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Abstract001

Large language models (LLMs) can transform002
education, but their optimization for direct003
question-answering often undermines effective004
pedagogy which requires strategically with-005
holding answers. To mitigate this, we pro-006
pose an online reinforcement learning (RL)-007
based alignment framework that can quickly008
adapt LLMs into effective tutors using simu-009
lated student-tutor interactions by emphasiz-010
ing pedagogical quality and guided problem-011
solving over simply giving away answers. We012
use our method to train a 7B parameter tu-013
tor model without human annotations which014
reaches similar performance to larger propri-015
etary models like LearnLM. We introduce a016
controllable reward weighting to balance peda-017
gogical support and student solving accuracy,018
allowing us to trace the Pareto frontier between019
these two objectives. Our models better pre-020
serve reasoning capabilities than single-turn021
SFT baselines and can optionally enhance in-022
terpretability through thinking tags that expose023
the model’s instructional planning. Code and024
models will be released publicly.1025

1 Introduction026

Large Language Models (LLMs) hold significant027

promise in education, particularly as personalized028

tutors capable of guiding students individually029

through problems. Recent advances have demon-030

strated remarkable LLM performance in math and031

science (Chervonyi et al., 2025; Saab et al., 2024).032

However, deploying LLMs effectively as educa-033

tional tutors involves more than excelling on bench-034

marks (Tack and Piech, 2022; Gupta et al., 2025).035

To be truly effective, a tutor must facilitate learn-036

ing by guiding students toward independently con-037

structing correct solutions rather than simply re-038

vealing the answers. We refer to this shift from039

assistant to tutor as pedagogical alignment.040

1https://anonymous.4open.science/r/PedagogicalRL
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Figure 1: LLM tutoring forms a multi-objective scenario
in which LLM tutors should increase the student’s solve
rate (y-axis) while minimizing solution leakage (x-axis).
Here, the ∆ solve rate measures how often a student
can solve a problem before and after the dialog with
a tutor and leaked solutions measures how often the
tutor tells the solution to the student. Our RL-trained
Qwen-2.5-7B models with varying penalty λ are on the
Pareto-front and match the performance of specialized
closed-source models when tutoring on Big-Math.

Achieving robust pedagogical alignment remains 041

an open challenge (Macina et al., 2025; Maurya 042

et al., 2025). Approaches that rely on supervised 043

fine-tuning (SFT) (Daheim et al., 2024; Kwon et al., 044

2024) can suffer from generalization issues while 045

existing RL-based techniques typically depend on 046

costly, and often proprietary, preference annota- 047

tions (Team et al., 2024) or require a much larger 048

model as a source of training data of tutor re- 049

sponses (Sonkar et al., 2024; Scarlatos et al., 2025). 050

Due to these limitations, these prior works have 051

largely focused on single-turn feedback, which fails 052

to capture the multi-turn dynamics that are essential 053

for effective tutoring. 054
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This step 
looks good.

We can continue.

Just one more step. 
I will encourage 

the student.

The correct answer 
should be 4.

  I got the answer x = 6

My first step: 5x-3-2x=9

Walk me through your steps.

      Good! What's next?

We can add 3:  3x = 12

           Almost there

Thus the answer is: x = 4

Student

Pedagogical
Judges

Post-dialog student solve rate = 

Optimize

Reward

Reward
Function

Tutor

Answer Leakage
Helpfulness

5x - 3 - 2x = 9
3x = 12
x = 4

5x - 3 - 2x = 9
3x = 12
x = 4

5x - 3 - 2x = 9
3x = 12
x = 4

5x - 3 - 2x = 9
3x = 12
x = 4

Problem: Solve 5x−3=2x+9

Tutor model
(trained)

8 full dialog rollouts

Student Model
(not updated)

Now given our dialog provide a
step by step solution

Pre-dialog student solve rate = 

❄

....

..... .....

 improvement

Figure 2: Workflow of our RL framework. First, we perform multiple complete student-tutor conversation
simulations. After each conversation ends, the reward is computed: 1) post-dialog student solve rate (success)
conditioned on the dialog, and 2) the pedagogical quality of the tutor guidance throughout the conversation. This
setup uses data from the current tutor model (on-policy) and does not use offline static dialog data (online).

To address these gaps, we propose a multi-turn055

reinforcement learning (RL) method that enables056

the model to learn directly from its own dialogs057

with a student to find optimal teaching strategies.058

Grounded in mastery learning and active teaching059

principles (Chi and Wylie, 2014; Freeman et al.,060

2014), our system simulates multi-turn interactions061

on challenging problems from Big-Math (Albalak062

et al., 2025), with the tutor LLM using Socratic063

questioning (Shridhar et al., 2022) and targeted064

hints instead of handing out solutions. We design065

reward functions that mirror authentic long-term066

learning outcomes, namely, how often a student067

can solve a problem after a dialog with the tutor068

and how much the tutor follows sound pedagogical069

principles throughout the full conversation. Our070

key contributions are the following:071

• Cost-efficient training via synthetic stu-072

dent–tutor interactions: Our online RL073

method replaces the need for expensive074

human-annotated data with a synthetic data075

pipeline, enabling a 7B Tutor Model to almost 076

match the performance of LearnLM. 077

• Controllable pedagogy–accuracy trade-off: 078

Our method enables explicit control over the 079

balance between pedagogical support and stu- 080

dent answer correctness by adjusting a penalty 081

weight to navigate a Pareto frontier. 082

• Preservation of reasoning capabilities: Our 083

approach maintains performance across stan- 084

dard reasoning benchmarks, unlike prior meth- 085

ods such as SocraticLM (Liu et al., 2024). 086

Evaluations on MMLU, GSM8K, and MATH 087

demonstrate that pedagogical alignment does 088

not come at the cost of reasoning ability. 089

2 Related Work 090

2.1 LLMs for Dialog Tutoring 091

While effective human tutors not only provide an- 092

swers but more importantly scaffold the learning of 093

students, LLMs are predominantly trained for pro- 094
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viding answers which limits their tutoring capabili-095

