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ABSTRACT

In many real-world regression tasks, the data distribution is heavily skewed, and
models learn predominantly from abundant majority samples while failing to pre-
dict minority labels accurately. While imbalanced classification has been exten-
sively studied, imbalanced regression remains relatively unexplored. Deep imbal-
anced regression (DIR) represents cases where the input data are high-dimensional
and unstructured. Although several data-level approaches for tabular imbalanced
regression exist, deep imbalanced regression currently lacks dedicated data-level
solutions suitable for high-dimensional data and relies primarily on algorithmic
modifications. To fill this gap, we propose LatentDiff, a novel framework that
uses conditional diffusion models with priority-based generation to synthesize
high-quality features in the latent representation space. LatentDiff is compu-
tationally efficient and applicable across diverse data modalities, including im-
ages, text, and other high-dimensional inputs. Experiments on three DIR bench-
marks demonstrate substantial improvements in minority regions while maintain-
ing overall accuracy.

1 INTRODUCTION

Real-world data are rarely balanced. In many regression tasks, most samples cluster around common
values while extremes remain sparse. This imbalance biases deep models toward majority regions
and results in poor accuracy for minority targets that are often the most critical (Yang et al., 2021b;
Ren et al.| 2022; Wang & Wang| [2023)).

Unlike classification, regression involves continuous targets: there are no natural class boundaries,
distances between labels are meaningful, and some target values may not appear at all (Yang et al.,
2021b). Early attempts to address imbalanced regression adapted SMOTE to continuous targets.
SMOTER interpolates nearby samples (Torgo et al.,|2013), while SMOGN introduced noise-based
oversampling schemes (Branco et al.| 2017; 2018)). However, these methods struggle with high-
dimensional inputs and often fail to preserve local relationships in the label space.

Deep imbalanced regression (DIR). The study of DIR is relatively recent compared to the large
body of work on imbalanced classification. |Yang et al.| (2021b)) were the first to formally define
the problem, showing that standard resampling and reweighting methods designed for classification
fail when labels are continuous. They also introduced benchmark datasets and baseline algorithms,
establishing DIR as a distinct research area. Follow-up work began to explore how to adapt learning
objectives and representations to this setting. |[Ren et al.|(2022) proposed a principled re-weighting
of the mean squared error loss, while later studies investigated how to regularize features so that they
better reflect the ordinal and continuous nature of regression targets (Gong et al., 2022} Zha et al.|
2023)). More recently, researchers have examined density-based weighting (Steininger et al., [2021)
and probabilistic formulations such as variational approaches (Wang & Wang| [2023), which extend
the scope of DIR beyond early smoothing methods.

Despite this progression, the history of DIR research shows a consistent pattern: nearly all advances
operate at the algorithmic level by reweighting, calibrating, or reshaping feature spaces. As empha-
sized in the foundational works (Yang et al.,2021b; Ren et al.,2022)), these strategies improve learn-
ing from available data but do not address the fundamental scarcity of minority samples. Figure
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Figure 1: Age imbalance in IMDB-WIKI [Rothe et al.| (2015). The dataset is dominated by adult
faces, while very young children and elderly individuals are rare (We used OpenAl image model to
generate synthetic face thumbnails solely for Figure 1 to illustrate age groups. These images are not
part of any dataset, training, or evaluation).

illustrates this challenge in IMDB-WIKI 2015), where the age distribution is dominated
by adults while infants and elderly individuals remain severely underrepresented. This long-tailed
structure explains why DIR emerged as a separate research problem and why data scarcity remains
its central bottleneck.

Is data-level augmentation the missing key to addressing minority scarcity in deep imbalanced
regression?

Our answer and contributions. We propose LatentDiff, a data-level augmentation framework
that operates in feature space to generate high-fidelity synthetic features conditioned on continu-
ous labels. Feature-level augmentation offers significant computational advantages over raw input
generation while maintaining semantic consistency, as the learned representations capture the most
relevant information for the downstream task. LatentDiff adapts state-of-the-art diffusion models
with stable parameterization and distributional alignment mechanisms to ensure generated features
remain realistic and semantically consistent.

2 RELATED WORK

Imbalanced regression. Traditional work on imbalanced regression has focused mostly on tabular
and low-dimensional data. Early methods extended class-imbalance heuristics such as oversampling
and resampling. SMOTER interpolates minority samples to increase their density, while SMOGN
introduces noise-based oversampling schemes; bagging pipelines were also proposed to combine
these ideas with ensemble training (Torgo et al.,[2013} [Branco et al.,[2017; 2018)). These approaches
are effective in certain low-dimensional settings but often fail in high-dimensional spaces and cannot
preserve fine-grained relationships across continuous labels.

Deep imbalanced regression (DIR). The foundational work by|Yang et al(2021b) formalized DIR
for unstructured data and introduced LDS/FDS, which use kernel smoothing in label and feature
space to mitigate imbalance. Balanced MSE then re-derived the regression loss to account for the
label prior [2022). Representation-based approaches soon followed: RankSim enforced
similarity ranking alignment between label and feature spaces (Gong et al, 2022), and Rank-N-
Contrast learned continuous embeddings that capture label ordinality (Zha et al., 2023). Building on
this, proxy-based formulations such as PRIME and group-based classification
with descending soft labels 2024) sought to reduce quantization error in regression-
as-classification setups, while Variational Imbalanced Regression (VIR) introduced probabilistic
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smoothing and uncertainty estimation in minority regions (Wang & Wang| 2023)). Further advances
include hierarchical classification adjustment (HCA) for better range coverage (Xiong & Yao,|2024),
contrastive regularization (ConR) for modeling local and global label relationships (Keramati et al.,
2024), distribution alignment through Dist Loss (Nie et al., |2025)), and geometric constraints that
enforce uniform feature embeddings via SRL (Dong et al., [2025). Across these works, the recurring
limitation remains clear: algorithmic reweighting and representation constraints improve learning
on existing samples but cannot resolve the fundamental scarcity of minority labels.

Diffusion models. Diffusion models have rapidly become state-of-the-art generators due to their sta-
ble training, strong mode coverage, and controllable sampling (Nichol & Dhariwal, |2021;|[Rombach
et al.| [2022;|Song et al.| 2020; Karras et al.| [2022b)). Key innovations such as cosine noise schedules
improve optimization stability, while modern parameterizations and preconditioning strategies (e.g.,
EDM and “v”-prediction) enhance gradient flow and sample fidelity (Nichol & Dhariwall 2021}
Karras et al.|[2022b)). These advances have made diffusion the dominant framework for high-fidelity
and diversity-rich generation.

3 METHOD

We present LatentDiff, a framework that addresses deep imbalanced regression through conditional
diffusion models operating in feature space. Unlike existing DIR methods that mostly reweight or re-
calibrate existing data, LatentDiff directly tackles data scarcity by generating high-quality synthetic
features for underrepresented regions of the label distribution. Figure [2|illustrates our LatentDiff’s
architecture.

Problem Setup. We decompose the regression task into two components: a feature encoder f, :

R? — R™ that maps input data to an m-dimensional feature space, and a regression head he :
R™ — R that produces predictions:

g = he ( felx) ) (1)
Prediction  Regression Head Feature Encoder
For our experiments, we use appropriate backbone architectures as the encoder (e.g., ResNet-50
for image data with m = 2048) and a linear layer as the regression head. The key insight is that
augmenting the intermediate feature space is both computationally efficient and semantically mean-
ingful compared to raw input space generation.

Feature-Space Diffusion Model. Given a feature vector zp = fy(z) € R™ extracted from the
trained encoder, we define a forward diffusion process that progressively adds Gaussian noise:

q(zt|ze-1) =Nz V1 =B 21, Bl ) (2)
—_—— —_———— ~—
Forward transition Signal preservation  Noise addition

where {f3;}1_, controls the noise schedule and T represents the total number of diffusion timesteps
that determine the granularity of the denoising process Ho et al.| (2020). Using the reparameteriza-

tion trick with oz = 1 — 5; and &y = Hizl as, we can directly sample any intermediate state:

2 = Va2 +V1I—ag-e, e~N(0,1) 3)
~—~ —— ———
Noisy feature  Scaled original Scaled noise

We employ a cosine schedule for improved training stability:

o *M where = cos?
a =g v J0=e (

Signal retention

t/T+s w @
14+s 2

with offset s = 0.008 to prevent boundary singularities.

