PAM) dataset measures the daily living activities of 9 subjects
with 3 inertial measurement units. PAM is labeled into 8 classes where each class represents an
activity of daily living.

Evaluation We choose common classification accuracy as the evaluation metric for this task.

Dataset Information The processed PAM dataset contains 5,333 segments (samples) of sensory
signals. Each sample is measured by 17 sensors and contains 600 continuous observations with the
sampling frequency 100 Hz. PAM does not include static attributes and the samples are approxi-
mately balanced across all 8 categories.
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Table 7: Dataset Summary

Dataset Research Area Modalities Sample Size Tasks
MIMIC-III Healthcare Time-Series, Text 36,212 Mortality, length-of-stay, phenotyping
MIMIC-IV Healthcare Time-Series, Text, Images, ECG 73,173 Mortality, length-of-stay, phenotyping

CMU-MOSI Affective Computing Text, Video, Audio 2,199 Sentiment
CMU-MOSEI Affective Computing Text, Video, Audio 22,777 Sentiment, emotions

PAM Healthcare Time-Series 5,333 Activity recognition
CIFAR-10 Multimedia Images 60,000 Image classification

B.4 CIFAR-10 Dataset

CIFAR-10 [46] is an established computer-vision dataset used for object recognition. It consists of
60,000 32x32 color images containing one of 10 object classes (”plane”, ”car”, ”bird”, ”cat”, ”deer”,
”dog”, ”frog”, ”horse”, ”ship”, ”truck”), with 6000 images per class.

C Mechanisms of Different Router Designs

C.1 Joint Experts & Routers

In this approach, a concatenated embedding of all modalities is created, and this combined input is
directed to selected experts by the router. This method allows the model to capture interactions be-
tween modalities at the input level, as the concatenated embedding provides a unified representation
that includes all modalities. The router and experts work with this comprehensive view, enabling
the model to learn correlations and interactions directly from the fused data. However, this ap-
proach might not fully capture modality-specific nuances since the characteristics of each modality
are blended into a single representation.

Advantages

1. Captures inter-modal relationships by considering all modalities together.
2. Simplifies the routing mechanism by treating the concatenated embedding as a single input.

Challenges

1. May overlook modality-specific features due to the blending of all modalities into one
representation.

2. Could be less efficient if some modalities are irrelevant for certain tasks or experts.

C.2 Modality-Specific Router

Each modality’s embedding is independently assigned to a shared pool of experts by modality-
specific routers. This setup allows the model to maintain the distinctiveness of each modality while
still leveraging a common pool of expertise. By doing so, it can better capture modality-specific
nuances and how they contribute independently to the overall task. However, this approach might
be less effective in capturing complex inter-modal interactions since the initial routing is done inde-
pendently for each modality.

Advantages

1. Preserves modality-specific information by routing each modality independently.
2. Flexible in directing modalities to the most relevant experts, potentially improving effi-

ciency.
3. Captures interactions between modalities to some extent, but may not be as effective as

joint routing approaches.

Challenge needs additional coordination between independent routes to leverage cross-modal in-
sights.
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C.3 Disjoint Experts & Routers

In this configuration, modality-specific routers assign each modality’s embedding to separate pools
of experts, with each pool uniquely tailored to process a specific modality type. This method maxi-
mizes the ability of the model to capture and exploit modality-specific features and relationships, as
each pool of experts is optimized for a particular type of data. However, this setup might limit the
model’s ability to learn from the interactions between modalities, as each is processed in isolation.

Advantages

1. Allows for highly specialized processing of each modality, potentially improving perfor-
mance on modality-specific tasks.

2. Modality-specific experts can develop deeper insights into the characteristics and patterns
within their designated data type.

Challenges

1. Inter-modal relationships might be underutilized due to the segregated processing of each
modality.

2. Requires additional coordination or subsequent integration stages to combine insights from
different modality-specific experts.

Each router type offers unique benefits and faces specific challenges in capturing the subtle rela-
tionships between modalities. The choice among them depends on the specific requirements of the
application, including the importance of preserving modality-specific information versus capturing
inter-modal interactions, and the computational efficiency of managing multiple experts and routers.
For example, we found that modality-specific routers are more effective in ameliorating the effect of
missing modality in our experiments.

D Data Preprocessing

D.1 MIMIC-IV

In the preprocessing stage, we focused on 30 pertinent lab and chart events from each patient’s
ICU record for vital sign measurements. For chest X-rays, we utilized a pre-trained DenseNet-121
model [14], which was fine-tuned on the CheXpert dataset [34], to extract 1024-dimensional image
embeddings. For radiological notes, we obtained 768-dimensional embeddings using the BioClini-
calBERT model [2]. ECG signals were processed using a convolutional autoencoder, adapted from
[4], to generate a 256-dimensional embedding for each ECG.

Time series We selected 30 time series events for inclusion, following [83]. Nine of these were
vital signs: heart rate, mean/systolic/diastolic blood pressure, respiratory rate, oxygen saturation,
and Glascow Coma Scale (GCS) verbal, eye, and motor response. We also included 21 lab values:
potassium, sodium, chloride, creatinine, urea nitrogram, bicarbonate, anion gap, hemoglobin, hema-
tocrit, magnesium, platlet count, phosphate, white blood cell count, total calcium, MCH, red blood
cell count, MCHC, MCV, RDW, platlet count, neutrophil count, and vancomycin. We standard scale
each time series value to have mean 0 and standard deviation 1, based on the values in the training
set.

Chest X-rays To incorporate a medical imaging modality into our analyses, we use the MIMIC-
CXR-JPG [37] module available from Physionet [23], which includes 377,110 JPG format images
derived from the DICOM-based MIMIC-CXR database [39]. Following [83], for each image, we
resize each JPG image to 224 × 224 pixels and then extract embeddings from the last layer of the
Densenet121 model. We identify X-rays taken while the patient was in the ICU by first matching
subject IDs in MIMIC-CXR-JPG with the core MIMIC-IV database, then limiting these matched
X-rays to those with a chart time occuring between an ICU admission and discharge.
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Radiological notes To incorporate text data, we use the MIMIC-IV-Note module [38], which
contains 2,321,355 deidentified radiology reports for 237,427 patients that can be matched with
patients in the main MIMIC-IV via a similar approach to chest X-rays. We note that we were unable
to obtain intermediate clinical notes (i.e., notes made by clinicians throughout a patient stay), as
those have not yet been publicly released. We extract note embeddings using Bio-Clinical BERT
[2].

Electrocardiograms (ECGs) To include ECGs as an additional modality in our models, we uti-
lize the MIMIC-IV-ECG [24] module, which includes approximately 800,000 ECGs (10 seconds,
sampled at 500 Hz) collected from nearly 160,000 unique patients. To transform the ECGs so that
they are suitable for input to our model, we adopt a convolutional autoencoder approach, adapted
from [4], that compresses each ECG into a 256-dimensional vector. Specifically, each diagnostic
ECG contains a 5000 × 12 dimensional vector (5000 time points × 12 ECG leads). To prepare
the ECG for input to the autoencoder, we only include the first 4096 time points. We then train
the autoencoder to compress the ECG into a 256-dimensional latent vector, and then reconstruct
the original ECG using upsampling layers, using mean squared error as our loss function. The ar-
chitecture is shown in Figure 6. We train the autoencoder with 90% of the ECGs available in the
MIMIC-IV-ECG projection and use the rest for validation. We selected a batch size of 2048, and
reduced the learning rate by a factor of 0.5 if the validation loss had plateaued for 3 epochs. Training
stopped if the validation loss had not decreased for 6 epochs. For our encoder, we use filter numbers
of [16, 16, 32, 32, 64, 64], kernel widths of [5, 5, 5, 3, 3, 3] and a dropout rate of 0.1. For the decoder,
we use the same filter numbers and kernel widths in reverse, and maintain a dropout rate of 0.1.

Figure 6: CNN Autoencoder Architecture The encoder consists of 6 convolutional blocks (tempo-
ral convolution, batch normalization, dropout, and max pooling layers), followed by a dense layer
that reduces the dimensionality of the representation of 256. The decoder reconstructs the input
ECG (dimensionality 4096×12) from this latent vector via a dense layer, followed by 6 upsampling
convolutional blocks (upsampling, convolutional, batch normalization, and dropout layers).

D.2 PAM Dataset

We follow the preprocessing procedure from [100] as published from their official GitHub reposi-
tory1.

1https://github.com/mims-harvard/Raindrop/tree/main/PAMdata
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E Modeling Irregularity

E.1 Unified Temporal Discretization Embeddings

Unlike the embeddings in chest X-rays, clinical notes, and ECGs, vitals/lab/time-series values
present temporal irregularity across dimensions. That is, for the former three modalities, each di-
mension of the corresponding is observed at each irregular time point τ . By contrast, the sampling
for vitals/labs is irregular in both within and across dimensions. For example, we might observe
heart rate values sampled at times τHR = {0, 0.2, 0.8, 1.2, 2.8} and glucose values sampled at time
τGlu = {0.1, 0.7, 3.4}. Given this unique challenge present in vitals/labs, we adapt the Unified Tem-
poral Discretization Embedding (UTDE) approach described in [101], which combines the mTAND
approach described in Section 2.2 with a simpler imputation-based discretization scheme. Specif-
ically, given a set of t observations x ∈ Rt observed at irregular times τ ∈ Rt, we a simple
imputation scheme to discretize x into target bins γ (e.g., γ = {0, 1, 2, ..., γ}. Specifically, given
bin value γi ∈ γ, we apply the following rules:

• If there exists a previously observed value of x (i.e., ∃τ ∈ τ st. τ ≤ γi), we set the imputed
value of x at time γ, x̂γi , to the closest previously observed value.

