
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MERGEMOE: EFFICIENT COMPRESSION OF MOE
MODELS VIA EXPERT OUTPUT MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Mixture-of-Experts (MoE) technique has proven to be a promising solution
to efficiently scale the model size, which has been widely applied in recent LLM
advancements. However, the substantial memory overhead of MoE models has
made their compression an important research direction. In this work, we pro-
vide a theoretical analysis of expert merging, a recently proposed technique for
compressing MoE models. Rather than interpreting expert merging from the con-
ventional perspective of parameter aggregation, we approach it from the perspec-
tive of merging experts’ outputs. Our key insight is that the merging process
can be interpreted as inserting additional matrices into the forward computation,
which naturally leads to an optimization formulation. Building on this analysis,
we introduce MergeMoE, a method that leverages mathematical optimization to
construct the compression matrices. We evaluate MergeMoE on multiple MoE
models and show that our algorithm consistently outperforms the baselines with
the same compression ratios.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022; Chowdhery et al., 2023;
Achiam et al., 2023) have demonstrated outstanding performance in a wide spectrum of natural
language processing (NLP) tasks. The improvement in the performance of LLMs is due to the
scaling parameters (Kaplan et al., 2020), which also brings a high computational cost. The Mixture-
of-Experts (MoE) architecture (Jacobs et al., 1991; Shazeer et al., 2017; Fedus et al., 2022; Zhou
et al., 2022) is proposed to control computational cost while scaling the model parameters. In the
typical MoE design, the input tokens are routed to several number of experts, trading higher memory
overhead for lower computational cost. Recent advancement in LLMs has widely applied the MoE
architecture (Rajbhandari et al., 2022a; Liu et al., 2024; Team, 2024; Jiang et al., 2024; Shen et al.,
2024; Wei et al., 2024; Yang et al., 2025), which shows its significant potential in LLM studies.

The large number of parameters in the MoE model also makes its deployment relatively difficult,
especially when resources are limited. The research community has proposed different ways to
reduce the LLM’s demand for resource, such as quantization (Dettmers et al., 2022; Yao et al.,
2022; Xiao et al., 2023), knowledge distillation (Hinton et al., 2015; Gou et al., 2021), low-rank
decomposition (Yu et al., 2017) and model pruning (Singh & Alistarh, 2020; Fang et al., 2023; Theus
et al., 2024). Muralidharan et al. (2024) further shows that compressing pretrained large language
models with knowledge distillation can produce smaller, high-quality models at much lower training
cost. In this paper, we study model compression for MoE models via expert merging. M-SMoE (Li
et al., 2023) demonstrates the potential of clustering and merging experts to reduce model size, but
its merging algorithm is heuristic in nature and lacks theoretical support. Based on a new analysis,
we propose an improved merging strategy that provides better theoretical grounding and achieves
superior performance.

We begin by analyzing the theoretical foundation of the expert merging for MoE models. Rather
than viewing expert merging from the traditional perspective of merging experts’ parameter, we
approach it from the perspective of merging experts’ outputs. Our key insight is that the merging
process can be interpreted as inserting additional matrices into the forward computation, which
naturally leads to an optimization formulation. This analysis explains both why the prior work on
expert-merging is effective and why residual errors remain. Building on the insight, we propose

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

MergeMoE, a novel expert-merging algorithm that explicitly optimizes the associated matrices. We
merge experts by weighted averaging, where the usage frequency serves as the weight; we further
prove this weighting scheme is optimal. To determine the internal parameters of merged experts,
We employ the least-squares method, which provides an effective and practical way to compute the
compression matrices.

Our main contribution can be summarized as follows.

• In §3, we provide theoretical insights into expert merging for MoE models and discuss how prior
work on expert merging aligns with our analysis.

• In §4, we introduce MergeMoE, a method motivated by these theoretical insights, which focuses
on merging experts’ outputs using mathematical tools.

• In §5, we present experimental evaluations of MergeMoE. The results demonstrate that Merge-
MoE consistently outperforms the baselines at the same memory compression ratios.

We also discuss the limitations of our work and the usage of LLMs in Appendices A and B.

2 RELATED WORKS

Mixture-of-Experts models. The Mixture-of-Experts (MoE) models have become a prevalent ap-
proach, which enable efficient expansion of neural network capacity while keeping computational
costs under control. Shazeer et al. (2017) introduces a Sparsely-Gated Mixture-of-Experts architec-
ture within LSTM models, which effectively boosts the model’s capacity and enhances performance
on downstream tasks. Fedus et al. (2022) applies the idea in the transformers and proposes the
Switch Transformer architecture. Rajbhandari et al. (2022a;b) adopt the shared experts in their MoE
architecture. Many recent LLMs (Liu et al., 2024; Jiang et al., 2024; Shen et al., 2024; Wei et al.,
2024; Yang et al., 2025) apply the MoE technique to efficiently scale up the model capacity.