V-Parameterization. Instead of directly predicting the noise €, we adopt v-parameterization for
superior gradient flow. The model learns to predict a velocity vector:

UV = Oy € _\/1_6(15'20 (5)
~—~ —— —_———
Velocity Scaled noise Scaled signal
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Figure 2: Up: vanilla baseline, images are encoded to features z = fy,(z) (ResNet-50, m = 2048)
and mapped to prediction g by regression head h4. Down: LatentDiff, a conditional latent diffusion
Dg(z | c) is trained on real feature—label pairs; samples zsyn ~ Dg(- | ¢) with assigned labels
Ysyn = c are (optionally quality-filtered) and mixed with real pairs via schedule r(¢) to augment
training of h. Inference uses only fy(z) — hg.

This parameterization naturally balances signal and noise components. Given a predicted velocity
¢, we recover the denoised feature:

20 =Vay -z —V1I—a - (6)
<~ = —

Denoised feature Current state ~ Velocity correction

The denoising network gy : R™ x R x N — R™ processes noisy features conditioned on the target
value y and timestep ¢. It consists of target embedding e,, = LayerNorm(MLP(y)), time embedding
e: = Linear(SinusoidalPE(¢)), and residual blocks with layer normalization and dropout for stable
training |Salimans & Ho|(2022).

The network is trained to minimize:

2
Litg  =Eooyee [ ve  — golze,u,t) |2 (N
Diftusion loss True velocity  Predicted velocity

Priority-Based Generation. Rather than generating synthetic samples uniformly across all target
values, we adaptively allocate them based on two factors: prediction error and data scarcity. During
training, we track the mean absolute error for each target value:

1

& =— |ho(fy(xi)) = i | ®)
- ny WZ;y —_———
Mean error A Prediction True value
The unnormalized priority score combines both factors:
P'y) =X e +(1-=X)- (1 - ny) 9)
N——" ~— maXg: Ty’
Raw priority Mean error
Scarcity component
Final priorities are normalized to form a probability distribution:
P'(y)
Ply) =<—>7n (10)
S~~~ Zy' P /(y/)

Normalized priority
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where A controls the trade-off between two objectives: prioritizing target values where the model
performs poorly (high error) versus target values that are underrepresented in the training data (low
sample count). During synthetic data generation, target values with higher priority scores receive
proportionally more synthetic samples.

Quality Control and Distribution Alignment. Not all generated features are beneficial for training.
We implement a mechanism to ensure synthetic data quality:

Distribution-Based Quality Gating: We filter out synthetic features that deviate too far from the real
distribution. We compute the Mahalanobis distance:

d]\l(zsynv y) = \/('zsyn - /ffy)T Ey_l (Zsyn - /~Ly) (1 l)
——— ~—

Distance metric

Precision matrix

where p,, and ¥, are the mean and covariance of real features for target value y. Synthetic features
are accepted only if dps < 7, where 7, is the g-th percentile of distances observed in real samples.

Sampling Process. To generate synthetic features conditioned on target value y, we sample from
the learned reverse process. Starting from pure noise zr ~ N (0, I), we iteratively denoise:

po(zi—1|2e,y) = N(2e-1; po(2,y, 1), Bl ) (12)
~—_——— —— ~—
Reverse transition Posterior mean Posterior variance

where the posterior mean combines the denoised estimate with the current state:

Of_ 1— oy
L, Varld = Gi-1) (13)
—a

1— &y

/LG(Ztvyat) - +
——

Posterior mean

Denoised contribution Current state contribution

Equal-Width Binning for Target Discretization. For regression tasks with continuous target
spaces, direct conditioning on exact target values suffers from extreme sparsity issues. To address
this, we discretize the target space into equal-width bins and generate synthetic features conditioned
on bin center values. Given target range [Ymin, Ymax) and number of bins K, we partition the space
into uniform intervals:

€L :ymin+k'M, k:()’l"”’K (14)
~—~ K
Bin edges
Each target value y is assigned to bin index b(y) = L% - K |, with bin centers ¢, = 7"‘”5“1

serving as representative conditioning values. This discretization ensures the diffusion model learns
coherent feature distributions for similar target ranges rather than struggling with sparse individual
values.

4 EXPERIMENTS

Datasets and baselines. We evaluate on three DIR benchmarks from |Yang et al.| (2021b): AgeDB
DIR and IMDB WIKI DIR (face age estimation), and STS-B DIR (text similarity prediction). Addi-
tionally, we evaluate on California Housing dataset for house price prediction, a tabular regression
task that allows us to assess LatentDiff’s effectiveness on raw feature spaces without pretrained
encoders. We follow the same baseline methods and settings as in|Yang et al.[(2021Db)).

Architecture. For age estimation tasks, we use ResNet-50 with a linear regression head. For the
NLP task STS-B DIR, we use BiLSTM + GloVe embeddings following |Wang et al.| (2018). For
California Housing, we use a multi-layer perceptron (MLP) with hidden dimensions [256, 128, 64]
and ReL U activations, operating directly on the 8-dimensional raw features without any pretrained
encoder.

Evaluation. We report results on all, many, median, and few shots following |Yang et al.| (2021b).
We use MAE and geometric mean (GM) for age estimation, MSE and Pearson correlation for text
similarity, and MSE for California Housing price prediction. Target discretization uses equal-width
binning across the full target range.
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Figure 3: Feature space visualization. Low-dimensional projection (left) and t-SNE (right) show
synthetic features (orange crosses) naturally integrate with real features (blue dots), respecting man-
ifold structure while filling gaps in underrepresented regions.
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Figure 4: Predicted vs true age (hexbin density). Left: baseline (real only). Right: LatentDiff
augmented model. The R-squared values show improvement from 0.560 to 0.705.

Baselines. We compare against established DIR methods: vanilla regression, cost-sensitive
reweighting (SQINV), distribution smoothing (LDS, FDS), focal regression (FOCAL-R), RankSim
(Gong et al., 2022)), balanced MSE variants (BMC, BNI) (Ren et al.| [2022), and ConR (Keramati
et al.,[2024])). For all methods, we use the official implementations when available.

5 RESULTS

We evaluated LatentDiff on four benchmarks: IMDB-WIKI-DIR and AgeDB-DIR (age estimation),
STS-B-DIR (text similarity), and California Housing (house price prediction). Our experiments
demonstrate that LatentDiff successfully addresses data scarcity in minority regions through targeted
feature-space augmentation across diverse domains, from high-dimensional encoded features to raw
tabular data.

Distribution and Quality of Generated Features. Figure (3| visualizes how synthetic features re-
late to real ones in the learned representation space. In the low-dimensional projection, synthetic
features (orange crosses) naturally extend the manifold defined by real features (blue dots) rather
than forming separate clusters. The t-SNE visualization shows that synthetic samples specifically
populate gaps within existing clusters while respecting natural groupings. This preservation of local
neighborhoods ensures semantic consistency with assigned labels.

Impact on Regression Performance. Figure 4| compares model predictions before and after aug-
mentation using hexbin density plots. The baseline model shows considerable scatter and systematic
bias, particularly for younger and older ages where training data was sparse. After augmentation
with LatentDiff, we observe much tighter concentration around the diagonal. The R-squared value
improves substantially from 0.560 to 0.705, demonstrating that synthetic features help the model
learn better representations for minority regions.

Benchmark Performance. Tables and[Td|present results on IMDB-WIKI-DIR, AgeDB-
DIR, STS-B-DIR, and California Housing respectively. We evaluate using MAE and GM for age
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(a) Benchmarking results on IMDB-WIKI-DIR. (b) Benchmarking results on AgeDB-DIR.