ties (Tack and Piech, 2022; Macina et al., 2023b).096

Hence, various approaches have been proposed to097

improve their pedagogical skills.098

Arguably the simplest is prompt engineering,099

where pedagogical criteria are encoded in the100

prompt, for example, for asking questions (Sonkar101

et al., 2023) or detecting mistakes (Wang et al.,102

2024) but this has been shown to be tedious and103

sensitive to changes (Jurenka et al., 2024).104

A more robust alternative is to use gradient-105

based updating, for example, SFT on teacher-106

student dialogs. However, this is challenging be-107

cause only a few high-quality tutoring datasets108

exist publicly, for example, MathDial which is109

semi-synthetically created by pairing LLM stu-110

dents with real teachers for solving math word111

problems (Macina et al., 2023a). Hence, many112

works resort to synthetic data. For example, So-113

craticLM (Liu et al., 2024) is trained on 35k math114

tutoring dialogs created using a multi-agent setting115

and TutorChat (Chevalier et al., 2024) is trained116

using 80k synthetic teacher–student conversations117

grounded in textbooks. Larger scale approaches in118

industry, such as, LearnLM (Jurenka et al., 2024)119

use a mixture of synthetic and human-collected120

data but this requires substantial resources.121

Finally, recent works use Reinforcement Learn-122

ing from Human Feedback (RLHF) (Ouyang et al.,123

2022), for example, to improve next tutor dialog act124

prediction (Sonkar et al., 2024) or to improve math125

tutors by turn-level rewards using GPT-4-generated126

preference data (Scarlatos et al., 2025). However, it127

is unclear how single-turn synthetic data translates128

to tutoring more complex multi-turn conversations.129

Prior works treat tutoring as an offline off-policy130

problem by relying on large-scale synthetic or pro-131

prietary data which introduces exposure bias (Ross132

and Bagnell, 2010; Ranzato et al., 2016) as the tu-133

tor does not learn from its own interactions during134

training. In contrast, our work adopts an online135

on-policy setup where the model is trained on its136

own interactions throughout training.137

2.2 Dialog as RL Task & Verifiable Rewards138

Previous work has commonly framed educational139

dialog as a next teacher utterance generation task,140

where the teacher’s last turn serves as a ground141

truth response and the dialog history serves as con-142

text (Macina et al., 2023a). However, a dialog is in-143

herently a multi-turn interaction towards a goal (e.g.144

student learns to solve a problem) and single-turn145

methods limit the model’s ability to plan across 146

multiple turns to achieve longer-term goals. Ef- 147

fective tutoring, however, is a sequential, adaptive 148

and goal-directed process with the aim of helping 149

a student not only solve a current problem, but 150

also learn to solve similar problems. To address 151

this problem, formulating dialog as an RL problem 152

might be helpful which has been explored outside 153

of tutoring recently (Li et al., 2017; Shani et al., 154

2024; Xiong et al., 2025; Li et al., 2025). 155

In general, RL learns optimal actions by col- 156

lecting a numerical reward from the environment 157

which provides a natural framework for aligning 158

LLM behavior with pedagogical goals by assign- 159

ing rewards to complete conversations rather than 160

to isolated turns. In LLMs, RL has been success- 161

fully used to align with human feedback (Ouyang 162

et al., 2022) and to improve reasoning via verifiable 163

rewards (Shao et al., 2024; Lambert et al., 2024). 164

Standard on-policy algorithms like Proximal Pol- 165

icy Optimization (PPO) (Schulman et al., 2017) 166

have been crucial for the success of human- 167

preference alignment in GPT models. Direct Pref- 168

erence Optimization (DPO) (Rafailov et al., 2023) 169

has emerged as a simpler alternative without the re- 170

quirement of a reward model that allows fine-tuning 171

on offline pairwise preference data. Extensions of 172

DPO to multi-turn settings, such as multi-turn DPO 173

(MDPO), commonly mask user turns to optimize 174

only over assistant responses (Xiong et al., 2025). 175

Recent algorithms such as MTPO (Shani et al., 176

2024) and REFUEL (Gao et al., 2025) compare 177

pairs of entire conversations rollouts to improve 178

over DPO. Access to verifiable rewards has been 179

crucial for scaling RL training for LLMs, for ex- 180

ample, by comparing to a reference solution (Shao 181

et al., 2024; DeepSeek-AI et al., 2025) or execut- 182

ing programs (Lambert et al., 2024). While these 183

methods have been used to improve reasoning, ped- 184

agogical criteria have largely been neglected. 185

Our work builds upon a line of research formu- 186

lating a dialog as an RL problem in a synthetic 187

tutor-student environment. By integrating verifi- 188

able correctness rewards with pedagogical rubrics, 189

we explore the control of the trade-off between 190

instruction support and answer accuracy. 191

3 Pedagogical Principles 192

Effective teaching is not only about providing an- 193

swers but rather about fostering student learning 194

through scaffolding guidance. Here, scaffolding 195
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means actively engaging students in problem solv-196

