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Abstract

The detection of traffic signs is a fundamental
task for Autonomous Vehicles (AVs) to ensure safe
and efficient navigation. Although Deep Neu-
ral Network (DNN)-based systems play a signif-
icant role in developing AV perception systems,
they are known to be susceptible to adversarial at-
tacks. This vulnerability is attributed to their de-
pendence on pixel-level features, which can be ma-
nipulated to deceive the system and cause misclas-
sification of traffic signs. To address this issue, we
propose a logic-based compositional learning ap-
proach employing Neural-Symbolic (NS) to detect
traffic signs. The proposed methodology decom-
poses the sign detection task into sub-tasks corre-
sponding to individual sign features, such as shape
and text.
We extract these high-level features using OpenCV
and Neural Networks (NN) and use an Inductive
Logic Programming (ILP) engine to learn and com-
bine the features. This Neural-Symbolic (NS) ap-
proach enables our model to capture features and
their relationships, making it more reliable to gen-
eralise to new and unseen traffic signs. Composi-
tional generalisation is an important challenge in
traffic sign detection because traffic signs can ap-
pear in a wide range of contexts and configurations.
For instance, depending on the country, a ”stop”
sign could have a different language and configu-
ration. Furthermore, by combining these features,
the method is more resilient against adversarial at-
tacks, which makes it better equipped to ensure the
safety of all road users.
We evaluated the robustness of our approach by
subjecting it to two different adversarial attacks.
Our research revealed that the proposed ILP-based
technique is able to accurately detect all targeted
stop signs, even when exposed to adversarial at-
tacks. Furthermore, this highly efficient method-
ology demands minimal training data and is fully
explainable, which is particularly advantageous in
facilitating the debugging of AV systems.

1 Introduction
The surge in popularity of AVs stems from their capacity to
minimise human errors, thus enhancing transportation safety.
The development of perception systems for AVs relies heav-
ily on DNNs. Nevertheless, there exist substantial challenges
that DNNs must overcome before AVs can be safely de-
ployed.

Deep Neural Network (DNN)-based systems are often
called ”black-boxes” due to their opaque decision-making
process. The lack of transparency in the system’s logic makes
it difficult to identify the reason behind an erroneous predic-
tion, thereby rendering it challenging to rectify such mistakes.
For instance, misclassifying objects, such as mistaking shad-
ows for pedestrians, is a frequent issue in Autonomous Vehi-
cles (AVs), and making decisions based on such misclassifi-
cations could potentially lead to catastrophic accidents [Lee,
2018]. Moreover, utilizing algorithms with vague decision-
making processes makes assessing and trusting them impos-
sible.

Furthermore, DNNs face the challenges of learning from
small data and transferring the acquired knowledge to new
domains. While humans exhibit a remarkable ability to per-
form these tasks effortlessly, DNNs often struggle with them
due to their inherent limitations. This problem significantly
impacts anomaly detection tasks because anomalous data is
rare and difficult to obtain. Anomalies can arise due to errors,
faults, or adversarial attacks, which may pose safety and se-
curity risks. Adversarial examples expose the limitations of
DNNs in achieving generalisation [Szegedy et al., 2013].

In the real world, DNNs are susceptible to being misled
by adversarial attacks, which can cause them to make incor-
rect classifications with high confidence. For instance, it is
feasible to alter the colour of a traffic light from red to green
for autonomous vehicles[Yan et al., 2022], make individuals
invisible to AI by holding small adversarial patches in front
of their body [Thys et al., 2019], or cause a stop sign to be
misidentified as a speed limit sign [Eykholt et al., 2018b].

Researchers have proposed some solutions to overcome
these challenges associated with DNN classifiers, such as
transfer learning. However, these solutions have several lim-
itations. For example, the transfer learning approach encoun-
ters a significant challenge concerning data sharing and legal
issues [Kop, 2020].