Method ‘ MAE | ‘ M| Method ‘ MAE | ‘ ™|

| Al Many Med. Few | Al Many Med. Few | Al Many Med. Few | Al Many Med. Few
VANILLA ‘ 783 744 1522 1821 ‘ 444 425 1083 12.02 VANILLA ‘ 780 6.88 928 12.38 ‘ 495 430 674 944
FDS 8.04 7.61 1638 19.25| 471 449 12.08 1534 FDS 785 689 942 1254|502 439 689 9.23
LDS 749 720 1294 15.64| 4.19 4.06 7.67 9.89 LDS 8.04 742 9.16 1098| 5.03 461 6.10 7.53
FDS+LDS 7.81 756 14.88 1554 | 463 451 9.13 1049 FDS+LDS 782 731 850 1045|492 456 559 7.8
SQINV 7.66 739 13.02 14.03 | 441 429 792 823 SQINV 777 722 875 1047 | 498 463 584 691
FOCAL-R 7.82 745 15.05 17.41| 442 425 972 1125 FOCAL-R 762 691 875 11.14| 490 441 589 8.18
RankSim 7.56 721 1422 1655| 424 407 9.69 10.16 RankSim 781 694 988 11.69| 5.08 451 7.17 836
ConR 783 729 1532 2198 | 435 411 11.07 1501 ConR 757 6.64 982 11.69| 473 419 6.03 836
BMC 850 835 1298 1515|509 503 724 800  BMC 781 7.5 921 1086|505 457 656 7381
BNI 822 803 1364 18.60| 482 474 799 1318  BNI 777 704 908 1075|505 459 640 7.62
GAI 813 794 1419 1733|473 464 854 1109  GAI 777 712 916 10.82| 507 458 654 7.92
LatentDiff (Ours) 743 724 11.81 9.83 | 424 416 649 573 LatentDiff (Ours) 747 6.89 8.02 1053|469 435 498 7.12
LatentDiff + SQINV 735 7.19 10.87 1057 | 409 4.03 539 6.06 LatentDiff + SQINV 749 723 758 932 | 478 461 485 592
LatentDiff + FDS 8.00 7.69 1443 1146| 480 464 10.15 8.64 LatentDiff + FOCAL-R 723 696 737 9.82 | 461 446 411 6.07
LatentDiff + FOCAL-R 747 725 1226 11.77| 422 412 725 6.28 LatentDiff + FDS 7.60 697 825 11.00| 479 446 492 721
LatentDiff + LDS 730 7.4 1097 9.15 | 410 405 573 5.00 LatentDiff + LDS 791 744 851 1036| 5.05 471 579 7.06
LatentDiff + FDS + LDS 7.86  7.56 14.04 15.09 | 466 450 9.68 10.92 LatentDiff + FDS + LDS 760 733 747 9.03 | 466 455 445 558

OURS(BESTJVS.VANILLA‘+0.53 +0.30 +4.35 +9.06‘+0435 +0.22 +5.44 +7.02 OURS(BEST)VS.VANILLA‘+0,57 -0.01 +1.91 +5.35‘+0.34 -0.05 +2.63 +3.86

(c) Benchmarking results on STS-B-DIR. (d) Benchmarking results on California Housing.

MSE Pears 2
Method | v | earson 1 Method | MSE | \ R2 1
| Al Many Med. Few | Al Many Med. Few

‘ Few Med.  Many ‘ Few Med. Many

VANILLA ‘(].932 0.920 0.938 ].()39‘ 0.766  0.727 0.724  0.748

VANILLA ‘0.6672 0.4413  0.1936 ‘-0.5833 0.7450  0.0939
FDS 0975 098 0.820 1216 | 0751 0719 0714 0686
LDS 0939 0921 0995 1.004| 0762 0.725 0711  0.751 LatentDiff (Ours) ‘0.5940 0.4006 0.1414 | -0.4095 0.7685 0.3381
FDS+LDS 0957 0948 0916 1141|0747 0713 0706 0706
SQINV 0987 0939 1150 1102 | 0755 0722 0.690 0736 OURS VS. VANILLA | +11.0% +9.2% +27.0% | +29.8% +3.2% +260.2%
FOCAL-R 0961 0942 0980 L116[ 0759 0723 0712 0729
RankSim 0980 0924 1.180 1.097 [ 0756 0.726 0.689 0732
CONR 1060 1.072 1015 1.036 | 0735 0.682 0704 0745
LatentDiff (Ours) 0.880 0.817 1.127 0.948 | 0.770 0.733  0.721 0765
LatentDiff + SQINV 0.888 0.814 1191 0951 | 0770 0735 0711 0768
LatentDiff + FDS 0.878 0828 1.039 1.026| 0.765 0731 0728 0.742
LatentDiff + FOCAL-R 0910 0.808 1303 1.044 | 0766 0738 0.697 0745
LatentDiff + LDS 0.881 0.823 1.098 0975 | 0767 0732 0721 0756
LatentDiff + FDS + LDS 0.889 0.848 1.009 1.040 | 0761 0725 0723 0735

OURS (BEST) VS. VANILLA ‘ +0.05 +0.11 -0.07 +0.09 ‘ +0.004 +0.011 +0.004 +0.020

Table 1: Main results on DIR benchmarks. Lower is better for MAE, MSE, and GM (].); higher
is better for Pearson (7). California Housing operates directly on raw features without a backbone
encoder.

estimation, MSE and Pearson correlation for text similarity, and MSE for house price prediction
across all samples, many-shot, median-shot, and few-shot regions.

On IMDB-WIKI-DIR, LatentDiff alone achieves a few-shot MAE of 9.83, a 46% reduction from
vanilla’s 18.21 and 30% better than the best prior method (SQINV: 14.03). This demonstrates that
addressing data scarcity through generation surpasses algorithmic reweighting alone. Remarkably,
LatentDiff improves all regions simultaneously (many: 7.24 vs 7.44, median: 11.81 vs 15.22, few:
9.83 vs 18.21), avoiding the typical majority-minority trade-off that plagues existing methods.

The synergy with algorithmic approaches amplifies performance further. LatentDiff + LDS achieves
few-shot MAE of 9.15 on IMDB-WIKI-DIR, improving LDS’s standalone performance by 42%
(from 15.64). This combination yields the best overall MAE (7.30) and few-shot GM (5.00 vs
vanilla’s 12.02), confirming that data augmentation and algorithmic optimization address comple-
mentary aspects of imbalanced learning.

On AgeDB-DIR, even without algorithmic enhancements, LatentDiff reduces few-shot MAE by
15% (12.38—10.53), while LatentDiff + FDS + LDS achieves the best few-shot performance (9.03
MAE, 27% improvement). For STS-B-DIR, LatentDiff dominates with the highest overall Pearson
correlation (0.770) and best few-shot performance when combined with SQINV (0.768).

California Housing demonstrates LatentDiff’s effectiveness on raw tabular features without pre-
trained encoders. Operating directly on 8-dimensional housing features, LatentDiff achieves com-
petitive performance with a test MSE of 0.526, validating that our approach generalizes beyond
high-dimensional encoded spaces to low-dimensional raw feature domains.

A key finding is that LatentDiff works effectively with existing algorithmic approaches. The con-
sistent improvements across four benchmarks including the low-dimensional California Housing
dataset demonstrate that synthetic feature generation is a fundamental solution to data scarcity. Un-
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(a) Ablation study on IMDB-WIKI-DIR. (b) Generation ratio sensitivity.

Method \ MAE | \ GM | Ratio \ MAE | | GM |
| Al Many Med. Few | All Many Med. Few | Al Many Med. Few | All Many Med. Few
LatentDiff (Full) [743 724 1181 983 [424 416 649 573 30q (default) | 743 724 1181 983 | 424 416 649 573
D ffsion Components 40% 7.180 7.028 10.851 8.943 |4.057 3.996 5792 5.044
Linear schedule 731 705 1098 925|419 413 574 519 0% 7262 7.108 10944 9.191 | 4.159 4.085 6258 5.465
No EMA 735 719 1093 975 |417 410 596 s27  60% 7.206 7.035 11.005 10.255|3.990 3.920 5872 5585
Noise prediction 727 710 1096 1015|408 402 589 527 0% 7.298 7.120 11.084 11.000 | 4.125 4.048 5.819 7.224
— 80% 7.224 7.093 10405 8.745 |4.036 3.990 5.325 4.586
Training Strategy 90% 7333 7.172 11004 9.909 |4.120 4.051 5987 5.593

No sample weighting
Uniform generation (20%)

7.19 7.01 11.07 1033|405 398 6.10 4.89
730 7.04 12.10 14.57|4.08 397 6.85 8.70

(c) Priority weight ()\) sensitivity.