• If no previously observed value exists, we set the value of x̂γi
to the global mean of x.

We do this for each possible vitals/lab, to generate a matrix of imputation embeddings I ∈ Rγ×dvitals ,
were dvitals is the number of vitals/labs. We then input this embedding into a 1D causal convolutional
layer with stride 1 to obtain our final imputation embeddings with hidden dimension dh, EImp ∈
Rγ×dh .

E.2 Unifying imputation and mTAND embeddings

We combined simple imputation and mTAND embeddings via a gating function g. Following [101],
we let EmTAND ∈ Rγ×dh denote the mTAND embeddings for vitals/labs derived from the process
described in Section 2.2 and let EImp ∈ Rγ×dh denote the simple imputations from the process
described above. We use each of these discretization embeddings to derive a final set of embeddings
for vitals/labs Evitals via a one-layer MLP gating function f . Specifically, we let g = f(EImp ⊕
EmTAND), where ⊕ denotes the concatenation operator. We then calculate Evitals as

Evitals = g ⊙EImp + (1− g)⊙EmTAND ∈ Rγ×dh ,

where ⊙ denotes point-wise multiplication.

F Baseline Comparison

F.1 MISTS

This approach, from [101], casts time series and clinical notes as multivariate, irregularly-sampled
time series (MISTS) and uses layers of self- and cross-attention to fuse modalities. The method
uses a Time2Vec [43] encoding scheme to represent the irregularity of observation times. We use
the same hyperparameters as in the original paper (e.g., 3 self- and cross-attention blocks, 128-
dimensional time embedding, etc.).

F.2 MulT

This model from [90] relies on multiple stacks of pairwise and bidirectional cross-modal attention
blocks (without a self-attention mechanism) to attend to low-level features. The results of cross-
modal attention are then sent to modality-specific transformers, concatenated, and used to make
predictions.

F.3 MAG

This method introduces the Multimodal Adaptation Gate (MAG) as an extension to BERT and XL-
Net, allowing these pre-trained models to incorporate visual and acoustic data during fine-tuning.
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By generating a modality-conditioned shift in their internal representations, MAG enables enhanced
sentiment analysis performance on multimodal datasets, achieving human-level accuracy in the field
[74].

F.4 TFN

The proposed Tensor Fusion Network approach (TFN) integrates three core components: Modality
Embedding Subnetworks for generating rich embeddings from unimodal inputs, a Tensor Fusion
Layer for capturing all levels of modality interactions through a 3-fold Cartesian product, and a
Sentiment Inference Subnetwork tailored to perform sentiment analysis based on the fusion layer’s
output [96].

F.5 HAIM

The multimodal fusion approach detailed by [83] extracts a single set of features for each ICU stay,
and uses this to predict the outcome of interest (in-hospital mortality, etc.). For vitals/lab values, the
authors extract a set of 11 generic time series features: signal length, maximum, minimum, mean,
median, SD, variance, number of peaks, and average time-series slope and piece-wise change over
time of these metrics. This is done independently for each of the 30 events, leading to 30×11 = 330
vital/lab features per ICU stay. To provide a fair comparison with our method, we only include the
most recent five notes and 128 vitals measurements in calculating embeddings. We only include
entries for which all modalities are observed. For note/X-ray/ECG embeddings, we compute the
mean embedding across all observations occurring during the specified time frame (i.e., the first
48 hours of 48-IHM and LOS, the entire stay for PHE). As with our method, we standardize scale
values based on the training set. [83] uses an XGBoost [12] classifier to predict the outcomes of
interest. We follow the hyperparameter optimization approach described in the paper. Specifically,
we conduct a grid search across the following sets of hyperparameters: max depth = {5, 6, 7, 8},
number of estimators = {200, 300}, learning rate = {0.3, 0.1, 0.05}. Hyperparameters are selected
based on the maximum AU-ROC from five-fold cross-validation.

F.6 Implementation

We integrate F.1 through F.4 into our workflow using the implementation provided by [101]. For
F.5, we adapt the time series (e.g., series variance, mean, etc.) feature extraction and model fitting
code from the repository released by the corresponding paper. The original paper doesn’t use ECG
waveforms, so we adopt a similar approach to ECG embeddings as with image and note embeddings,
and take the mean value of the latent vector across all included observations.

G Computational Resources and Hyper-Parameters

G.1 Computational Resources

We train models using a Lambda Workstation with four A550 GPUs with 24 GB of memory. We are
able to train models using a single GPU. An analysis of computation time and memory requirements
is shown in Figure 12.

G.2 Hyper-Parameters

The set of parameters we used for experiments can be found in Table 8.

H Additional Results

H.1 FlexiModal Experiments

We present additional results comparing FuseMoE to baselines using the MIMIC-III dataset, which
includes only vital signs and clinical notes (Table 9), and the MIMIC-IV dataset, featuring vital
signs and CXR (Table 10). All experiments utilize the “joint experts and router” configuration. In
these settings, FuseMoE demonstrates noticeable advantages.
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Table 8: Hyperparameters used for MoE framework and general architecture.

Hyper-Parameter Type Parameter Name Value

MoE

Number of experts 16
FFN hidden size 512

Top k 4
Disjoint top k 2

Hidden activation function GeLU
Number of MoE layers 3

Other Parameters

Random seed [32, 42, 52, 62, 72]
Training epochs 8

Training batch size 2
Eval batch size 8

CNN kernel size 1
Gradient accumulation steps 16

BERT update epochs 2
BERT learning rate 2.00E-05

Time series encoder learning rate 4.00E-04
Number of notes to include for a patient 5

Get notes from beginning or last Last
Attention embedding dimension 128

Number of attention heads 8
Maximum time for irregular time series 48

Time embedding dimension 64

Table 9: Comparison of FuseMoE-based methods (gray) and baselines, utilizing vital signs and
clinical notes of MIMIC-III. The best results are highlighted in bold font, and the second-best results
are underlined. All results are averaged across 5 random runs. Since HAIM is not designed for the
MIMIC-III dataset, we use the concatenation method from e.g. [45] as a replacement.

Task \ Method MISTS MulT MAG TF Concat Softmax Gaussian Laplace

48-IHM
AUROC 89.14 ± 0.57 87.26 ± 0.35 86.53 ± 1.21 87.22 ± 0.89 86.72 ± 0.76 90.25 ± 0.74 90.77 ± 0.18 91.19 ± 0.52

F1 56.45 ± 1.30 54.13 ± 1.20 53.20 ± 2.13 51.44 ± 0.66 52.77 ± 0.70 56.41 ± 0.98 56.21 ± 0.17 57.36 ± 0.73

25-PHE
AUROC 86.06 ± 0.06 85.96 ± 0.07 85.94 ± 0.07 84.74 ± 0.16 85.94 ± 0.21 86.41 ± 0.75 85.96 ± 0.64 86.72 ± 0.27

F1 54.84 ± 0.31 54.20 ± 0.33 53.73 ± 0.37 49.84 ± 0.83 53.30 ± 0.35 55.02 ± 0.23 55.29 ± 0.45 55.38 ± 0.69

H.2 Ablation Study on FuseMoE Building Blocks

In Figure 7, we evaluate the impact of various irregularity encoders on the performance of the
FuseMoE framework. Our baseline approaches include the following methods:

1. employing only the imputation (discretization) module from the time-series irregularity
encoder, as detailed in Appendix E

2. utilizing solely the mTAND module [82] within the time-series irregularity encoder

3. implementing the SeFT method [31] as an irregularity encoder

4. adopting the RAINDROP method [100] as an irregularity encoder

Table 10: Comparison of FuseMoE-based methods (gray) and baselines, utilizing vital signs and
CXR of MIMIC-IV. The best results are highlighted in bold font, and the second-best results are
underlined. All results are averaged across 5 random experiments.

Task \ Method MISTS MulT MAG TF HAIM Softmax Gaussian Laplace

48-IHM
AUROC 81.36 ± 0.24 77.70 ± 0.44 81.19 ± 1.25 76.92 ± 0.65 80.87 ± 0.00 82.08 ± 0.26 81.26 ± 0.18 82.97 ± 0.49

F1 43.35 ± 0.39 28.40 ± 0.75 39.59 ± 0.43 46.59 ± 0.33 40.88 ± 0.00 38.14 ± 0.31 44.59 ± 0.24 47.48 ± 0.23

LOS
AUROC 82.07 ± 0.82 81.94 ± 0.26 81.86 ± 0.76 81.47 ± 0.89 81.69 ± 0.00 82.96 ± 0.47 82.74 ± 0.85 83.22 ± 0.68

F1 74.07 ± 0.18 74.46 ± 0.17 73.89 ± 0.93 73.39 ± 0.14 72.93 ± 0.00 75.67 ± 0.59 75.16 ± 0.42 75.43 ± 0.19

25-PHE
AUROC 71.50 ± 0.22 71.20 ± 0.76 70.89 ± 0.47 70.55 ± 0.29 63.43 ± 0.00 71.38 ± 0.31 70.87 ± 0.67 71.44 ± 0.24

F1 33.52 ± 0.39 32.80 ± 0.18 33.14 ± 0.61 33.56 ± 0.74 42.45 ± 0.00 33.49 ± 0.15 31.94 ± 0.09 34.13 ± 0.56
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(a) (b)
Figure 7: The irregularity encoder employed by FuseMoE achieves the best average results compared
with 4 baseline irregularity encoders. The performance of these approaches is averaged over 5
random runs. We utilized the vital signs and clinical notes components of the MIMIC-IV dataset.