Compositional learning is a viable solution for enhanc-



ing the safety of autonomous driving, a novel approach that
composes simpler components together for better generalisa-
tion [Nikolaus et al., 2019]. ILP is a suitable technique for
compositional learning as it can learn from structured data
and capture the compositional structure of data. This study
proposes an explainable solution based on ILP, primarily fo-
cusing on improving traffic sign detection in autonomous ve-
hicles. Our proposed method emulates human perception by
recognizing traffic signs through high-level features such as
their geometric shapes and contents. Notably, this traffic sign
detector requires only a small number of images for training,
making it data-efficient. Furthermore, the results suggest that
our method is more robust to adversarial attacks, further high-
lighting the benefits of our approach.

To our knowledge, this study is the first of its kind to offer
traffic sign detection based on ILP as we have not encountered
similar techniques in the literature.

This paper is organised as follows: Section 2 provides suc-
cessful adversarial examples in AVs. Section 3 describes
the proposed ILP-based robust traffic sign detection sys-
tem framework. Section 4 presents the experimental results,
where the ILP-based approaches are compared with Convo-
lutional Neural Network (CNN) based approaches. Finally,
section 5 provides conclusions and future works.

2 Adversarial Examples in AVs
This section covers a selection of adversarial attacks in au-
tonomous driving that have proven to be successful in mis-
leading vision classifiers based on deep neural networks
(DNNs). An adversarial attack aims to generate adversarial
examples as the input for machine learning systems. How-
ever, adversarial examples are only negligibly modified from
the real examples; they lead to misclassification [Gui et al.,
2021].

The susceptibility of deep neural networks to targeted per-
turbations was first discovered by [Szegedy et al., 2013],
showing that an adversarial attack could cause an AI system
to mistake a bus for an ostrich. Another algorithm named
Show-and-Fool [Chen et al., 2017] was developed to evaluate
the robustness of an image captioning system. This technique
transformed a stop sign into a teddy bear for the AI system by
introducing a small disturbance to the image pixels that was
imperceptible to humans.

The presence of universal noise, which can remove a spe-
cific class (such as all pedestrians) from a segmentation while
leaving the rest of the image mostly unaltered, was demon-
strated by the authors of [Hendrik Metzen et al., 2017]. The
robustness of the commonly used DNN-based semantic seg-
mentation models was evaluated against adversarial attacks in
urban scene segmentation [Arnab et al., 2018]. The findings
indicated that the segmentation performances of all models
decreased significantly after the attacks.

Afterwards, it was demonstrated that deep learning sys-
tems could misclassify real-life adversarial examples [Ku-
rakin et al., 2018]. Earlier research had targeted machine
learning classifiers by directly providing input data.

Another paper [Eykholt et al., 2018b] proposed the Robust
Physical Perturbations (RP 2) technique to deceive a CNN-

based road sign classifier in the physical world by applying
different robust visual adversarial perturbations. As a re-
sult, this approach causes targeted misclassification, which
changes a stop sign into a speed limit sign for the AI sys-
tem. They also proposed a disappearance attack, causing a
stop sign hidden from state-of-art object detectors like Mask
R-CNN and YOLO [Eykholt et al., 2018a]. An Adversarial
Camouflage (AdvCam) approach [Duan et al., 2020] gener-
ated adversarial photos to fool a DNN classifier at various
detecting angles and distances. With a few stains invisible to
humans, this technique can cause the classifier to misclassify
the objects, such as misidentifying a stop sign as a ”barber-
shop” with .82% confidence.

Fig. 1 illustrates a targeted stop sign with successful
physical-world attacking approaches named RP2 and Adv-
Cam, misleading the state-of-the-art DNN classifiers.

b) RP2 adversarial

a) AdvCam adversarial with three styles of stain

Subtle, SL45 (0.81) Camouflage Graffiti, SL45 (0.54) Camouflage Art, , SL45 (0.79)

Barbershop, 0.732 Barbershop, 0.602 Barbershop, 0.828

Figure 1: a) AdvCam and b) RP 2 techniques can deceive CNN clas-
sifiers by introducing perturbations. The SL45 refers to the speed
limit of 45.