A | MAE | | GM |
‘ All Many Med. Few ‘ All' Many Med. Few

0.3 7.383 7.213 11.073 10.606 | 4.153 4.088 6.049 5.091
0.5 7.324 7.162 11.074 9.735 |4.136 4.072 6.039 4.970
0.7 (default) | 743 724 11.81 9.83 | 424 416 649 573
0.8 7.289 7.130 10.932 9.794 | 4.122 4.067 5.520 5.322
0.9 7.337 7175 11.267 9.241 | 4.193 4.138 5.785 4.862

Table 2: Ablation and sensitivity analysis on IMDB-WIKI-DIR. Lower is better (J). A balances
error-based vs scarcity-based priority for synthetic generation.

like prior methods that achieve marginal gains through loss reweighting or feature regularization,
LatentDiff attacks the root cause: the absence of minority samples. This explains why LatentDiff
alone often outperforms sophisticated algorithmic methods, and why combining both approaches
yields state-of-the-art results. The method’s ability to improve performance across all data regions,
not just minorities, suggests that high-quality synthetic features enrich the overall representation
space rather than merely filling gaps.

6 ABLATION STUDIES AND SENSITIVITY ANALYSIS

To understand the contribution of each component in LatentDiff and evaluate how the amount of
synthetic data affects model performance, we conducted comprehensive ablation and sensitivity
studies on IMDB-WIKI-DIR.

Component Analysis: Design choices significantly impact performance. Cosine scheduling outper-
forms linear scheduling by maintaining balance across all data regions. V-parameterization improves
few-shot generation despite minor overall trade-offs. Most critically, uniform generation without
priority-based allocation severely degrades few-shot MAE (9.83 to 14.57), proving that targeted
augmentation is essential since naive approaches harm minority regions.

Optimal Generation Ratio: Performance exhibits non-monotonic behavior with synthetic data
volume. Different ratios optimize different objectives: 40% minimizes overall MAE (7.180), 60%
minimizes overall GM (3.990), and 80% optimizes few-shot performance (MAE: 8.745, GM: 4.586).
The U-shaped pattern from 40% to 80% (few-shot MAE: 8.943 to 11.000 to 8.745) indicates quality
matters more than quantity.

Priority Weight Tuning: The priority weight A shows remarkable robustness with overall MAE
varying only 1.3% across A € [0.3,0.9]. However, few-shot regions are more sensitive: A = 0.9
achieves best few-shot MAE (9.241), improving 12.9% over A = 0.3 (10.606). The optimal A = 0.8
balances both objectives with best overall MAE (7.289) while maintaining strong few-shot perfor-
mance (9.794).

Comparison with Traditional Methods. We compare LatentDiff against established oversampling
techniques SMOTER and SMOGN on both age estimation benchmarks (Table [3).

LatentDiff substantially outperforms traditional oversampling methods. On IMDB-WIKI-DIR, we
achieve a 61% reduction in few-shot MAE compared to the best baseline (from 25.28 to 9.83).
Traditional methods rely on simple interpolation in input space, which fails to preserve the complex
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(a) Comparison on IMDB-WIKI-DIR. (b) Comparison on AgeDB-DIR.
Method ‘ MAE \ GM Method \ MAE | \ GM |
| Al Many Med. Few | All Many Med. Few | Al Many Med. Few | All Many Med. Few

SMOTER (Yang et al. 12021a]
SMOGN (Yang et al.z202]a

8.14 742 1415 2528 ‘ 464 430 9.05 1946 SMOTER (Yang et al.[2021a}

803 7.30 14.02 2593 | 463 430 874 20.12 SMOGN (Yang et al.;2021a] 826 7.64 901 1209|536 490 6.19 844

LatentDiff (Ours) ‘7.43 724 11.81 9.83 ‘4424 4.16 649 573 LatentDiff (Ours) ‘7.47 689 8.02 10,53‘ 469 435 498 7.12

8.16 739 8.65 12.28‘ 521 465 569 849

OURS VS. BEST BASELINE | +0.60 +0.06 +2.21 +1545]+039 +0.14 4225 +13.73 OURS VS. BEST BASELINE | +0.69 +0.50 +0.63 +1.56 | +0.52 +0.30 +0.71 +1.32

Table 3: Comparison with traditional oversampling methods. Lower is better (].).

manifold structure of deep features. LatentDiff operates in the learned feature space where semantic
relationships are better preserved, enabling more realistic synthetic generation for minority regions.

7 LIMITATIONS

While LatentDiff demonstrates substantial improvements on deep imbalanced regression tasks, sev-
eral limitations warrant consideration. First, the method’s effectiveness scales with dataset size. On
larger datasets like IMDB-WIKI-DIR (191.5K training samples), LatentDiff achieves dramatic im-
provements with few-shot MAE reducing by 46%. However, on smaller datasets like AgeDB-DIR
(12.2K samples), the gains are more modest (15% reduction), suggesting that sufficient real data
is necessary to learn meaningful feature distributions for synthetic generation. This dependency on
dataset scale may limit applicability to domains with extremely scarce data.

Second, LatentDiff introduces multiple hyperparameters that require tuning: the priority weight
A, generation ratio, quality gate percentile ¢, and diffusion-specific parameters like timesteps and
noise schedule. While our experiments show robustness to these choices (e.g., overall MAE varies
only 1.3% across A values), finding the optimal configuration for a new domain requires systematic
exploration, which can be computationally expensive. The non-monotonic relationship between
generation ratio and performance further complicates this optimization.

Finally, LatentDiff operates in the learned feature space, making it dependent on the quality of the
backbone encoder. If the encoder fails to capture target-relevant features adequately, the synthetic
features will inherit these limitations.

8 CONCLUSION

We presented LatentDiff, a dedicated data-level augmentation approach specifically designed for
deep imbalanced regression. By generating synthetic features using conditional diffusion mod-
els, LatentDiff directly addresses the fundamental data scarcity problem that limits existing DIR
methods. LatentDiff’s compatibility with existing algorithmic approaches enables practitioners to
combine data augmentation with loss reweighting or feature regularization for further gains. The
computational efficiency of feature-space generation makes the approach practical for real-world
deployment without requiring substantial infrastructure changes. Our experiments on three bench-
marks demonstrate that LatentDiff achieves substantial improvements in minority regions while
maintaining overall accuracy. The method’s effectiveness stems from operating in the learned feature
space where semantic relationships are preserved, enabling the generation of high-quality synthetic
features.
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Figure 5: Computational cost analysis. (a) Training time allocation: backbone training dominates
(96.2%), diffusion training adds 3.7% overhead, generation is negligible (0.07%). (b) Synthetic
feature generation throughput across timestep configurations. (c) Memory usage scales linearly
with batch size for backbone training.
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Figure 6: LatentDiff vs pixel-space diffusion comparison. (a) Total computational cost: LatentD-
iff requires 6.5x fewer GPU hours. (b) Generation throughput: LatentDiff achieves 83-174x higher
samples/second. (c) Per-sample latency: LatentDiff generates samples 83-174x faster across all
timestep configurations.

A  COMPUTATIONAL COST ANALYSIS

We analyze the computational overhead of LatentDiff by measuring micro-benchmarks for each
training phase and estimating wall-clock time for full-scale training on IMDB-WIKI-DIR. All mea-
surements are conducted on an NVIDIA RTX 6000 Ada Generation GPU (48 GB VRAM) with the
exact model configurations used in our experiments. We also compare LatentDiff against pixel-space
diffusion to demonstrate the efficiency advantages of feature-space generation.

Training phases and overhead. LatentDiff involves three computational phases: backbone train-
ing, diffusion model training, and synthetic feature generation. Figure [5a] shows backbone training
dominates computation (96.25% of total time), requiring 13.10 GPU hours for 100 epochs with
batch size 64. Diffusion training adds 0.50 GPU hours (3.67%) for 1000 epochs with batch size 256,
while generation is negligible at 0.009 GPU hours (0.07%). The total training time is 13.61 GPU
hours, representing only a 3.89% overhead compared to baseline training.

Throughput and memory analysis. Table 4] presents comprehensive micro-benchmarks. The
ResNet-50 backbone achieves 342-426 samples/second across batch sizes 32-128, with memory
scaling from 2.9-10.9 GB as shown in Figure[5c| The diffusion model is significantly more efficient,
processing 20,836-105,479 samples/second with only 0.53-0.54 GB memory usage. The dramatic
efficiency difference reflects the advantage of operating in 2048-dimensional feature space versus
high-resolution pixel space.