In Figure 8, we evaluate the impact of various time-series encoders on the performance of the Fuse-
MoE framework. The original FuseMoE framework feeds time-series embeddings obtained from
the irregularity encoder into the Transformer [92] and extracts the last hidden states of the Trans-
former output to pass through fully connected layers to make predictions. Our baseline approaches
include CNN [47] and LSTM [30] to encode time-series embeddings from the irregularity encoder.

(a) (b)
Figure 8: Transformer is more effective in acting as the time-series encoder than CNN and LSTM.
The performance outcomes of these approaches are derived from averages over 5 random runs. We
utilized the vital signs and clinical notes components of the MIMIC-IV dataset.

In Figure 9, we assess the effect of different CXR encoders on the FuseMoE framework. Currently,
the FuseMoE framework incorporates DenseNet-121 as the feature extractor for CXR images before
their integration into the mTAND module. This setup is compared with the application of the state-
of-the-art vision transformer (ViT-B) [17] as an alternative CXR encoder.

In Figure 10, we evaluate the influence of text encoders on the FuseMoE framework. Currently,
FuseMoE incorporates Clinical-Longformer [49] as the text encoder before integrating it into the
mTAND module. This setup is compared with other state-of-the-art text encoders: GRU-D [10],
FT-LSTM [99], and HierTrans [68].

Finally, in Figure 11, we investigate the effect of the mTAND module on each modality, while we
removed mTAND for a particular modality, the rest of FuseMoE’s components remained constant.

H.3 Ablation Study on MoE Architecture

We then conducted ablation studies to explore the efficiency and effectiveness of MoE architecture
on model performance. We mainly use MIMIC-IV as our test bed. Figure 12(a) examines the com-
putational efficiency and resource utilization, positioning FuseMoE approximately in the middle of
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(a) (b)
Figure 9: ViT could further improve predictive results in some tasks by providing better CXR em-
beddings. The performance of these approaches is averaged over 5 random runs. We utilized all 4
modalities (vital signs, clinical notes, CXR, and ECG) of MIMIC-IV. Note that while we vary the
CXR encoders, the rest of our framework’s components remain constant.

(a) (b)
Figure 10: Clinical-Longformer as the text encoder achieves the best performance compared with
baselines. The performance of these approaches is derived from averages over 5 random runs. We
utilized all 4 modalities (vital signs, clinical notes, CXR, and ECG) of the MIMIC-IV dataset, while
we varied the text encoders, the rest of our framework’s components remained constant.

(a) (b)
Figure 11: Encoding irregularity using the mTAND module improves the overall performance. The
positive effect of the irregularity encoder is most evident in vital signs and clinical notes. The
performance outcomes of these approaches are averaged over 5 random runs. We utilized all 4
modalities (vital signs, clinical notes, CXR, and ECG) components of the MIMIC-IV dataset.
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(a) (b) (c)
Figure 12: Results of ablation studies on MoE architecture: (a) The computational efficiency and
resource utilization of each method when applied to vital signs and clinical notes from the MIMIC-
IV dataset; (b) The relationship between the number of experts and task performance across different
modalities, including vital signs, clinical notes, and CXR; (c) The impact of each modality on the
top-k experts within a disjoint router structure.

Figure 13: Modality weight composition of CMU-MOSI and CMU-MOSEI datasets.

the comparison. Despite the increase in model parameters due to the incorporation of the MoE layer,
its sparse nature does not significantly escalate the computational load. Figure 12(b) illustrates the
correlation between the number of experts and task performance across different modalities. Gen-
erally, performance improves with the addition of more experts, plateauing once the count exceeds
16. To achieve a compromise between performance and computational expense, we opted to utilize
the top 4 experts out of 16 in our experiments. Figure 12(c) and Figure 13 study the influence of
each modality on the top-k chosen experts. For every expert selected, we calculate the number of
samples that include a specific modality, weighted by corresponding weight factors from the gating
functions. The outcomes are subsequently normalized across modalities. The analysis of Figure
12(c) reveals that predictions across all tasks heavily depend on vital signs and clinical notes. This
reliance is attributed to the abundant samples in these two modalities. Despite the notably smaller
quantity of CXR, they play more significant roles in the 25-PHE and 48-IHM tasks, which aligns
with our findings in Table 5. The results in Figure 13 demonstrate that the modality weight distribu-
tion in the MOSI and MOSEI datasets is more “spread out”, with the audio component carrying a
greater weight in the MOSEI dataset.

I Details on Numerical Experiments

We conduct multiple numerical experiments to illustrate the theoretical convergence rates of the
MLE Ĝn to the true mixing measure G∗ under both exact-specified and over-specified settings.

I.1 Experimental Setup

Synthetic Data. Assume that the true mixing measure G∗ =
∑k∗

i=1 exp(β
∗
i )δ(W∗

i ,a∗
i ,b

∗
i ,ν

∗
i )

is of
order k∗ = 2. The true parameters for the router, (W ∗

i , β
∗
i ) ∈ Rd × R, are drawn independently

from an isotropic Gaussian distribution with zero mean and variance σ2
r = 0.01/d for 1 ≤ i ≤ 6,

and otherwise are set to zero. Similarly, the true parameters of the experts, (a∗i , b
∗
i ) ∈ Rd × R, are

drawn independently of an isotropic Gaussian distribution with zero mean and variance σ2
e = 1/d
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for all experts. For the variances ν∗i , we also sample from the Gaussian distribution N (0, σ2
e), and

then take the absolute value of the sample. These parameters remain unchanged for all experiments.

Then, we generate i.i.d samples {(Xi, Yi)}ni=1 by first sampling Xi’s from the uniform distribution
Uniform[0, 1] and then sampling Yi’s from the true conditional density gG∗(Y |X) of the Laplace
gating Gaussian mixture of experts (MoE) given in equation 4.

Maximum Likelihood Estimation (MLE). A popular approach to determining the MLE Ĝn for
each set of samples is to use the EM algorithm [15]. However, since there are not any closed-
form expressions for updating the gating parameters β0i, β1i in the maximization steps, we have
to leverage an EM-based numerical scheme, which was previously used in [63]. In particular, we
utilize a simple coordinate gradient descent algorithm in the maximization steps. Additionally, we
select the convergence criterion of ϵ = 10−6 and run a maximum of 2000 EM iterations.

Initialization. For each k ∈ {k∗, k∗ + 1}, we randomly distribute elements of the set {1, 2, ..., k}
into k∗ different Voronoi cells A1,A2, . . . ,Ak∗ , each contains at least one element. Moreover, we
repeat this process for each replication. Subsequently, for each j ∈ [k∗], we initialize parameters
Wi by sampling from a Gaussian distribution centered around its true counterpart W ∗

j with a small
variance, where i ∈ Aj . Other parameters βi, ai, bi, νi are also initialized in a similar fashion.

I.2 Exact-specified Setting

Under the exact-specified settings, we conduct 5 sample generations for each configuration, across
a spectrum of 10 different sample sizes n ranging from 103 to 105. It can be seen from Figure 3
(left) that the MLE Ĝn empirically converges to the true mixing measure G∗ under the Voronoi
metric D1 at the rate of order O(n−0.49), which matches the theoretical parametric convergence rate
established in Theorem J.2.

I.3 Over-specified Setting

Under the over-specified settings, we continue to generate 5 samples of size n for each setting, given
10 different choices of sample size n ∈ [103, 105]. From Figure 3 (right), we observe that the MLE
Ĝn empirically converges to G∗ under the Voronoi metric D2 at the rate of order O(n−0.47), which
aligns with the theoretical parametric convergence rate established in Theorem 3.2.

J Exact-Specified Setting

In this appendix, we study the theoretical behaviors of the MLE under the exact-specified setting,
i.e., k = k∗, of the Laplace gating Gaussian MoE. We demonstrate that under the exact-specified
setting, the rate of estimated conditional density function pĜn

to pG∗ is parametric On−1/2) (up to
some logarithmic factor).
Theorem J.1. The density estimation pĜn

(Y |X) converges to the true density pG∗(Y |X) under the
Total Variation distance V at the following rate:

EX [V (pĜn
(·|X), pG∗(·|X))] = O(

√
log(n)/n).

The proof of Theorem J.1 can be done similarly to that of Theorem 3.1 in Appendix K.2. The result
of Theorem J.1 indicates that as long as we can establish the lower bound of the total variation
distance between pĜn

and pG∗ based on certain loss function between the MLE Ĝn and the true
mixing measure G∗, we directly achieve the rate of the MLE under that loss function.