Model Compression. As the scale of the the the models continues to increase, researchers have
also started to explore how to compress the models, making them easier to deploy. Model pruning
is a typical technique to compress the models. Wang et al. (2019) proposes a network reparameter-
ization and structured pruning solution on Resnet and VGG model. Fang et al. (2023) analyzes the
dependency graph in the network and presents a parameter pruning solution on various models archi-
tecture. Theus et al. (2024) incorporates the optimal transport technique and proposes Intra-Fusion
for pruning. All these works are targeted at the general LLM architecture.

On the other hand, model compression for MoE models is not fully studied. M-SMoE (Li et al.,
2023) first propose to merge experts in order to compress the MoE models. M-SMoE clusters
experts into groups and merges those within each group by computing a weighted average of the
corresponding weight matrices, where the weights are determined by the experts’ usage frequencies.
Xie et al. (2024) follows the previous pruning approaches in LLMs and ignores the unique features
of MoE models. He et al. (2023) merges multiple experts into a single expert from a computational
perspective, which does not reduce memory cost.

3 BACKGROUND AND THEORETICAL INSIGHTS

In this section, we first provide a brief overview of the MoE architecture. We then present theoretical
insights into expert merging, which recast the merging process as introducing additional matrices in
the forward computation and framing it as an optimization problem. Finally, we revisit prior expert-
merging algorithm and show how they can be interpreted within our theoretical framework, thereby
clarifying their limitations.

3.1 PRELIMINARY

We begin by introducing the MoE architecture. Let N be the number of experts and K be the number
of activated experts per token. The MLP module consists of a router and N experts, where the router
has weight matrix Wr. Given an input X , the router computes softmax(WrX) and selects top-K
experts according to the highest scores. We denote the ith expert as Ei, which follows the SwiGLU

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: An overview of how the merging algorithm changes the forward process of the MoE
module. It shows the transition from an initial 8-expert configuration (top-2 activation per token) to
4 experts after compresion.

design and contains three weight matrices WD, WU and WG and a non-linear activation function σ.
With a slight abuse of notation, we use Ei(X) to denote its output on input X , which is given by:

Ei(X) = WD(σ(WGX)⊙ (WUX)),

where ⊙ denotes the Hadamard product. After the selected K experts compute their outputs, the final
result is obtained as a weighted average of these outputs, with weights given by the corresponding
top-K entries of softmax(WrX). Formally, the forward computation can be written as

[E1(X) E2(X) . . . EN (X)] ·mask top K(softmax(WrX))⊤

Let
Y = [E1(X) E2(X) . . . EN (X)] ,

then the formula above can be simplified as

Y ·mask top K(softmax(WrX))⊤ (1)

Here mask top K(·) denotes the operator that sets all but the top-K entries to zero. We emphasize
that Eq 1 describes an equivalent computational view; in practice, masked experts are skipped and
do not contribute to computation.

3.2 INSIGHTS FOR EXPERT MERGING

We next consider merging experts within a single MoE layer, reducing the number of experts from
N to M . To achieve this, the experts are first clustered into M groups, and the experts within
each group are then merged to form a new expert. Traditionally, model pruning have focused on
the parameter space. In this view, experts that are considered “similar” are grouped and merged
by averaging or weighted averaging their parameters, under the intuition that combining similar
parameters reduces approximation error. Routing weights for the merged experts are then computed
as the sum of the original experts’ routing weights. In contrast, we argue that experts merging should
focus on merging the experts’ outputs.

As shown in Figure 1, summing the routing weights of the merged experts is equivalent to multiply-
ing by a summation matrix A, defined as:

Aij =

{
1, the original jth expert is classified into ith cluster
0, otherwise

(2)

In Figure 1, the clustered groups are (E2, E3), (E1, E6), (E5, E7), (E4, E8). Given original routing
weights (0, 0, 0.5, 0, 0, 0.2, 0, 0)⊤, the weights after merging become (0.5, 0.2, 0, 0)⊤. Motivated by
this observation, we shift the target of weighted averaging from experts’ parameters to their outputs,
which can be expressed as multiplication by a matrix B:

Bij =

{
wij , if the original ith expert is assigned to the jth cluster with weight wij

0, otherwise

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Consequently, the forward pass can be rewritten as

Y ·B ·A ·mask top K(softmax(WrX))⊤

This allows us to move from a previously qualitative view of parameters merging to a quantitative
one, by formulating it as a linear optimization problem, where the objective is to choose A and
B such that the merged forward output approximates the original MoE forward computation in
Equation 1.

The remaining challenge is how to set the parameters of the merged experts such that their outputs
approximate a linear combination of the original experts’ outputs. Let E′

i denote the ith merged
expert. It should approximately satisfy

E′
i(X) =

∑
j

BjiEj(X),∀X.

For example, in Figure 1, the first group consists of the 2nd and 3rd experts, with weights 0.3 and
0.7, respectively. Then the merged expert E′

1 should approximately satisfy E′
1(X) = 0.3E2(X) +

0.7E3(X),∀X .