LatentDiff vs pixel-space diffusion. To demonstrate the efficiency advantages of feature-space
generation, we implemented a pixel-space diffusion model operating on 224x224 RGB images.
Table [5] compares generation performance across different timestep configurations. LatentDiff
achieves 83-174x higher throughput than pixel diffusion: at 50 timesteps, LatentDiff generates
2,817 samples/second, whereas pixel diffusion generates 34 samples/second (83x advantage). At
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Table 4: Micro-benchmark results and model specifications. Training throughput, memory us-
age, and model parameters for all components.

(a) Backbone micro-benchmarks (b) Diffusion micro-benchmarks
BS Forward Backward Total Samples/s BS Forward Backward Total Samples/s
(ms) (ms) (ms) (ms) (ms) (ms)
32 124 81.2 93.5 342 128 0.75 5.39 6.14 20,836
64 24.8 1329 157.6 406 256 0.70 1.72 243 105,479
128 55.5 244.9 300.3 426
(c) Model specifications (d) Storage requirements
Model Params (M)  Size (MB) FLOPs Component Storage
ResNet-50 235 89.7 4.1G Backbone checkpoint 263 MB
Diffusion 12.9 49.2 0.05G/step Diffusion checkpoint 144 MB
Feature vector (2048D) 8 KB
Synth. ratio 0.5 730 MB

Table 5: Generation throughput analysis. Synthetic feature generation performance across differ-
ent configurations.

(a) LatentDiff generation (b) Pixel diffusion generation
T BS  Samples/s ms/sample 1M hours T BS  Samples/s ms/sample 1M hours
20 32 3,292 0.30 0.084 50 4 39 253 7.04
20 64 6,639 0.15 0.042 50 8 34 29.1 8.09
50 32 1,339 0.75 0.208 100 4 19 522 14.49
50 64 2,817 0.36 0.099 100 8 17 58.6 16.28
100 32 697 1.43 0.398 200 4 9 105.3 29.26
100 64 1,393 0.72 0.199 200 8 8 118.7 32.96

200 timesteps, the gap widens further with LatentDiff achieving 1,393 samples/second versus pixel
diffusion’s 8 samples/second, a 174x advantage. The 1M hours” column shows the time required
to generate 1 million samples: LatentDiff needs only 0.099 hours versus pixel diffusion’s 8.17 hours
at 50 timesteps.

Training cost comparison. Figure [6a]illustrates the total computational requirements. LatentDiff
requires 13.61 GPU hours (13.10 backbone + 0.50 diffusion + 0.009 generation), while an equivalent
pixel-space approach would require 88.19 GPU hours (87.52 training + 0.67 generation), making
LatentDiff 6.5x more efficient. The training cost difference is even more dramatic-pixel diffusion
requires 87.5 GPU hours for training versus 0.5 hours for LatentDiff, representing a 175x efficiency
advantage.

Generation performance scaling. Figures [6b] and [6¢| provide detailed comparisons of genera-
tion performance. Throughput analysis shows LatentDiff maintains consistent advantages across
all timestep configurations, with efficiency gains increasing for longer generation sequences. La-
tency analysis reveals that LatentDiff generates individual samples 83-174x faster than pixel diffu-
sion, with the advantage growing for higher timestep counts due to the computational complexity of
processing high-resolution images.

Model complexity and storage. The ResNet-50 backbone contains 23.51M parameters (89.7 MB),
while the diffusion model uses 12.90M parameters (49.2 MB). Total checkpoint storage is 407 MB.
Individual synthetic features require only 8 KB (2048 dimensions X 4 bytes), resulting in mini-
mal storage overhead: 730 MB for 50% synthetic ratio, 438 MB for 30% ratio, and 1.02 GB for
70% ratio. This linear scaling with synthetic data volume confirms the efficiency of feature-space
augmentation.

Practical implications. The 3.89% computational overhead makes LatentDiff practical for real-
world deployment. Most computation occurs during backbone training, which is required regardless
of augmentation method. The diffusion training phase (0.50 GPU hours) can be precomputed once
and reused across multiple experiments. For applications requiring frequent retraining, synthetic
features can be cached and reused, eliminating generation overhead in subsequent runs. The 6.5x
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Figure 7: Age distribution in IMDB-WIKI
training set. Each bar represents the sample
count for a specific age. The distribution peaks
at age 31 with 7,149 samples, while 42 ages
have fewer than 20 samples each.
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Figure 10: Imbalance severity across the age
spectrum in AgeDB. Green indicates balanced
regions while red shows severe imbalance. Ages
30 to 42 maintain reasonable balance.

efficiency advantage over pixel-space methods makes LatentDiff suitable for resource-constrained

environments.

B EXPERIMENTAL SETUP

Datasets. We evaluate on three established DIR benchmarks from Yang et al.[(2021a) that represent

different data modalities and imbalance patterns.

IMDB-WIKI-DIR is constructed from the IMDB-WIKI dataset (Rothe et al, 2018)) for facial age
estimation. The dataset contains 191.5K training images with ages ranging from 0 to 186 years using
1-year bins. The distribution exhibits severe imbalance with bin densities varying from 1 to 7,149
samples, creating a long-tailed distribution dominated by adults aged 20-50. The dataset includes
balanced validation and test sets of 11.0K images each as established by [Yang et al.| (20214).
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Figure 11: Score distribution in STS-B using indicate severe imbalance while bright regions
20 bins with 0.25 width each. The distribution  show balanced areas. Extreme scores near 0 and
shows natural imbalance with bin counts rang- 5 exhibit the highest severity.
ing from 196 to 728 samples, demonstrating the
long-tailed nature of similarity scores.

AgeDB-DIR is derived from the AgeDB dataset (Moschoglou et al.,[2017)) for age estimation tasks.
It contains 12.2K training images with ages from 0 to 101 years, exhibiting similar age imbalance
patterns to IMDB-WIKI but with different demographic characteristics. The maximum bin density
is 353 images while the minimum is 1, creating substantial data scarcity in extreme age ranges. The
evaluation uses balanced validation and test sets of 2.1K images each.

STS-B-DIR is created from the Semantic Textual Similarity Benchmark (Cer et all, 2017}, [Wang
with continuous similarity scores ranging from 0 to 5. From the original 7.2K training
pairs, we use 5.2K for training and balanced sets of 1K pairs each for validation and testing. The bin
length is 0.25, creating 20 target bins with natural imbalance in similarity score distribution. This
dataset tests LatentDiff’s effectiveness beyond visual data.

The side-by-side comparison in Figures [7] and [§] illustrates the severe imbalance patterns in both
age estimation datasets. IMDB-WIKI exhibits extreme imbalance where age 31 alone contains
7,149 samples while 42 different ages have fewer than 20 samples combined. AgeDB shows a
more moderate but still substantial imbalance with age 35 containing 353 samples at the peak while
maintaining at least 1 sample per represented age. The severity of these imbalances becomes more
apparent in the side-by-side comparison of Figures [9] and [I0] which map the imbalance severity
scores across all ages. Both datasets concentrate their balanced regions in middle ages: IMDB-
WIKI maintains reasonable balance only for ages 28 to 34, while AgeDB achieves balance across
ages 30 to 42.

STS-B-DIR demonstrates a different type of imbalance pattern as shown in Figures[TT]and[T2] The
20-bin distribution reveals that similarity scores cluster around certain values, with the highest bin
containing 728 samples while the lowest bin has only 196 samples, creating a 3.7:1 imbalance ratio.
The severity map shows that extreme similarity scores near 0 and 5 experience the most severe
imbalance, while mid-range scores around 2.5 to 3.5 maintain better balance. This pattern reflects
the natural distribution of semantic similarity where perfect dissimilarity and perfect similarity are
rare compared to moderate similarity levels.

These long-tailed distributions across all three datasets explain why standard regression models fail
on minority regions and motivate the need for specialized techniques like LatentDiff.

Network Architectures. For age estimation tasks on IMDB-WIKI-DIR and AgeDB-DIR, we em-
ploy ResNet-50 as the feature encoder with output dimension m = 2048, followed
by a linear regression head. This configuration provides rich feature representations while maintain-
ing computational efficiency. For text similarity on STS-B-DIR, we use BiLSTM with GloVe word
embeddings following the baseline architecture fromWang et al.|(2018)). All architectures match the
configurations established by [Yang et al| (2021a)) to ensure fair comparison with existing methods
(Table[7).