Voronoi Loss We now define that loss function between the MLE and the true mixing measure for
the exact-specified setting:

D1(G,G∗) :=
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βi)− exp(β∗
j )
∣∣∣+

∑

j∈[k∗]:|Aj |=1

∑

i∈Aj

exp(βi)Φij(1, 1, 1, 1). (9)

Above, for any (ρ1, ρ2, ρ3, ρ4) ∈ R4, we define Φij(ρ1, ρ2, ρ3, ρ4) = ∥Wi−W ∗
j ∥ρ1+∥ai−a∗j∥ρ2+

|bi − b∗j |ρ3 + |νi − ν∗j |ρ4 for any i ∈ Aj and j ∈ [k∗]. We demonstrate in the following theorem that
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the rate of MLE to the true mixing measure under the Voronoi loss function D1 is O(n−1/2) (up to
some logarithmic factor).

Theorem J.2 (Exact-specified setting). When k = k∗ is known, the following Total Variation bound
holds guarantetrue for any G ∈ Gk(Θ):

EX [V (pG(·|X), pG∗(·|X))] ≳ D1(G,G∗).

Therefore, we have D1(Ĝn, G∗) = O(
√
log(n)/n).

Proof of Theorem J.2 is in Appendix K.1. The convergence rate of MLE under the Voronoi loss
function D1 implies that the rates of estimating the true parameters W ∗

i , a
∗
i , b

∗
i , ν

∗
i are also O(n−1/2)

(up to logarithmic factors). These rates are comparable to those under the exact-specified setting of
softmax gating Gaussian MoE (cf. Theorem 1 in [64]).

K Proof of Theoretical Results

In this appendix, we provide proofs for all theoretical results in the paper. Throughout this appendix,
for any vector v ∈ Rd and α := (α1, α2, . . . , αd) ∈ Nd, we denote vα = vα1

1 vα2
2 . . . vαd

d , |v| :=
v1 + v2 + . . .+ vd and α! := α1!α2! . . . αd!.

K.1 Proof of Theorem J.2

First of all, we need to establish the following bound:

EX [V (pG(·|X), pG∗(·|X))] ≳ D1(G,G∗).

For that sake, it is sufficient to demonstrate two following inequalities:

• Inequality A. infG∈Gk∗ (Θ):D1(G,G∗)≤ε′
EX [V (pG(·|X), pG∗(·|X))]

D1(G,G∗)
> 0;

• Inequality B. infG∈Gk∗ (Θ):D1(G,G∗)>ε′
EX [V (pG(·|X), pG∗(·|X))]

D1(G,G∗)
> 0,

for some constant ε′ > 0.

Proof of inequality A: The inequality A is equivalent to

lim
ε→0

inf
G∈Gk∗ (Θ):D1(G,G∗)≤ε

EX [V (pG(·|X), pG∗(·|X))]

D1(G,G∗)
> 0.

Assume that the above inequality is not true, then, there exists a sequence of mixing
measure Gn :=

∑k∗
i=1 exp(β

n
i )δ(Wn

i ,an
i ,b

n
i ,ν

n
i ) ∈ Gk∗(Θ) such that both D1(Gn, G∗) and

EX [V (pGn
(·|X), pG∗(·|X))]/D1(Gn, G∗) go to zero as n → ∞. Now, we define

An
j = Aj(Gn) := {i ∈ [k∗] : ∥θni − θ∗j ∥ ≤ ∥θni − θ∗τ∥, ∀τ ̸= j},

for any j ∈ [k∗] as Voronoi cells with respect to the mixing measure Gn, where we denote θni :=
(Wn

i , a
n
i , b

n
i , ν

n
i ) and θ∗j := (W ∗

j , a
∗
j , b

∗
j , ν

∗
j ). In this proof, since our arguments are assymptotic,

we can assume without loss of generality (WLOG) that these Voronoi cells does not depend on n,
that is, Aj = An

j . Next, it follows from the hypothesis D1n := D1(Gn, G∗) → 0 as n → ∞ that
each Voronoi cell contains only one element. Therefore, we may assume WLOG that Aj = {j} for
any j ∈ [k∗], which implies that (Wn

j , a
n
j , b

n
j , ν

n
j ) → (W ∗

j , a
∗
j , b

∗
j , ν

∗
j ) and exp(βn

j ) → exp(β∗
j ) as

n → ∞. Then, the loss function between Gn and G∗ is given by

D1(Gn, G∗) =
k∗∑

i=1

[
exp(βn

i )
(
∥∆Wn

i ∥+ ∥∆ani ∥+ ∥∆bni ∥+ ∥∆νni ∥
)
+

∣∣∣ exp(βn
i )− exp(β∗

i )
∣∣∣
]
,

where we denote ∆βn
1i := βn

1i − β∗
1i, ∆ani := ani − a∗i , ∆bni := bni − b∗i and ∆νni := νni − ν∗i .

Now, we break the rest of our arguments into three steps:

33



Stage 1 - Density decomposition:

In this step, we aim to decompose the term Qn :=
[∑k∗

i=1 exp(−∥W ∗
i −X∥+β∗

i )
]
· [pGn(Y |X)−

pG∗(Y |X)], which can be represented as follows:

Qn =

k∗∑

i=1

exp(βn
i )
[
F (Y |X;Wn

i , a
n
i , b

n
i , ν

n
i )− F (Y |X;W ∗

i , a
∗
i , b

∗
i , ν

∗
i )
]

−
k∗∑

i=1

exp(βn
i )
[
H(Y |X;Wn

i )−H(Y |X;W ∗
i )
]

+

k∗∑

i=1

[
exp(βn

i )− exp(β∗
i )
][
F (Y |X;W ∗

i , a
∗
i , b

∗
i , ν

∗
i )−H(Y |X,W ∗

i )
]

: = An −Bn + En, (10)

where we denote F (Y |X;W,a, b, ν) := exp(−∥W − X∥)f(Y |a⊤X + b, ν) and H(Y |X;W ) =
exp(−∥W −X∥)pGn

(Y |X). By applying the first-order Taylor expansion, we can rewrite An as

An =

k∗∑

i=1

∑

|α|=1

exp(βn
i )

α!
· (∆Wn

i )
α1(∆ani )

α2(∆bni )
α3(∆νni )

α4

× ∂|α1|+|α2|+α3+α4F

∂Wα1∂aα2∂bα3∂να4
(Y |X;W ∗

i , a
∗
i , b

∗
i , ν

∗
i ) +R1(X,Y )

=

k∗∑

i=1

∑

|α|=1

exp(βn
i )

α!
· (∆Wn

i )
α1(∆ani )

α2(∆bni )
α3(∆νni )

α4

× ∂|α1|g
∂Wα1

(X;W ∗
i ) ·

∂|α2|+α3+α4f

∂aα2∂bα3∂να4
(Y |(a∗i )⊤X + b∗i , ν

∗
i ) +R1(X,Y ),

where R1(X,Y ) is a Taylor remainder that satisfies R1(X,Y )/D1(X,Y ) → 0 as n → ∞ and
g(X,W ) := exp(∥W − X∥). Recall that f is the univariate Gaussian density, then by denoting
h1(X; a, b) := a⊤X + b, we can verify that

∂α4f

∂να4
(Y |(a∗i )⊤X + b∗i , ν

∗
i ) =

1

2α4
· ∂

2α4f

∂h2α4
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ).

Consequently, we get

An =

k∗∑

i=1

∑

|α|=1

exp(βn
i )

2α4α!
· (∆Wn

i )
α1(∆ani )

α2(∆bni )
α3(∆νni )

α4

×Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

i ) ·
∂|α2|+α3+2α4f

∂h
|α2|+α3+2α4

1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ) +R1(X,Y )

=

k∗∑

i=1

1∑

|α1|=0

1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

∑

α3+2α4=η,
0≤α3+α4≤1−|α1|−|α2|

exp(βn
i )

2α4α!
· (∆Wn

i )
α1(∆ani )

α2(∆bni )
α3(∆νni )

α4

×Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

i ) ·
∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ) +R1(X,Y ),

(11)

where we denote η = α3 + 2α4 ∈ N.
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Subsequently, we also apply the first-order Taylor expansion to the term Bn defined in equation 10
and get that

Bn =

k∗∑

i=1

∑

|γ|=1

exp(βn
i )

γ!
(∆Wn

i )
γ · ∂

|γ|H
∂W γ

(Y |X;W ∗
i ) +R2(X,Y )

=

k∗∑

i=1

∑

|γ|=1

exp(βn
i )

γ!
(∆Wn

i )
γ · ∂

|γ|g
∂W γ

(X;W ∗
i )pGn(Y |X) +R2(X,Y ), (12)

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D1(Gn, G∗) → 0 as n → ∞.