Adaptive Square Attack (ASA) [Li et al., 2020] proposed
that it can attack black-box systems by creating impercepti-
ble perturbations for traffic sign images, causing misclassifi-
cation of the sign. Another study investigated five adversar-
ial attacks and four defence methods on three driving models
used in modern AVs [Deng et al., 2020]. The results showed
that while the defence methods were effective against several
attacks, none could completely protect against all five attacks.

A recent study deceived a DNN-based traffic sign recog-
nition with realistic-looking stickers [Bayzidi et al., 2022].
Another attack included painting the road, which targeted
DNN models used in AVs [Boloor et al., 2019]. A success-
ful physical adversarial attack was demonstrated on a com-
mercial classification system to deceive an AV’s sign classi-
fier [Morgulis et al., 2019]. BadNets algorithm [Gu et al.,
2019] was implemented to deceive a complex traffic sign de-
tection system leading to misclassifying stop signs as speed-
limit signs in real-world images.

Concisely, several studies have demonstrated the vulnera-
bility of deep learning models used in autonomous driving
systems to adversarial attacks. While defence methods have
been proposed, they are ineffective against all attacks. These
attacks pose a significant security threat to autonomous driv-
ing systems and highlight the need for more robust and re-
silient models.



3 Knowledge-based Traffic Sign Detection
In this paper, a method for robust traffic sign detection that
generalises from a small number of examples is proposed.
This method utilises ILP systems, namely Aleph [Ashwin
Srinivasan, 2001] and Metagol [Cropper and Muggleton,
2016], which are knowledge-based machine learning ap-
proaches that use logic representation and inference to learn
a hypothesis or rule.

Unlike deep learning approaches, ILP’s logic-based rep-
resentation and inference offer human-like abstraction and
reasoning, enabling the learning of complex tasks with few
examples. Additionally, ILP’s interpretability and data effi-
ciency lead to strong generalisation and are considered safer
than neural approaches [Anderson et al., 2020] and [Leech et
al., 2021].

To induce the rules (hypothesis), ILP uses a few positive
and negative examples and Background Knowledge (BK) that
includes essential predicates to represent the relevant infor-
mation. ILP has the benefit of utilizing BK, which consists of
rules and facts represented as logical expressions. The selec-
tion of appropriate BK based on carefully selected features
is crucial for achieving desirable outcomes [Cropper et al.,
2020]. The induced rules should cover as many positive and
as few negative examples as possible [Muggleton, 1991].

Our proposed knowledge-based traffic sign classifier is il-
lustrated in Fig. 2. The first step involves pre-processing
all images and converting them into a symbolic representa-
tion using OpenCV and DNN. In this step, high-level features
of the images, such as contents and shape, are extracted and
represented as a set of logical facts to provide BK. In the next
step, the ILP system uses positive and negative training exam-
ples (E) and BK to learn a hypothesis H such that B,H |= E,
where |= is logical entailment.

Training

ILP
System

BK,

Logical
facts

Pre-
processing

E-E+

Output
={0,1}

Testing

Logical
facts

Pre-
processing

Rules

Rules

Figure 2: ILP- based traffic sign classifier

In one experiment, we used Aleph5, an old ILP system de-
veloped in Prolog and based on inverse entailment, to gener-
ate rules for traffic sign detection. In the other experiment,
we used Metagol, implemented in Prolog and based on Meta
Interpretive Learning (MIL) [Muggleton et al., 2015]. MIL
learns logic programs from examples and BK by instantiat-
ing metarules. Moreover, MIL learns the recursive defini-
tion, fetches higher-order meta-rules, and supports predicate
invention.