ing (Chi and Wylie, 2014; Freeman et al., 2014)197

using questions, hints, and nudges.198

Avoiding Answer Leakage: A key element is to199

actively engage students in problem solving instead200

of letting them passively consume correct answer,201

which does not lead to learning. Therefore, we202

discourage the tutor from presenting complete solu-203

tions. Instead, they should guide students through204

Socratic questioning, hints, or targeted feedback.205

This mirrors constraints from prior related work,206

such as the role of a dean persona (Liu et al., 2024).207

Helpfulness: The tutor should guide the student208

with constructive and contextual appropriate sup-209

port in the right teacher tone. The tutor violates this210

principle if they provide full answers or dominate211

the conversation and it is similar to targetedness in212

prior work (Daheim et al., 2024). Moreover, tutors213

should be responsive and encouraging, reflecting214

the tone of real teachers (Tack and Piech, 2022).215

4 Dialog Tutoring as Multi-Turn RL216

We consider multi-turn conversations (u1, . . . ,uT )217

made up of a sequence of utterances ut ∈ V∗ taken218

by either the student or a teacher, both simulated by219

an LLM. In our training runs, it is decided by ran-220

dom choice who starts the conversation, as detailed221

in Section 5.1. The goal of the student is to solve222

a problem P ∈ V∗ which has a unique known nu-223

merical solution s ∈ R. The objective of the LLM224

tutor is to guide the student toward the solution225

s by generating a new ut given the context u<t.226

The conversation ends when the tutor considers it227

finished or after a fixed number of turns. We use228

autoregressive LLM-based tutors, parameterized229

by neural network weights θ, to generate outputs230

by sampling from the model distribution231

pθ(ut | u<t) =

|ut|∏
n=1

pθ([ut]n | [ut]<n,u<t),232

where [ut]n is the n-th token of the output sequence233

ut. In Section 3 we define the pedagogical princi-234

ples that the generated utterances should fulfill.235

Learning θ can then also be framed as an RL236

problem under the lens of Markov Decision Pro-237

cesses (MDP) for which we re-define the previously238

introduced quantities in common notation. To be239

precise, for a given position t in the dialog, we de-240

fine the state to be st := u<t and the action to be241

at := ut, i.e. the current state in the conversation242

is fully captured by the sequence of previous utter- 243

ances and the action is the next utterance. The tran- 244

sition dynamics are defined by sequentially append- 245

ing each new utterance (or action) at to the existing 246

conversation history (or state st) to form the new 247

state st+1. If at is a tutor utterance, it is sampled 248

from the tutor’s policy; if it is a student utterance, it 249

is sampled from a fixed student LLM conditioned 250

on st. Since the student model is stochastic, the 251

transition dynamics are non-determinsitic from the 252

tutor’s perspective, different from standard RLHF 253

which often assumes deterministic environments. 254

Then, the goal is to learn the tutor policy πθ := 255

pθ such that sampled responses 256

at ∼ πθ(· | st) (1) 257

fulfill the desiderata in Section 3. We achieve this 258

by defining rewards r(aT , sT ) that are assigned 259

at the end of a conversation to full sequences aT 260

based on the context sT . That is, we define rewards 261

at the level of the full conversation rather than as- 262

signing them to individual turns. Furthermore, we 263

also sample at directly from the current policy πθ 264

at the given training iteration. The on-policy ap- 265

proach means we update the current policy πθ and 266

subsequent dialogs are generated from the newly 267

updated model. This is different from DPO-based 268

approaches, which use static data. Ther, the model 269

is always conditioned on context from an older 270

checkpoint. Instead, we use online RL and avoid 271

such context drift by conditioning on context gen- 272

erated with the current model checkpoint. 273

4.1 Rewarding LLM Tutor Pedagogy 274

Our reward design follows the pedagogical princi- 275

ples laid out in Section 3. This means that we aim 276

to fulfill two goals: the student should be able to 277

successfully solve P after the dialog and the ac- 278

tions at generated using the policy πθ should have 279

high pedagogical quality and, for example, not just 280

solve the problem for a student. 281

We judge solution correctness by sampling mul- 282

tiple final answers ŝ(1), ŝ(2), . . . , ŝ(K) from the stu- 283

dent model conditioned on aT and sT and compute 284

an empirical expected correctness across these so- 285

lutions called post-dialog solve rate: 286

rsol(aT | sT ) =
1

K

K∑
k=1

1[ŝ(k) = s], (2) 287

where s is the ground-truth solution, as a verifiable 288

outcome reward (DeepSeek-AI et al., 2025). 289
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We judge pedagogical quality (defined in Sec-290

tion 3) using LLM judges J1, J2, . . . , JM to pre-291

vent overfitting on one specific judge model (Coste292

et al., 2024). We prompt the judge models indepen-293

dently to evaluate the full conversation and then294

only consider a conversation accepted if all judges295

accept it by measuring:296

rped(aT | sT ) =
M∏

m=1

1[Jm(aT , sT ) = accept].

(3)297

Altogether, we combine these rewards as:298

r(aT | sT ) = rsol(aT | sT )299

+ (rped(aT | sT )− 1) · λ (4)300

given a penalty λ ≥ 0 which is a hyperparame-301

ter. The penalty gets subtracted only if any of the302

pedagogical judges (rped = 0) do not accept the303

conversation.304

Intuitively, this provides a way of trading off305

solution correctness indicated by rsol against ped-306

agogy measured by rped. If we only care about307

solution correctness, we can choose λ = 0 but308

would expect low pedagogy and many answers309

given away by the tutor. On the other hand, if we310

send λ → ∞, only pedagogy matters which might311

mean that the student solves fewer problems but312

actually learns how to solve them. In between, var-313

ious trade-offs can be explored. Finally, we also314

try a version called hard – if the conversation is315

not accepted by at least one judge (rped = 0), the316

overall reward is set to a fixed penalty −λ to reflect317

pedagogical acceptance as a hard prerequisite.318

5 Experiments319

5.1 Details on the RL Environment320

Our simulated environment is designed to mimic321

multi-turn interactions between a student and a tu-322

tor. Each episode is seeded with the problem P that323

the student is trying to solve. An overview of the324

environment and an example of a conversation are325

in Figure 2. The environment supports two types326

of common educational interactions which differ in327

who starts the conversation. One option is to let the328

LLM student provide an attempted solution which329

may be correct, incorrect, or partially correct. Then,330

the tutor continues the conversation based on the331

initial attempted solution. Another scenario is that332

the tutor initiates the dialog and elicits a solution333

from the student LLM. We uniformly sample from334

the two scenarios in our experiments.335

Furthermore, to enable the tutor model to plan 336

and generate more targeted responses, we adopt 337

thinking tags (OpenAI, 2024; DeepSeek-AI et al., 338

2025) where the tutor can plan the response. This 339

content is hidden to the student LLM. 340

5.2 Dataset 341

We evaluate our framework on BigMath (Albalak 342

et al., 2025) which contains multi-step math prob- 343

lems. The dataset is annotated with the solve rate of 344

Llama-3.1-8B-Instruct with chain-of-thought 345

prompting (Wei et al., 2022). We only use prob- 346

lems with a single numerical answer and medium- 347

to-high difficulty, i.e., a solve rate between 1% and 348

60% out of 64 samples. A distribution over prob- 349

lem difficulties is in Figure 4. We partition this 350

dataset into 10,000 training samples and 500 test 351

samples. Dataset statistics are in Appendix B. To 352

evaluate our models, we adopt two test beds: 353

Held-out BigMath (in-domain): We first report re- 354

sults on the 500 held-out BigMath problems. This 355

mirrors the training setting and verifies whether our 356

RL pipeline optimizes the intended conversational 357

rewards. Our main metrics are the ∆ Solve rate 358

(%) and Leaked Solution (%). ∆ Solve rate (%) 359

measures improvement in the student’s problem- 360

solving success after dialog. It is the difference be- 361

tween pre-dialog solve rate measured using chain- 362

of-thought accuracy and the post-dialog solve rate, 363

with both computed in comparison to the ground 364

truth solution s. Leaked Solution (%) is a portion 365

of conversations where the tutor gives away the 366

solution to the student assessed by an LLM judge 367

(prompt in Figure 9). 368

MathTutorBench (out-of-domain): We addition- 369

ally evaluate on the independent MathTutorBench 370

benchmark (Macina et al., 2025), which provides 371

several automatic metrics for tutor quality. We 372

mainly focus on those metrics that rely on the 373

benchmark’s learned Pedagogical Reward Model 374

(Ped-RM), as they directly reflect the quality of scaf- 375

folding and other pedagogical best practices. Note 376

that the Ped-RM score is only used for evaluation 377

across this paper and not as part of the reward. 378

Finally, to ensure that tutor specialization does 379

not degrade reasoning ability, we also report perfor- 380

mance on the general-purpose benchmarks MMLU 381

(Hendrycks et al., 2021), GSM8K (Cobbe et al., 382

2021), and MATH500 (Lightman et al., 2024). 383
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Model ∆ Solve rate (%) ↑ Leak Solution (%) ↓ Ped-RM micro/macro ↑

Our Models

Qwen2.5-7B-RL–λ=0.0 36.2 89.5 -2.8/-3.2
Qwen2.5-7B-RL–λ=0.5 30.9 25.1 2.7/1.5
Qwen2.5-7B-RL–λ=0.75 25.3 10.6 3.9/3.2
Qwen2.5-7B-RL–λ=1.0 24.7 18.4 3.2/2.2
Qwen2.5-7B-RL–λ=1.25 29.1 15.1 3.6/3.1
Qwen2.5-7B-RL–λ=1.5 21.2 5.4 4.4/4.0

+ think 17.0 7.4 4.9/4.6
Qwen2.5-7B-RL-hard–λ=1.0 12.6 5.3 4.2/3.4

+ think 20.5 6.9 4.3/4.9
– rsol 7.6 3.4 3.9/3.1

Baselines – Specialized Tutoring Models

SocraticLM 15.9 40.4 1.7/1.7
Qwen2.5-7B-SFT 8.9 36.0 -0.3/-0.7
Qwen2.5-7B-MDPO 16.4 35.6 0.2/-0.3
LearnLM 1.5 Pro Experimental 1.5 2.6 5.9/5.3
LearnLM 2.0 Flash Experimental 4.3 0.9 6.8/6.4