We find that

E′
i(X) =

∑
j

BjiEj(X) =
∑
j

BjiWDj(σ(WGjX)⊙ (WUjX))

= [B1iWD1, B2iWD2, · · · , BNiWDN](σ(


WG1

WG2

...
WGN

X)⊙ (


WU1

WU2

...
WUN

X))

If we set the parameters of merged experts as

W ′
Di = [B1iWD1, B2iWD2, · · · , BNiWDN],W ′

Gi =


WG1

WG2

...
WGN

 ,W ′
Ui =


WU1

WU2

...
WUN

 ,

then the merged experts E′
i(X) = W ′

Di(σ(W
′
GiX)⊙ (W ′

UiX)) can satisfy the requirement without
incurring any approximation error. However, this construction only works because we allow the
intermediate dimensions to grow with the number of merged experts. As a result, both the parameter
size and the computational cost remain unchanged. To ensure that each merged expert has the same
parameter scale as a standard expert, we need to reduce the intermediate dimensionality. We then
introduce dimension reduction matrices T1, T2, T3 and express the merged expert as

E′
i(X) = W ′

DiT1(σ(T2W
′
GiX)⊙ (T3W

′
UiX)), (3)

which transforms the problem into finding suitable T1, T2, T3 to reduce the approximation error.

3.3 M-SMOE UNDER OUR OUTPUT-MERGING VIEW

The prior work on expert merging, M-SMoE, adapts the traditional view of merging parameter.
M-SMoE merges experts in the same cluster by weighted averaging the parameters of each weight
matrices, with usage frequencies as the weights. Under our output-merging view, it is equivalent to
set T1, T2, T3 as follows.

T1 =


I,
I,
...
I

 , T2 = [B1iI,B2iI, · · ·BNiI], T3 = [B1iI,B2iI, · · ·BNiI]. (4)

The T1, T2, T3 settings are not derived from quantitative optimization, and thus there remains room
for further improvement.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 METHODOLOGY

Finding the optimal T1, T2, T3 that minimize the approximation error is challenging, because it con-
tains a non-linear activation function and a Hadamard product. We propose a strategy that decouples
the optimization of T1 and T2, T3.

We first assume the T2 and T3 are fixed and focus on the T1 alone. Given a sampled inputs X̂ ,
according to Equation 3, the T1 should approximately satisfy

T1(σ(T2W
′
GiX̂)⊙ (T3W

′
UiX̂)) = σ(W ′

GiX̂)⊙ (W ′
UiX̂) (5)

Because T2, T3 and input samples X̂ are given, we can compute P = (σ(T2W
′
GiX̂)⊙ (T3W

′
UiX̂))

and Q = σ(W ′
GiX̂) ⊙ (W ′

UiX̂) and reduces the problem to a linear system T1P = Q. Since this
forms a linear least squares problem, T1 admits a closed-form solution

T1 = QP †, (6)

where P † denotes the Moore-Penrose pseudoinverse of P .

The T2 and T3 are closely associated with the non-linear activation function and the Hadamard prod-
uct. This tight integration introduces intrinsic non-linearities that prevent the objective function from
being reformulated as a linear optimization problem, thereby precluding the existence of a closed-
form solution for their joint optimization. Therefore we let T2 and T3 represent weighted averages
within clusters and set them according to Equation 4. To reduce the error caused by weighted aver-
age, when clustering the experts, we employ the similarity of the concatenated results of the matrix
WU and the matrix WG of experts as the metric to measure the distance between two experts. Then
weighted average is performed among experts with similar WU and WG, and the approximation
error can be reduced.

Once the clustering method is determined, the matrix A is also uniquely fixed according to Equa-
tion 2. We use the relative usage frequency of the experts as the weight for the weighted average
within the cluster. It is noticeable that M-SMoE also applies relative usage frequency as the weight.
However, it selects this scheme primarily based on experimental performance, while we provide
theoretical proof for its optimality.

Our aim is to minimize the error between the compressed output and the original output, which is
the Frobenius norm of

(Y BA− Y) ·mask top K(softmax(WrX))⊤

We define a “Quasi-Frobenius” norm QF (Y):

QF (Y) = [||E1(X)||2F , ||E2(X)||2F , ..., ||EN (X)||2F] ∈ RN

We suppose that the router logits and the output of experts are independent. Consider taking a large
number of samples, if the distribution of the frequency of expert usage is already known, explicitly,
let the expected number of times the i-th expert is used be fi, and denote Y0 = EX∼πY , where π
is the distribution of the input X . Then the function mask top K can be unpacked as an expected
value, which leading to an simplified lower bound for the above equation:

EX∼π[||(Y BA− Y)mask top K(softmax(WrX))⊤||2F]
= EX∼π[(Y (BA− IN))QF ·mask top K(softmax(WrX))⊤]

= EX∼π[Y ((BA− IN)QF)]× EX∼π[mask top K(softmax(WrX))⊤]

≥ Y0((BA− IN)QF)× [f1, f2, ..., fN]⊤

where IN denotes the identity matrix in RN×N .