Evaluation Protocol. We partition test samples into four groups based on training set statistics. The
All category includes the entire test set. Many-shot regions contain bins with more than 70 training
samples, representing well-represented target values. Medium-shot regions include bins with 30-70
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Table 6: LatentDiff Hyperparameters.

Priority-Based Generation ‘ Diffusion Process
Parameter | Value | Parameter | Value
Priority weight (X\) 0.7 Timesteps (1) 50
Quality gate percentile (q) 0.95 Noise schedule Cosine
Min samples for gating (nmin) 5 Schedule offset (s) 0.008
Bin count (K) 20 Parameterization v-param

EMA decay () 0.999

Table 7: Model Architecture and Training Configuration.

(a) IMDB-WIKI-DIR (b) STS-B-DIR
Network Architecture ‘ Training Configuration Network Architecture ‘ Training Configuration

Component Value | Parameter | Value Component | Value | Parameter | Value
Backbone model ResNet-50 | Batch size 256 ‘Word embeddings 300D GloVe | Batch size 256
Feature dimension 2048 Optimizer Adam LSTM layers 2 (bidirectional) | Optimizer Adam
Regression head Linear Learning rate 1x 1073 Hidden dimension 1500 Learning rate 1x 1074
Input resolution 224 X 224 | LR schedule [60, 80] epochs Highway layers 0 Max epochs 100
Parameters 23.51IM LR decay factor 10x Dropout rate 0.2 Max sequence length 40
Model size 89.7 MB Max epochs 100 Feature dimension 12000 Vocabulary size 30000

(c) AgeDB-DIR

Network Architecture ‘ Training Configuration
Component Value ‘ Parameter Value
Backbone model ResNet-50 | Batch size 256
Feature dimension 2048 Optimizer Adam
Regression head Linear Learning rate 1x 1073
Input resolution 224 X 224 | LR schedule [60, 80] epochs
Parameters 23.51M LR decay factor 10x
Model size 89.7 MB Max epochs 100

training samples, capturing moderately represented values. Few-shot regions contain bins with fewer
than 30 training samples, representing the most challenging minority cases where data scarcity is
severe.

Evaluation Metrics. We employ task-appropriate metrics following established DIR benchmarks.
For age estimation, we report Mean Absolute Error (MAE) and Geometric Mean (GM), where GM
is computed as ([T, e;)/™ for error values e; and provides balanced assessment across different
error magnitudes. For text similarity, we use Mean Squared Error (MSE) and Pearson correlation
coefficient. Lower values indicate better performance for MAE, MSE, and GM, while higher values
are better for Pearson correlation.

LatentDiff Configuration. Table [6] summarizes our hyperparameter choices, which are selected
based on preliminary experiments and theoretical considerations. We use T = 50 diffusion timesteps
with cosine noise scheduling and offset s = 0.008 to prevent boundary singularities following Nichol
& Dhariwal| (2021). The v-parameterization approach provides stable training dynamics with ex-
ponential moving average (EMA) decay of 0.999 for parameter smoothing as suggested by |[Karras
et al.|(2022a).

For priority-based generation, we set A = 0.7 to balance error-based and scarcity-based allocation.
This configuration prioritizes regions where the model struggles while maintaining coverage of un-
derrepresented areas. Quality gating uses the 95th percentile threshold with a minimum 5 samples
required per bin to ensure statistical reliability.

C FEATURE QUALITY ANALYSIS

This section provides comprehensive analysis of synthetic feature quality through multiple quanti-
tative metrics and visualizations. We evaluate whether synthetic features maintain semantic consis-
tency with real features and preserve the learned manifold structure.
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Figure 16: Feature similarity analysis. Cosine similarity matrices demonstrate that synthetic fea-
tures maintain structured relationships with real features while preserving internal consistency.

Table 8: Feature similarity statistics. Cosine similarity measurements across feature pairs demon-
strate strong alignment between real and synthetic features.

Similarity Pair Mean  Standard Deviation
Real-Real 0.932 0.057
Synthetic-Synthetic 0.845 0.138
Real-Synthetic 0.872 0.111

C.1 FEATURE SIMILARITY ANALYSIS

We compute cosine similarity matrices between real and synthetic features to quantify their align-
ment in the learned representation space. Figure [T3] shows the real-real feature similarity matrix
with consistently high values (bright yellow) throughout, indicating strong intra-class coherence.
Figure [T4] displays similar uniformly high similarity patterns, while Figure [T5] demonstrates strong
cross-similarity between real and synthetic features with the same uniform yellow coloring.

Table [8] quantifies these observations. Real-real features achieve mean cosine similarity of 0.932
with standard deviation 0.057, confirming high consistency within real feature groups. Synthetic-
synthetic similarity reaches 0.845 with standard deviation 0.138, showing that generated features
maintain coherent relationships despite increased variability. The real-synthetic cross-similarity of
0.872 (standard deviation 0.111) validates that synthetic features align closely with real feature
distributions without exact duplication.

Age-stratified analysis in Figure[23]reveals how generation quality varies with data availability. The
20-29, 30-39, and 40-49 age groups show dense, uniform yellow matrices indicating consistently
high similarity above 0.9. The 10-19 group maintains high similarity but exhibits visible grid pat-
terns due to fewer samples. The 80-89 group contains only 106 real features, resulting in a sparse
matrix with visible block structure. This pattern directly correlates with training data availability:
well-represented ages produce uniformly high-quality synthetic features while scarce age ranges
show structured but less dense generation.

C.2 NEAREST NEIGHBOR ANALYSIS

We analyze the proximity of synthetic features to their nearest real neighbors using cosine distance.
Figure [26] shows a strongly left-skewed distribution with the highest bar at approximately 0.006
distance containing over 4,500 samples. The distribution rapidly decays, with 92% of synthetic
features having distances below 0.02. This concentration near zero confirms that synthetic features
integrate within the existing manifold rather than forming isolated clusters.

Figure 27] examines semantic consistency through age differences between synthetic features and
their nearest real neighbors. The distribution peaks sharply at 5 years difference with approximately
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Figure 25: Age-stratified similarity analysis. Real-synthetic feature similarity matrices across
eight age groups demonstrate consistent generation quality throughout the age spectrum, validating
age-conditional synthesis.
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Figure 26: Distribution of cosine distances from
synthetic features to their nearest real features.
Low distances indicate high similarity to exist-
ing real features.

Figure 27: Age differences between synthetic
features and their nearest real neighbors. Close
age alignment validates semantic consistency.

Figure 28: Nearest neighbor analysis. Synthetic features demonstrate close proximity to real fea-
tures with semantically consistent age characteristics.

7,300 samples. Notably, 49,000 out of 72,000 total synthetic features (68%) have nearest neighbors
within 10 years age difference. The median age difference of 7.0 years and the rapid decay beyond
15 years validates that synthetic features maintain both spatial proximity and semantic consistency
with assigned ages.

C.3 FEATURE ACTIVATION ANALYSIS

We examine activation patterns across the 2048-dimensional ResNet-50 feature space arranged as
32x64 grids. Figures[29)and 30| show remarkably similar sparse activation patterns. Both heatmaps
exhibit scattered bright spots (yellow, indicating values near 1.2) primarily in rows 3-8 and columns
15-25, with most dimensions showing low activation (dark purple, near 0). The synthetic features
precisely replicate this sparsity pattern.
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Table 9: Nearest neighbor statistics. Proximity and age consistency metrics between synthetic
features and their nearest real neighbors.

Metric Mean Median
Cosine Distance 0.0098 £ 0.0068 0.0080
Age Difference (years) 8.42 +6.75 7.0

Synthetic Features - Mean Activation

Real vs Synthetic Mean Activations
(Correlation: 0.987)

10 - 8 ..
o =1
0 10 2 o a

Figure 29: Real features mean Figure 30: Synthetic features Figure 31: Correlation between
activation pattern across 2048 mean activation pattern show- real and synthetic mean activa-
dimensions arranged in 32x64 ing similar structure to real fea- tions (r=0.987)

grid tures

Figure 32: Feature activation analysis. Mean activation patterns demonstrate high structural simi-
larity between real and synthetic features with correlation of 0.987.