Open-Weights Models

Qwen2.5-3B-Instruct 5.2 34.6 -1.6/-1.7
Qwen2.5-7B-Instruct 11.3 29.3 -0.2/-0.5
Qwen2.5-14B-Instruct 29.3 41.9 -0.6/-1.2
Qwen2.5-72B-Instruct 38.7 61.0 1.8/-0.4
DeepSeek V3-0324 39.3 46.6 -1.5/-0.8

Closed-Source Models

GPT-4o-2024-11-20 33.1 35.2 1.5/-0.3

Table 1: Main results based on in-domain test set. ∆ Solve rate refers to the difference between pre- and post-dialog
student solve rate. An independent model (Gemma3-27B) judges the leakage solution. The Per-RM score is only
used for evaluation. Macro refers to averaging per conversation while micro uses averaging of all individual scores.

5.3 Implementation Details384

We use Group Relative Policy Optimization385

(GRPO) (Shao et al., 2024) for model optimiza-386

tion. For each problem, we simulate 8 complete387

student–tutor dialogs (rollouts). A single reward388

score reflecting student success and pedagogical389

quality of the entire dialog is assigned at the end of390

each simulation. We follow the standard GRPO to391

normalize each dialog reward within each group to392

obtain dialog-level advantages. The advantages are393

computed by comparing the reward of a sampled394

dialog with others in its group. Then dialog-level395

advantages are propagated to the token-level by396

adjusting the likelihood of generating each token.397

We mask the student turns to only optimize over tu-398

tor responses. We treat all tutor utterances equally399

and apply no discounting factor. The maximum400

number of total turns is set to 16. Moreover, we401

use a reward for template following based on the402

success of DeepSeek-AI et al. (2025), see details403

in Appendix C. To compute rped, we use two judge404

prompts: Answer Leakage in Figure 9 and Helpful-405

ness in Figure 10, and sample twice from each.406

5.4 Models 407

We use Qwen2.5-7B-Instruct to initialize the 408

tutor model and Llama-3.1-8B-Instruct as 409

the Student model, following the setup in Big- 410

Math (Albalak et al., 2025). As a judge, 411

Qwen2.5-14B-Instruct model is used. To avoid 412

overoptimizing on the judge model used during 413

training, in the held-out test set, a judge from an- 414

other model family is used, namely, Gemma3-27B. 415

We compare to several tutor baselines: 416

Qwen2.5-7B-Instruct without any fine-tuning, 417

SocraticLM (Liu et al., 2024) as a special- 418

ized open-source tutoring model and LearnLM 419

as a specialized close-source tutoring model, 420

GPT-4o-2024-11-20 prompted to behave like a 421

tutor, an SFT model which uses only accepted 422

conversations by the judges for fine-tuning, similar 423

to Macina et al. (2023a), as well as, MDPO (Xiong 424

et al., 2025) which is a multi-turn extension of 425

DPO and is trained on all pairs of chosen and 426

rejected conversations scored by judges, similar 427

to Sonkar et al. (2023); Scarlatos et al. (2025). 428
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Figure 3: Performance of the RL tuned Qwen2.5-7B-Instruct across different λ values: (a) student solve rate
improvement, (b) leak solution rate, (c) pedagogical reward (micro).

Model MMLU (5-shot) (%) GSM8K (4-shot) (%) MATH500 (0-shot) (%)

Qwen2.5-Math-7B-Instruct 67.2 89.3 81.2
SocraticLM 65.1 (–2.1) 84.4 (–4.9) 80.4 (–0.8)

Qwen2.5-7B-Instruct 77.9 86.8 75.4
Qwen2.5-7B-RL-hard–λ=1.0 77.3 (-0.6) 86.1 (-0.7) 73.6 (-1.8)

+ think 77.1 (–0.8) 85.3 (–1.5) 76.8 (+1.4)
Qwen2.5-7B-SFT 79.3 (+1.4) 79.5 (–7.5) 66.0 (–9.4)
Qwen2.5-7B-MDPO 78.0 (+0.1) 87.0 (+0.2) 76.4 (+1.0)

Table 2: Performance comparison of tutor models on MMLU, GSM8K, and MATH500 benchmarks, showing the
impact of different tutor alignment strategies. SocraticLM is finetuned from Qwen2.5-Math-7B-Instruct and exhibits
performance degradation relative to the original model. In contrast, our RL models finetuned from Qwen2.5-7B-
Instruct demonstrate reduced degradation. Pedagogical-SFT, which applies supervised fine-tuning on data generated
by our tutor pipeline, and still results in noticeable degradation, highlighting the benefits of RL-based alignment.

6 Results429

6.1 In-Domain Comparison430

LLMs prioritize answering over teaching Ta-431

ble 1 presents results across model categories on an432

in-domain test set. Overall, we observe a trade-off433

between student success measured by ∆ Solve rate,434

solution leakage and pedagogical quality, measured435

by Ped-RM. Qwen2.5-72B-Instruct and DeepSeek436

V3 achieve the highest gains in student solve rate437

but also exhibit high solution leakage. Qualitative438

example reveals that models tend to solve the prob-439

lem directly for the student, see Figure 14. This440

supports our hypothesis that, even with engineered441

prompts, standard LLMs are inherently optimized442

for answering rather than teaching.443

Tutoring models show improved pedagogy444

Specialized tutoring models in Table 1, such as,445

SocraticLM, SFT, and MDPO demonstrate a more446

balanced behavior as shown by reduced solu-447

tion leakage and improved pedagogical scores.448

However, they often also have lower student suc-449

cess rates, similar to unfinetuned Qwen2.5-7B-450

Instruct. The specialized, proprietary tutoring451

model LearnLM2.0 achieves the highest pedagogi-452

cal scores while maintaining minimal leakage, indi- 453

cating strong adherence to pedagogical principles. 454

However, its low ∆ solve rate suggests that it might 455

overpenalize leaking which limits its effectiveness 456

when students require more direct guidance. 457

Student success and pedagogy are a trade-off 458

Our RL framework enables dynamic control over 459

this trade-off. As shown in Figure 3, increasing the 460

penalty λ reduces solution leakage and improves 461

pedagogical reward, at the cost of student success. 462

Figure 1 shows how various settings of our frame- 463

work trace a Pareto frontier between student learn- 464

ing gains and pedagogy. At λ = 0.75, for instance, 465

our Qwen2.5-7B-RL model achieves a balanced 466

performance across all three metrics. When λ = 0, 467

the model maximizes student success but does so 468

by leaking answers and scoring negatively on peda- 469

gogy. Qualitative comparison in Figure 11 and Fig- 470

ure 12 further reveals that low-pedagogical-penalty 471

models often exploit shortcuts, such as directly 472

stating solutions or using answer fragments (e.g., 473

“ 2+3=? “), even if prompted not to do so. This 474

highlights the importance of our framework when 475

optimizing LLMs as tutors. 476
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Math Expertise Student Understanding Pedagogy