For a given clustering approach, each pre-merger expert should correspond to exactly one post-
merger expert. Also, a post-merger expert is the weighted sum of its corresponding pre-merger
ones. This is equivalent to each row of A having exactly one 1 and the rest are 0, and each row of B
having non-zero values only at the indices of its cluster.
Theorem 1. Given A ∈ RM×N , Y0 ∈ RK×N , each column of A has exactly one 1 and the rest
are 0. Let B ∈ RN×M , v1, v2, ..., vM be the columns of B. Let Ci be the indices corresponding to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

the non-zero values of the i-th column of A. For i = 1, 2, ...,M , vi has non-zero values only at the
indices in Ci. Then:

vi[j] =


fj∑

k∈Ci

fk
, if j ∈ Ci

0, otherwise

is a minimal point of the function:

Y0((BA− IN)QF)× [f1, f2, ..., fN]⊤

For a detailed proof of the theorem, please refer to Appendix C.

Summary of the algorithm design. We have explained all the design choices in our algorithm.
Our algorithm is summarized as follows.

1. Clustering. Experts with top-M usage frequencies are selected as the clustering center, and the
other experts are classified according to their distance from the experts in the clustering centers.
We uses the similarity of the concatenated results of the matrix WU and the matrix WG as the
metric for the distance between two experts.

2. Merging the experts within the same cluster. Within the cluster, we use the relative usage fre-
quency of each expert as the weight. We set the compression matrix T2, T3 according to Equa-
tion 4, which represent the weighted average. Then we utilize input samples X̂ and apply the
least squares method according to Equation 6 to compute the closed form result of T1. Finally
W ′

DT1, T2W
′
G, T3W

′
U will be outputted as the weight matrices of the merged expert.

It is noticeable that our technique can also be applied to those MoE models with shared experts. In
models with shared experts, the shared experts and routed experts are usually independent during the
forward pass. Therefore, the routed experts can be directly compressed according to our algorithm.

5 EVALUATION

5.1 SETUP

Models and Datasets. We used three open-source MoE models for evaluation: DeepSeekMoE
(Rajbhandari et al., 2022a), Qwen1.5-MoE-A2.7B (Team, 2024), and Qwen3-30B-A3B (Yang et al.,
2025). We summarize the configurations of the three models in Appendix E.1. The experiments are
conducted on seven NLP datasets: MRPC (Dolan & Brockett, 2005) for paraphrase identification,
WinoGrande (Sakaguchi et al., 2021) for coreference resolution, SQuAD (Rajpurkar et al., 2016) for
extractive QA, Hellaswag (Zellers et al., 2019) for commonsense reasoning, PIQA (Bisk et al., 2020)
for physical interaction reasoning, ARC easy and ARC challenge (Clark et al., 2018) for scientific
reasoning. In Appendix E.3 we further evaluate the performance of MergeMoE on the instruction
following benchmark IFEval (Zhou et al., 2023).

Evaluation Details. The merging algorithms are conducted on a single NVIDIA H20 with 96GB
memory, and the evaluation is conducted on two NVIDIA H20. We use DCLM (Li et al., 2024) to
evaluate the performance of models in downstream tasks. We use M-SMoE Li et al. (2023) as the
main baseline for the comparative experiments. Considering the lack of work on experts merging,
we also uses the baselines in the experiments of the M-SMoE, which adapt Average (Choshen et al.,
2022) and ZipIt (Stoica et al., 2023) in the expert merging scenarios. In the comparative experiments,
we ensure that both our solution and the baselines merge the same set of layers, and the compression
ratios are also the same. For the M-SMoE, although it describes a way to adjust the compression
ratios of each layer, we found in our evaluations that it may lead to much worse results. Therefore,
we simply fix the compression ratios for all layers to be consistent, and we believe it is still a fair
setting.

5.2 PERFORMANCE OF MERGEMOE

We compare the performance of MergeMoE with baseline algorithms on three MoE models. For
the evaluation on the Qwen3-30B-A3B model, we additionally use Qwen3-4B as a dense baseline,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance evaluation of MergeMoE and the baselines on the Qwen3 model.

Strategies Model Size WinoGrande ARC easy ARC challenge Hellaswag PIQA SQuAD MRPC
Full 30B 74.27 84.89 67.49 76.38 81.72 66.61 72.55

Dense 4B 67.96 81.31 60.07 68.21 77.37 64.22 75.74

Average 25B 73.24 82.74 51.96 71.36 74.65 63.94 72.55
ZipIt 25B 72.77 77.78 56.40 72.61 76.50 63.81 72.55

M-SMoE 25B 73.95 82.87 61.77 74.12 80.79 64.28 72.30

MergeMoE 25B 73.72 83.04 63.48 74.93 81.34 64.56 72.55

Table 2: Performance evaluation of MergeMoE and the baselines on the Qwen1.5 model.