From the above results, the term Qn can be rewritten as

Qn =

k∗∑

i=1

1∑

|α1|=0

1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

Sn
i,α1,α2,η ·Xα2 · ∂

|α1|g
∂Wα1

(X;W ∗
i ) ·

∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i )

+

k∗∑

i=1

1∑

|γ|=0

Tn
i,γ · ∂

|γ|g
∂W γ

(X;W ∗
i )pGn

(Y |X) +R1(X,Y ) +R2(X,Y ), (13)

in which we respectively define for each i ∈ [k∗] that

Sn
i,α1,α2,η :=

∑

α3+2α4=η,
0≤α3+α4≤1−|α1|−|α2|

exp(βn
i )

2α4α!
· (∆Wn

i )
α1(∆ani )

α2(∆bni )
α3(∆νni )

α4 ,

Tn
i,γ :=

exp(βn
i )

γ!
(∆Wn

i )
γ ,

for any (α1, α2, η) ̸= (0d,0d, 0) and γ ̸= 0d. Otherwise, Sn
i,0d,0d,0

= Tn
i,0d

:= exp(βn
i )−exp(β∗

i ).

Stage 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios Sn
i,α1,α2,η

/D1(Gn, G∗) and
Tn
i,γ/D1(Gn, G∗) tend to zero as n → ∞. Assume by contrary that all of them approach zero

when n → ∞, then for (α1, α2, η) = (0d,0d, 0), it follows that

1

D1(Gn, G∗)
·

k∗∑

i=1

∣∣∣ exp(βn
i )− exp(β∗

i )
∣∣∣ =

k∗∑

i=1

|Sn
i,α1,α2,η

|
D1(Gn, G∗)

→ 0. (14)

Additionally, for tuples (α1, α2, η) where α1 ∈ {e1, e2, . . . , ed} with ej :=
(0, . . . , 0, 1︸︷︷︸

j−th

, 0, . . . , 0), α2 = 0d and η = 0, we get

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )∥∆Wn

i ∥1 =

k∗∑

i=1

|Sn
i,α1,α2,η

|
D1(Gn, G∗)

→ 0.

For (α1, α2, η) where α1 = 0d, α2 ∈ {e1, e2, . . . , ed} and η = 0, we have

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )∥∆ani ∥1 =

k∗∑

i=1

|Sn
i,α1,α2,η

|
D1(Gn, G∗)

→ 0.

For (α1, α2, η) where α1 = α2 = 0d and η = 1, we have

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )∥∆bni ∥1 =

k∗∑

i=1

|Sn
i,α1,α2,η

|
D1(Gn, G∗)

→ 0.

For (α1, α2, η) where α1 = α2 = 0d and η = 2, we have

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )∥∆νni ∥1 =

k∗∑

i=1

|Sn
i,α1,α2,η

|
D1(Gn, G∗)

→ 0.
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As a result, we achieve that

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )
[
∥∆Wn

i ∥1 + ∥∆ani ∥1 + |∆bni |+ |∆νni |
]
→ 0.

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

D1(Gn, G∗)
·

k∗∑

i=1

exp(βn
i )
[
∥∆Wn

i ∥+ ∥∆ani ∥+ |∆bni |+ |∆νni |
]
→ 0. (15)

Combine equation 14 with equation 15, we deduce that D1(Gn, G∗)/D1(Gn, G∗) → 0, which
is a contradiction. Consequently, at least one among the ratios Sn

i,α1,α2,η
/D1(Gn, G∗) and

Tn
i,γ/D1(Gn, G∗) does not vanish as n tends to infinity.

Stage 3 - Fatou’s contradiction:

In this step, we use the Fatou’s lemma to point out a contradiction to the results achieved in Step 2.
In particular, we denote by mn the maximum of the absolute values of Sn

i,α1,α2,η
/D1(Gn, G∗) and

Tn
i,γ/D1(Gn, G∗). Since at least one of the previous ratios does not converge to zero, we deduce

that 1/mn ̸→ ∞.

Recall from the hypothesis that EX [V (pGn
(·|X), pG∗(·|X))]/D1(Gn, G∗) → 0 as n → ∞. Ac-

cording to the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (pGn(·|X), pG∗(·|X))]

D1(Gn, G∗)
≥ 1

2
·
∫

lim inf
n→∞

|pGn(Y |X)− pG∗(Y |X)|
D1(Gn, G∗)

d(X,Y ) ≥ 0.

This result indicates that |pGn
(Y |X)− pG∗(Y |X)|/D1(Gn, G∗) tends to zero as n goes to infinity

for almost surely (X,Y ). As a result, it follows that

lim
n→∞

Qn

mnD1(Gn, G∗)
= lim

n→∞
|pGn(Y |X)− pG∗(Y |X)|

mnD1(Gn, G∗)
= 0.

Next, let us denote Sn
i,α1,α2,η

/[mnD1(Gn, G∗)] → ξi,α1,α2,η and Tn
i,γ/[mnD1(Gn, G∗)] → κi,γ

with a note that at least one among them is non-zero. From the formulation of Qn in equation 13,
we deduce that

k∗∑

i=1

1∑

|α1|=0

1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

ξi,α1,α2,η ·Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

i ) ·
∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i )

+

k∗∑

i=1

1∑

|γ|=0

κi,γ · ∂
|γ|g

∂W γ
(X;W ∗

i )pGn
(Y |X) = 0,

(16)

for almost surely (X,Y ). The above equation is equivalent to

k∗∑

i=1

1∑

|α1|=0



1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

ξi,α1,α2,η ·Xα2
∂α2+ηf

∂hα2+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ) + κi,α1

pG∗(Y |X)




× ∂|α1|g
∂Wα1

(X;W ∗
i ) = 0,

for almost surely (X,Y ). It is worth noting that parameters W ∗
1 , . . . ,W

∗
K are pair-wise distinct,

thus, the set
{ ∂|α1|g
∂Wα1

(X;W ∗
i ) : i ∈ [k∗], 0 ≤ |α1| ≤ 1

}
is a linearly independent, which implies

that
1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

ξi,α1,α2,η ·Xα2
∂α2+ηf

∂hα2+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ) + κi,α1

pG∗(Y |X) = 0,
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for any i ∈ [k∗], 0 ≤ |α1| ≤ 1 for almost surely (X,Y ). Moreover,
since (a∗1, b

∗
1, ν

∗
1 ), . . . , (a

∗
k∗
, b∗k∗

, ν∗k∗
) have pair-wise distinct values, those of ((a∗1)

⊤X +

b∗1, ν
∗
1 ), . . . , ((a

∗
k∗
)⊤X + b∗k∗

, ν∗k∗
) are also pair-wise different. Therefore, the set

{
Xα2

∂α2+ηf

∂hα2+η
1

(Y |(a∗i )⊤X + b∗i , ν
∗
i ), pG∗(Y |X) :

0 ≤ |α2| ≤ 1− |α1|, 0 ≤ η ≤ 2(1− |α1| − |α2|)
}

is also linearly independent. Consequently, we obtain that ξi,α1,α2,η = κi,γ = 0 for any i ∈ [k∗],
0 ≤ |α1|+ α2 ≤ 1, 0 ≤ η ≤ 2(1− |α1| − |α2|) and 0 ≤ |γ| ≤ 1, which contradicts the fact that at
least one among those terms is different from zero.

Hence, we can find some constant ε′ > 0 such that

inf
G∈Gk∗ (Θ):D1(G,G∗)≤ε′

EX [V (pG(·|X), pG∗(·|X))]

D1(G,G∗)
> 0.

Proof of inequality B: Assume by contrary that the inequality B does not hold, then there exists a
sequence of mixing measures G′

n ∈ Gk∗(Θ) such that D1(G
′
n, G∗) > ε′ and

lim
n→∞

EX [V (pG′
n
(·|X), pG∗(·|X))]

D1(G′
n, G∗)

= 0.

This result leads to EX [V (pG′
n
(·|X), pG∗(·|X))] → 0 as n → ∞. Recall that Ω is a compact set,

therefore, we can replace the sequence G′
n by one of its subsequences that converges to a mixing

measure G′ ∈ Gk∗(Θ). Since D1(G
′
n, G∗) > ε′, this result induces that D1(G

′, G∗) > ε′.

Subsequently, by means of the Fatou’s lemma, we achieve that

0 = lim
n→∞

EX [2V (pG′
n
(·|X), pG∗(·|X))] ≥

∫
lim inf
n→∞

∣∣∣pG′
n
(Y |X)− pG∗(Y |X)

∣∣∣ d(X,Y ).

It follows that pG′(Y |X) = pG∗(Y |X) for almost surely (X,Y ). According to Lemma L.1, the
noisy top-K sparse softmax gating Gaussian mixture of experts is identifiable, thus, we obtain that
G′ ≡ G∗. As a consequence, we obtain that D1(G

′, G∗) = 0, which contradicts to the fact that
D1(G

′, G∗) > ε′ > 0.

Hence, the proof is completed.

K.2 Proof of Theorem 3.1

In this appendix, we employ results for M-estimators in [91] to establish the density estimation rate
under the Laplace gating Gaussian mixture of experts (MoE).

Firstly, we introduce some necessary notations and fundamental results. In particular, let Pk(Θ) :=
{pG(Y |X) : G ∈ Gk(Θ)} be the set of all conditional density functions w.r.t mixing measures in
Gk(Θ). Next, we denote by N(ε,Pk(Θ), ∥ · ∥∞) the covering number of metric space (Pk(Θ), ∥ ·
∥∞). Meanwhile, HB(ε,Pk(Θ), h) stands for the bracketing entropy of Pk(Θ) under the Hellinger

distance h where h(p, q) :=
(

1
2

∫
(
√
p − √

q)2dµ
)1/2

for any probability densities p, q dominated
by the Lebesgue measure µ. Then, we provide in the following lemma the upper bounds of those
terms.
Lemma K.1. If Θ is a bounded set, then the following inequalities hold for any 0 < η < 1/2:

(i) logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η);

(ii) HB(η,Pk(Θ), h) ≲ log(1/η).