Problem
solving

Socratic
questioning

Solution
correctness

Mistake
location

Mistake
correction

Teacher response generation

scaff. ped.IF
scaff.
[hard]

ped.IF
[hard]

accuracy bleu F1 micro F1 accuracy win rate over human teacher

Qwen2.5-7B-Instruct 0.87 0.23 0.63 0.39 0.04 0.37 0.60 0.45 0.56
Qwen2.5-7B-SFT 0.77 0.24 0.27 0.45 0.10 0.64 0.58 0.57 0.59
Qwen2.5-7B-MDPO 0.86 0.23 0.62 0.39 0.03 0.37 0.60 0.47 0.56

Qwen2.5-7B-RL–λ=0.0 0.86 0.24 0.65 0.36 0.07 0.39 0.62 0.48 0.60
Qwen2.5-7B-RL–λ=0.75 0.79 0.23 0.64 0.36 0.04 0.48 0.70 0.54 0.65
Qwen2.5-7B-RL–λ=1.25 0.83 0.23 0.67 0.35 0.05 0.57 0.72 0.61 0.69

Table 3: Results on the independent MathTutorBench benchmark with nine tasks. Scaff. and ped. IF are Scaffolding
and Pedagogical Instruction Following tasks. [Hard] refers to the data split of the benchmark.

Large tutoring LLMs can be matched without477

human annotations Our online RL framing of478

the multi-turn dialog tutoring task trains tutoring479

models through interaction with a synthetic student480

without the need for costly human annotation. It en-481

ables scalable, multi-turn optimization with control482

over pedagogical behaviour via verifiable reward483

and LLM judge constraints. Figure 1 shows that de-484

spite using only a 7B model, our RL-tuned models485

(e.g. with λ = 1.5 or −rsol) outperform specialized486

closed-source LearnLM models on student solve487

rates, while nearly matching the solution leakage.488

Compared to baselines using fine-tuning via SFT489

or preference-optimization MDPO, our approach490

(using λ > 0) achieves lower solution leakage and491

better trade-off between tutoring efficacy and stu-492

dent independence. This highlights the value of493

modeling tutoring as a multi-turn, interactive pro-494

cess rather than using static offline responses.495

Thinking tags allow human observability Ta-496

ble 1 shows that the ablation with thinking tags497

(+think) leads to slightly improved performance as498

the corresponding model without it. We observe499

that thinking tags allow the model to solve the prob-500

lem (Figure 13) or the model learns to plan how501

to explain student mistakes (Figure 15), similar to502

what has been shown to improve model responses503

in previous work (Daheim et al., 2024).504

6.2 Comparison on the Out-of-Domain Data505

No degradation of solving capabilities Unlike506

prior approaches such as SocraticLM (Liu et al.,507

2024), which sacrifice base model performance in508

pursuit of pedagogical alignment, our method pre-509

serves reasoning abilities across standard bench-510

marks. As shown in Table 2, Qwen2.5-7B-RL511

matches or slightly exceeds the performance of 512

its base model (Qwen2.5-7B-Instruct). In contrast, 513

SocraticLM, which is fine-tuned from the Math 514

version of Qwen, degrades performance. Similarly, 515

supervised fine-tuning (SFT) results in decrease 516

on math-heavy benchmarks (–7.5% on GSM8K, 517

–9.4% on MATH500). These findings demonstrate 518

that RL-based alignment better preserves core rea- 519

soning skills, avoiding the trade-off between peda- 520

gogical behaviour and task competence. 521

Out-of-domain tuturing benchmark Table 3 522

shows evaluation of our models on the out-of- 523

domain MathTutorBench benchmark (Macina et al., 524

2025), which assesses tutoring ability on nine tasks 525

and uses the Ped-RM to find win-rate over human 526

teachers. Our RL-aligned 7B models match or ex- 527

ceed the pedagogical quality of baseline models. 528

However, SFT remains a strong baseline for Mis- 529

take location and Mistake correction tasks, high- 530

lighting the need to carefully combine SFT and RL 531

to build robust tutoring models in the future. 532

7 Conclusion 533

In this work, we propose methods to quickly align 534

LLMs for pedagogy using reinforcement learning. 535

Our method does not require human annotations 536

beyond initial problem statements and train on the 537

models’ own context which reduces train and test 538

mismatch. Rewards allow balancing student solv- 539

ing accuracy and pedagogy, which requires strate- 540

gically withholding information while accuracy 541

could trivially be increased by the tutor leaking 542

the solution. We find that smaller models trained 543

with this approach can match large, proprietary 544

models in various tutoring metrics. 545
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Limitations546

Our online RL approach introduces additional com-547

plexity compared to simpler SFT or single-turn548

pairwise preferences such as DPO. In particular,549

as known from other RL tasks, the use of model550

rollouts to simulate interactions with a student in-551

troduce variance and can make training potentially552

unstable or sample-inefficient. Careful implemen-553

tation is required to maintain stability.554

Our current reward focuses on conversation-level555

rewards, for example enabling to focus on longer-556

term post-dialog student success. However, truly557

learning a topic is measured with a delayed post-558

test on student transfer, i.e. the ability to transfer559

the learned topic over time. Future work could560

focus on such more precise but very delayed signal.561

All experiments focus on math-based tutoring562

tasks. While math is a valuable testbed with enough563

existing datasets, it represents only one STEM sub-564

ject.565

Our approach trains tutoring models using inter-566

actions with a single student model only, which567

may not reflect the diversity of real learners. In-568

corporating additional student models and different569

student personas in a prompt could lead to more570

realistic settings better representing a diversity of571

real learners and their misconceptions.572

All student responses and reward signals in our573

framework is generated synthetically by sampling574

from LLMs. While this enables scalable and cost-575

efficient training, it has not been validated with576

real students, which future works can explore, for577

example the impact of a trade-off between student578

success and pedagogy.579

Ethics Statement580

Intended Usage We will release the code under581

CC-BY-4.0 license. We use the BigMath, GSM8k,582

and MATH500 datasets released under the MIT583

license, the MathTutorBench benchmark released584

under CC-BY-4.0, and the MMLU with the Apache585

License 2.0. We use all of the datasets within their586

intended usage.587

Potential Misuse The overall goal of this work588

is to support the community in improving LLMs589

at tutoring capabilities and align them with good590

pedagogical practice based on learning sciences.591

However, there are potential risks related to the592

reward function and reward hacking. If the reward593

function is redefined or an inappropriate penalty is594

used, the model might learn a suboptimal tutoring 595

behaviour. Similarly, if the reward function is un- 596

derspecified, the risk of model hacking the reward 597

and finding shortcuts is present. We mitigate this 598

by including several datasets and evaluation setups. 599

Moreover, we share the code, hyperparameters, and 600

the setup openly. However, before deploying the 601

model with real students we emphasize caution, 602

adding safeguards and proper user testing. 603
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A Implementation Details884