Strategies Model Size WinoGrande ARC easy ARC challenge Hellaswag PIQA SQuAD MRPC
Full 14B 72.30 76.98 50.60 77.14 80.79 60.36 72.06

Dense 4B 66.85 72.55 42.75 70.00 77.97 60.54 62.99
Dense 1.8B 61.25 65.07 35.49 60.14 74.32 49.53 68.87

Average 10B 68.11 69.28 41.30 67.92 78.94 53.85 72.30
ZipIt 10B 69.14 69.53 41.81 68.06 77.80 55.75 72.06

M-SMoE 10B 68.98 71.00 41.55 68.87 79.27 54.99 72.30

MergeMoE 10B 70.48 71.25 42.06 71.58 79.27 56.40 74.75

since among the Qwen-3 series it has the closest number of activated parameters to Qwen3-30B-
A3B. For the evaluation on the Qwen1.5-MoE-A2.7B, we use Qwen1.5-1.8B and Qwen1.5-4B as
dense baselines. For each model, we select a set of layers and a compression ratio; for each selected
layer, the number of experts is reduced according to this ratio. All merging algorithms then merge the
experts for these layers and evaluate the resulting performance. We also ensure the number of input
samples is the same for all merging algorithms applied to the same model and dataset combination.
The detailed hyper-parameter configurations, including the merging layers, compression ratios, and
the number of input samples are described in E.2. For clarity, the highest-performing scheme is
highlighted in blue, and the second-highest in yellow.

Comparison on the Qwen3. The experiment results are shown in Table 1. First, MergeMoE
achieves the best performance on all tasks except the WinoGrande. On the WinoGrande task, the
performance of MergeMoE is the second-highest, with only a 0.23 gap from the best score. Second,
the performance gap between MergeMoE and the full model is minimal. On the WinoGrande, PIQA
and MRPC tasks, the performance drop compared to the full model is even less than 0.6. Third, our
solution significantly outperforms the dense model on most tasks. Notably, while the compressed
model uses only 3B active parameters compared to 4B in the dense model, it still achieves superior
performance, demonstrating the efficiency and effectiveness of our approach.

Comparison on the Qwen1.5. The experiment results are shown in Table 2. MergeMoE achieves
the best performance on all tasks. Compared with the SOTA solution, M-SMoE, MergeMoE im-
proves 1.5 on the WinoGrande task, 2.71 on the PIQA task, 1.41 on the SQuAD task, and 2.45 on
the MRPC task. We also find that, MergeMoE significantly outperforms the Qwen1.5-1.8B dense
model. Compared with Qwen1.5-4B dense model, it achieves better performance on WinoGrande,
Hellaswag, PIQA, and MRPC tasks, and comparable performance on the others. As the compressed
model has 2.7B active parameters, we believe our solution is efficient on the Qwen1.5 model.

Comparison on the DeepSeekMoE. The experiment results are shown in Table 3. Overall,
MergeMoE achieves the best performance compared with baselines. Compared to M-SMoE, our
approach achieves an improvement of 1.13 on ARC easy and 1.16 on Hellaswag. Compared to
Average, MergeMoE achieves an improvement of 1.31 on ARC easy and 1.2 on ARC chanllenge.
Compared to ZipIt, MergeMoE achieves an improvement of 2.71 on Hellaswag. Besides, compared
with the full model, the performance drop is negligible on most tasks.

Summary. We obtain the following observations from the experiment results. First, MergeMoE
generally achieves the best performance among all the baseline algorithms. On all the three mod-
els, MergeMoE attains a improvement for most tasks. Second, the performance drop caused by
compression is negligible in most cases. Third, MergeMoE outperforms the dense model with a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Performance evaluation of MergeMoE and the baselines on the DeepSeekMoE model.

Strategies Model Size WinoGrande ARC easy ARC challenge Hellaswag PIQA SQuAD MRPC
Full 16B 74.59 78.17 50.26 77.10 80.30 53.87 60.05

Average 12B 73.48 74.53 45.90 75.53 79.81 54.17 60.54
ZipIt 12B 73.09 75.55 47.53 72.61 79.00 54.65 60.54

M-SMoE 12B 73.32 74.71 47.27 74.16 79.05 55.11 60.29

MergeMoE 12B 73.64 75.84 47.10 75.32 79.87 54.27 60.78

Table 4: Evaluation of the cross-dataset generalization abilities for MergeMoE on the Qwen1.5
model. “Self-Sourced Samples” indicates using corresponding samples for each tasks, which fol-
lows the same setting in Table 2. The rest three rows use WinoGrande/ARC easy/Hellaswag for
merging and evaluate on all tasks. To ensure fairness, we set the total number of sample tokens to
be identical to 16K.

Source of Input Samples WinoGrande ARC easy ARC challenge Hellaswag PIQA SQuAD
Self-Sourced Samples 70.48 71.25 42.06 71.58 79.27 56.40

WinoGrande 70.40 67.72 43.69 70.11 77.86 54.33
ARC easy 68.58 72.47 42.32 67.94 76.99 54.60
Hellaswag 69.14 70.41 43.09 71.56 78.56 54.29

comparable number of active parameters. The results show that, MergeMoE effectively mitigates
performance degradation from MoE model compression and demonstrates superior effectiveness.

5.3 EXTRA EXPERIMENTS

8 12 16 20 24
Compressed Layers

0

10

20

30

40

50

Ti
m

e
(s

ec
on

ds
)

MergeMoE
MSMoE

Figure 3: Comparison of the time
cost.