Proof of Lemma K.1 is in Appendix K.2.2. Subsequently, we denote

P̃k(Θ) := {p(G+G∗)/2(Y |X) : G ∈ Gk(Θ)};
P̃1/2
k (Θ) := {p1/2(G+G∗)/2

(Y |X) : G ∈ Gk(Θ)}.
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In addition, for each δ > 0, we define a Hellinger ball centered around the conditional density
function pG∗(Y |X) and intersected with the set P̃1/2

k (Θ) as

P̃1/2
k (Θ, δ) := {p1/2 ∈ P̃1/2

k (Θ) : h(p, pG∗) ≤ δ}.
To capture the size of the above Hellinger ball, [91] suggest using the following quantity:

JB(δ, P̃1/2
k (Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃1/2

k (Θ, t), ∥ · ∥2)dt ∨ δ, (17)

where t∨δ := max{t, δ}. Given those notations, let us recall a standard result for density estimation
in [91].

Lemma K.2 (Theorem 7.4, [91]). Take Ψ(δ) ≥ JB(δ, P̃1/2
k (Θ, δ)) such that Ψ(δ)/δ2 is a non-

increasing function of δ. Then, for some sequence (δn) and universal constant c which satisfy√
nδ2n ≥ cΨ(δ), we obtain that

P
(
EX

[
h(pĜn

(·|X), pG∗(·|X))
]
> δ

)
≤ c exp(−nδ2/c2),

for any δ ≥ δn

Proof of Lemma K.2 can be found in [91]. Now, we are ready to provide the proof for convergence
rate of density estimation in Theorem J.1 in Appendix K.2.1.

K.2.1 Main Proof

It is worth noting that for any t > 0, we have

HB(t, P̃1/2
k (Θ, t), ∥ · ∥2) ≤ HB(t,Pk(Ω, t), h).

Then, the integral in equation 17 is upper bounded as follows:

JB(δ, P̃1/2
k (Θ, δ)) ≤

∫ δ

δ2/213
H

1/2
B (t,Pk(Ω, t), h)dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ, (18)

where the second inequality follows from part (ii) of Lemma K.1.

As a result, by choosing Ψ(δ) = δ ·
√

log(1/δ), we can verify that Ψ(δ)/δ2 is a non-increasing
function of δ. Furthermore, the inequality in equation 18 indicates that Ψ(δ) ≥ JB(δ, P̃1/2

k (Θ, δ)).
Next, let us consider a sequence (δn) defined as δn :=

√
log(n)/n. This sequence can be validated

to satisfy the condition
√
nδ2n ≥ cΨ(δ) for some universal constant c. Therefore, by Lemma K.2,

we reach the conclusion of Theorem J.1:

P
(
EX [h(pĜn

(·|X), pG∗(·|X))] > C
√

log(n)/n
)
≲ n−c,

for some universal constant C depending only on Θ.

K.2.2 Proof of Lemma K.1

Part (i). In this part, we will derive the following upper bound for the covering number of metric
space (Pk(Θ), ∥ · ∥∞) for any 0 < η < 1/2 given the bounded set Ω:

logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η).

To start with, we denote Ω := {(a, b, ν) ∈ Rd × R× R+ : (β,W, a, b, ν) ∈ Ω}. As Θ is a bounded
set, the set Ω is also bounded. Therefore, we can find an η-cover of Ω, denoted by Ωη . Additionally,
we also define ∆ := {(β,W ) ∈ R× Rd : (β,W, a, b, ν) ∈ Ω}, and ∆η be an η-cover of ∆. Then,
it can be validated that

|Ωη| ≤ O(η−(d+2)k), |∆η| ≤ O(η−(d+1)k).

Next, for each mixing measure G =
∑k

i=1 exp(βi)δ(Wi,ai,bi,νi) ∈ Gk(Θ), we take into ac-
count two other mixing measures. The first measure is G′ =

∑k
i=1 exp(βi)δ(Wi,ai,bi,νi)

, where
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(ai, bi, νi) ∈ Ωη is the closest points to (ai, bi, νi) in this set for all i ∈ [k]. The second one is
G :=

∑k
i=1 exp(βi)δ(W i,ai,bi,νi)

in which (βi,W i) ∈ ∆η for any i ∈ [k]. Next, let us define

T := {pG ∈ Pk(Θ) : (βi,W i) ∈ ∆η, (ai, bi, νi) ∈ Θη,∀i ∈ [k]},
then it is obvious that pG ∈ T . Now, we will show that T is an η-cover of metric space (Pk(Θ), ∥ ·
∥∞) with a note that it is not necessarily the smallest cover. Indeed, according to the triangle
inequality, we have

∥pG − pG∥∞ ≤ ∥pG − pG′∥∞ + ∥pG′ − pG∥∞. (19)

Since the softmax function is no greater than one, the first term in the right hand side can be upper
bounded as follows:

∥pG − pG′∥∞ ≤
k∑

i=1

sup
X∈X

softmax(−∥Wi −X∥+ βi) ·
∣∣∣f(Y |a⊤i X + bi, νi)− f(Y |a⊤i X + bi, νi)

∣∣∣

≤
k∑

i=1

sup
X∈X

∣∣∣f(Y |a⊤i X + bi, νi)− f(Y |a⊤i X + bi, νi)
∣∣∣

≲
k∑

i=1

sup
X∈X

(
∥ai − ai∥+ ∥bi − bi∥+ ∥νi − νi∥

)

=

k∑

i=1

(
∥ai − ai∥+ ∥bi − bi∥+ ∥νi − νi∥

)

≲ η. (20)

Subsequently, we bound the second term ∥pG′ − pG∥∞ as follows:

∥pG′ − pG∥∞ ≤
k∑

i=1

sup
X∈X

{∣∣∣softmax(−∥Wi −X∥+ βi)− softmax(−∥W i −X∥+ βi)
∣∣∣

×
∣∣∣f(Y |a⊤τiX + bτi , ντi)

∣∣∣
}

≤
k∑

i=1

sup
X∈X

∣∣∣softmax(−∥Wi −X∥+ βi)− softmax(−∥W i −X∥+ βi)
∣∣∣

≤
k∑

i=1

sup
X∈X

∣∣∣− ∥Wi −X∥+ βi + ∥Wi −X∥ − βi

∣∣∣

≤
k∑

i=1

sup
X∈X

[∥Wi −W i∥+ |βi − βi|]

≲ η, (21)

It follows from the results in equation 19, equation 20 and equation 21 that ∥pG − pG∥∞ ≲ η. This
result indicates that T is an η-cover of the metric space (Pk(Θ), ∥ · ∥∞). As a consequence, we
obtain that

N(η,Pk(Θ), ∥ · ∥∞) ≲ |∆η| × |Ωη| ≤ O(1/η(2d+3)k),

which leads to the conclusion of this part: logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η).

Part (ii). In this part, we provide an upper bound for the bracketing entropy of Pk(Θ) under the
Hellinger distance h:

HB(η,Pk(Θ), h) ≲ log(1/η).

Since Θ and X are bounded sets, there exist positive constants γ, ℓ, u such that −γ ≤ a⊤X + b ≤ γ
and ℓ ≤ ν ≤ u. Let us define

B(Y |X) :=

{
1√
2πℓ

exp
(
− Y 2

8u

)
, for |Y | ≥ 2γ

1√
2πℓ

, for |Y | < 2γ
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Then, it can be validated that f(Y |a⊤X + b, ν) ≤ B(Y |X) for any (X,Y ) ∈ X × Y .

Next, let ζ ≤ η which will be chosen later and {p1, . . . , pN} be an ζ-cover of metric space
(Pk(Θ), ∥ · ∥∞) with the covering number N := N(ζ,Pk(Θ), ∥ · ∥∞). Additionally, we also
consider brackets of the form [ΨL

i (Y |X),ΨU
i (Y |X)] where

ΨL
i (Y |X) := max{pi(Y |X)− ζ, 0}

ΨU
i (Y |X) := max{pi(Y |X) + ζ,B(Y |X)}.

Then, we can check that Pk(Θ) ⊆ ⋃N
i=1[Ψ

L
i (Y |X),ΨU

i (Y |X)] and ΨU
i (Y |X) − ΨL

i (Y |X) ≤
min{2ζ,B(Y |X)}.

Let S := max{2γ,
√
8u} log(1/ζ), we have for any i ∈ [N ] that

∥ΨU
i −ΨL

i ∥1 =

∫

|Y |<2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] d(X,Y ) +

∫

|Y |≥2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] d(X,Y )

≤ Sζ + exp
(
− S2

2u

)
≤ S′ζ,

where S′ is some positive constant. This inequality indicates that

HB(S
′ζ,Pk(Θ), ∥ · ∥1) ≤ logN(ζ,Pk(Θ), ∥ · ∥∞) ≤ log(1/ζ).