4 Experiments
The goal of this experiment is to learn ”traffic sign” target
predicate to correctly recognize traffic signs, with a particu-
lar focus on the ”stop” sign and speed limit 45 sign for sim-
plicity. However, broadening this approach to include other
traffic signs is feasible, resulting in a comprehensive classi-
fier. We provide both Aleph and Metagol with the same BK.
Table 1 describes Aleph’s mode declarations. Mode declara-
tions are used to impose additional constraints on the clauses.
These declarations define the predicates that are allowed to be
present in the clauses, how they can appear, and the proper-
ties of the input and output variables for each predicate. Table
2 demonstrates the metarules used in the Metagol-based sys-
tem, which determine the shape of the induced rules.

Table 1: Aleph Experiment Mode Declarations

: −modeh(1, traffic sign(+sign,#class).
: −modeb(∗, has colour(+sign,#colour)).
: −modeb(∗, has shape(+sign,#shape)).
: −modeb(∗, has word(+sign,−w)).
: −modeb(∗, closely match(+w,#word)).
: −modeb(∗, has number(+sign,−n)).
: −modeb(∗, has digits(+n,#int)).

Table 2: Metarules utilized in the Metagol-based experiment, pred-
icate symbols (second-order variables) are represented using upper-
case letters, while variables are represented using lowercase letters.

Name Metarule
Identify P(x,y)←− Q(x,y)
Inverse P(x,y)←− Q(y,x)
Precon P(x, y)←− Q(x), R(x, y)
Postcon P(x, y)←− Q(x, y), R(y)
Chain P(x, y)←− Q(x, z), R(z, y)
Recursion P(x, y)←− Q(x, z), P (z, y)

In Aleph mode declaration, ”modeh” indicates that the
predicate should appear in the head of the hypothesis, and
”modeb” indicates that it should be in the body of the in-
duced hypothesis.

Table 1 specifies that one predicate can be used in the
head, and six predicates can be used in the body of the in-
duced hypothesis. For example, traffic sign(a, #class), can
appear in the head of the induced rule and holds when the
sign ”a” belongs to a category of #class (e.g. a stop sign).
On the other hand, the predicates has word(a, a w1) and
closely match(a w1, #word) can appear in the body of the in-
duced rule. The former predicate holds when the sign ”a” has
the word a w1 on it, while the second one holds when the
word ”a w1” closely matches the word ”#word” (e.g. stop).

To explain further, we will explore one positive and one
negative example of traffic signs in this study. The positive
example is a ”stop” sign denoted as ”p1”, and the negative
example is a ”30-speed limit” sign denoted as ”n1”. Dur-



ing the pre-processing phase, a set of logical facts was ex-
tracted from these examples as features to be added to the
background knowledge (BK), presented in Table 3.

Table 3: Extracted features for the positive (p1) and negative (n1)
examples.

Pos example(p1) Neg example(n1)
has color (p1, red) . has color (n1, red) .
has color (p1, white) . has color (n1, white) .
has shape (p1, octagon) . has shape (n1, Circle) .
has word (p1, p1 w1) . has number (n1, n1 d1) .
closely match (p1 w1, stop) . has digits (n1 d1, 30) .

These logical facts and the names of the positive and nega-
tive examples will enable the ILP system to induce a hypoth-
esis (logical rule). Finally, the ILP system recognises the new
traffic signs using this generated rule.

4.1 Material and Method
The base dataset we use for training and testing includes traf-
fic sign images without adversarial perturbation. It comprises
two sets of images: positive and negative images obtained
from Wikimedia Commons. The positive subset includes ten
stop signs and ten 45-speed limit signs, while the negative
subset has ten examples of other traffic sign instances exclud-
ing stop signs and 45-speed limit signs. The positive and neg-
ative sets can be seen in Fig. 3. To achieve a default accuracy
of %50, we employed an equal number of positive and nega-
tive examples.

Two adversarial datasets are employed to assess the robust-
ness of the ILP stop sign detector against adversarial attacks,
including stop signs attacked by RP 2 and AdvCam tech-
niques.

RP 2 is an attack algorithm that can be used to deceive road
sign classifiers by generating visual adversarial perturbations
such as black and white stickers. The RP 2 dataset contains
three types of perturbation: subtle, camouflage graffiti and
camouflage art attacks.