A.1 Compute Resources885

All GRPO runs were conducted using 4×A100886

80GB GPUs over approximately 48 hours per run.887

Each run covered roughly 20% of the training data888

and involved around 300 policy updates. At an889

estimated cost of $2 per GPU hour, each full RL890

training run costs approximately $400.891

A.2 Configuration892

We adapt the standard GRPOTrainer from the TRL893

library (von Werra et al., 2020) to support our894

multi-agent tutor-student interaction setting. For895

each problem instance P , we randomly select896

one of the two supported tutoring scenarios in897

our environment—either student-initiated or tutor-898

initiated—and apply it uniformly across all rollouts899

in the corresponding batch. To compute the student900

solve rate, we set K = 8. All dialog rollouts start901

from an empty dialog history and only problem P902

as input.903

The key hyperparameters are:904

• Learning rate: 5× 10−7905

• KL coefficient: β = 0.001906

• Gradient steps per batch: µ = 2907

• Batch size: 16 problems per batch, each with908

8 rollouts909

• Sampling temperature: 1.0910

We use the paged_adamw_8bit optimizer911

(Dettmers et al., 2022) to reduce memory usage.912

A.3 Baselines: SFT and MDPO913

To generate data for the MDPO and SFT baselines,914

we sample 30% of the full dataset and generate915

8 rollouts (conversations) D = (u1, . . . ,uT ) per916

problem. For MDPO, we construct within-group917

preference pairs (Dacc, Drej) such that r(Dacc) >918

r(Drej), resulting in 36k preference pairs. For SFT,919

we filter the MDPO data to keep only accepted920

responses, remove duplicates, and obtain approxi- 921

mately 14k accepted samples. 922

Training hyperparameters for baselines: 923

• SFT: batch size 16, learning rate 2 × 10−5, 924

trained for 1 epoch 925

• MDPO: batch size 32, learning rate 2× 10−7, 926

trained for 1 epoch (all settings follow the 927

original MDPO paper (Xiong et al., 2025)) 928

A.4 Inference and Quantization 929

To enable efficient tutor–student–judge simulation 930

at scale, we serve all models through vLLM li- 931

brary (Kwon et al., 2023), which enables fast 932

batched decoding with KV-caching. To reduce 933

memory footprint and inference latency we also em- 934

ploy quantization. The student model is quantized 935

using FP8, enabling fast inference while not notice- 936

ably degrading performance. The judge model is 937

quantized using 4-bit Activation-Aware Quantiza- 938

tion (AWQ) (Lin et al., 2024), significantly reduc- 939

ing compute cost. 940

B Dataset Details 941

Details of the subset of the BigMath (Albalak et al., 942

2025) we used are in Table 4. Figure 4 shows the 943

distribution of the difficulties of our dataset. On av- 944

erage our student model Llama-3.1-8B-Instruct 945

achieves an accuracy of 25% while the tutor 946

model Qwen2.5-7B-Instruct achieves 66% on 947

the dataset. 948

C Template reward 949

In addition to the primary pedagogical and 950

correctness rewards, we incorporate several 951

template-based auxiliary rewards inspired by prior 952

work (DeepSeek-AI et al., 2025). These rewards 953

encourage structured and concise tutor interactions 954

and penalize incorrect use of format tags and con- 955

versation mechanics. 956

C.1 Thinking Tag Usage Reward 957

To promote transparent and interpretable internal 958

reasoning by the tutor, we reward explicitly for- 959

matted thinking tags. Each tutor’s turn can include 960

structured reasoning enclosed within tags of the 961

format: 962

<think>...</think> 963

We compute the reward as follows: 964

rthink(aT | sT ) = c×|{ui ∈ D | ui correct tags}|
|{ui ∈ D}|

, 965
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Table 4: Composition of Training and Test datasets with Student model solve rates (pre-dialog).

Training Set Test Set

Dataset Samples Solve Rate (%) Dataset Samples Solve Rate (%)

Big_math 3360 23.56 Big_math 177 24.86
Cn_k12 3324 22.11 Cn_k12 168 22.34
Math 1264 27.40 Math 57 23.93
Aops_forum 1263 10.13 Aops_forum 56 10.07
Omnimath 374 12.57 Omnimath 22 15.41
Openmath 315 38.18 Openmath 13 36.30
Gsm8k 100 36.30 Gsm8k 7 32.14

Total 10 000 Total 500

1-10% 11-20% 21-30% 31-40% 41-50% 51-60%
Llama-3.1-8B Solve Rate (%)
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Figure 4: Distribution of problem difficulties
in our dataset(solve-rate buckets obtained with
Llama-3.1-8B-Instruct). The dataset contains
mostly hard (1-10% solve) problems. This ensures each
item requires meaningful guidance from the tutor model
rather than being trivial for our student model.

where ui are individual tutor utterances and c is a966

constant which we set to 0.5. The correct format-967

ting implies that tags are both opened and properly968

closed without structural errors.969

C.2 Penalty for Incorrect Thinking Tag970

Formatting971

To enforce the correctness of thinking tag format-972

ting and ensure structured output, we penalize the973

model for each incorrectly formatted or unclosed974

thinking tag:975

pmisuse(aT | sT ) = c× (# of wrong tags in D).976

This includes scenarios where:977

• A thinking tag is opened but not closed. 978

• A thinking tag is malformed or incorrectly 979

structured. 980

C.3 End-of-Conversation Reward 981

To encourage the tutor model to efficiently and 982

naturally conclude dialogs, we reward the explicit 983

use of the special termination tag: 984

⟨end_of_conversation⟩ 985

Only the tutor is permitted to terminate the con- 986

versation by generating this special token. The 987

reward is defined as: 988

rend(aT | sT ) =

{
0.1, if dialog is ended early

0, otherwise.
989

This incentivizes concise, purposeful interactions, 990

discouraging overly long dialogs. 991

C.4 Penalty for Exceeding Max Tokens per 992

Turn 993

We set a maximum number of tokens allowed per 994

tutor turn. If any tutor’s turn exceeds this limit 995

(thus failing to generate the EOS token within the 996

maximum length), we apply a fixed penalty: 997

plen(aT | sT ) =

{
0.5, no EOS token generated

0, otherwise.
998

This penalty ensures the tutor generates concise 999

and complete responses without truncation, pro- 1000

moting conversational coherence. 1001
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C.5 Combined Template Reward1002

The combined auxiliary reward incorporating all1003

these components is:1004

rtempl(aT | sT ) = rthink(aT | sT ) + rend(aT | sT )1005

− pmisuse(aT | sT )1006

− plen(aT | sT ).1007

D Prompts1008

Pre-dialog solution by a student is computed using1009

the prompt in Figure 5 and post-dialog solution by1010

a student using the prompt in Figure 6. Student and1011

tutor system prompts used during a conversation1012

are in Figure 7 and Figure 8. Exact prompt for judg-1013

ing the leakage of the solution by a teacher model1014

is in Figure 9 and Figure 10 shows the prompt for1015

the helpfulness of the tutor response.1016

E Example Conversations1017

Examples of the conversations from our model are1018

in Figure 11, Figure 12, Figure 13, Figure 14, and1019

Figure 15.1020
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Please reason step by step, and put your final answer within \boxed{}.
{{ problem }}

Figure 5: Prompt for pre-dialog student solution where problem is a placeholder for a math problem.