Experiments on time cost. We compare the time costs of
MergeMoE and M-SMoE during the merging process, with
results reported in Figure 3. Experiments are conducted on
the WinoGrande task using the Qwen 1.5 model. In our set-
ting, MergeMoE is run with a batch size of 128 input sam-
ples, and for each layer the number of experts is reduced
from 60 to 30. Although MergeMoE is slower than M-
SMoE, which is an expected outcome given its more com-
plex operations, both methods complete within a minute.
This makes the overall cost negligible. Moreover, since our
merging algorithm runs efficiently on a single GPU, Merge-
MoE imposes relatively low resource requirements.

Experiments on different compression ratios. We evaluate how different compression ratios
affect the performance of models merged by our algorithm. The experiment is conducted on the
WinoGrande task with Qwen 1.5 model. Two factors determine the compression ratio: (1) the
number of layers involved in the merging process, and (2) the reduced number of experts in each
merged layer. In Figure 2a we fix the number of compressed layers to 14 and vary the number of

10 20 30 40 50
Experts

60

62

64

66

68

70

72

74

Sc
or

e

(a) Impacts of the number of reduced experts.

8 12 16 20 24
Layers

60

62

64

66

68

70

72

74

Sc
or

e

(b) Impacts of the number of compressed layers.

Figure 2: Experiments on the effects of different compression ratios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: Ablation experiments on the compression errors.

Strategies WinoGrande ARC easy ARC challenge Hellaswag PIQA
Full 72.30 76.98 50.60 77.14 80.79

w/o merging errors 71.27 73.11 43.69 72.91 79.60
w/ merging errors 70.48 71.25 42.06 71.58 79.27

reduced experts. In Figure 2b we instead fix the number of reduced experts to 30 and vary the number
of compressed layers. Experimental results indicate that the model accuracy gradually decreases
as the compression ratio increases. Furthermore, comparing the impacts of reducing expert count
versus increasing compressed layers, we find the former has a more significant effect. This suggests
that when implementing the compression algorithm, we should avoid excessive compression of the
number of experts in a single layer and instead expand the number of compressed layers.

28 32 36 40 48 64 128
Sample Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Sc
or

e

Figure 4: Evaluation on the impact of
the number of sample size.

Experiments on the number of input samples.
MergeMoE relies on input samples to apply least-squares
method for computing an accurate compression matrix
T1, and its performance is directly affected by the num-
ber of such samples. We evaluate this effect using the
Qwen 1.5 model on the WinoGrande task, and the con-
figuration of the compression layers and the compression
ratios are the same with the experiment in Table 2. As
shown in Figure 4, MergeMoE fails completely when the
sample size falls below a critical threshold (32 in our ex-
periment). Since WinoGrande is a binary-choice dataset,
scores around 50% correspond to random guessing. In
contrast, once the sample size exceeds the threshold (36),
performance improves rapidly and then continues to in-
crease more gradually with additional samples. The results indicate that, MergeMoE is sensitive to
sample size. Our algorithm achieves reliable performance only when the number of input samples
exceeds this critical threshold. Moreover, increasing the number of samples beyond the threshold
consistently leads to further performance gains.

Cross-dataset generalization. We explore the ability for the MergeMoE to generalize across dif-
ferent datasets. Specifically, we apply MergeMoE using input samples sourced from a single dataset,
then evaluate the resulting compressed model across all tasks. As shown in Table 4, the model
merged from a single source dataset achieves scores only slightly lower than those from models
merged with self-sourced samples (i.e., samples taken from each respective benchmark). This indi-
cates that our algorithm has cross-dataset generalization capability.

Ablation on the compression errors. As analyzed in 3.2, compression errors stem from clustering
(A,B) and expert merging (T1, T2, T3). To isolate their effects, we conduct an ablation experiment
where clustering is retained but expert outputs are directly merged, thereby removing merging errors.
As shown in Table 5, this variant outperforms the standard merging scheme, which is consistent with
our analysis. The small performance gap further demonstrates the effectiveness of our least-squares
method in mitigating merging errors.

6 CONCLUSION

In this paper we study how to compress MoE models by merging experts. We first analyze the
theoretical essence of the expert merging in MoE models. Unlike the traditional view that focuses
on merging expert parameters, we introduce a novel perspective that interprets expert merging as
expert output merging. Under this perspective, the merging process can be formulated as inserting
additional matrices into the forward computation. Building on this theoretical insight, we propose
our solution, MergeMoE, which uses mathematical tools to optimize the design of the compression
matrices in the expert-merging process. Our experiment results show that, compared with baseline
algorithms, MergeMoE consistently achieves better performance at the same compression ratio.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Our work focuses on algorithm design for compressing MoE models through expert merging. While
the proposed method improves efficiency, it does not address or mitigate the biases present in the
underlying training data. In particular, merging strategies that rely on usage frequency may dispro-
portionately compress rarely activated experts, potentially degrading performance on minority or
long-tail cases. Moreover, compressed models inherit the risks of their uncompressed counterparts,
including the possibility of generating biased or misleading content.

REPRODUCIBILITY STATEMENT

Our code is open-sourced at https://anonymous.4open.science/r/MergeMoE_
opensource-5DCB. We further provide discussions on the implementation details of our so-
lution in Appendix D.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16091–16101, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Merging experts into
one: Improving computational efficiency of mixture of experts. arXiv preprint arXiv:2310.09832,
2023.