AdvCam is a method used to generate physical adversar-
ial images to mislead that can deceive advanced DNN-based
image classifiers. It can, for instance, cause the classifier to
incorrectly classify a stop sign as a ”barbershop” with a high
degree of confidence.

The paper proposes a feature recognition framework that
extracts high-level features of traffic signs, such as their bor-
der shape and text, using OpenCV. It removes the image’s
background using a Python tool called Rembg [Qin et al.,
2020] and decreases image noise using a bilateral filter. The
framework applies colour masks using the inRange() function
to extract traffic sign colours. Morphological operations are
then applied for the post-processing of colour masks.

To identify and extract text and digits, EasyOCR is used,
which employs DNN techniques to recognize text from im-
ages accurately. If the detected item is a word, it is evaluated
to determine whether it closely matches the ’stop’ word. For
example, ’stp’ and ’top’ are recognised as the ’stop’ word.

Figure 3: Base dataset that is used for both training and testing. a)
positive set of stop signs, b) positive set of speed limit 45 signs and
c) negative set for both stop and speed limit 45 dataset)

The findContours method is used for shape detection on de-
tected colour masks, and approxPolyDP is utilized for poly-
gon detection.

In the study, two CNN-based classifiers are employed to be
compared with the proposed ILP-based classifier regarding
adversarial resilience. The first is a well-known CNN classi-
fier [Vivek Yadav, 2016] is trained on the German Traffic Sign
Recognition Benchmark (GTSRB) [Stallkamp et al., 2012]
achieving 97.6% accuracy on the GTSRB test dataset. The
second is a CNN-based one-shot learning approach, namely
Siamese network [Koch et al., 2015], which learns from only
one or a few training data. These networks take pairs of in-
stances as input and feed them into two identical twin net-
works with the same structure and weight. A distance func-
tion learns the distance between the two instances. When the
input instances are similar (a positive pair), it is expected to
have a distance close to zero, while when there are different
inputs (negative pair), the distance should be close to 1.

The configuration of the Siamese network used in this pa-
per is adopted from [Koch et al., 2015].

The base dataset is used for training the ILP systems
(Aleph and Metagol) and the Siamese network. First, we ran-
domly select an equal number of positive and negative exam-
ples in each run, so the default accuracy is 50% for this train-
ing dataset. The ILP-based systems try to find a hypothesis
that covers as many positive and as few negative examples



as possible. The Siamese network is also trained on these
training pairs. Then the remaining examples in the dataset
are used as a test dataset for evaluation to determine the accu-
racy. This process is repeated ten times, and average accuracy
is calculated for each specific number of positive and negative
examples in the training set. Therefore we have a fair com-
parison between Aleph, Metagol and the Siamese network
regarding the size of the required training dataset.

We intend to make publicly available the source code for
our sign detector subsequent to the publication of this paper.

4.2 Results and Discussion
The graph shown in Fig. 4 presents a comparison of the aver-
age accuracy of the Aleph, Metagol and Siamese networks
based on the number of training examples from the base
dataset for two traffic signs, a) stop signs and b) speed limit
signs. The results demonstrate that in both traffic signs with
only one positive and one negative example, Metagol can
achieve 100% accuracy on the test dataset, whereas, Aleph
and the Siamese network start learning with one and two ex-
ample pairs. While Aleph starts learning with more training
data than the Siamese network, it can reach 100% accuracy
with fewer data. According to these results, Metagal signifi-
cantly outperforms Aleph and the Siamese classifiers regard-
ing data efficiency. In this figure, the green curve shows the
default accuracy, which is 50%.

In addition, the study evaluates the robustness of these clas-
sifiers against adversarial attacks using different test datasets
attacked by RP 2 (subtle, camouflage graffiti and camouflage
art attacks) and AdvCam. The classifiers are trained on the
base dataset with different numbers of training data and the
average accuracies of the classifiers on the attack test datasets
are plotted against the number of training examples in Fig. 5.
The results show that ILP-based systems are not affected by
these attacks. In contrast, the CNN-based Siamese network
performance decreases significantly in the presence of these
perturbations.