{{ conversation }}
The conversation with the teacher has ended.
It is time you create a step by step complete solution including everything.
It is essential you include the final answer in the \boxed{} format.
You will not miss any steps such that this solution is complete without the past conversation.

Figure 6: Prompt for post-dialog student solution, where conversation is a placeholder for tutor-student simulated
conversation.

You will act as a student in a conversation with a teacher in training. You will need to act as much like a student as
possible. If possible do not respond with overly long messages.
The conversation with the teacher will be about this math problem:
{{ problem }}
You may or may not know how to solve it already, let the teacher guide you to the correct understanding. You will be
tested at the end and scored thus it is best if you collaborate with the teacher as it has more experience in math than you.

Figure 7: A student system prompt used in a dialog with a teacher.

You are tasked with being a teacher and helping a student with a math problem. You must not reveal the answer to the
problem to the student at any point in time.
Your task is to guide the student to have a complete understanding of the problem. Even if the student is already able to
solve the problem, you should help them understand and improve the solution so that they get as high of a grade as
possible. If possible, do not respond with overly long responses to the student.
You can end a conversation by writing <end_of_conversation>, please try to end conversations as soon as they are
finished instead of prolonging them if not needed. But do not end them prematurely either.
Here is the math problem:
{{ problem }}

Figure 8: A teacher system prompt used during a simulated conversation.

15



You are tasked with inspecting a conversation between a student and a teacher (tutor). Your goal is to determine whether
the teacher properly guided the student to the solution or whether they revealed too much information too early, such as
directly giving away the final answer or solving key steps of the problem without involving the student.

The teacher should:
- Guide the student interactively, using questions, hints, or feedback.
- Encourage the student to reason through the problem themselves.
- Avoid solving major parts of the problem immediately or presenting large chunks of the final solution too early.
- Be allowed to confirm correct reasoning, correct mistakes, and clarify concepts gradually.
- Clarify certain parts in more detail if the student does not get it.

It is **not acceptable** for the teacher to:
- Provide the full answer upfront or within the first message.
- Reveal all key steps in a single message without student involvement.
- Walk through the entire solution without engaging the student meaningfully.

## **Examples of correct and incorrect guidance**:
### Example 1 – Good Guidance (Integration by parts):
- Student: How do I integrate x ∗ e(2x)?
- Teacher: Good question! Can you think of an integration technique useful when integrating a product of functions?
- Student: Integration by parts?
- Teacher: Exactly. Can you identify what you’d set as ’u’ and what as ’dv’ here?
- Student: u = x and dv = e(2x) dx?
- Teacher: Nice job. Can you find du and v from here?
{ "reasoning": "The tutor carefully guided the student through recalling and applying the integration by parts technique
without revealing key intermediate or final results prematurely.", "decision": "OK" }

[1 more example reject example ]

### Example 3 – Immediate Final Answer (Limit computation):
- Student: How can I compute the limit as x → 0 of sin(5x)/x?
- Teacher: The limit is simply
boxed{5}.

{ "reasoning": "The tutor immediately gave away the answer without encouraging the student to recall or rea-
son about the relevant limit properties.", "decision": "REJECT" }

[1 more ok example ]

## **Evaluate the following conversation**:
==BEGIN CONVERSATION==
[conversation ]
==END CONVERSATION==

Please output a JSON evaluation following exactly this schema:
{ "reasoning": "your explanation here", "decision": "OK or REJECT" }

Now write the JSON evaluation for the conversation above, make sure the JSON is valid:

Figure 9: Prompt for judging whether the tutor leaked the answer.
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Your task is to inspect a conversation between a **student** and a **teacher**.
Evaluate the **style and appropriateness** of the teacher’s messages, ensuring the conversation is realistic, natural, and
educationally effective.

### **Acceptable Teacher Style**:
- Messages are concise and easy to understand.
- Teacher patiently and respectfully engages the student.
- **Most of the talking is done by the student**, with the teacher primarily responding or briefly clarifying.
- Conversation feels natural and believable (e.g., conversational tone, realistic student-teacher interaction).

### **You must REJECT the conversation if any of these occur**:
- **Overly Long Messages**:
Teacher messages that are excessively long, detailed, or overwhelming with unnecessary information.
*(Example: Teacher sends multiple paragraphs of explanation when a brief, clear sentence would suffice.)*
- **Teacher Dominates Conversation**: The teacher speaks significantly more than the student or overly controls the
conversation. *(Example: Teacher repeatedly interrupts or unnecessarily elaborates when the student could continue.)*
- **Language Mixing/Switching**:
The conversation must remain entirely in **English**. Switching or mixing languages—even briefly—is not allowed.
*(Example: Teacher says something partially or completely in Spanish.)*
- **Unrealistic/Unnatural Interaction**:
Conversation doesn’t feel believable between a real teacher and student (awkward phrasing, unnatural dialog, abrupt
changes in tone). *(Example: Student abruptly discusses unrelated personal issues mid-explanation.)*
- **Incomplete or Empty**:
Teacher sends incomplete, empty, or abruptly cut-off messages.
*(Example: Teacher’s message suddenly ends mid-sentence.)*

##**Examples:**
### **Good Example (OK)**:
- Student: I don’t get the second step of this solution.
- Teacher: Could you tell me exactly which part confuses you?
- Student: It’s the part where you simplify the fraction.
- Teacher: Sure! Let’s focus on that simplification. Do you remember how we reduce fractions?

### **Bad Example (REJECT - Overly Long)**:
- Student: I’m confused about simplifying fractions.
- Teacher: Simplifying fractions involves finding the greatest common divisor (GCD) of the numerator and denominator
and dividing both by it. For example, if you have 12/16, the greatest common divisor is 4, so dividing numerator and
denominator by 4 gives you 3/4. Another example is 10/20; the GCD here is 10, so this reduces to 1/2. You must always
look carefully to identify the largest divisor...
*(Reason: Excessively long and detailed explanation.)*

### **Bad Example (REJECT - Language Mixing)**:
- Student: Should I divide both sides next?
- Teacher: Yes, exactly! Divide ambos lados por dos.
*(Reason: Mixing English and Spanish.)*

Carefully inspect the conversation below based **only** on the style, conciseness, language consistency, re-
alism, and appropriateness outlined above.
**Conversation to evaluate**:
==BEGIN CONVERSATION==
[conversation ]
==END CONVERSATION==

Please output a JSON evaluation following exactly this schema:
{ "reasoning": "your explanation here", "decision": "OK or REJECT" }

Now write the JSON evaluation for the conversation above, make sure the JSON is valid:

Figure 10: Prompt for judging helpfulness which consists of constructive support and teacher tone.
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¥ Good Example: Teacher Guides Student (Qwen2.5-7B-RL λ = 0.75)

Problem: A student uses a calculator to find an answer but instead of pressing the x2 key, presses the
√
x key by mistake.