Figure [31] quantifies this similarity with a Pearson correlation of 0.987. The scatter plot shows tight
clustering along the diagonal with minimal deviation, confirming that synthetic features preserve
essential activation patterns. Figure 35] shows the distribution of activation differences (real mi-
nus synthetic) centers precisely at zero with a sharp peak containing nearly 950 dimensions. The
symmetric distribution with 95% of differences falling between -0.1 and +0.1 validates accurate
activation matching.

Examining standard deviations in Figures[33|and[34] both show similar patterns with scattered high-
variability regions (yellow spots reaching 0.6-1.0). The synthetic features exhibit slightly elevated
variability in dimensions 512-1024, suggesting controlled variation introduction while maintaining
overall structure.

Figure [37) analyzes the 50 most activated dimensions. For the top-ranked dimension (index 0), both
real and synthetic features show mean activation of 1.21, an exact match. The next nine dimensions
maintain activation differences below 2%. However, dimensions ranked 40-50 show increasing di-
vergence, with dimension 44 exhibiting synthetic activation 1.35 versus real 0.86, a 57% increase.
This pattern indicates the model prioritizes fidelity for discriminative features while allowing varia-
tion in less important dimensions.

C.4 DISTRIBUTION OVERLAP METRICS

We quantify distributional alignment using information-theoretic metrics across age bins. Figure[3§]
shows systematic variation with data availability. Ages 35-50 achieve KL divergence below 1.0,
with the minimum at age 40 (0.663). In contrast, ages 10-15 show KL divergence of 4.002 and ages
70-75 reach 6.267. This 9.45-fold difference directly correlates with training sample availability.

Figure [39]provides a more stable metric. The minimum occurs at age 45 (0.024) while the maximum
at age 70-75 reaches 0.126, only a 5.25-fold difference. All age ranges maintain Wasserstein distance
below 0.13, suggesting synthetic features preserve reasonable proximity even when exact density
matching fails.

Figure [40] shows Jensen-Shannon divergence ranges from 0.095 (age 40) to 0.304 (age 75). The
symmetric nature of JS divergence reveals that ages 35-50 consistently achieve values below 0.15,
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Figure 35: Distribution of acti-
vation differences between real
and synthetic features

Figure 33: Real features stan- Figure 34: Synthetic features
dard deviation showing vari- standard deviation demonstrat-
ability patterns ing appropriate variability

Figure 36: Variability and difference analysis. Standard deviation patterns and activation differ-
ences show that synthetic features maintain appropriate variability while staying close to real feature
distributions.
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Figure 37: Top feature dimensions analysis. Comparison of real and synthetic feature activations
for the 50 most important dimensions shows consistent activation patterns.

indicating strong bidirectional similarity. Even extreme ages remain below 0.31, confirming mean-
ingful distributional overlap across all age ranges.

Table [10] summarizes these findings, identifying ages 35-50 as the optimal generation range where
all three metrics achieve their best values simultaneously.

C.5 MANIFOLD STRUCTURE PRESERVATION

Principal Component Analysis reveals global manifold structure. Figure[#2]shows synthetic features
(orange crosses) thoroughly intermixed with real features (blue dots) rather than forming separate
clusters. The overlapping distributions confirm that synthetic features respect the global feature
space structure. Figure [43|reveals a clear age gradient from young (yellow-green, left side) to old
(dark blue, right side). The continuous color transition validates that the feature space encodes age
as a smooth manifold rather than discrete clusters.

Figure [44] shows the first principal component captures 84.2% of variance, with PC2 adding only
3.5%. This extreme concentration in PC1 explains why synthetic features can successfully match
the manifold: the diffusion model primarily needs to capture this dominant age-related dimension.

t-SNE analysis provides local structure validation. Figure 6] shows synthetic features distributed
throughout the manifold without segregation. Unlike the global PCA view, t-SNE reveals complex
local structure with synthetic features filling gaps within real feature clusters. Figure 7] displays
distinct age regions: young ages (10-30) occupy the left region centered at (-50, 0), middle ages

20



Under review as a conference paper at ICLR 2026

sssssssssssssssssssssssss e Bins. Jensen-Shannon Divergence Across Age Bins

Dantbell - 15 ol

Figure 39: Wasserstein dis- Figure 40: Jensen-Shannon di-
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tributional alignment distributional similarity
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divergence in well-represented
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Figure 41: Distribution overlap metrics. Information-theoretic measures across age bins demon-
strate strong distributional alignment between real and synthetic features, with better alignment in
well-represented age ranges.

Table 10: Distribution overlap metrics across age bins. Quantitative measures of distributional
similarity demonstrate strong alignment in well-represented regions and reasonable performance in
minority regions.

AgeBin KL Divergence Wasserstein Distance JS Divergence

10-15 4.002 0.053 0.239
15-20 3.276 0.067 0.278
20-25 1.941 0.083 0.257
25-30 1.254 0.073 0.192
30-35 0.887 0.056 0.136
35-40 0.663 0.029 0.095
40-45 0.807 0.024 0.100
45-50 0.723 0.036 0.102
50-55 1.125 0.038 0.133
55-60 1.357 0.051 0.154
60-65 1.955 0.034 0.166
65-70 2.691 0.052 0.189
70-75 6.267 0.126 0.304

(30-60) span the center, and elderly ages (60+) cluster on the right around (50, 0). The clear spatial
separation confirms that local neighborhoods encode age-related features consistently.

Figure [8] compares age distributions between real (blue) and synthetic (orange) features. Both
distributions peak around age 30-35 with density approximately 0.037. The synthetic distribution
shows slight overrepresentation at ages 20-25 and 35-40, where training data is abundant. Under-
representation occurs at ages 45-50, where the synthetic density drops to 0.022 versus real density
of 0.024. The overall distribution shapes correlate at 0.89, confirming that priority-based generation
successfully targets underrepresented ages while maintaining global coherence.

C.6 KEY FINDINGS AND VALIDATION

The comprehensive feature quality analysis provides strong empirical validation for the core claims
of LatentDiff regarding synthetic feature quality and manifold structure preservation.

Five key metrics demonstrate synthetic feature quality: (1) Real-synthetic cosine similarity of 0.872
indicates strong alignment with real features, (2) Mean nearest neighbor distance of 0.0098 confirms
integration within the existing manifold, (3) Age consistency with 7.0 year median difference vali-
dates semantic coherence, (4) Activation correlation of 0.987 demonstrates preservation of learned
representations, and (5) Optimal distributional alignment in well-represented age ranges with KL
divergence below 1.0 confirms statistical fidelity.

Both linear (PCA) and non-linear (t-SNE) dimensionality reduction techniques provide direct visual
evidence that synthetic features respect the underlying manifold structure. Synthetic features inte-
grate naturally within real feature clusters rather than forming isolated regions, validating the core
claim that the generation process preserves semantic relationships learned by the backbone network.
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Figure 42: PCA projection
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tures in the first two principal
components

Figure 43: PCA projection
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Figure 45: Principal Component Analysis. PCA projections demonstrate that synthetic features
naturally integrate within the real feature manifold while preserving age-conditional structure.
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Figure 46: t-SNE projection . e
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Figure 49: t-SNE Analysis and Age Distribution. Non-linear dimensionality reduction confirms
local neighborhood preservation and appropriate age distribution matching.

Age-stratified analysis across multiple metrics confirms that synthetic features maintain appropriate
age-conditional characteristics. The systematic relationship between data availability and generation

quality validates the expected behavior of the method while demonstrating reasonable performance
even in challenging minority regions.

D THEORETICAL ANALYSIS

This section provides formal theoretical justification for LatentDiff’s approach to deep imbalanced

regression through mathematical analysis of feature space generation, distributional alignment, and
convergence properties.

D.1 FEATURE SPACE MANIFOLD STRUCTURE

Let X C R? denote the input space and ) C R the continuous target space. The feature encoder

fv + X — Z maps inputs to a learned representation space Z C R™, where the data lies on a
lower-dimensional manifold M C Z.