The hypothesis (a logic program) induced by Metagol with
only one set of positive and negative examples is identical to
the rule learned by Aleph using eight example pairs. This hy-
pothesis is completely accurate on both the base and attacked
test dataset and and is presented below:

t r a f f i c s i g n (A, s t o p s i g n ) : −
has word (A, A w1 ) ,
c l o s e l y m a t c h ( A w1 , s t o p ) .

t r a f f i c s i g n (A, s p e e d s i g n ) : −
has number (A, B) ,
h a s d i g i t s (B , 4 5 ) .

This learned hypothesis is completely explainable and
matches human interpretation. The rule says the traffic sign
”A” is a stop sign when the two literals has word(A, A w1)
and closely match(A w1, stop) hold, i.e. if the sign contains a
word and that word closely matches the stop word, that sign
would be predicted a stop sign. The induced rule regarding
the speed limit signs holds when the sign contains a number
with 4 and 5 digits.

Moreover, a state-of-the-art CNN-based traffic sign classi-
fier is employed to examine whether it is robust against ad-
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Figure 4: The average accuracy of Aleph, Metagol and the Siamese
network versus the number of training examples from the base
dataset (equal positive and negative sets) for a) stop sign and b)
speed limit sign
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Figure 5: Evaluation of ILP-based systems and Siamese network
on different test datasets with different attacks with an increasing
number of training examples from the base dataset



Table 4: Summary of comparison of the results of the hypothesis
induced by the proposed ILP-based approach (Aleph and Metagol)
on different test datasets with the CNN-based classifiers.

dataset non-compositional knowledge-
CNN-based Siamese based(ILP)

base 97.6% 100% 100%

RP 2
{ subtle 0% 0% 100%

cam graffiti 0% 35.9% 100%
cam art 0% 0% 100%

AdvCam 83.3% 47.5% 100%

versarial attacks. This model is trained on several thousands
of training data. The result demonstrated in Fig. 6, this sign
classifier shows poor performance in predicting targeted traf-
fic signs except for AdvCam, where this classifier shows more
robustness against this attack. For example, RP 2 causes the
CNN classifier to identify a camouflage art stop sign as a
speed limit, shown in Fig. 7.
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Figure 6: The CNN-based traffic sign classifier evaluation on differ-
ent datasets

Speed limit (100km/h)
No passing for vehicles over 3.5 metric tons

Road work
Speed limit (80km/h)

Keep right

Figure 7: The five top predictions by the CNN-based traffic sign
classifier, the traffic sign is targeted with RP 2 (camouflage art) at-
tack.

As a summary, Table 4 compares the performance of the
CNN-based and ILP-based classifiers on different datasets.
The CNN, Siamese, Aleph and MIL-based classifiers are
trained on datasets with 35000, 18, 16 and two images, re-
spectively.

5 Conclusions
Data-driven (DNN)-based classifiers used for traffic sign
recognition are often plagued by data scarcity and are sus-
ceptible to adversarial attacks. Moreover, they lack explain-
ability, making diagnosing their errors difficult. In this paper,
we propose a knowledge-based approach for traffic sign de-
tection that addresses these issues by utilizing compositional
learning techniques focused on high-level features such as
shape and text. By breaking down complex inputs into sim-
pler components, our approach can better capture the rela-
tionships in the data, resulting in more accurate and robust
traffic sign detection.

Our approach offers several advantages over current DNN
classifiers. Firstly, it is data efficient and requires minimal
training data, as evidenced by the ILP-based classifier utiliz-
ing Metagol, which is trained on only one negative and one
positive example. Secondly, our method generates human-
understandable rules, making it fully explainable, which is
a significant step towards explainability. Finally, our results
suggest that while ILP-based systems can learn from small
amounts of data, they are more robust to noise and adversar-
ial attacks.
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