10

https://anonymous.4open.science/r/MergeMoE_opensource-5DCB
https://anonymous.4open.science/r/MergeMoE_opensource-5DCB

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bit-
ton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej
Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,
Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic,
Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the
next generation of training sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022a.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman.
Zipit! merging models from different tasks without training. arXiv preprint arXiv:2305.03053,
2023.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters”,
February 2024. URL https://qwenlm.github.io/blog/qwen-moe/.

Alexander Theus, Olin Geimer, Friedrich Wicke, Thomas Hofmann, Sotiris Anagnostidis, and
Sidak Pal Singh. Towards meta-pruning via optimal transport. arXiv preprint arXiv:2402.07839,
2024.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International conference on machine learning, pp. 6566–
6575. PMLR, 2019.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370–7379, 2017.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

12

https://qwenlm.github.io/blog/qwen-moe/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A LIMITATION

The primary limitation of our method is its reliance on input samples. Our experiment on the number
of input samples shows that, MergeMoE can only achieve strong performance when provided with a
sufficient number of samples. The generalization experiment further indicates that merging on one
dataset can transfer reasonably well to other tasks, but still underperforms compared to sampling
directly from the corresponding benchmarks. We believe that diverse and high-quality input samples
are essential for MergeMoE to reach its full potential.

B LLM USAGE STATEMENT

For this paper, we utilize LLMs as language-assistance tools to refine expression, such as enhancing
grammatical accuracy and readability. All research concepts, theoretical analysis and methodologies
are original contributions of the authors.

C THEORETICAL ANALYSIS OF THE MERGING WEIGHTS

Theorem 1. Given A ∈ RM×N , Y0 ∈ RK×N , each column of A has exactly one 1 and the rest
are 0. Let B ∈ RN×M , v1, v2, ..., vM be the columns of B. Let Ci be the indices corresponding to
the non-zero values of the i-th column of A. For i = 1, 2, ...,M , vi has non-zero values only at the
indices in Ci. Then:

vi[j] =


fj∑

k∈Ci

fk
, if j ∈ Ci

0, otherwise

is a minimal point of the function:
Y0((BA− IN)QF)× [f1, f2, ..., fN]⊤

Proof. Suppose that a1, a2, ..., aN are the column vectors of A, v1, v2, ...vM are the column vectors
of B, u1, u2, ...uN are the column vectors of BA. Then

ui = B × ai =

M∑
j=1

vj × ai[j]

Since each column of A has exactly one 1 and the rest are 0, we obtain that ui ∈ {v1, v2, ...vM} for
each i = 1, 2, ..., N . Let ei = (0, 0, .., 1, ...0)⊤ be the unit vector in RN that has a value 1 only at
i-th position and 0 elsewhere. Let W = Y ⊤

0 Y0 and wi be the i-th column of W . Notice that:
Y0((BA− IN)QF)[i] = ||Y0(ui − ei)||2F

= Tr((ui − ei)
⊤Y ⊤

0 Y0(ui − ei))

= (ui − ei)
⊤W (ui − ei)

So the original function can be simplified as:
N∑
i=1

fi(ui − ei)
⊤W (ui − ei)

Now, let Ci be the index set of those j which satisfies uj = vi, which is the index set of a single
cluster. Then the equation above can be considered independently on each Ci:

N∑
i=1

fi(ui − ei)
⊤W (ui − ei) =

M∑
i=1

∑
j∈Ci

fj(vi − ej)
⊤W (vi − ej)

=

M∑
i=1

∑
j∈Ci

fj(v
⊤
i Wvi − e⊤j Wvi − v⊤i Wej + e⊤j Wej)

=

M∑
i=1

∑
j∈Ci

fj(v
⊤
i Wvi − 2wjvi) +

N∑
i=1

fie
⊤
i Wei

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Let Fi =
∑

j∈Ci

fj(v
⊤
i Wvi − 2wjvi). This is a quadratic function for each vi. Since A has already

been fixed, we know that Ci is fixed. Thus we just need to optimize Fi in each cluster.

Since vj can only have values on the indices of its corresponding cluster Ci, and all other positions
must be 0, we have:

vi =
∑
j∈Ci

ajej

Denote the element in the i-th row and j-th column of W as wij . Thus we have:

Fi = (
∑
j∈Ci

fj)(
∑
j∈Ci

ajej)
⊤W (

∑
j∈Ci

ajej)− 2
∑
j∈Ci

fjwj(
∑
j∈Ci

ajej)

= (
∑
j∈Ci

fj)
∑

j,k∈Ci

ajakwjk − 2
∑

j,k∈Ci

akfjwjk

this is a quadratic function for aj (j ∈ Ci). Let Si =
∑

j∈Ci

fi, compute the derivative of Fi:

∂Fi

∂aj
= 2Si

∑
k∈Ci

akwjk − 2
∑
k∈Ci

fjwjk

∂2Fi

∂ajak
= 2Siwjk

Let Ci = {i1, i2, ...i|Ci|}. We claim that if the 1-st derivative with respect to (ai1 , ai2 , ..., ai|Ci|
)

equals 0, then Fi reaches a minimal value in this coefficient setting. Since Fi is a quadratic function,
the 3-rd derivative of Fi equals 0. Consider the Taylor series of Fi, we’ve already know that the
2-nd derivative of Fi equals 2SiW , which is a quasi-positive definite matrix. Then let v′ be the root
of the 1-st derivative, we have:

Fi(v) = Fi(v
′) + (v − v′)⊤ × ∂Fi

∂v
|v′ + (v − v′)⊤ × 4SiW × (v − v′)

= Fi(v
′) + (v − v′)⊤4SiW (v − v′) ≥ Fi(v

′)

Now, let aij =
fij
Si

, the 1-st derivative of Fi equals:

∂Fi

∂aj
= 2Si

∑
k∈Ci

akwjk − 2
∑
k∈Ci

fjwjk

= 2Si

∑
k∈Ci

fk
Si

wjk − 2
∑
k∈Ci

fiwjk = 0

To sum up, we’ve found a global minimal point for each Fi, which means that

vi[j] =


fj∑

k∈Ci

fk
, if j ∈ Ci

0, otherwise

D IMPLEMENTATION DETAILS

Similar to M-SMoE, when reducing the number of experts from N to M , we maintain N references
of experts while letting them point to M real experts. In that way, the matrix A is implicit encoded.
In addition, for the compression matrix T1, we calculate it in the GPU memory with the least square
method. To maximize the number of samples used while avoiding out-of-GPU-memory errors, we
adopt the BFloat32 data type. We perform the compression layer by layer. For each layer, we use
Torch hooks to obtain intermediate activations, perform the least square method and release the
memory after computation. The merging process traverses the layers from back to front because
merging the later layers does not affect the activations of the earlier layers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0 500 1000 1500 2000 2500
Step

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

IF
Ev

al
 S

co
re

Figure 5: Evaluation on the IFEval benchmark.

E EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

E.1 MODEL CONFIGURATIONS

In Table 6, we list their parameter size, the number of layers, the number of routed experts, the
number of activated routed experts per token and whether they apply the shared experts architecture.

Table 6: Configurations for three used models in the evaluations.

Model Size Layers Experts Activated Experts Shared Experts
Qwen3-30B-A3B 14B 48 128 8 No

Qwen1.5-MoE-A2.7B 14B 24 60 4 Yes
DeepSeekMoE 16B 28 64 6 Yes

E.2 HYPER-PARAMETER CONFIGURATIONS

We describe the hyper parameters in the comparative experiments. For the MergeMoE, when com-
puting the compression matrix T1 with the least square method, we conduct the computation in the
GPU memory, and therefore the number of input samples used in the merging algorithm is limited.
Besides, lengths of texts in different datasets may change, and therefore the batch size is also not
fixed. In the comparative experiments we try to use large batch size for each dataset. We will ensure
that, the batch size is the same for all merging algorithms applied to the same model and dataset
combination.

Comparative experiments on the Qwen3 model. For all merging algorithms, we merges the
layers 28 to 47, reducing the number of experts in each layers from 128 to 64. For the number of
input samples, we use 16 for ARC chanllenge, HellaSwag, PIQA, SQuAD, and 40 for the rest tasks.

Comparative experiments on the Qwen1.5 model. For all merging algorithms, we merges the
layers 10 to 23, reducing the number of experts in each layers from 60 to 30. For the number of
input samples, we use 32 for PIQA and SQuAD, and 64 for the rest tasks.

Comparative experiments on the DeepSeekMoE model. For all merging algorithms, we merges
the layers 16 to 27, reducing the number of experts in each layers from 64 to 28. For the number
of input samples, we use 128 for WinoGrande and MRPC, 64 for ARC easy, ARC challenge and
Hellaswag, and 40 for the rest tasks.

E.3 EVALUATION ON IFEVAL

We further evaluate our algorithm on the IFEval benchmark. The evaluation is conducted on the
Qwen3-30B-A3B, and we use the same compression configuration as in Appendix E.2, which re-
duces the number of model parameters from 30B to 25B. We additionally incorporat ShareGPT
for knowledge distillation, aiming to explore whether instruction-following ability could be further

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

enhanced. As shown in Figure 5, without any distillation, the compressed model achieves a score
of 0.8153. With knowledge distillation, its performance is further boosted to around 0.85. This
demonstrates two key findings: our merging algorithm yields solid results even in its compressed
form, and knowledge distillation can serve as an effective means to further enhance performance on
generative tasks.

16

	Introduction
	Related Works
	Background and Theoretical Insights
	Preliminary
	Insights for Expert Merging
	M-SMoE under Our Output-Merging View

	Methodology
	Evaluation
	Setup
	Performance of MergeMoE
	Extra Experiments

	Conclusion
	Limitation
	LLM Usage Statement
	Theoretical Analysis of the Merging Weights
	Implementation Details
	Experimental Details and Additional Experiments
	Model Configurations
	Hyper-Parameter Configurations
	Evaluation on IFEval