By setting ζ = η/S′, we obtain that HB(η,Pk(Θ), ∥ ·∥1) ≲ log(1/η). Finally, due to the inequality
h2 ≤ ∥ · ∥1, we reach the conclusion of this part:

HB(η,Pk(Θ), h) ≲ log(1/η).

Hence, the proof is completed.

K.3 Proof of Theorem 3.2

In order to establish the following Total Variation lower bound under the over-specified settings, i.e.
when k > k∗ is unknown:

EX [V (pG(·|X), pG∗(·|X))] ≳ D2(G,G∗),

we need to prove two following inequalities:

• Inequality A. infG∈Gk(Θ):D2(G,G∗)≤ε′
EX [V (pG(·|X), pG∗(·|X))]

D2(G,G∗)
> 0;

• Inequality B. infG∈Gk(Θ):D2(G,G∗)>ε′
EX [V (pG(·|X), pG∗(·|X))]

D2(G,G∗)
> 0,

for some constant ε′ > 0. As the inequality B can be achieved in the same fashion as in Ap-
pendix K.1, we concentrate on showing the inequality A in this proof. For that purpose, it suffices
to prove that

lim
ε→0

inf
G∈Gk(Θ):D2(G,G∗)≤ε

EX [V (pG(·|X), pG∗(·|X))]

D2(G,G∗)
> 0. (22)

Assume that the above claim does not hold true, then there exists a sequence of mixing mea-
sures Gn :=

∑kn

i=1 exp(β
n
i )δ(Wn

i ,an
i ,b

n
i ,ν

n
i ) ∈ Gk(Θ) such that both the terms D2(Gn, G∗) and

EX [V (pGn(·|X), pG∗(·|X))]/D2(Gn, G∗) go to zero as n → ∞. Let us recall the formulation of
the loss D2(Gn, G∗):

D2(Gn, G∗) =
∑

j∈[k∗],
|Aj |>1

∑

i∈Aj

exp(βn
i )
[
∥∆Wn

ij∥2 + ∥∆anij∥2 + |∆bnij |r̄j + |∆νnij |
r̄j
2

]

+
∑

j∈[k∗],
|Aj |=1

∑

i∈Aj

exp(βn
i )
[
∥∆Wn

ij∥+ ∥∆anij∥+ |∆bnij |+ |∆νnij |
]
+

k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
i )− exp(β∗

j )
∣∣∣.

(23)
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Since D2(Gn, G∗) → 0, we deduce that
∑

i∈Aj
exp(βn

i ) → exp(β∗
j ) and (Wn

i , a
n
i , b

n
i , ν

n
i ) →

(W ∗
j , a

∗
j , b

∗
j , ν

∗
j ) for all i ∈ Aj and j ∈ [k∗].

Now, we reuse the three-step framework in Appendix K.1.

Stage 1 - Density decomposition:

Firstly, by abuse of notations, let us consider the quantity

Qn :=
[ k∗∑

j=1

exp(−∥W ∗
j −X∥+ β∗

j )
]
· [pGn

(Y |X)− pG∗(Y |X)].

Similar to Step 1 in Appendix K.1, we can express this term as

Qn =

k∗∑

j=1

∑

i∈Aj

exp(βn
i )
[
F (Y |X;Wn

i , a
n
i , b

n
i , ν

n
i )− F (Y |X;W ∗

j , a
∗
j , b

∗
j , ν

∗
j )
]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
i )
[
H(Y |X;Wn

i )−H(Y |X;W ∗
j )
]

+

k∗∑

j=1

[ ∑

i∈Aj

exp(βn
i )− exp(β∗

j )
][
F (Y |X;W ∗

j , a
∗
j , b

∗
j , ν

∗
j )−H(Y |X,W ∗

j )
]

: = An −Bn + En,

Next, we proceed to decompose An based on the cardinality of the Voronoi cells as follows:

An =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
i )
[
F (Y |X;Wn

i , a
n
i , b

n
i , ν

n
i )− F (Y |X;W ∗

j , a
∗
j , b

∗
j , ν

∗
j )
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
i )
[
F (Y |X;Wn

i , a
n
i , b

n
i , ν

n
i )− F (Y |X;W ∗

j , a
∗
j , b

∗
j , ν

∗
j )
]
.

By applying the Taylor expansions of order 1 and r̄j to the first and second terms of An, respectively,
and following the derivation in equation 11, we get that

An =
∑

j:|Aj |=1

∑

i∈Aj

1∑

|α1|=0

1−|α1|∑

|α2|=0

2(1−|α1|−|α2|)∑

η=0

∑

α3+2α4=η,
0≤α3+α4≤1−|α1|−|α2|

exp(βn
i )

2α4α!
· (∆Wn

ij)
α1(∆anij)

α2

× (∆bnij)
α3(∆νnij)

α4 ·Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

j ) ·
∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗j )⊤X + b∗j , ν
∗
j ) +R3(X,Y )

+
∑

j:|Aj |>1

∑

i∈Aj

r̄j∑

|α1|=0

r̄j−|α1|∑

|α2|=0

2(r̄j−|α1|−|α2|)∑

η=0

∑

α3+2α4=η,
0≤α3+α4≤r̄j−|α1|−|α2|

exp(βn
i )

2α4α!
· (∆Wn

ij)
α1(∆anij)

α2

× (∆bnij)
α3(∆νnij)

α4 ·Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

j ) ·
∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗j )⊤X + b∗j , ν
∗
j ) +R4(X,Y )

where Ri(X,Y ) is a Taylor remainder such that Ri(X,Y )/D2(Gn, G∗) → 0 as n → ∞ for i ∈
{3, 4}. Next, we apply the Taylor expansions of order 1 and 2 to the first and second terms of Bn,
respectively, and following the derivation in equation 12, we get that

Bn =
∑

j:|Aj |=1

∑

i∈Aj

∑

|γ|=1

exp(βn
i )

γ!
(∆Wn

ij)
γ · ∂

|γ|g
∂W γ

(X;W ∗
j )pGn

(Y |X) +R5(X,Y )

∑

j:|Aj |>1

∑

i∈Aj

2∑

|γ|=1

exp(βn
i )

γ!
(∆Wn

ij)
γ · ∂

|γ|g
∂W γ

(X;W ∗
j )pGn(Y |X) +R6(X,Y ),
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where R5(X,Y ) and R6(X,Y ) are Taylor remainders such that their ratios over D2(Gn, G∗) ap-
proach zero as n → ∞. Subsequently, let us define

Sn
j,α1,α2,η :=

∑

i∈Aj

∑

α3+2α4=η,
0≤α3+α4≤r̄j−|α1|−|α2|

exp(βn
i )

2α4α!
· (∆Wn

ij)
α1(∆anij)

α2(∆bnij)
α3(∆νnij)

α4 ,

Tn
j,γ :=

∑

i∈Aj

exp(βn
i )

γ!
(∆Wn

ij)
γ ,

for any (α1, α2, η) ̸= (0d,0d, 0) and γ ̸= 0d. Otherwise, Sn
j,0d,0d,0

= Tn
j,0d

:=
∑

i∈Aj
exp(βn

i )−
exp(β∗

j ). As a consequence, it follows that

Qn =

k∗∑

j=1

r̄j∑

|α1|=0

r̄j−|α1|∑

|α2|=0

2(r̄j−|α1|−|α2|)∑

η=0

Sn
j,α1,α2,η ·Xα2 · ∂

|α1|g
∂Wα1

(X;W ∗
j ) ·

∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗j )⊤X + b∗j , ν
∗
j )

+

k∗∑

j=1

1+1{|Aj |>1}∑

|γ|=0

Tn
j,γ · ∂

|γ|g
∂W γ

(X;W ∗
j )pGn

(Y |X) +R3(X,Y ) +R4(X,Y ) +R5(X,Y ) +R6(X,Y ).

(24)

Stage 2 - Non-vanishing coefficients:

In this step, we demonstrate that not all the ratios Sn
j,α1,α2,η

/D2(Gn, G∗) and Tn
j,γ/D2(Gn, G∗)

converge to zero as n → ∞. Assume by contrary that all these terms go to zero. Then, by employing
arguments for deriving equation 14 and equation 15, we get that

1

D2(Gn, G∗)
·
[ k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
i )− exp(β∗

j )
∣∣∣

+
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
i )
(
∥∆Wn

ij∥+ ∥∆anij∥+ |∆bnij |+ |∆νnij |
)]

→ 0.

Taking the summation of
∑

j:|Aj |>1

|Sn
j,α1,α2,η|

D2(Gn,G∗)
for all (α1, α2, η) where α1 ∈ {2e1, 2e2, . . . , 2ed},

α2 = 0d and η = 0, we have
1

D2(Gn, G∗)
·

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
i )∥∆Wn

ij∥2 → 0.

Taking the summation of
∑

j:|Aj |>1

|Sn
j,α1,α2,η|

D2(Gn,G∗)
for all (α1, α2, η) where α1 = 0d, α2 ∈

{2e1, 2e2, . . . , 2ed} and η = 0, we have
1

D2(Gn, G∗)
·

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
i )∥∆anij∥2 → 0.

Combine the above limit with the formulation of D2(Gn, G∗) in equation 23, we have that
1

D2(Gn, G∗)
·

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
i )
(
|∆bnij |r̄j + |∆νnij |

r̄j
2

)
̸→ 0.