The student’s answer was 9. What should the answer have been if the student had pressed the correct key? Express your
answer as a whole number.

� Teacher

Sam, let’s think about this step-by-step. The student pressed the
√
x key and got 9.

What does this tell us about the number they originally entered?

ª Student

So if the student pressed the
√
x key and got 9, that means that the number they entered must be a perfect square because

when you take the square root of a perfect square, you get the original number back.

� Teacher

Very good, Sam! You’re on the right track.

If pressing
√
x gave them 9, then the original number must be 92.

Can you calculate what 92 is?

ª Student

92 is 81.

� Teacher

Exactly! So if the student had pressed the x2 key instead of
√
x, the correct answer would have been 81.

But remember, we’re not giving the answer away — we want you to figure it out yourself.

So, what should the answer have been if the student had pressed the correct key?

ª Student

So the answer should be the original number they entered, which is... 81.

� Teacher

Perfect, Sam! You’ve figured it out on your own.

The answer should have been 81 if the student had pressed the x2 key instead of
√
x.

Great job working through this problem and understanding the concept!

Figure 11: Good Example: Teacher guides the student without directly giving the answer.

18



q Bad Example: Teacher Solves the problem fully (Qwen2.5-7B-RL λ = 0.0)

Problem: Calculate the sum of all values of x that satisfy the equation

(x2 − 5x+ 5)(x
2+4x−60) = 1.

Consider the conditions for ab = 1 and provide the exact sum of valid x values.

� Teacher

Hello! I’m glad you’re working on this problem. Let’s break it down together.
We have the equation:

(x2 − 5x+ 5)x
2+4x−60 = 1.

For ab = 1, there are three main cases to consider:

• a = 1 (for any b)

• a = −1 and b is even

• a ̸= 0 and b = 0

Let’s apply these cases to our equation.

Case 1: x2 − 5x+ 5 = 1
Solve: x2 − 5x+ 4 = 0 ⇒ (x− 1)(x− 4) = 0
So, x = 1 or x = 4

Case 2: [... Many rows omitted]

Sum of valid x values: 1 + 4 + 2 + (−10) + 6 = 3

So, the sum of all valid x values is 3 .

Figure 12: Bad Example: Teacher explains too much and gives the full solution.

� Guided Reasoning with Thinking (Qwen2.5-7B-RL-hard λ = 1.0 +think)

Problem: Given vectors a⃗ = (x− 1, 2) and b⃗ = (4, y), if a⃗ ⊥ b⃗, then the minimum value of 9x + 3y is:

� Teacher

Thinking: Given that the vectors are perpendicular, their dot product is zero.
So we can set up the equation:

(x− 1) · 4 + 2 · y = 0.

From there, we can express one variable in terms of the other and then substitute into:

9x + 3y.

This gives a single-variable function we can minimize.

Can you start by finding a relationship between x and y using the fact that the vectors are perpendicular?
Remember, for two vectors to be perpendicular, their dot product must be zero.

[conversation continues]

Figure 13: Example with structured reasoning and no solution leak.
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q Bad Example: Teacher Solves the problem fully (DeepSeek-V3-0324)

Problem:
A student uses a calculator to find an answer but instead of pressing the x2 key presses the

√
x key by mistake. The

student’s answer was 9. What should the answer have been if the student had pressed the correct key? Express your answer
as a whole number.

� Teacher

Alright, let’s break this problem down step by step.
First, the student meant to press the (x2) key (which squares a number), but instead pressed the (

√
x) key (which takes

the square root of a number). The incorrect answer they got was 9.
So, the student took the square root of some number and got 9. Let’s call the original number (x). That means:

√
x = 9 ⇒ x = 81

Now, the student was supposed to square this number, so:

x2 = 812 = 6561

But wait—that seems like a very large number. Maybe I misunderstood. Let me think differently.
The student intended to square a number, say (y), but instead took its square root and got 9.

√
y = 9 ⇒ y = 81 ⇒ y2 = 6561

[... Many lines omitted]
Final answer: 6561

ª Student

.. so the correct answer is 6561. I think I understand now. If the student pressed the (
√
x) key by mistake and got 9, it

means that the original number was actually 81, and if they had pressed the correct key, they would have gotten 6561.

� Teacher

Exactly! You’ve got it. The key steps are:
The student took the square root of some number (x) and got 9:

√
x = 9 ⇒ x = 81

If they had pressed the correct key (x2), they would have squared 81:

812 = 6561

Great job understanding the problem!

Figure 14: Bad Example: The model solves the entire problem directly instead of prompting the student to think
through the steps.
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� Mistake analysis in thinking tags (Qwen2.5-7B-RL λ = 1.5 +think)

Problem:
Roll two dice, labeled A and B, one after the other. Let a and b represent the numbers rolled on dice A and B, respectively.
If the point M(a, b) falls within the region defined by the inequality x2 + y2 ≤ m (where m is a constant), and this
event is denoted as event C, find the minimum value of m to make the probability of event C, P (C), equal to 1.

ª Student

Here is my attempt at this problem: To solve this problem, we need to determine the region defined by the inequality
x2 + y2 ≤ m and find the minimum value of m that makes the probability of event C equal to 1.
Since we are rolling two dice, the possible values for a and b are 1 to 6. The point M(a, b) can be any point in a
6× 6 grid.
The inequality x2 + y2 ≤ m represents a circle with radius

√
m centered at the origin (0, 0).

To make the probability of event C equal to 1, the circle must cover the entire 6× 6 grid. The maximum distance
from the origin in the 6× 6 grid is

√
36 = 6 (when a = 6 and b = 6).

So, to cover the entire grid, the radius of the circle must be at least 6. Therefore, the minimum value of m is the
square of the radius, which is:

m = 62 = 36

However, this is not the final answer because we need to consider the edge cases where a = 6 and b = 1 or a = 1
and b = 6. In these cases, the distance from the origin is

√
37, which is greater than 6.

To cover these edge cases, we need a circle with a radius of at least
√
37.

m = (
√
37)2 = 37

Note that the probability of event C is not actually 1, but we’ve made the circle large enough to cover all possible
points in the 6× 6 grid.

37

� Teacher

Thinking: While the student’s reasoning is on the right track, there’s a misunderstanding about the region and the
probability. The student correctly identified the need for the circle to cover the 6× 6 grid but made an incorrect
assumption about the edge cases. I should guide them to recheck the maximum distance from the origin to any
point (a, b) where a and b are between 1 and 6.

That’s a great start, Riley! You’re on the right track by considering the 6× 6 grid and the circle that needs to cover it.
However, there’s a small mistake in your reasoning.

Let’s think about the maximum distance from the origin to any point (a, b) where a and b are the numbers rolled on
the dice.

Can you recheck the maximum distance and why it’s important for the probability of event C to be 1?

[conversation continues]

Figure 15: Example where the teacher analyses the mistake of the student attempt inside the thinking tags without
revealing a large part of the solution.
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