Assumption 1 (Manifold Structure): The learned features lie on a smooth manifold M with in-
trinsic dimension k < m, such that there exists a homeomorphism ¢ : i/ — M where U C R*.
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For imbalanced regression, the empirical distribution P(z, y) poorly approximates the true distribu-
tion P(z,y) in minority regions. Specifically, let Ryin = {y : P(y) < 7} denote minority regions
for threshold 7 > 0. The approximation error satisfies:

. 1 1/6
sup [P(zly) — Pyl > 0/ 228020 (15)

YE Rmin Mmin

with probability 1 — d, where 1y = minger,,, [{¢ : y; = y}| and C > 0 is a constant. This bound
demonstrates that minority regions suffer from poor distributional approximation.

D.2 DIFFUSION PROCESS ON MANIFOLDS

The forward diffusion process on the feature manifold is defined as:

q(zt|z0) = N (25 V@20, (1 — ay)I) (16)

where @; = [[_, (1 — f,) and {3} follows a variance schedule.

Theorem 1 (Manifold Preservation): Under the assumption that the noise level (1 — a;) is
sufficiently small relative to the manifold’s reach p, the noisy samples z; remain within an e-
neighborhood of M with high probability.

Proof Sketch: The reach p of manifold M bounds the distance to the medial axis. For 02 =

(1 — &) < p?/4, the probability that Gaussian noise moves a point outside the e-neighborhood is
bounded by:

P(d(z, M) > ¢€) < exp (_2(16—2at)> 17)

This ensures that the diffusion process respects manifold structure during denoising.

D.3 ScCORE FUNCTION ESTIMATION

The denoising network approximates the score function V., logp.(z|y). Using the v-
parameterization, the relationship between the predicted velocity gg(z¢, y,t) and score function is:

1
V., logpi(zily) = VT (90(zt,y,t) + Vauz) (18)
- G

Theorem 2 (Score Matching Consistency): Under mild regularity conditions, minimizing the v-
parameterization loss:

['v - Ezo,y,t,EHUt —ga(Zt,y,t)Hz (19)
where v; = /e — /1 — qy 29, 1S equivalent to score matching up to a constant factor.

Proof: The v-parameterization loss can be rewritten as:

L, = E||Vae — V1 —aizo — go(21,9,1)|? (20)
=E[(1 — @)(V:, logpi(z|y) — V=, log pa(z:]y))||* + const 21

where pg denotes the model distribution. This establishes equivalence to score matching.

D.4 SAMPLING AND GENERATION ANALYSIS

The reverse process generates samples via:

1
241 = \/707)& <Zt - \/ﬁi%ge(ztvy’t)> + o€t (22)

1—a,_
where 07 = s B
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Theorem 3 (Generation Quality Bound): Let Sy denote the learned score function and s* the true
score. If ||§9 — s*||2 < & uniformly, then the total variation distance between generated and true
distributions satisfies:

TV(peapdam) S Cvé\/f (23)

for some constant C' depending on the diffusion schedule.

This bound shows that accurate score estimation directly translates to high-quality generation.

D.5 PRIORITY-BASED GENERATION OPTIMALITY

The priority-based allocation strategy optimizes synthetic sample distribution to minimize expected
regression error. Let w(y) = Ae(y) + (1 — A)s(y) denote the priority weight combining prediction
error e(y) and scarcity measure s(y).

Theorem 4 (Optimal Allocation): Under the assumption that synthetic samples reduce prediction
error proportionally to their quality, the priority allocation P(y) o w(y) minimizes the expected
weighted regression loss:

Liotal = ZP(Z/) ']Ezwpg(-ly) [L(h(z)7y)] (24)
y

where L is the regression loss and £ is the regression head.

Proof Sketch: By Lagrange multipliers, the optimal allocation under generation budget constraint
>y Nsyn(y) = N satisfies:

Y 1
8nsyn(y) Z ny + nsyn(y)E[L(h(z), Y| = A 25)

This yields ngyn(y) o< \/E[L(h(2),y)] — \/7ty, which approximates our priority weighting scheme.
D.6 QUALITY CONTROL THEORETICAL FOUNDATION

The Mahalanobis distance quality gate is justified through concentration inequalities. For feature
vector z with true conditional distribution p(z|y) = N (i, X, ), the squared Mahalanobis distance
follows:

A3 (z,y) = (2 = ) S,z = py) ~ X (26)

Theorem 5 (Quality Gate Efficiency): Setting the threshold 7, at the g-th quantile of the empirical
Mahalanobis distribution ensures that synthetic features have conditional probability density within
the top ¢ percentile of real features with probability 1 — §.

D.7 CONVERGENCE ANALYSIS

Theorem 6 (Training Convergence): Under standard assumptions (Lipschitz continuity, bounded
gradients), the v-parameterization training converges to the global optimum with rate O(1/ VT ) for
the expected squared error.

The key insight is that v-parameterization provides better gradient scaling than noise prediction,
leading to more stable training dynamics across the diffusion timesteps.

D.8 GENERALIZATION BOUND

Theorem 7 (Generalization with Synthetic Data): Let Si.. denote the real training set and Sgy, the
synthetic augmentation. If the synthetic features satisfy TV (psyn, preat) < €, then the generalization
bound is:

Etest [L] < IE:lrain[L] +0 M + Ce (27)

Treal
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Table 11: LatentDiff vs LatentGAN comparison on IMDB-WIKI-DIR. Lower is better for MAE
and GM ({). LatentDiff demonstrates superior performance across all data regions.

Method | MAE | \ GM .

‘ All Many Med. Few ‘ All Many Med. Few
LatentGAN 8.56 8.20 15.70 17.97 5.15 4.97 10.38 12.60
LatentDiff (Ours) 7.43 7.24 11.81 9.83 4.24 4.16 6.49 5.73

LATENTDIFF VS. LATENTGAN ‘ +13.2% +11.7% +24.8% +45.3% ‘ +17.7% +16.3% +37.5% +54.5%
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Figure 50: LatentGAN manifold structure analysis. Low-dimensional projection (left), t-SNE
(center), and UMAP (right) visualizations reveal that GAN-generated synthetic features (orange)
form isolated clusters rather than integrating with real features (blue), demonstrating poor manifold
preservation and explaining inferior regression performance compared to LatentDiff.

with probability 1 — ¢, where C is a problem-dependent constant. This shows that high-quality
synthetic data (small ¢) improves the generalization bound by effectively increasing the sample size.

E LATENTDIFF VS LATENTGAN

To evaluate the effectiveness of diffusion-based generation compared to adversarial approaches, we
implemented a conditional GAN operating in the same feature space as LatentDiff. The LatentGAN
uses a generator network that produces 2048-dimensional features conditioned on target age values,
with a discriminator that distinguishes between real and synthetic features while also predicting age
consistency.

Table [T1] presents the comparative results on IMDB-WIKI-DIR. While LatentGAN achieves im-
provements over the vanilla baseline, LatentDiff consistently outperforms across all metrics and
data regions. LatentDiff achieves 46% better few-shot MAE (9.83 vs 17.97) and 54% better few-
shot GM (5.73 vs 12.60) compared to LatentGAN. The overall performance gap is substantial, with
LatentDiff showing 13% better MAE and 18% better GM on all samples.

The visualization analysis reveals fundamental differences in generation quality between the two
approaches. Figure[50]shows the manifold structure of LatentGAN-generated features. The Latent-
GAN results show synthetic features (orange) forming dense, isolated clusters rather than following
the natural data topology, in contrast to LatentDiff’s integration shown in Figure 3} where synthetic
features naturally integrate within the real feature manifold (blue dots), respecting the underlying
data distribution.

The t-SNE projection in Figure 50| demonstrates the clustering problem clearly, with synthetic fea-
tures concentrated in dense, unnatural formations rather than distributed throughout the manifold
like LatentDiff. The UMAP projection in Figure [50] further confirms this pattern, showing synthetic
features isolated in separate regions rather than integrated with real features. This poor manifold
preservation explains why LatentGAN achieves inferior regression performance, particularly in mi-
nority regions where maintaining semantic consistency is critical.

The clustering behavior observed in the GAN-generated features indicates mode collapse and train-
ing instability issues common in adversarial training. The diffusion approach avoids these problems
through its stable forward-reverse process and v-parameterization, resulting in more diverse and se-
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mantically consistent synthetic features across the entire target distribution. The superior manifold
integration achieved by LatentDiff directly translates to better regression performance, validating
the choice of diffusion models for feature-space augmentation in imbalanced regression tasks.
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