This result implies that we can find some index j′ ∈ [k∗] : |Aj′ | > 1 that satisfies
1

D2(Gn, G∗)
·
∑

i∈Aj′

exp(βn
i )
(
|∆bnij′ |r̄j′ + |∆νnij′ |

r̄
j′
2

)
̸→ 0.

For simplicity, we may assume that j′ = 1. Since Sn
1,0d,0d,η

/D2(Gn, G∗) vanishes as n → ∞ for
any 1 ≤ η ≤ r̄j , we divide this term by the left hand side of the above equation and achieve that

∑
i∈A1

∑
α3+2α4=η,

1≤α3+α4≤r̄1

exp(βn
i )

2α4α!
(∆bni1)

α3(∆νni1)
α4

∑
i∈A1

exp(βn
i )
(
|∆bni1|r̄1 + |∆νni1|

r̄1
2

) → 0, (25)
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for any 1 ≤ η ≤ r̄1.

Subsequently, we define Mn := max{|∆bni1|, |∆νni1|1/2 : i ∈ A1} and πn := max{exp(βn
i ) : i ∈

A1}. As a result, the sequence exp(βn
i )/πn is bounded, which indicates that we can substitute it

with its subsequence that admits a positive limit z25i := limn→∞ exp(βn
i )/πn. Therefore, at least

one among the limits z25i equals to one. Furthermore, we also denote

(∆bni1)/Mn → z3i, (∆νni1)/(2Mn) → z4i.

From the above definition, it follows that at least one among the limits z3i and z4i equals to either 1
or −1. By dividing both the numerator and the denominator of the term in equation 25 by πnM

η
n ,

we arrive at the following system of polynomial equations:

∑

i∈A1

∑

α3+2α4=η,
1≤α3+α4≤r̄1

z25i z
α3
3i zα4

4i

α3! α4!
= 0,

for all 1 ≤ η ≤ r̄1. Nevertheless, from the definition of r̄1, we know that the above system
does not admit any non-trivial solutions, which is a contradiction. Consequently, not all the ratios
Sn
j,α1,α2,η

/D2(Gn, G∗) and Tn
j,γ/D2(Gn, G∗) tend to zero as n → ∞.

Stage 3 - Fatou’s contradiction:

Recall that EX [V (pGn
(·|X), pG∗(·|X))]/D2(Gn, G∗) → 0 as n → ∞. Then, by applying the

Fatou’s lemma, we get

0 = lim
n→∞

EX [V (pGn(·|X), pG∗(·|X))]

D2(Gn, G∗)
≥ 1

2
·
∫

lim inf
n→∞

|pGn(Y |X)− pG∗(Y |X)|
D2(Gn, G∗)

d(X,Y ),

which implies that |pGn(Y |X)−pG∗(Y |X)|/D2(Gn, G∗) → 0 as n → ∞ for almost surely (X,Y ).

Next, we define mn as the maximum of the absolute values of Sn
j,α1,α2,η

/D2(Gn, G∗). It follows
from Step 2 that 1/mn ̸→ ∞. Moreover, by arguing in the same way as in Step 3 in Appendix K.1,
we receive that

Qn/[mnD2(Gn, G∗)] → 0 (26)

as n → ∞. By abuse of notations, let us denote

Sn
j,α1,α2,η/[mnD2(Gn, G∗)] → ξj,α1,α2,η,

Tn
j,γ/[mnD2(Gn, G∗)] → κj,γ .

Here, at least one among ξj,α1,α2,η, κj,γ is non-zero. Then, by putting the results in equation 24 and
equation 26 together, we get

k∗∑

j=1

r̄j∑

|α1|=0

r̄j−|α1|∑

|α2|=0

2(r̄j−|α1|−|α2|)∑

η=0

ξj,α1,α2,η ·Xα2 · ∂
|α1|g

∂Wα1
(X;W ∗

j ) ·
∂|α2|+ηf

∂h
|α2|+η
1

(Y |(a∗j )⊤X + b∗j , ν
∗
j )

+

K∑

j=1

1+1{|Aj |>1}∑

|γ|=0

κj,γ · ∂
|γ|g

∂W γ
(X;W ∗

j )pGn
(Y |X) = 0.

Arguing in a similar fashion as in Step 3 of Appendix K.1, we obtain that ξj,α1,α2,η = κj,γ = 0 for
any j ∈ [k∗], 0 ≤ |α1| + |α2| ≤ 2r̄j , 0 ≤ η ≤ 2(r̄j − |α1| − |α2|) and 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}.
This contradicts the fact that at least one among them is non-zero. Hence, the proof is completed.

L Identifiability of the Laplace Gating Gaussian MoE

Lemma L.1. For any mixing measures G and G∗ in Gk(Θ) that satisfy pG(Y |X) = pG∗(Y |X) for
almost surely (X,Y ) ∈ X × Y , we have that G ≡ G∗.

Proof of Lemma L.1. First, we assume that two mixing measures G and G∗ take the following
forms: G =

∑k
i=1 exp(βi)δ(Wi,ai,bi,νi) and G∗ =

∑k∗
i=1 exp(β

∗
i )δ(W∗

i ,a∗
i ,b

∗
i ,ν

∗
i )

. Recall that
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pG(Y |X) = pG∗(Y |X) for almost surely (X,Y ), then we have

k∑

i=1

softmax(− ∥Wi −X∥+ βi) · f(Y |a⊤i X + bi, νi)

=

k∗∑

i=1

softmax(−∥W ∗
i −X∥+ β∗

i ) · f(Y |(a∗i )⊤ + b∗i , ν
∗
i ). (27)

Due to the identifiability of the location-scale Gaussian mixtures [85, 86, 87], we get that k = k∗
and

{
softmax(−∥Wi −X∥+ βi) : i ∈ [k]

}
≡

{
softmax(−∥W ∗

i −X∥+ β∗
i ) : i ∈ [k]

}
,

for almost surely X . WLOG, we may assume that

softmax(−∥Wi −X∥+ βi) = softmax(−∥W ∗
i −X∥+ β∗

i ), (28)

for almost surely X for any i ∈ [k]. Since the softmax function is invariant to translations, it follows
from equation 28 that Wi = W ∗

i and βi = β∗
i + v0 for some v0 ∈ R. Notably, from the assumption

of the model, we have βk = β∗
k = 0, which implies that v0 = 0. As a result, we obtain that βi = β∗

i
for any i ∈ [k∗]. Then, equation 27 can be rewritten as

k∗∑

i=1

exp(βi) exp(−∥W ∗
i −X∥)f(Y |a⊤i X + bi, νi)

=

k∗∑

i=1

exp(βi) exp(−∥W ∗
i −X∥)f(Y |(a∗i )⊤X + b∗i , ν

∗
i ), (29)

for almost surely (X,Y ). Next, we denote J1, J2, . . . , Jm as a partition of the index set [k∗], where
m ≤ k∗, such that exp(βi) = exp(βi′) for any i, i′ ∈ Jj and j ∈ [m]. On the other hand, when
i and i′ do not belong to the same set Jj , we let exp(βi) ̸= exp(βi′). Thus, we can reformulate
equation 29 as

m∑

j=1

∑

i∈Jj

exp(βi) exp(−∥W ∗
i −X∥)f(Y |a⊤i X + bi, νi)

=

m∑

j=1

∑

i∈Jj

exp(βi) exp(−∥W ∗
i −X∥)f(Y |(a∗i )⊤X + b∗i , ν

∗
i ),

for almost surely (X,Y ). This results leads to {((ai)⊤X+bi, νi) : i ∈ Jj} ≡ {((a∗i )⊤X+b∗i , ν
∗
i ) :

i ∈ Jj}, for almost surely X for any j ∈ [m]. Therefore, we have

{(ai, bi, νi) : i ∈ Jj} ≡ {(a∗i , b∗i , ν∗i ) : i ∈ Jj},
for any j ∈ [m]. As a consequence,

G =

m∑

j=1

∑

i∈Jj

exp(βi)δ(Wi,ai,bi,νi) =

m∑

j=1

∑

i∈Jj

exp(β∗
i )δ(W∗

i ,a∗
i ,b

∗
i ,ν

∗
i )

= G∗.

Hence, we reach the conclusion of this lemma.

M Broader Impact

This paper presents research aimed at propelling advancements in the broad domain of machine
learning. The implications of our findings are wide-ranging, with potential applications in sectors
including healthcare, autonomous driving, and recommendation systems. Based on our current
understanding, this research does not warrant an ethics review, and a detailed discussion of the
potential societal impacts is not required at the current stage.
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they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we have submitted the implementation of the proposed methods and all base-
lines in the supplementary material. Appendix B, D, F and G also contain all dataset
information and implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: we have submitted the implementation of the proposed methods and all base-
lines in the supplementary material. Appendix B, D, F and G also contain comprehensive
information to reproduce the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: dataset information and preprocessing procedure can be found in Appendix
B and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: all results are averaged over 5 random experiments, as specified by the exper-
iment section 4 and additional results in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: computational resources used to run the experiments can be found in Ap-
pendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we have reviewed the NeurIPS Code of Ethics and make sure the paper con-
forms to this.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we have attempted to discuss the impacts of this work in Appendix M.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all the assets used in the paper have been properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: we have provided documents in the code repository submitted in the supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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